mm-only debug patch...
[mmotm.git] / drivers / net / wireless / ath / ath9k / xmit.c
blob2a4efcbced604dd7aeed122d7f65f364c34a9a56
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "ath9k.h"
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF 8
24 #define L_LTF 8
25 #define L_SIG 4
26 #define HT_SIG 8
27 #define HT_STF 4
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34 #define OFDM_SIFS_TIME 16
36 static u32 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
58 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
59 struct ath_atx_tid *tid,
60 struct list_head *bf_head);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_txq *txq,
63 struct list_head *bf_q,
64 int txok, int sendbar);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 struct list_head *head);
67 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
68 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
69 int txok);
70 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
71 int nbad, int txok, bool update_rc);
73 /*********************/
74 /* Aggregation logic */
75 /*********************/
77 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
79 struct ath_atx_ac *ac = tid->ac;
81 if (tid->paused)
82 return;
84 if (tid->sched)
85 return;
87 tid->sched = true;
88 list_add_tail(&tid->list, &ac->tid_q);
90 if (ac->sched)
91 return;
93 ac->sched = true;
94 list_add_tail(&ac->list, &txq->axq_acq);
97 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
99 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
101 spin_lock_bh(&txq->axq_lock);
102 tid->paused++;
103 spin_unlock_bh(&txq->axq_lock);
106 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
108 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
110 BUG_ON(tid->paused <= 0);
111 spin_lock_bh(&txq->axq_lock);
113 tid->paused--;
115 if (tid->paused > 0)
116 goto unlock;
118 if (list_empty(&tid->buf_q))
119 goto unlock;
121 ath_tx_queue_tid(txq, tid);
122 ath_txq_schedule(sc, txq);
123 unlock:
124 spin_unlock_bh(&txq->axq_lock);
127 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
129 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
130 struct ath_buf *bf;
131 struct list_head bf_head;
132 INIT_LIST_HEAD(&bf_head);
134 BUG_ON(tid->paused <= 0);
135 spin_lock_bh(&txq->axq_lock);
137 tid->paused--;
139 if (tid->paused > 0) {
140 spin_unlock_bh(&txq->axq_lock);
141 return;
144 while (!list_empty(&tid->buf_q)) {
145 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
146 BUG_ON(bf_isretried(bf));
147 list_move_tail(&bf->list, &bf_head);
148 ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
151 spin_unlock_bh(&txq->axq_lock);
154 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
155 int seqno)
157 int index, cindex;
159 index = ATH_BA_INDEX(tid->seq_start, seqno);
160 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
162 tid->tx_buf[cindex] = NULL;
164 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
165 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
166 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
170 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
171 struct ath_buf *bf)
173 int index, cindex;
175 if (bf_isretried(bf))
176 return;
178 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
179 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
181 BUG_ON(tid->tx_buf[cindex] != NULL);
182 tid->tx_buf[cindex] = bf;
184 if (index >= ((tid->baw_tail - tid->baw_head) &
185 (ATH_TID_MAX_BUFS - 1))) {
186 tid->baw_tail = cindex;
187 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
192 * TODO: For frame(s) that are in the retry state, we will reuse the
193 * sequence number(s) without setting the retry bit. The
194 * alternative is to give up on these and BAR the receiver's window
195 * forward.
197 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
198 struct ath_atx_tid *tid)
201 struct ath_buf *bf;
202 struct list_head bf_head;
203 INIT_LIST_HEAD(&bf_head);
205 for (;;) {
206 if (list_empty(&tid->buf_q))
207 break;
209 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
210 list_move_tail(&bf->list, &bf_head);
212 if (bf_isretried(bf))
213 ath_tx_update_baw(sc, tid, bf->bf_seqno);
215 spin_unlock(&txq->axq_lock);
216 ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
217 spin_lock(&txq->axq_lock);
220 tid->seq_next = tid->seq_start;
221 tid->baw_tail = tid->baw_head;
224 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
225 struct ath_buf *bf)
227 struct sk_buff *skb;
228 struct ieee80211_hdr *hdr;
230 bf->bf_state.bf_type |= BUF_RETRY;
231 bf->bf_retries++;
232 TX_STAT_INC(txq->axq_qnum, a_retries);
234 skb = bf->bf_mpdu;
235 hdr = (struct ieee80211_hdr *)skb->data;
236 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
239 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
241 struct ath_buf *tbf;
243 spin_lock_bh(&sc->tx.txbuflock);
244 if (WARN_ON(list_empty(&sc->tx.txbuf))) {
245 spin_unlock_bh(&sc->tx.txbuflock);
246 return NULL;
248 tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
249 list_del(&tbf->list);
250 spin_unlock_bh(&sc->tx.txbuflock);
252 ATH_TXBUF_RESET(tbf);
254 tbf->bf_mpdu = bf->bf_mpdu;
255 tbf->bf_buf_addr = bf->bf_buf_addr;
256 *(tbf->bf_desc) = *(bf->bf_desc);
257 tbf->bf_state = bf->bf_state;
258 tbf->bf_dmacontext = bf->bf_dmacontext;
260 return tbf;
263 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
264 struct ath_buf *bf, struct list_head *bf_q,
265 int txok)
267 struct ath_node *an = NULL;
268 struct sk_buff *skb;
269 struct ieee80211_sta *sta;
270 struct ieee80211_hdr *hdr;
271 struct ath_atx_tid *tid = NULL;
272 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
273 struct ath_desc *ds = bf_last->bf_desc;
274 struct list_head bf_head, bf_pending;
275 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
276 u32 ba[WME_BA_BMP_SIZE >> 5];
277 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
278 bool rc_update = true;
280 skb = bf->bf_mpdu;
281 hdr = (struct ieee80211_hdr *)skb->data;
283 rcu_read_lock();
285 sta = ieee80211_find_sta(sc->hw, hdr->addr1);
286 if (!sta) {
287 rcu_read_unlock();
288 return;
291 an = (struct ath_node *)sta->drv_priv;
292 tid = ATH_AN_2_TID(an, bf->bf_tidno);
294 isaggr = bf_isaggr(bf);
295 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
297 if (isaggr && txok) {
298 if (ATH_DS_TX_BA(ds)) {
299 seq_st = ATH_DS_BA_SEQ(ds);
300 memcpy(ba, ATH_DS_BA_BITMAP(ds),
301 WME_BA_BMP_SIZE >> 3);
302 } else {
304 * AR5416 can become deaf/mute when BA
305 * issue happens. Chip needs to be reset.
306 * But AP code may have sychronization issues
307 * when perform internal reset in this routine.
308 * Only enable reset in STA mode for now.
310 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
311 needreset = 1;
315 INIT_LIST_HEAD(&bf_pending);
316 INIT_LIST_HEAD(&bf_head);
318 nbad = ath_tx_num_badfrms(sc, bf, txok);
319 while (bf) {
320 txfail = txpending = 0;
321 bf_next = bf->bf_next;
323 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
324 /* transmit completion, subframe is
325 * acked by block ack */
326 acked_cnt++;
327 } else if (!isaggr && txok) {
328 /* transmit completion */
329 acked_cnt++;
330 } else {
331 if (!(tid->state & AGGR_CLEANUP) &&
332 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
333 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
334 ath_tx_set_retry(sc, txq, bf);
335 txpending = 1;
336 } else {
337 bf->bf_state.bf_type |= BUF_XRETRY;
338 txfail = 1;
339 sendbar = 1;
340 txfail_cnt++;
342 } else {
344 * cleanup in progress, just fail
345 * the un-acked sub-frames
347 txfail = 1;
351 if (bf_next == NULL) {
353 * Make sure the last desc is reclaimed if it
354 * not a holding desc.
