mm-only debug patch...
[mmotm.git] / drivers / net / wireless / strip.c
blobea6a87c19319229b6a2cf3126614629e8569023f
1 /*
2 * Copyright 1996 The Board of Trustees of The Leland Stanford
3 * Junior University. All Rights Reserved.
5 * Permission to use, copy, modify, and distribute this
6 * software and its documentation for any purpose and without
7 * fee is hereby granted, provided that the above copyright
8 * notice appear in all copies. Stanford University
9 * makes no representations about the suitability of this
10 * software for any purpose. It is provided "as is" without
11 * express or implied warranty.
13 * strip.c This module implements Starmode Radio IP (STRIP)
14 * for kernel-based devices like TTY. It interfaces between a
15 * raw TTY, and the kernel's INET protocol layers (via DDI).
17 * Version: @(#)strip.c 1.3 July 1997
19 * Author: Stuart Cheshire <cheshire@cs.stanford.edu>
21 * Fixes: v0.9 12th Feb 1996 (SC)
22 * New byte stuffing (2+6 run-length encoding)
23 * New watchdog timer task
24 * New Protocol key (SIP0)
26 * v0.9.1 3rd March 1996 (SC)
27 * Changed to dynamic device allocation -- no more compile
28 * time (or boot time) limit on the number of STRIP devices.
30 * v0.9.2 13th March 1996 (SC)
31 * Uses arp cache lookups (but doesn't send arp packets yet)
33 * v0.9.3 17th April 1996 (SC)
34 * Fixed bug where STR_ERROR flag was getting set unneccessarily
35 * (causing otherwise good packets to be unneccessarily dropped)
37 * v0.9.4 27th April 1996 (SC)
38 * First attempt at using "&COMMAND" Starmode AT commands
40 * v0.9.5 29th May 1996 (SC)
41 * First attempt at sending (unicast) ARP packets
43 * v0.9.6 5th June 1996 (Elliot)
44 * Put "message level" tags in every "printk" statement
46 * v0.9.7 13th June 1996 (laik)
47 * Added support for the /proc fs
49 * v0.9.8 July 1996 (Mema)
50 * Added packet logging
52 * v1.0 November 1996 (SC)
53 * Fixed (severe) memory leaks in the /proc fs code
54 * Fixed race conditions in the logging code
56 * v1.1 January 1997 (SC)
57 * Deleted packet logging (use tcpdump instead)
58 * Added support for Metricom Firmware v204 features
59 * (like message checksums)
61 * v1.2 January 1997 (SC)
62 * Put portables list back in
64 * v1.3 July 1997 (SC)
65 * Made STRIP driver set the radio's baud rate automatically.
66 * It is no longer necessarily to manually set the radio's
67 * rate permanently to 115200 -- the driver handles setting
68 * the rate automatically.
71 #ifdef MODULE
72 static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR";
73 #else
74 static const char StripVersion[] = "1.3A-STUART.CHESHIRE";
75 #endif
77 #define TICKLE_TIMERS 0
78 #define EXT_COUNTERS 1
81 /************************************************************************/
82 /* Header files */
84 #include <linux/kernel.h>
85 #include <linux/module.h>
86 #include <linux/init.h>
87 #include <linux/bitops.h>
88 #include <asm/system.h>
89 #include <asm/uaccess.h>
91 # include <linux/ctype.h>
92 #include <linux/string.h>
93 #include <linux/mm.h>
94 #include <linux/interrupt.h>
95 #include <linux/in.h>
96 #include <linux/tty.h>
97 #include <linux/errno.h>
98 #include <linux/netdevice.h>
99 #include <linux/inetdevice.h>
100 #include <linux/etherdevice.h>
101 #include <linux/skbuff.h>
102 #include <linux/if_arp.h>
103 #include <linux/if_strip.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <linux/serial.h>
107 #include <linux/serialP.h>
108 #include <linux/rcupdate.h>
109 #include <net/arp.h>
110 #include <net/net_namespace.h>
112 #include <linux/ip.h>
113 #include <linux/tcp.h>
114 #include <linux/time.h>
115 #include <linux/jiffies.h>
117 /************************************************************************/
118 /* Useful structures and definitions */
121 * A MetricomKey identifies the protocol being carried inside a Metricom
122 * Starmode packet.
125 typedef union {
126 __u8 c[4];
127 __u32 l;
128 } MetricomKey;
131 * An IP address can be viewed as four bytes in memory (which is what it is) or as
132 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
135 typedef union {
136 __u8 b[4];
137 __u32 l;
138 } IPaddr;
141 * A MetricomAddressString is used to hold a printable representation of
142 * a Metricom address.