356 if (!bf_last->bf_stale)
357 list_move_tail(&bf->list, &bf_head);
358 else
359 INIT_LIST_HEAD(&bf_head);
360 } else {
361 BUG_ON(list_empty(bf_q));
362 list_move_tail(&bf->list, &bf_head);
365 if (!txpending) {
367 * complete the acked-ones/xretried ones; update
368 * block-ack window
370 spin_lock_bh(&txq->axq_lock);
371 ath_tx_update_baw(sc, tid, bf->bf_seqno);
372 spin_unlock_bh(&txq->axq_lock);
374 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
375 ath_tx_rc_status(bf, ds, nbad, txok, true);
376 rc_update = false;
377 } else {
378 ath_tx_rc_status(bf, ds, nbad, txok, false);
381 ath_tx_complete_buf(sc, bf, txq, &bf_head, !txfail, sendbar);
382 } else {
383 /* retry the un-acked ones */
384 if (bf->bf_next == NULL && bf_last->bf_stale) {
385 struct ath_buf *tbf;
387 tbf = ath_clone_txbuf(sc, bf_last);
389 * Update tx baw and complete the frame with
390 * failed status if we run out of tx buf
392 if (!tbf) {
393 spin_lock_bh(&txq->axq_lock);
394 ath_tx_update_baw(sc, tid,
395 bf->bf_seqno);
396 spin_unlock_bh(&txq->axq_lock);
398 bf->bf_state.bf_type |= BUF_XRETRY;
399 ath_tx_rc_status(bf, ds, nbad,
400 0, false);
401 ath_tx_complete_buf(sc, bf, txq,
402 &bf_head, 0, 0);
403 break;
406 ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
407 list_add_tail(&tbf->list, &bf_head);
408 } else {
410 * Clear descriptor status words for
411 * software retry
413 ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
417 * Put this buffer to the temporary pending
418 * queue to retain ordering
420 list_splice_tail_init(&bf_head, &bf_pending);
423 bf = bf_next;
426 if (tid->state & AGGR_CLEANUP) {
427 if (tid->baw_head == tid->baw_tail) {
428 tid->state &= ~AGGR_ADDBA_COMPLETE;
429 tid->state &= ~AGGR_CLEANUP;
431 /* send buffered frames as singles */
432 ath_tx_flush_tid(sc, tid);
434 rcu_read_unlock();
435 return;
438 /* prepend un-acked frames to the beginning of the pending frame queue */
439 if (!list_empty(&bf_pending)) {
440 spin_lock_bh(&txq->axq_lock);
441 list_splice(&bf_pending, &tid->buf_q);
442 ath_tx_queue_tid(txq, tid);
443 spin_unlock_bh(&txq->axq_lock);
446 rcu_read_unlock();
448 if (needreset)
449 ath_reset(sc, false);
452 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
453 struct ath_atx_tid *tid)
455 const struct ath_rate_table *rate_table = sc->cur_rate_table;
456 struct sk_buff *skb;
457 struct ieee80211_tx_info *tx_info;
458 struct ieee80211_tx_rate *rates;
459 struct ath_tx_info_priv *tx_info_priv;
460 u32 max_4ms_framelen, frmlen;
461 u16 aggr_limit, legacy = 0;
462 int i;
464 skb = bf->bf_mpdu;
465 tx_info = IEEE80211_SKB_CB(skb);
466 rates = tx_info->control.rates;
467 tx_info_priv = (struct ath_tx_info_priv *)tx_info->rate_driver_data[0];
470 * Find the lowest frame length among the rate series that will have a
471 * 4ms transmit duration.
472 * TODO - TXOP limit needs to be considered.
474 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
476 for (i = 0; i < 4; i++) {
477 if (rates[i].count) {
478 if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) {
479 legacy = 1;
480 break;
483 frmlen = rate_table->info[rates[i].idx].max_4ms_framelen;
484 max_4ms_framelen = min(max_4ms_framelen, frmlen);
489 * limit aggregate size by the minimum rate if rate selected is
490 * not a probe rate, if rate selected is a probe rate then
491 * avoid aggregation of this packet.
493 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
494 return 0;
496 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
497 aggr_limit = min((max_4ms_framelen * 3) / 8,
498 (u32)ATH_AMPDU_LIMIT_MAX);
499 else
500 aggr_limit = min(max_4ms_framelen,
501 (u32)ATH_AMPDU_LIMIT_MAX);
504 * h/w can accept aggregates upto 16 bit lengths (65535).
505 * The IE, however can hold upto 65536, which shows up here
506 * as zero. Ignore 65536 since we are constrained by hw.
508 if (tid->an->maxampdu)
509 aggr_limit = min(aggr_limit, tid->an->maxampdu);
511 return aggr_limit;
515 * Returns the number of delimiters to be added to
516 * meet the minimum required mpdudensity.
518 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
519 struct ath_buf *bf, u16 frmlen)
521 const struct ath_rate_table *rt = sc->cur_rate_table;
522 struct sk_buff *skb = bf->bf_mpdu;
523 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
524 u32 nsymbits, nsymbols;
525 u16 minlen;
526 u8 rc, flags, rix;
527 int width, half_gi, ndelim, mindelim;
529 /* Select standard number of delimiters based on frame length alone */
530 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
533 * If encryption enabled, hardware requires some more padding between
534 * subframes.
535 * TODO - this could be improved to be dependent on the rate.
536 * The hardware can keep up at lower rates, but not higher rates
538 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
539 ndelim += ATH_AGGR_ENCRYPTDELIM;
542 * Convert desired mpdu density from microeconds to bytes based
543 * on highest rate in rate series (i.e. first rate) to determine
544 * required minimum length for subframe. Take into account
545 * whether high rate is 20 or 40Mhz and half or full GI.
547 * If there is no mpdu density restriction, no further calculation
548 * is needed.
551 if (tid->an->mpdudensity == 0)
552 return ndelim;
554 rix = tx_info->control.rates[0].idx;
555 flags = tx_info->control.rates[0].flags;
556 rc = rt->info[rix].ratecode;
557 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
558 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
560 if (half_gi)
561 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
562 else
563 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
565 if (nsymbols == 0)
566 nsymbols = 1;
568 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
569 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
571 if (frmlen < minlen) {
572 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
573 ndelim = max(mindelim, ndelim);
576 return ndelim;
579 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
580 struct ath_txq *txq,
581 struct ath_atx_tid *tid,
582 struct list_head *bf_q)
584 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
585 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
586 int rl = 0, nframes = 0, ndelim, prev_al = 0;
587 u16 aggr_limit = 0, al = 0, bpad = 0,
588 al_delta, h_baw = tid->baw_size / 2;
589 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
591 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
593 do {
594 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
596 /* do not step over block-ack window */
597 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
598 status = ATH_AGGR_BAW_CLOSED;
599 break;
602 if (!rl) {
603 aggr_limit = ath_lookup_rate(sc, bf, tid);
604 rl = 1;
607 /* do not exceed aggregation limit */
608 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
610 if (nframes &&
611 (aggr_limit < (al + bpad + al_delta + prev_al))) {
612 status = ATH_AGGR_LIMITED;
613 break;
616 /* do not exceed subframe limit */
617 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
618 status = ATH_AGGR_LIMITED;
619 break;
621 nframes++;
623 /* add padding for previous frame to aggregation length */
624 al += bpad + al_delta;
627 * Get the delimiters needed to meet the MPDU
628 * density for this node.