145 typedef struct {
146 __u8 c[24];
147 } MetricomAddressString;
149 /* Encapsulation can expand packet of size x to 65/64x + 1
150 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
151 * 1 1 1-18 1 4 ? 1
152 * eg. <CR>*0000-1234*SIP0<encaps payload><CR>
153 * We allow 31 bytes for the stars, the key, the address and the <CR>s
155 #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
158 * A STRIP_Header is never really sent over the radio, but making a dummy
159 * header for internal use within the kernel that looks like an Ethernet
160 * header makes certain other software happier. For example, tcpdump
161 * already understands Ethernet headers.
164 typedef struct {
165 MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */
166 MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */
167 unsigned short protocol; /* The protocol type, using Ethernet codes */
168 } STRIP_Header;
170 typedef struct {
171 char c[60];
172 } MetricomNode;
174 #define NODE_TABLE_SIZE 32
175 typedef struct {
176 struct timeval timestamp;
177 int num_nodes;
178 MetricomNode node[NODE_TABLE_SIZE];
179 } MetricomNodeTable;
181 enum { FALSE = 0, TRUE = 1 };
184 * Holds the radio's firmware version.
186 typedef struct {
187 char c[50];
188 } FirmwareVersion;
191 * Holds the radio's serial number.
193 typedef struct {
194 char c[18];
195 } SerialNumber;
198 * Holds the radio's battery voltage.
200 typedef struct {
201 char c[11];
202 } BatteryVoltage;
204 typedef struct {
205 char c[8];
206 } char8;
208 enum {
209 NoStructure = 0, /* Really old firmware */
210 StructuredMessages = 1, /* Parsable AT response msgs */
211 ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */
214 struct strip {
215 int magic;
217 * These are pointers to the malloc()ed frame buffers.
220 unsigned char *rx_buff; /* buffer for received IP packet */
221 unsigned char *sx_buff; /* buffer for received serial data */
222 int sx_count; /* received serial data counter */
223 int sx_size; /* Serial buffer size */
224 unsigned char *tx_buff; /* transmitter buffer */
225 unsigned char *tx_head; /* pointer to next byte to XMIT */
226 int tx_left; /* bytes left in XMIT queue */
227 int tx_size; /* Serial buffer size */
230 * STRIP interface statistics.
233 unsigned long rx_packets; /* inbound frames counter */
234 unsigned long tx_packets; /* outbound frames counter */
235 unsigned long rx_errors; /* Parity, etc. errors */
236 unsigned long tx_errors; /* Planned stuff */
237 unsigned long rx_dropped; /* No memory for skb */
238 unsigned long tx_dropped; /* When MTU change */
239 unsigned long rx_over_errors; /* Frame bigger than STRIP buf. */
241 unsigned long pps_timer; /* Timer to determine pps */
242 unsigned long rx_pps_count; /* Counter to determine pps */
243 unsigned long tx_pps_count; /* Counter to determine pps */
244 unsigned long sx_pps_count; /* Counter to determine pps */
245 unsigned long rx_average_pps; /* rx packets per second * 8 */
246 unsigned long tx_average_pps; /* tx packets per second * 8 */
247 unsigned long sx_average_pps; /* sent packets per second * 8 */
249 #ifdef EXT_COUNTERS
250 unsigned long rx_bytes; /* total received bytes */
251 unsigned long tx_bytes; /* total received bytes */
252 unsigned long rx_rbytes; /* bytes thru radio i/f */
253 unsigned long tx_rbytes; /* bytes thru radio i/f */
254 unsigned long rx_sbytes; /* tot bytes thru serial i/f */
255 unsigned long tx_sbytes; /* tot bytes thru serial i/f */
256 unsigned long rx_ebytes; /* tot stat/err bytes */
257 unsigned long tx_ebytes; /* tot stat/err bytes */
258 #endif
261 * Internal variables.
264 struct list_head list; /* Linked list of devices */
266 int discard; /* Set if serial error */
267 int working; /* Is radio working correctly? */
268 int firmware_level; /* Message structuring level */
269 int next_command; /* Next periodic command */
270 unsigned int user_baud; /* The user-selected baud rate */
271 int mtu; /* Our mtu (to spot changes!) */
272 long watchdog_doprobe; /* Next time to test the radio */
273 long watchdog_doreset; /* Time to do next reset */
274 long gratuitous_arp; /* Time to send next ARP refresh */
275 long arp_interval; /* Next ARP interval */
276 struct timer_list idle_timer; /* For periodic wakeup calls */
277 MetricomAddress true_dev_addr; /* True address of radio */
278 int manual_dev_addr; /* Hack: See note below */
280 FirmwareVersion firmware_version; /* The radio's firmware version */
281 SerialNumber serial_number; /* The radio's serial number */
282 BatteryVoltage battery_voltage; /* The radio's battery voltage */
285 * Other useful structures.