630 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
631 bpad = PADBYTES(al_delta) + (ndelim << 2);
633 bf->bf_next = NULL;
634 bf->bf_desc->ds_link = 0;
636 /* link buffers of this frame to the aggregate */
637 ath_tx_addto_baw(sc, tid, bf);
638 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
639 list_move_tail(&bf->list, bf_q);
640 if (bf_prev) {
641 bf_prev->bf_next = bf;
642 bf_prev->bf_desc->ds_link = bf->bf_daddr;
644 bf_prev = bf;
646 } while (!list_empty(&tid->buf_q));
648 bf_first->bf_al = al;
649 bf_first->bf_nframes = nframes;
651 return status;
652 #undef PADBYTES
655 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
656 struct ath_atx_tid *tid)
658 struct ath_buf *bf;
659 enum ATH_AGGR_STATUS status;
660 struct list_head bf_q;
662 do {
663 if (list_empty(&tid->buf_q))
664 return;
666 INIT_LIST_HEAD(&bf_q);
668 status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
671 * no frames picked up to be aggregated;
672 * block-ack window is not open.
674 if (list_empty(&bf_q))
675 break;
677 bf = list_first_entry(&bf_q, struct ath_buf, list);
678 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
680 /* if only one frame, send as non-aggregate */
681 if (bf->bf_nframes == 1) {
682 bf->bf_state.bf_type &= ~BUF_AGGR;
683 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
684 ath_buf_set_rate(sc, bf);
685 ath_tx_txqaddbuf(sc, txq, &bf_q);
686 continue;
689 /* setup first desc of aggregate */
690 bf->bf_state.bf_type |= BUF_AGGR;
691 ath_buf_set_rate(sc, bf);
692 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
694 /* anchor last desc of aggregate */
695 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
697 txq->axq_aggr_depth++;
698 ath_tx_txqaddbuf(sc, txq, &bf_q);
699 TX_STAT_INC(txq->axq_qnum, a_aggr);
701 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
702 status != ATH_AGGR_BAW_CLOSED);
705 void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
706 u16 tid, u16 *ssn)
708 struct ath_atx_tid *txtid;
709 struct ath_node *an;
711 an = (struct ath_node *)sta->drv_priv;
712 txtid = ATH_AN_2_TID(an, tid);
713 txtid->state |= AGGR_ADDBA_PROGRESS;
714 ath_tx_pause_tid(sc, txtid);
715 *ssn = txtid->seq_start;
718 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
720 struct ath_node *an = (struct ath_node *)sta->drv_priv;
721 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
722 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
723 struct ath_buf *bf;
724 struct list_head bf_head;
725 INIT_LIST_HEAD(&bf_head);
727 if (txtid->state & AGGR_CLEANUP)
728 return;
730 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
731 txtid->state &= ~AGGR_ADDBA_PROGRESS;
732 return;
735 ath_tx_pause_tid(sc, txtid);
737 /* drop all software retried frames and mark this TID */
738 spin_lock_bh(&txq->axq_lock);
739 while (!list_empty(&txtid->buf_q)) {
740 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
741 if (!bf_isretried(bf)) {
743 * NB: it's based on the assumption that
744 * software retried frame will always stay
745 * at the head of software queue.
747 break;
749 list_move_tail(&bf->list, &bf_head);
750 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
751 ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
753 spin_unlock_bh(&txq->axq_lock);
755 if (txtid->baw_head != txtid->baw_tail) {
756 txtid->state |= AGGR_CLEANUP;
757 } else {
758 txtid->state &= ~AGGR_ADDBA_COMPLETE;
759 ath_tx_flush_tid(sc, txtid);
763 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
765 struct ath_atx_tid *txtid;
766 struct ath_node *an;
768 an = (struct ath_node *)sta->drv_priv;
770 if (sc->sc_flags & SC_OP_TXAGGR) {
771 txtid = ATH_AN_2_TID(an, tid);
772 txtid->baw_size =
773 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
774 txtid->state |= AGGR_ADDBA_COMPLETE;
775 txtid->state &= ~AGGR_ADDBA_PROGRESS;
776 ath_tx_resume_tid(sc, txtid);
780 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
782 struct ath_atx_tid *txtid;
784 if (!(sc->sc_flags & SC_OP_TXAGGR))
785 return false;
787 txtid = ATH_AN_2_TID(an, tidno);
789 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
790 return true;
791 return false;
794 /********************/
795 /* Queue Management */
796 /********************/
798 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
799 struct ath_txq *txq)
801 struct ath_atx_ac *ac, *ac_tmp;
802 struct ath_atx_tid *tid, *tid_tmp;
804 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
805 list_del(&ac->list);
806 ac->sched = false;
807 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
808 list_del(&tid->list);
809 tid->sched = false;
810 ath_tid_drain(sc, txq, tid);
815 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
817 struct ath_hw *ah = sc->sc_ah;
818 struct ath_common *common = ath9k_hw_common(ah);
819 struct ath9k_tx_queue_info qi;
820 int qnum;
822 memset(&qi, 0, sizeof(qi));
823 qi.tqi_subtype = subtype;
824 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
825 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
826 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
827 qi.tqi_physCompBuf = 0;
830 * Enable interrupts only for EOL and DESC conditions.
831 * We mark tx descriptors to receive a DESC interrupt
832 * when a tx queue gets deep; otherwise waiting for the
833 * EOL to reap descriptors. Note that this is done to
834 * reduce interrupt load and this only defers reaping
835 * descriptors, never transmitting frames. Aside from
836 * reducing interrupts this also permits more concurrency.
837 * The only potential downside is if the tx queue backs
838 * up in which case the top half of the kernel may backup
839 * due to a lack of tx descriptors.
841 * The UAPSD queue is an exception, since we take a desc-
842 * based intr on the EOSP frames.