288 struct tty_struct *tty; /* ptr to TTY structure */
289 struct net_device *dev; /* Our device structure */
292 * Neighbour radio records
295 MetricomNodeTable portables;
296 MetricomNodeTable poletops;
300 * Note: manual_dev_addr hack
302 * It is not possible to change the hardware address of a Metricom radio,
303 * or to send packets with a user-specified hardware source address, thus
304 * trying to manually set a hardware source address is a questionable
305 * thing to do. However, if the user *does* manually set the hardware
306 * source address of a STRIP interface, then the kernel will believe it,
307 * and use it in certain places. For example, the hardware address listed
308 * by ifconfig will be the manual address, not the true one.
309 * (Both addresses are listed in /proc/net/strip.)
310 * Also, ARP packets will be sent out giving the user-specified address as
311 * the source address, not the real address. This is dangerous, because
312 * it means you won't receive any replies -- the ARP replies will go to
313 * the specified address, which will be some other radio. The case where
314 * this is useful is when that other radio is also connected to the same
315 * machine. This allows you to connect a pair of radios to one machine,
316 * and to use one exclusively for inbound traffic, and the other
317 * exclusively for outbound traffic. Pretty neat, huh?
319 * Here's the full procedure to set this up:
321 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
322 * and st1 for incoming packets
324 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
325 * which is the real hardware address of st1 (inbound radio).
326 * Now when it sends out packets, it will masquerade as st1, and
327 * replies will be sent to that radio, which is exactly what we want.
329 * 3. Set the route table entry ("route add default ..." or
330 * "route add -net ...", as appropriate) to send packets via the st0
331 * interface (outbound radio). Do not add any route which sends packets
332 * out via the st1 interface -- that radio is for inbound traffic only.
334 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
335 * This tells the STRIP driver to "shut down" that interface and not
336 * send any packets through it. In particular, it stops sending the
337 * periodic gratuitous ARP packets that a STRIP interface normally sends.
338 * Also, when packets arrive on that interface, it will search the
339 * interface list to see if there is another interface who's manual
340 * hardware address matches its own real address (i.e. st0 in this
341 * example) and if so it will transfer ownership of the skbuff to
342 * that interface, so that it looks to the kernel as if the packet
343 * arrived on that interface. This is necessary because when the
344 * kernel sends an ARP packet on st0, it expects to get a reply on
345 * st0, and if it sees the reply come from st1 then it will ignore
346 * it (to be accurate, it puts the entry in the ARP table, but
347 * labelled in such a way that st0 can't use it).
349 * Thanks to Petros Maniatis for coming up with the idea of splitting
350 * inbound and outbound traffic between two interfaces, which turned
351 * out to be really easy to implement, even if it is a bit of a hack.
353 * Having set a manual address on an interface, you can restore it
354 * to automatic operation (where the address is automatically kept
355 * consistent with the real address of the radio) by setting a manual
356 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
357 * This 'turns off' manual override mode for the device address.
359 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
360 * radio addresses the packets were sent and received from, so that you
361 * can see what is really going on with packets, and which interfaces
362 * they are really going through.
366 /************************************************************************/
367 /* Constants */
370 * CommandString1 works on all radios
371 * Other CommandStrings are only used with firmware that provides structured responses.