844 if (qtype == ATH9K_TX_QUEUE_UAPSD)
845 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
846 else
847 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
848 TXQ_FLAG_TXDESCINT_ENABLE;
849 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
850 if (qnum == -1) {
852 * NB: don't print a message, this happens
853 * normally on parts with too few tx queues
855 return NULL;
857 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
858 ath_print(common, ATH_DBG_FATAL,
859 "qnum %u out of range, max %u!\n",
860 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
861 ath9k_hw_releasetxqueue(ah, qnum);
862 return NULL;
864 if (!ATH_TXQ_SETUP(sc, qnum)) {
865 struct ath_txq *txq = &sc->tx.txq[qnum];
867 txq->axq_qnum = qnum;
868 txq->axq_link = NULL;
869 INIT_LIST_HEAD(&txq->axq_q);
870 INIT_LIST_HEAD(&txq->axq_acq);
871 spin_lock_init(&txq->axq_lock);
872 txq->axq_depth = 0;
873 txq->axq_aggr_depth = 0;
874 txq->axq_linkbuf = NULL;
875 txq->axq_tx_inprogress = false;
876 sc->tx.txqsetup |= 1<<qnum;
878 return &sc->tx.txq[qnum];
881 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
883 int qnum;
885 switch (qtype) {
886 case ATH9K_TX_QUEUE_DATA:
887 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
888 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
889 "HAL AC %u out of range, max %zu!\n",
890 haltype, ARRAY_SIZE(sc->tx.hwq_map));
891 return -1;
893 qnum = sc->tx.hwq_map[haltype];
894 break;
895 case ATH9K_TX_QUEUE_BEACON:
896 qnum = sc->beacon.beaconq;
897 break;
898 case ATH9K_TX_QUEUE_CAB:
899 qnum = sc->beacon.cabq->axq_qnum;
900 break;
901 default:
902 qnum = -1;
904 return qnum;
907 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
909 struct ath_txq *txq = NULL;
910 int qnum;
912 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
913 txq = &sc->tx.txq[qnum];
915 spin_lock_bh(&txq->axq_lock);
917 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
918 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_XMIT,
919 "TX queue: %d is full, depth: %d\n",
920 qnum, txq->axq_depth);
921 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
922 txq->stopped = 1;
923 spin_unlock_bh(&txq->axq_lock);
924 return NULL;
927 spin_unlock_bh(&txq->axq_lock);
929 return txq;
932 int ath_txq_update(struct ath_softc *sc, int qnum,
933 struct ath9k_tx_queue_info *qinfo)
935 struct ath_hw *ah = sc->sc_ah;
936 int error = 0;
937 struct ath9k_tx_queue_info qi;
939 if (qnum == sc->beacon.beaconq) {
941 * XXX: for beacon queue, we just save the parameter.
942 * It will be picked up by ath_beaconq_config when
943 * it's necessary.
945 sc->beacon.beacon_qi = *qinfo;
946 return 0;
949 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
951 ath9k_hw_get_txq_props(ah, qnum, &qi);
952 qi.tqi_aifs = qinfo->tqi_aifs;
953 qi.tqi_cwmin = qinfo->tqi_cwmin;
954 qi.tqi_cwmax = qinfo->tqi_cwmax;
955 qi.tqi_burstTime = qinfo->tqi_burstTime;
956 qi.tqi_readyTime = qinfo->tqi_readyTime;
958 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
959 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
960 "Unable to update hardware queue %u!\n", qnum);
961 error = -EIO;
962 } else {
963 ath9k_hw_resettxqueue(ah, qnum);
966 return error;
969 int ath_cabq_update(struct ath_softc *sc)
971 struct ath9k_tx_queue_info qi;
972 int qnum = sc->beacon.cabq->axq_qnum;
974 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
976 * Ensure the readytime % is within the bounds.
978 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
979 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
980 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
981 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
983 qi.tqi_readyTime = (sc->beacon_interval *
984 sc->config.cabqReadytime) / 100;
985 ath_txq_update(sc, qnum, &qi);
987 return 0;
991 * Drain a given TX queue (could be Beacon or Data)
993 * This assumes output has been stopped and
994 * we do not need to block ath_tx_tasklet.
996 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
998 struct ath_buf *bf, *lastbf;
999 struct list_head bf_head;
1001 INIT_LIST_HEAD(&bf_head);
1003 for (;;) {
1004 spin_lock_bh(&txq->axq_lock);
1006 if (list_empty(&txq->axq_q)) {
1007 txq->axq_link = NULL;
1008 txq->axq_linkbuf = NULL;
1009 spin_unlock_bh(&txq->axq_lock);
1010 break;
1013 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1015 if (bf->bf_stale) {
1016 list_del(&bf->list);
1017 spin_unlock_bh(&txq->axq_lock);
1019 spin_lock_bh(&sc->tx.txbuflock);
1020 list_add_tail(&bf->list, &sc->tx.txbuf);
1021 spin_unlock_bh(&sc->tx.txbuflock);
1022 continue;
1025 lastbf = bf->bf_lastbf;
1026 if (!retry_tx)
1027 lastbf->bf_desc->ds_txstat.ts_flags =
1028 ATH9K_TX_SW_ABORTED;
1030 /* remove ath_buf's of the same mpdu from txq */
1031 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1032 txq->axq_depth--;
1034 spin_unlock_bh(&txq->axq_lock);
1036 if (bf_isampdu(bf))
1037 ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0);
1038 else
1039 ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
1042 spin_lock_bh(&txq->axq_lock);
1043 txq->axq_tx_inprogress = false;
1044 spin_unlock_bh(&txq->axq_lock);
1046 /* flush any pending frames if aggregation is enabled */
1047 if (sc->sc_flags & SC_OP_TXAGGR) {
1048 if (!retry_tx) {
1049 spin_lock_bh(&txq->axq_lock);
1050 ath_txq_drain_pending_buffers(sc, txq);
1051 spin_unlock_bh(&txq->axq_lock);
1056 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1058 struct ath_hw *ah = sc->sc_ah;
1059 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1060 struct ath_txq *txq;
1061 int i, npend = 0;
1063 if (sc->sc_flags & SC_OP_INVALID)
1064 return;
1066 /* Stop beacon queue */
1067 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1069 /* Stop data queues */
1070 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1071 if (ATH_TXQ_SETUP(sc, i)) {
1072 txq = &sc->tx.txq[i];
1073 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1074 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1078 if (npend) {
1079 int r;
1081 ath_print(common, ATH_DBG_XMIT,
1082 "Unable to stop TxDMA. Reset HAL!\n");
1084 spin_lock_bh(&sc->sc_resetlock);
1085 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, true);
1086 if (r)
1087 ath_print(common, ATH_DBG_FATAL,
1088 "Unable to reset hardware; reset status %d\n",
1090 spin_unlock_bh(&sc->sc_resetlock);
1093 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1094 if (ATH_TXQ_SETUP(sc, i))
1095 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1099 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1101 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1102 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1105 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1107 struct ath_atx_ac *ac;
1108 struct ath_atx_tid *tid;
1110 if (list_empty(&txq->axq_acq))
1111 return;
1113 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1114 list_del(&ac->list);
1115 ac->sched = false;
1117 do {
1118 if (list_empty(&ac->tid_q))
1119 return;
1121 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1122 list_del(&tid->list);
1123 tid->sched = false;
1125 if (tid->paused)
1126 continue;
1128 ath_tx_sched_aggr(sc, txq, tid);
1131 * add tid to round-robin queue if more frames
1132 * are pending for the tid
1134 if (!list_empty(&tid->buf_q))
1135 ath_tx_queue_tid(txq, tid);
1137 break;
1138 } while (!list_empty(&ac->tid_q));
1140 if (!list_empty(&ac->tid_q)) {
1141 if (!ac->sched) {
1142 ac->sched = true;
1143 list_add_tail(&ac->list, &txq->axq_acq);
1148 int ath_tx_setup(struct ath_softc *sc, int haltype)
1150 struct ath_txq *txq;
1152 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1153 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1154 "HAL AC %u out of range, max %zu!\n",
1155 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1156 return 0;
1158 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1159 if (txq != NULL) {
1160 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1161 return 1;
1162 } else
1163 return 0;
1166 /***********/
1167 /* TX, DMA */
1168 /***********/
1171 * Insert a chain of ath_buf (descriptors) on a txq and
1172 * assume the descriptors are already chained together by caller.
1174 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1175 struct list_head *head)
1177 struct ath_hw *ah = sc->sc_ah;
1178 struct ath_common *common = ath9k_hw_common(ah);
1179 struct ath_buf *bf;
1182 * Insert the frame on the outbound list and
1183 * pass it on to the hardware.
1186 if (list_empty(head))
1187 return;
1189 bf = list_first_entry(head, struct ath_buf, list);
1191 list_splice_tail_init(head, &txq->axq_q);
1192 txq->axq_depth++;
1193 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
1195 ath_print(common, ATH_DBG_QUEUE,
1196 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1198 if (txq->axq_link == NULL) {
1199 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1200 ath_print(common, ATH_DBG_XMIT,
1201 "TXDP[%u] = %llx (%p)\n",
1202 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1203 } else {
1204 *txq->axq_link = bf->bf_daddr;
1205 ath_print(common, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1206 txq->axq_qnum, txq->axq_link,
1207 ito64(bf->bf_daddr), bf->bf_desc);
1209 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1210 ath9k_hw_txstart(ah, txq->axq_qnum);
1213 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
1215 struct ath_buf *bf = NULL;
1217 spin_lock_bh(&sc->tx.txbuflock);
1219 if (unlikely(list_empty(&sc->tx.txbuf))) {
1220 spin_unlock_bh(&sc->tx.txbuflock);
1221 return NULL;
1224 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
1225 list_del(&bf->list);
1227 spin_unlock_bh(&sc->tx.txbuflock);
1229 return bf;
1232 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1233 struct list_head *bf_head,
1234 struct ath_tx_control *txctl)
1236 struct ath_buf *bf;
1238 bf = list_first_entry(bf_head, struct ath_buf, list);
1239 bf->bf_state.bf_type |= BUF_AMPDU;
1240 TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1243 * Do not queue to h/w when any of the following conditions is true:
1244 * - there are pending frames in software queue
1245 * - the TID is currently paused for ADDBA/BAR request
1246 * - seqno is not within block-ack window
1247 * - h/w queue depth exceeds low water mark
1249 if (!list_empty(&tid->buf_q) || tid->paused ||
1250 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1251 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1253 * Add this frame to software queue for scheduling later
1254 * for aggregation.
1256 list_move_tail(&bf->list, &tid->buf_q);
1257 ath_tx_queue_tid(txctl->txq, tid);
1258 return;
1261 /* Add sub-frame to BAW */
1262 ath_tx_addto_baw(sc, tid, bf);
1264 /* Queue to h/w without aggregation */
1265 bf->bf_nframes = 1;
1266 bf->bf_lastbf = bf;
1267 ath_buf_set_rate(sc, bf);
1268 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1271 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1272 struct ath_atx_tid *tid,
1273 struct list_head *bf_head)
1275 struct ath_buf *bf;
1277 bf = list_first_entry(bf_head, struct ath_buf, list);
1278 bf->bf_state.bf_type &= ~BUF_AMPDU;
1280 /* update starting sequence number for subsequent ADDBA request */
1281 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1283 bf->bf_nframes = 1;
1284 bf->bf_lastbf = bf;
1285 ath_buf_set_rate(sc, bf);
1286 ath_tx_txqaddbuf(sc, txq, bf_head);
1287 TX_STAT_INC(txq->axq_qnum, queued);
1290 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1291 struct list_head *bf_head)
1293 struct ath_buf *bf;
1295 bf = list_first_entry(bf_head, struct ath_buf, list);
1297 bf->bf_lastbf = bf;
1298 bf->bf_nframes = 1;
1299 ath_buf_set_rate(sc, bf);
1300 ath_tx_txqaddbuf(sc, txq, bf_head);
1301 TX_STAT_INC(txq->axq_qnum, queued);
1304 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1306 struct ieee80211_hdr *hdr;
1307 enum ath9k_pkt_type htype;
1308 __le16 fc;
1310 hdr = (struct ieee80211_hdr *)skb->data;
1311 fc = hdr->frame_control;
1313 if (ieee80211_is_beacon(fc))
1314 htype = ATH9K_PKT_TYPE_BEACON;
1315 else if (ieee80211_is_probe_resp(fc))
1316 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1317 else if (ieee80211_is_atim(fc))
1318 htype = ATH9K_PKT_TYPE_ATIM;
1319 else if (ieee80211_is_pspoll(fc))
1320 htype = ATH9K_PKT_TYPE_PSPOLL;
1321 else
1322 htype = ATH9K_PKT_TYPE_NORMAL;
1324 return htype;
1327 static bool is_pae(struct sk_buff *skb)
1329 struct ieee80211_hdr *hdr;
1330 __le16 fc;
1332 hdr = (struct ieee80211_hdr *)skb->data;
1333 fc = hdr->frame_control;
1335 if (ieee80211_is_data(fc)) {
1336 if (ieee80211_is_nullfunc(fc) ||
1337 /* Port Access Entity (IEEE 802.1X) */
1338 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1339 return true;
1343 return false;
1346 static int get_hw_crypto_keytype(struct sk_buff *skb)
1348 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1350 if (tx_info->control.hw_key) {
1351 if (tx_info->control.hw_key->alg == ALG_WEP)
1352 return ATH9K_KEY_TYPE_WEP;
1353 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1354 return ATH9K_KEY_TYPE_TKIP;
1355 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1356 return ATH9K_KEY_TYPE_AES;
1359 return ATH9K_KEY_TYPE_CLEAR;
1362 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1363 struct ath_buf *bf)
1365 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1366 struct ieee80211_hdr *hdr;
1367 struct ath_node *an;
1368 struct ath_atx_tid *tid;
1369 __le16 fc;
1370 u8 *qc;
1372 if (!tx_info->control.sta)
1373 return;
1375 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1376 hdr = (struct ieee80211_hdr *)skb->data;
1377 fc = hdr->frame_control;
1379 if (ieee80211_is_data_qos(fc)) {
1380 qc = ieee80211_get_qos_ctl(hdr);
1381 bf->bf_tidno = qc[0] & 0xf;
1385 * For HT capable stations, we save tidno for later use.
1386 * We also override seqno set by upper layer with the one
1387 * in tx aggregation state.
1389 * If fragmentation is on, the sequence number is
1390 * not overridden, since it has been
1391 * incremented by the fragmentation routine.
1393 * FIXME: check if the fragmentation threshold exceeds
1394 * IEEE80211 max.