373 * ats319=1 Enables Info message for node additions and deletions
374 * ats319=2 Enables Info message for a new best node
375 * ats319=4 Enables checksums
376 * ats319=8 Enables ACK messages
379 static const int MaxCommandStringLength = 32;
380 static const int CompatibilityCommand = 1;
382 static const char CommandString0[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */
383 static const char CommandString1[] = "*&COMMAND*ATS305?"; /* Query radio name */
384 static const char CommandString2[] = "*&COMMAND*ATS325?"; /* Query battery voltage */
385 static const char CommandString3[] = "*&COMMAND*ATS300?"; /* Query version information */
386 static const char CommandString4[] = "*&COMMAND*ATS311?"; /* Query poletop list */
387 static const char CommandString5[] = "*&COMMAND*AT~LA"; /* Query portables list */
388 typedef struct {
389 const char *string;
390 long length;
391 } StringDescriptor;
393 static const StringDescriptor CommandString[] = {
394 {CommandString0, sizeof(CommandString0) - 1},
395 {CommandString1, sizeof(CommandString1) - 1},
396 {CommandString2, sizeof(CommandString2) - 1},
397 {CommandString3, sizeof(CommandString3) - 1},
398 {CommandString4, sizeof(CommandString4) - 1},
399 {CommandString5, sizeof(CommandString5) - 1}
402 #define GOT_ALL_RADIO_INFO(S) \
403 ((S)->firmware_version.c[0] && \
404 (S)->battery_voltage.c[0] && \
405 memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
407 static const char hextable[16] = "0123456789ABCDEF";
409 static const MetricomAddress zero_address;
410 static const MetricomAddress broadcast_address =
411 { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
413 static const MetricomKey SIP0Key = { "SIP0" };
414 static const MetricomKey ARP0Key = { "ARP0" };
415 static const MetricomKey ATR_Key = { "ATR " };
416 static const MetricomKey ACK_Key = { "ACK_" };
417 static const MetricomKey INF_Key = { "INF_" };
418 static const MetricomKey ERR_Key = { "ERR_" };
420 static const long MaxARPInterval = 60 * HZ; /* One minute */
423 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
424 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
425 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
426 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
427 * long, including IP header, UDP header, and NFS header. Setting the STRIP
428 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
430 static const unsigned short MAX_SEND_MTU = 1152;
431 static const unsigned short MAX_RECV_MTU = 1500; /* Hoping for Ethernet sized packets in the future! */
432 static const unsigned short DEFAULT_STRIP_MTU = 1152;
433 static const int STRIP_MAGIC = 0x5303;
434 static const long LongTime = 0x7FFFFFFF;
436 /************************************************************************/
437 /* Global variables */
439 static LIST_HEAD(strip_list);
440 static DEFINE_SPINLOCK(strip_lock);
442 /************************************************************************/
443 /* Macros */
445 /* Returns TRUE if text T begins with prefix P */
446 #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
448 /* Returns TRUE if text T of length L is equal to string S */
449 #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
451 #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \
452 (X)>='a' && (X)<='f' ? (X)-'a'+10 : \
453 (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
455 #define READHEX16(X) ((__u16)(READHEX(X)))
457 #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
459 #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
461 #define JIFFIE_TO_SEC(X) ((X) / HZ)
464 /************************************************************************/
465 /* Utility routines */
467 static int arp_query(unsigned char *haddr, u32 paddr,
468 struct net_device *dev)
470 struct neighbour *neighbor_entry;
471 int ret = 0;
473 neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
475 if (neighbor_entry != NULL) {
476 neighbor_entry->used = jiffies;
477 if (neighbor_entry->nud_state & NUD_VALID) {
478 memcpy(haddr, neighbor_entry->ha, dev->addr_len);
479 ret = 1;
481 neigh_release(neighbor_entry);
483 return ret;
486 static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr,
487 __u8 * end)
489 static const int MAX_DumpData = 80;
490 __u8 pkt_text[MAX_DumpData], *p = pkt_text;
492 *p++ = '\"';
494 while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) {
495 if (*ptr == '\\') {
496 *p++ = '\\';
497 *p++ = '\\';
498 } else {
499 if (*ptr >= 32 && *ptr <= 126) {
500 *p++ = *ptr;
501 } else {
502 sprintf(p, "\\%02X", *ptr);
503 p += 3;
506 ptr++;
509 if (ptr == end)
510 *p++ = '\"';
511 *p++ = 0;
513 printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text);
517 /************************************************************************/
518 /* Byte stuffing/unstuffing routines */
520 /* Stuffing scheme:
521 * 00 Unused (reserved character)
522 * 01-3F Run of 2-64 different characters
523 * 40-7F Run of 1-64 different characters plus a single zero at the end
524 * 80-BF Run of 1-64 of the same character
525 * C0-FF Run of 1-64 zeroes (ASCII 0)
528 typedef enum {
529 Stuff_Diff = 0x00,
530 Stuff_DiffZero = 0x40,
531 Stuff_Same = 0x80,
532 Stuff_Zero = 0xC0,
533 Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */
535 Stuff_CodeMask = 0xC0,
536 Stuff_CountMask = 0x3F,
537 Stuff_MaxCount = 0x3F,
538 Stuff_Magic = 0x0D /* The value we are eliminating */
539 } StuffingCode;
541 /* StuffData encodes the data starting at "src" for "length" bytes.