1396 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1397 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
1398 IEEE80211_SEQ_SEQ_SHIFT);
1399 bf->bf_seqno = tid->seq_next;
1400 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1403 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
1404 struct ath_txq *txq)
1406 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1407 int flags = 0;
1409 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1410 flags |= ATH9K_TXDESC_INTREQ;
1412 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1413 flags |= ATH9K_TXDESC_NOACK;
1415 return flags;
1419 * rix - rate index
1420 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1421 * width - 0 for 20 MHz, 1 for 40 MHz
1422 * half_gi - to use 4us v/s 3.6 us for symbol time
1424 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1425 int width, int half_gi, bool shortPreamble)
1427 const struct ath_rate_table *rate_table = sc->cur_rate_table;
1428 u32 nbits, nsymbits, duration, nsymbols;
1429 u8 rc;
1430 int streams, pktlen;
1432 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1433 rc = rate_table->info[rix].ratecode;
1435 /* for legacy rates, use old function to compute packet duration */
1436 if (!IS_HT_RATE(rc))
1437 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
1438 rix, shortPreamble);
1440 /* find number of symbols: PLCP + data */
1441 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1442 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1443 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1445 if (!half_gi)
1446 duration = SYMBOL_TIME(nsymbols);
1447 else
1448 duration = SYMBOL_TIME_HALFGI(nsymbols);
1450 /* addup duration for legacy/ht training and signal fields */
1451 streams = HT_RC_2_STREAMS(rc);
1452 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1454 return duration;
1457 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1459 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1460 const struct ath_rate_table *rt = sc->cur_rate_table;
1461 struct ath9k_11n_rate_series series[4];
1462 struct sk_buff *skb;
1463 struct ieee80211_tx_info *tx_info;
1464 struct ieee80211_tx_rate *rates;
1465 struct ieee80211_hdr *hdr;
1466 int i, flags = 0;
1467 u8 rix = 0, ctsrate = 0;
1468 bool is_pspoll;
1470 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1472 skb = bf->bf_mpdu;
1473 tx_info = IEEE80211_SKB_CB(skb);
1474 rates = tx_info->control.rates;
1475 hdr = (struct ieee80211_hdr *)skb->data;
1476 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1479 * We check if Short Preamble is needed for the CTS rate by
1480 * checking the BSS's global flag.
1481 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1483 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1484 ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode |
1485 rt->info[tx_info->control.rts_cts_rate_idx].short_preamble;
1486 else
1487 ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode;
1490 * ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive.
1491 * Check the first rate in the series to decide whether RTS/CTS
1492 * or CTS-to-self has to be used.
1494 if (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1495 flags = ATH9K_TXDESC_CTSENA;
1496 else if (rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1497 flags = ATH9K_TXDESC_RTSENA;
1499 /* FIXME: Handle aggregation protection */
1500 if (sc->config.ath_aggr_prot &&
1501 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
1502 flags = ATH9K_TXDESC_RTSENA;
1505 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1506 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1507 flags &= ~(ATH9K_TXDESC_RTSENA);
1509 for (i = 0; i < 4; i++) {
1510 if (!rates[i].count || (rates[i].idx < 0))
1511 continue;
1513 rix = rates[i].idx;
1514 series[i].Tries = rates[i].count;
1515 series[i].ChSel = common->tx_chainmask;
1517 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1518 series[i].Rate = rt->info[rix].ratecode |
1519 rt->info[rix].short_preamble;
1520 else
1521 series[i].Rate = rt->info[rix].ratecode;
1523 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1524 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1525 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1526 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1527 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1528 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1530 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1531 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
1532 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
1533 (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE));
1536 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1537 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1538 bf->bf_lastbf->bf_desc,
1539 !is_pspoll, ctsrate,
1540 0, series, 4, flags);
1542 if (sc->config.ath_aggr_prot && flags)
1543 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1546 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1547 struct sk_buff *skb,
1548 struct ath_tx_control *txctl)
1550 struct ath_wiphy *aphy = hw->priv;
1551 struct ath_softc *sc = aphy->sc;
1552 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1553 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1554 struct ath_tx_info_priv *tx_info_priv;
1555 int hdrlen;
1556 __le16 fc;
1558 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1559 if (unlikely(!tx_info_priv))
1560 return -ENOMEM;
1561 tx_info->rate_driver_data[0] = tx_info_priv;
1562 tx_info_priv->aphy = aphy;
1563 tx_info_priv->frame_type = txctl->frame_type;
1564 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1565 fc = hdr->frame_control;
1567 ATH_TXBUF_RESET(bf);
1569 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1571 if (conf_is_ht(&sc->hw->conf) && !is_pae(skb))
1572 bf->bf_state.bf_type |= BUF_HT;
1574 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1576 bf->bf_keytype = get_hw_crypto_keytype(skb);
1577 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1578 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1579 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1580 } else {
1581 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1584 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1585 assign_aggr_tid_seqno(skb, bf);
1587 bf->bf_mpdu = skb;
1589 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1590 skb->len, DMA_TO_DEVICE);
1591 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1592 bf->bf_mpdu = NULL;
1593 kfree(tx_info_priv);
1594 tx_info->rate_driver_data[0] = NULL;
1595 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1596 "dma_mapping_error() on TX\n");
1597 return -ENOMEM;
1600 bf->bf_buf_addr = bf->bf_dmacontext;
1601 return 0;
1604 /* FIXME: tx power */
1605 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1606 struct ath_tx_control *txctl)
1608 struct sk_buff *skb = bf->bf_mpdu;
1609 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1610 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1611 struct ath_node *an = NULL;
1612 struct list_head bf_head;
1613 struct ath_desc *ds;
1614 struct ath_atx_tid *tid;
1615 struct ath_hw *ah = sc->sc_ah;
1616 int frm_type;
1617 __le16 fc;
1619 frm_type = get_hw_packet_type(skb);
1620 fc = hdr->frame_control;
1622 INIT_LIST_HEAD(&bf_head);
1623 list_add_tail(&bf->list, &bf_head);
1625 ds = bf->bf_desc;
1626 ds->ds_link = 0;
1627 ds->ds_data = bf->bf_buf_addr;
1629 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1630 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1632 ath9k_hw_filltxdesc(ah, ds,
1633 skb->len, /* segment length */
1634 true, /* first segment */
1635 true, /* last segment */
1636 ds); /* first descriptor */
1638 spin_lock_bh(&txctl->txq->axq_lock);
1640 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1641 tx_info->control.sta) {
1642 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1643 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1645 if (!ieee80211_is_data_qos(fc)) {
1646 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1647 goto tx_done;
1650 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1652 * Try aggregation if it's a unicast data frame
1653 * and the destination is HT capable.
1655 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1656 } else {
1658 * Send this frame as regular when ADDBA
1659 * exchange is neither complete nor pending.
1661 ath_tx_send_ht_normal(sc, txctl->txq,
1662 tid, &bf_head);
1664 } else {
1665 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1668 tx_done:
1669 spin_unlock_bh(&txctl->txq->axq_lock);
1672 /* Upon failure caller should free skb */
1673 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1674 struct ath_tx_control *txctl)
1676 struct ath_wiphy *aphy = hw->priv;
1677 struct ath_softc *sc = aphy->sc;
1678 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1679 struct ath_buf *bf;
1680 int r;
1682 bf = ath_tx_get_buffer(sc);
1683 if (!bf) {
1684 ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
1685 return -1;
1688 r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1689 if (unlikely(r)) {
1690 struct ath_txq *txq = txctl->txq;
1692 ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
1694 /* upon ath_tx_processq() this TX queue will be resumed, we
1695 * guarantee this will happen by knowing beforehand that
1696 * we will at least have to run TX completionon one buffer
1697 * on the queue */
1698 spin_lock_bh(&txq->axq_lock);
1699 if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) {
1700 ieee80211_stop_queue(sc->hw,
1701 skb_get_queue_mapping(skb));
1702 txq->stopped = 1;
1704 spin_unlock_bh(&txq->axq_lock);
1706 spin_lock_bh(&sc->tx.txbuflock);
1707 list_add_tail(&bf->list, &sc->tx.txbuf);
1708 spin_unlock_bh(&sc->tx.txbuflock);
1710 return r;
1713 ath_tx_start_dma(sc, bf, txctl);
1715 return 0;
1718 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1720 struct ath_wiphy *aphy = hw->priv;
1721 struct ath_softc *sc = aphy->sc;
1722 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1723 int hdrlen, padsize;
1724 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1725 struct ath_tx_control txctl;
1727 memset(&txctl, 0, sizeof(struct ath_tx_control));
1730 * As a temporary workaround, assign seq# here; this will likely need
1731 * to be cleaned up to work better with Beacon transmission and virtual
1732 * BSSes.