542 * It writes it to the buffer pointed to by "dst" (which must be at least
543 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
544 * larger than the input for pathological input, but will usually be smaller.
545 * StuffData returns the new value of the dst pointer as its result.
546 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
547 * between calls, allowing an encoded packet to be incrementally built up
548 * from small parts. On the first call, the "__u8 *" pointed to should be
549 * initialized to NULL; between subsequent calls the calling routine should
550 * leave the value alone and simply pass it back unchanged so that the
551 * encoder can recover its current state.
554 #define StuffData_FinishBlock(X) \
555 (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
557 static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst,
558 __u8 ** code_ptr_ptr)
560 __u8 *end = src + length;
561 __u8 *code_ptr = *code_ptr_ptr;
562 __u8 code = Stuff_NoCode, count = 0;
564 if (!length)
565 return (dst);
567 if (code_ptr) {
569 * Recover state from last call, if applicable
571 code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
572 count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
575 while (src < end) {
576 switch (code) {
577 /* Stuff_NoCode: If no current code, select one */
578 case Stuff_NoCode:
579 /* Record where we're going to put this code */
580 code_ptr = dst++;
581 count = 0; /* Reset the count (zero means one instance) */
582 /* Tentatively start a new block */
583 if (*src == 0) {
584 code = Stuff_Zero;
585 src++;
586 } else {
587 code = Stuff_Same;
588 *dst++ = *src++ ^ Stuff_Magic;
590 /* Note: We optimistically assume run of same -- */
591 /* which will be fixed later in Stuff_Same */
592 /* if it turns out not to be true. */
593 break;
595 /* Stuff_Zero: We already have at least one zero encoded */
596 case Stuff_Zero:
597 /* If another zero, count it, else finish this code block */
598 if (*src == 0) {
599 count++;
600 src++;
601 } else {
602 StuffData_FinishBlock(Stuff_Zero + count);
604 break;
606 /* Stuff_Same: We already have at least one byte encoded */
607 case Stuff_Same:
608 /* If another one the same, count it */
609 if ((*src ^ Stuff_Magic) == code_ptr[1]) {
610 count++;
611 src++;
612 break;
614 /* else, this byte does not match this block. */
615 /* If we already have two or more bytes encoded, finish this code block */
616 if (count) {
617 StuffData_FinishBlock(Stuff_Same + count);
618 break;
620 /* else, we only have one so far, so switch to Stuff_Diff code */
621 code = Stuff_Diff;
622 /* and fall through to Stuff_Diff case below
623 * Note cunning cleverness here: case Stuff_Diff compares
624 * the current character with the previous two to see if it
625 * has a run of three the same. Won't this be an error if
626 * there aren't two previous characters stored to compare with?
627 * No. Because we know the current character is *not* the same
628 * as the previous one, the first test below will necessarily
629 * fail and the send half of the "if" won't be executed.
632 /* Stuff_Diff: We have at least two *different* bytes encoded */
633 case Stuff_Diff:
634 /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
635 if (*src == 0) {
636 StuffData_FinishBlock(Stuff_DiffZero +
637 count);
639 /* else, if we have three in a row, it is worth starting a Stuff_Same block */
640 else if ((*src ^ Stuff_Magic) == dst[-1]
641 && dst[-1] == dst[-2]) {
642 /* Back off the last two characters we encoded */
643 code += count - 2;
644 /* Note: "Stuff_Diff + 0" is an illegal code */
645 if (code == Stuff_Diff + 0) {
646 code = Stuff_Same + 0;
648 StuffData_FinishBlock(code);
649 code_ptr = dst - 2;
650 /* dst[-1] already holds the correct value */
651 count = 2; /* 2 means three bytes encoded */
652 code = Stuff_Same;
654 /* else, another different byte, so add it to the block */
655 else {
656 *dst++ = *src ^ Stuff_Magic;
657 count++;
659 src++; /* Consume the byte */
660 break;
662 if (count == Stuff_MaxCount) {
663 StuffData_FinishBlock(code + count);
666 if (code == Stuff_NoCode) {
667 *code_ptr_ptr = NULL;
668 } else {
669 *code_ptr_ptr = code_ptr;
670 StuffData_FinishBlock(code + count);
672 return (dst);
676 * UnStuffData decodes the data at "src", up to (but not including) "end".
677 * It writes the decoded data into the buffer pointed to by "dst", up to a
678 * maximum of "dst_length", and returns the new value of "src" so that a
679 * follow-on call can read more data, continuing from where the first left off.