1734 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1735 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1736 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1737 sc->tx.seq_no += 0x10;
1738 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1739 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1742 /* Add the padding after the header if this is not already done */
1743 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1744 if (hdrlen & 3) {
1745 padsize = hdrlen % 4;
1746 if (skb_headroom(skb) < padsize) {
1747 ath_print(common, ATH_DBG_XMIT,
1748 "TX CABQ padding failed\n");
1749 dev_kfree_skb_any(skb);
1750 return;
1752 skb_push(skb, padsize);
1753 memmove(skb->data, skb->data + padsize, hdrlen);
1756 txctl.txq = sc->beacon.cabq;
1758 ath_print(common, ATH_DBG_XMIT,
1759 "transmitting CABQ packet, skb: %p\n", skb);
1761 if (ath_tx_start(hw, skb, &txctl) != 0) {
1762 ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
1763 goto exit;
1766 return;
1767 exit:
1768 dev_kfree_skb_any(skb);
1771 /*****************/
1772 /* TX Completion */
1773 /*****************/
1775 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1776 int tx_flags)
1778 struct ieee80211_hw *hw = sc->hw;
1779 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1780 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1781 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1782 int hdrlen, padsize;
1783 int frame_type = ATH9K_NOT_INTERNAL;
1785 ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1787 if (tx_info_priv) {
1788 hw = tx_info_priv->aphy->hw;
1789 frame_type = tx_info_priv->frame_type;
1792 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
1793 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
1794 kfree(tx_info_priv);
1795 tx_info->rate_driver_data[0] = NULL;
1798 if (tx_flags & ATH_TX_BAR)
1799 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1801 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1802 /* Frame was ACKed */
1803 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1806 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1807 padsize = hdrlen & 3;
1808 if (padsize && hdrlen >= 24) {
1810 * Remove MAC header padding before giving the frame back to
1811 * mac80211.
1813 memmove(skb->data + padsize, skb->data, hdrlen);
1814 skb_pull(skb, padsize);
1817 if (sc->sc_flags & SC_OP_WAIT_FOR_TX_ACK) {
1818 sc->sc_flags &= ~SC_OP_WAIT_FOR_TX_ACK;
1819 ath_print(common, ATH_DBG_PS,
1820 "Going back to sleep after having "
1821 "received TX status (0x%x)\n",
1822 sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
1823 SC_OP_WAIT_FOR_CAB |
1824 SC_OP_WAIT_FOR_PSPOLL_DATA |
1825 SC_OP_WAIT_FOR_TX_ACK));
1828 if (frame_type == ATH9K_NOT_INTERNAL)
1829 ieee80211_tx_status(hw, skb);
1830 else
1831 ath9k_tx_status(hw, skb);
1834 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1835 struct ath_txq *txq,
1836 struct list_head *bf_q,
1837 int txok, int sendbar)
1839 struct sk_buff *skb = bf->bf_mpdu;
1840 unsigned long flags;
1841 int tx_flags = 0;
1843 if (sendbar)
1844 tx_flags = ATH_TX_BAR;
1846 if (!txok) {
1847 tx_flags |= ATH_TX_ERROR;
1849 if (bf_isxretried(bf))
1850 tx_flags |= ATH_TX_XRETRY;
1853 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1854 ath_tx_complete(sc, skb, tx_flags);
1855 ath_debug_stat_tx(sc, txq, bf);
1858 * Return the list of ath_buf of this mpdu to free queue
1860 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1861 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1862 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1865 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1866 int txok)
1868 struct ath_buf *bf_last = bf->bf_lastbf;
1869 struct ath_desc *ds = bf_last->bf_desc;
1870 u16 seq_st = 0;
1871 u32 ba[WME_BA_BMP_SIZE >> 5];
1872 int ba_index;
1873 int nbad = 0;
1874 int isaggr = 0;
1876 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
1877 return 0;
1879 isaggr = bf_isaggr(bf);
1880 if (isaggr) {
1881 seq_st = ATH_DS_BA_SEQ(ds);
1882 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
1885 while (bf) {
1886 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1887 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1888 nbad++;
1890 bf = bf->bf_next;
1893 return nbad;
1896 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
1897 int nbad, int txok, bool update_rc)
1899 struct sk_buff *skb = bf->bf_mpdu;
1900 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1901 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1902 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1903 struct ieee80211_hw *hw = tx_info_priv->aphy->hw;
1904 u8 i, tx_rateindex;
1906 if (txok)
1907 tx_info->status.ack_signal = ds->ds_txstat.ts_rssi;
1909 tx_rateindex = ds->ds_txstat.ts_rateindex;
1910 WARN_ON(tx_rateindex >= hw->max_rates);
1912 tx_info_priv->update_rc = update_rc;
1913 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1914 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1916 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1917 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
1918 if (ieee80211_is_data(hdr->frame_control)) {
1919 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
1920 sizeof(tx_info_priv->tx));
1921 tx_info_priv->n_frames = bf->bf_nframes;
1922 tx_info_priv->n_bad_frames = nbad;
1926 for (i = tx_rateindex + 1; i < hw->max_rates; i++)
1927 tx_info->status.rates[i].count = 0;
1929 tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
1932 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
1934 int qnum;
1936 spin_lock_bh(&txq->axq_lock);
1937 if (txq->stopped &&
1938 sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) {
1939 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1940 if (qnum != -1) {
1941 ieee80211_wake_queue(sc->hw, qnum);
1942 txq->stopped = 0;
1945 spin_unlock_bh(&txq->axq_lock);
1948 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1950 struct ath_hw *ah = sc->sc_ah;
1951 struct ath_common *common = ath9k_hw_common(ah);
1952 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1953 struct list_head bf_head;
1954 struct ath_desc *ds;
1955 int txok;
1956 int status;
1958 ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
1959 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1960 txq->axq_link);
1962 for (;;) {
1963 spin_lock_bh(&txq->axq_lock);
1964 if (list_empty(&txq->axq_q)) {
1965 txq->axq_link = NULL;
1966 txq->axq_linkbuf = NULL;
1967 spin_unlock_bh(&txq->axq_lock);
1968 break;
1970 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1973 * There is a race condition that a BH gets scheduled
1974 * after sw writes TxE and before hw re-load the last
1975 * descriptor to get the newly chained one.
1976 * Software must keep the last DONE descriptor as a
1977 * holding descriptor - software does so by marking
1978 * it with the STALE flag.