681 * There are three types of results:
682 * 1. The source data runs out before extracting "dst_length" bytes:
683 * UnStuffData returns NULL to indicate failure.
684 * 2. The source data produces exactly "dst_length" bytes:
685 * UnStuffData returns new_src = end to indicate that all bytes were consumed.
686 * 3. "dst_length" bytes are extracted, with more remaining.
687 * UnStuffData returns new_src < end to indicate that there are more bytes
688 * to be read.
690 * Note: The decoding may be destructive, in that it may alter the source
691 * data in the process of decoding it (this is necessary to allow a follow-on
692 * call to resume correctly).
695 static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst,
696 __u32 dst_length)
698 __u8 *dst_end = dst + dst_length;
699 /* Sanity check */
700 if (!src || !end || !dst || !dst_length)
701 return (NULL);
702 while (src < end && dst < dst_end) {
703 int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
704 switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) {
705 case Stuff_Diff:
706 if (src + 1 + count >= end)
707 return (NULL);
708 do {
709 *dst++ = *++src ^ Stuff_Magic;
711 while (--count >= 0 && dst < dst_end);
712 if (count < 0)
713 src += 1;
714 else {
715 if (count == 0)
716 *src = Stuff_Same ^ Stuff_Magic;
717 else
718 *src =
719 (Stuff_Diff +
720 count) ^ Stuff_Magic;
722 break;
723 case Stuff_DiffZero:
724 if (src + 1 + count >= end)
725 return (NULL);
726 do {
727 *dst++ = *++src ^ Stuff_Magic;
729 while (--count >= 0 && dst < dst_end);
730 if (count < 0)
731 *src = Stuff_Zero ^ Stuff_Magic;
732 else
733 *src =
734 (Stuff_DiffZero + count) ^ Stuff_Magic;
735 break;
736 case Stuff_Same:
737 if (src + 1 >= end)
738 return (NULL);
739 do {
740 *dst++ = src[1] ^ Stuff_Magic;
742 while (--count >= 0 && dst < dst_end);
743 if (count < 0)
744 src += 2;
745 else
746 *src = (Stuff_Same + count) ^ Stuff_Magic;
747 break;
748 case Stuff_Zero:
749 do {
750 *dst++ = 0;
752 while (--count >= 0 && dst < dst_end);
753 if (count < 0)
754 src += 1;
755 else
756 *src = (Stuff_Zero + count) ^ Stuff_Magic;
757 break;
760 if (dst < dst_end)
761 return (NULL);
762 else
763 return (src);
767 /************************************************************************/
768 /* General routines for STRIP */
771 * set_baud sets the baud rate to the rate defined by baudcode
773 static void set_baud(struct tty_struct *tty, speed_t baudrate)
775 struct ktermios old_termios;
777 mutex_lock(&tty->termios_mutex);
778 old_termios =*(tty->termios);
779 tty_encode_baud_rate(tty, baudrate, baudrate);
780 tty->ops->set_termios(tty, &old_termios);
781 mutex_unlock(&tty->termios_mutex);
785 * Convert a string to a Metricom Address.
788 #define IS_RADIO_ADDRESS(p) ( \
789 isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
790 (p)[4] == '-' && \
791 isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) )
793 static int string_to_radio_address(MetricomAddress * addr, __u8 * p)
795 if (!IS_RADIO_ADDRESS(p))
796 return (1);
797 addr->c[0] = 0;
798 addr->c[1] = 0;
799 addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
800 addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
801 addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
802 addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
803 return (0);
807 * Convert a Metricom Address to a string.
810 static __u8 *radio_address_to_string(const MetricomAddress * addr,
811 MetricomAddressString * p)
813 sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3],
814 addr->c[4], addr->c[5]);
815 return (p->c);
819 * Note: Must make sure sx_size is big enough to receive a stuffed
820 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
821 * big enough to receive a large radio neighbour list (currently 4K).
824 static int allocate_buffers(struct strip *strip_info, int mtu)
826 struct net_device *dev = strip_info->dev;
827 int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
828 int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength;
829 __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
830 __u8 *s = kmalloc(sx_size, GFP_ATOMIC);
831 __u8 *t = kmalloc(tx_size, GFP_ATOMIC);
832 if (r && s && t) {
833 strip_info->rx_buff = r;
834 strip_info->sx_buff = s;
835 strip_info->tx_buff = t;
836 strip_info->sx_size = sx_size;
837 strip_info->tx_size = tx_size;
838 strip_info->mtu = dev->mtu = mtu;
839 return (1);
841 kfree(r);
842 kfree(s);
843 kfree(t);
844 return (0);
848 * MTU has been changed by the IP layer.
849 * We could be in
850 * an upcall from the tty driver, or in an ip packet queue.
852 static int strip_change_mtu(struct net_device *dev, int new_mtu)
854 struct strip *strip_info = netdev_priv(dev);
855 int old_mtu = strip_info->mtu;
856 unsigned char *orbuff = strip_info->rx_buff;
857 unsigned char *osbuff = strip_info->sx_buff;
858 unsigned char *otbuff = strip_info->tx_buff;
860 if (new_mtu > MAX_SEND_MTU) {
861 printk(KERN_ERR
862 "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
863 strip_info->dev->name, MAX_SEND_MTU);
864 return -EINVAL;
867 spin_lock_bh(&strip_lock);
868 if (!allocate_buffers(strip_info, new_mtu)) {
869 printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
870 strip_info->dev->name);
871 spin_unlock_bh(&strip_lock);
872 return -ENOMEM;
875 if (strip_info->sx_count) {
876 if (strip_info->sx_count <= strip_info->sx_size)
877 memcpy(strip_info->sx_buff, osbuff,
878 strip_info->sx_count);
879 else {
880 strip_info->discard = strip_info->sx_count;
881 strip_info->rx_over_errors++;
885 if (strip_info->tx_left) {
886 if (strip_info->tx_left <= strip_info->tx_size)
887 memcpy(strip_info->tx_buff, strip_info->tx_head,
888 strip_info->tx_left);
889 else {
890 strip_info->tx_left = 0;
891 strip_info->tx_dropped++;
894 strip_info->tx_head = strip_info->tx_buff;
895 spin_unlock_bh(&strip_lock);
897 printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
898 strip_info->dev->name, old_mtu, strip_info->mtu);
900 kfree(orbuff);
901 kfree(osbuff);
902 kfree(otbuff);
903 return 0;
906 static void strip_unlock(struct strip *strip_info)
909 * Set the timer to go off in one second.
911 strip_info->idle_timer.expires = jiffies + 1 * HZ;
912 add_timer(&strip_info->idle_timer);
913 netif_wake_queue(strip_info->dev);
919 * If the time is in the near future, time_delta prints the number of
920 * seconds to go into the buffer and returns the address of the buffer.
921 * If the time is not in the near future, it returns the address of the
922 * string "Not scheduled" The buffer must be long enough to contain the
923 * ascii representation of the number plus 9 charactes for the " seconds"
924 * and the null character.
926 #ifdef CONFIG_PROC_FS
927 static char *time_delta(char buffer[], long time)
929 time -= jiffies;
930 if (time > LongTime / 2)
931 return ("Not scheduled");
932 if (time < 0)
933 time = 0; /* Don't print negative times */
934 sprintf(buffer, "%ld seconds", time / HZ);
935 return (buffer);
938 /* get Nth element of the linked list */
939 static struct strip *strip_get_idx(loff_t pos)
941 struct strip *str;
942 int i = 0;
944 list_for_each_entry_rcu(str, &strip_list, list) {
945 if (pos == i)
946 return str;
947 ++i;
949 return NULL;
952 static void *strip_seq_start(struct seq_file *seq, loff_t *pos)
953 __acquires(RCU)
955 rcu_read_lock();
956 return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN;
959 static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos)
961 struct list_head *l;
962 struct strip *s;
964 ++*pos;
965 if (v == SEQ_START_TOKEN)
966 return strip_get_idx(1);
968 s = v;
969 l = &s->list;
970 list_for_each_continue_rcu(l, &strip_list) {
971 return list_entry(l, struct strip, list);
973 return NULL;
976 static void strip_seq_stop(struct seq_file *seq, void *v)
977 __releases(RCU)
979 rcu_read_unlock();
982 static void strip_seq_neighbours(struct seq_file *seq,
983 const MetricomNodeTable * table,
984 const char *title)
986 /* We wrap this in a do/while loop, so if the table changes */
987 /* while we're reading it, we just go around and try again. */
988 struct timeval t;
990 do {
991 int i;
992 t = table->timestamp;
993 if (table->num_nodes)
994 seq_printf(seq, "\n %s\n", title);
995 for (i = 0; i < table->num_nodes; i++) {
996 MetricomNode node;
998 spin_lock_bh(&strip_lock);
999 node = table->node[i];
1000 spin_unlock_bh(&strip_lock);
1001 seq_printf(seq, " %s\n", node.c);
1003 } while (table->timestamp.tv_sec != t.tv_sec
1004 || table->timestamp.tv_usec != t.tv_usec);
1008 * This function prints radio status information via the seq_file
1009 * interface. The interface takes care of buffer size and over
1010 * run issues.