1980 bf_held = NULL;
1981 if (bf->bf_stale) {
1982 bf_held = bf;
1983 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1984 spin_unlock_bh(&txq->axq_lock);
1985 break;
1986 } else {
1987 bf = list_entry(bf_held->list.next,
1988 struct ath_buf, list);
1992 lastbf = bf->bf_lastbf;
1993 ds = lastbf->bf_desc;
1995 status = ath9k_hw_txprocdesc(ah, ds);
1996 if (status == -EINPROGRESS) {
1997 spin_unlock_bh(&txq->axq_lock);
1998 break;
2000 if (bf->bf_desc == txq->axq_lastdsWithCTS)
2001 txq->axq_lastdsWithCTS = NULL;
2002 if (ds == txq->axq_gatingds)
2003 txq->axq_gatingds = NULL;
2006 * Remove ath_buf's of the same transmit unit from txq,
2007 * however leave the last descriptor back as the holding
2008 * descriptor for hw.
2010 lastbf->bf_stale = true;
2011 INIT_LIST_HEAD(&bf_head);
2012 if (!list_is_singular(&lastbf->list))
2013 list_cut_position(&bf_head,
2014 &txq->axq_q, lastbf->list.prev);
2016 txq->axq_depth--;
2017 if (bf_isaggr(bf))
2018 txq->axq_aggr_depth--;
2020 txok = (ds->ds_txstat.ts_status == 0);
2021 txq->axq_tx_inprogress = false;
2022 spin_unlock_bh(&txq->axq_lock);
2024 if (bf_held) {
2025 spin_lock_bh(&sc->tx.txbuflock);
2026 list_move_tail(&bf_held->list, &sc->tx.txbuf);
2027 spin_unlock_bh(&sc->tx.txbuflock);
2030 if (!bf_isampdu(bf)) {
2032 * This frame is sent out as a single frame.
2033 * Use hardware retry status for this frame.
2035 bf->bf_retries = ds->ds_txstat.ts_longretry;
2036 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
2037 bf->bf_state.bf_type |= BUF_XRETRY;
2038 ath_tx_rc_status(bf, ds, 0, txok, true);
2041 if (bf_isampdu(bf))
2042 ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok);
2043 else
2044 ath_tx_complete_buf(sc, bf, txq, &bf_head, txok, 0);
2046 ath_wake_mac80211_queue(sc, txq);
2048 spin_lock_bh(&txq->axq_lock);
2049 if (sc->sc_flags & SC_OP_TXAGGR)
2050 ath_txq_schedule(sc, txq);
2051 spin_unlock_bh(&txq->axq_lock);
2055 static void ath_tx_complete_poll_work(struct work_struct *work)
2057 struct ath_softc *sc = container_of(work, struct ath_softc,
2058 tx_complete_work.work);
2059 struct ath_txq *txq;
2060 int i;
2061 bool needreset = false;
2063 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2064 if (ATH_TXQ_SETUP(sc, i)) {
2065 txq = &sc->tx.txq[i];
2066 spin_lock_bh(&txq->axq_lock);
2067 if (txq->axq_depth) {
2068 if (txq->axq_tx_inprogress) {
2069 needreset = true;
2070 spin_unlock_bh(&txq->axq_lock);
2071 break;
2072 } else {
2073 txq->axq_tx_inprogress = true;
2076 spin_unlock_bh(&txq->axq_lock);
2079 if (needreset) {
2080 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2081 "tx hung, resetting the chip\n");
2082 ath9k_ps_wakeup(sc);
2083 ath_reset(sc, false);
2084 ath9k_ps_restore(sc);
2087 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2088 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2093 void ath_tx_tasklet(struct ath_softc *sc)
2095 int i;
2096 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2098 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2100 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2101 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2102 ath_tx_processq(sc, &sc->tx.txq[i]);
2106 /*****************/
2107 /* Init, Cleanup */
2108 /*****************/
2110 int ath_tx_init(struct ath_softc *sc, int nbufs)
2112 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2113 int error = 0;
2115 spin_lock_init(&sc->tx.txbuflock);
2117 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2118 "tx", nbufs, 1);
2119 if (error != 0) {
2120 ath_print(common, ATH_DBG_FATAL,
2121 "Failed to allocate tx descriptors: %d\n", error);
2122 goto err;
2125 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2126 "beacon", ATH_BCBUF, 1);
2127 if (error != 0) {
2128 ath_print(common, ATH_DBG_FATAL,
2129 "Failed to allocate beacon descriptors: %d\n", error);
2130 goto err;
2133 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2135 err:
2136 if (error != 0)
2137 ath_tx_cleanup(sc);
2139 return error;
2142 void ath_tx_cleanup(struct ath_softc *sc)
2144 if (sc->beacon.bdma.dd_desc_len != 0)
2145 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2147 if (sc->tx.txdma.dd_desc_len != 0)
2148 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2151 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2153 struct ath_atx_tid *tid;
2154 struct ath_atx_ac *ac;
2155 int tidno, acno;
2157 for (tidno = 0, tid = &an->tid[tidno];
2158 tidno < WME_NUM_TID;
2159 tidno++, tid++) {
2160 tid->an = an;
2161 tid->tidno = tidno;
2162 tid->seq_start = tid->seq_next = 0;
2163 tid->baw_size = WME_MAX_BA;
2164 tid->baw_head = tid->baw_tail = 0;
2165 tid->sched = false;
2166 tid->paused = false;
2167 tid->state &= ~AGGR_CLEANUP;
2168 INIT_LIST_HEAD(&tid->buf_q);
2169 acno = TID_TO_WME_AC(tidno);
2170 tid->ac = &an->ac[acno];
2171 tid->state &= ~AGGR_ADDBA_COMPLETE;
2172 tid->state &= ~AGGR_ADDBA_PROGRESS;
2175 for (acno = 0, ac = &an->ac[acno];
2176 acno < WME_NUM_AC; acno++, ac++) {
2177 ac->sched = false;
2178 INIT_LIST_HEAD(&ac->tid_q);
2180 switch (acno) {
2181 case WME_AC_BE:
2182 ac->qnum = ath_tx_get_qnum(sc,
2183 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2184 break;
2185 case WME_AC_BK:
2186 ac->qnum = ath_tx_get_qnum(sc,
2187 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2188 break;
2189 case WME_AC_VI:
2190 ac->qnum = ath_tx_get_qnum(sc,
2191 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2192 break;
2193 case WME_AC_VO:
2194 ac->qnum = ath_tx_get_qnum(sc,
2195 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2196 break;
2201 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2203 int i;
2204 struct ath_atx_ac *ac, *ac_tmp;
2205 struct ath_atx_tid *tid, *tid_tmp;
2206 struct ath_txq *txq;
2208 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2209 if (ATH_TXQ_SETUP(sc, i)) {
2210 txq = &sc->tx.txq[i];
2212 spin_lock(&txq->axq_lock);
2214 list_for_each_entry_safe(ac,
2215 ac_tmp, &txq->axq_acq, list) {
2216 tid = list_first_entry(&ac->tid_q,
2217 struct ath_atx_tid, list);
2218 if (tid && tid->an != an)
2219 continue;
2220 list_del(&ac->list);
2221 ac->sched = false;
2223 list_for_each_entry_safe(tid,
2224 tid_tmp, &ac->tid_q, list) {
2225 list_del(&tid->list);
2226 tid->sched = false;
2227 ath_tid_drain(sc, txq, tid);
2228 tid->state &= ~AGGR_ADDBA_COMPLETE;
2229 tid->state &= ~AGGR_CLEANUP;
2233 spin_unlock(&txq->axq_lock);