1012 * The buffer in seq_file is PAGESIZE (4K)
1013 * so this routine should never print more or it will get truncated.
1014 * With the maximum of 32 portables and 32 poletops
1015 * reported, the routine outputs 3107 bytes into the buffer.
1017 static void strip_seq_status_info(struct seq_file *seq,
1018 const struct strip *strip_info)
1020 char temp[32];
1021 MetricomAddressString addr_string;
1023 /* First, we must copy all of our data to a safe place, */
1024 /* in case a serial interrupt comes in and changes it. */
1025 int tx_left = strip_info->tx_left;
1026 unsigned long rx_average_pps = strip_info->rx_average_pps;
1027 unsigned long tx_average_pps = strip_info->tx_average_pps;
1028 unsigned long sx_average_pps = strip_info->sx_average_pps;
1029 int working = strip_info->working;
1030 int firmware_level = strip_info->firmware_level;
1031 long watchdog_doprobe = strip_info->watchdog_doprobe;
1032 long watchdog_doreset = strip_info->watchdog_doreset;
1033 long gratuitous_arp = strip_info->gratuitous_arp;
1034 long arp_interval = strip_info->arp_interval;
1035 FirmwareVersion firmware_version = strip_info->firmware_version;
1036 SerialNumber serial_number = strip_info->serial_number;
1037 BatteryVoltage battery_voltage = strip_info->battery_voltage;
1038 char *if_name = strip_info->dev->name;
1039 MetricomAddress true_dev_addr = strip_info->true_dev_addr;
1040 MetricomAddress dev_dev_addr =
1041 *(MetricomAddress *) strip_info->dev->dev_addr;
1042 int manual_dev_addr = strip_info->manual_dev_addr;
1043 #ifdef EXT_COUNTERS
1044 unsigned long rx_bytes = strip_info->rx_bytes;
1045 unsigned long tx_bytes = strip_info->tx_bytes;
1046 unsigned long rx_rbytes = strip_info->rx_rbytes;
1047 unsigned long tx_rbytes = strip_info->tx_rbytes;
1048 unsigned long rx_sbytes = strip_info->rx_sbytes;
1049 unsigned long tx_sbytes = strip_info->tx_sbytes;
1050 unsigned long rx_ebytes = strip_info->rx_ebytes;
1051 unsigned long tx_ebytes = strip_info->tx_ebytes;
1052 #endif
1054 seq_printf(seq, "\nInterface name\t\t%s\n", if_name);
1055 seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No");
1056 radio_address_to_string(&true_dev_addr, &addr_string);
1057 seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c);
1058 if (manual_dev_addr) {
1059 radio_address_to_string(&dev_dev_addr, &addr_string);
1060 seq_printf(seq, " Device address:\t%s\n", addr_string.c);
1062 seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" :
1063 !firmware_level ? "Should be upgraded" :
1064 firmware_version.c);
1065 if (firmware_level >= ChecksummedMessages)
1066 seq_printf(seq, " (Checksums Enabled)");
1067 seq_printf(seq, "\n");
1068 seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c);
1069 seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c);
1070 seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left);
1071 seq_printf(seq, " Receive packet rate: %ld packets per second\n",
1072 rx_average_pps / 8);
1073 seq_printf(seq, " Transmit packet rate: %ld packets per second\n",
1074 tx_average_pps / 8);
1075 seq_printf(seq, " Sent packet rate: %ld packets per second\n",
1076 sx_average_pps / 8);
1077 seq_printf(seq, " Next watchdog probe:\t%s\n",
1078 time_delta(temp, watchdog_doprobe));
1079 seq_printf(seq, " Next watchdog reset:\t%s\n",
1080 time_delta(temp, watchdog_doreset));
1081 seq_printf(seq, " Next gratuitous ARP:\t");
1083 if (!memcmp
1084 (strip_info->dev->dev_addr, zero_address.c,
1085 sizeof(zero_address)))
1086 seq_printf(seq, "Disabled\n");
1087 else {
1088 seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp));
1089 seq_printf(seq, " Next ARP interval:\t%ld seconds\n",
1090 JIFFIE_TO_SEC(arp_interval));
1093 if (working) {
1094 #ifdef EXT_COUNTERS
1095 seq_printf(seq, "\n");
1096 seq_printf(seq,
1097 " Total bytes: \trx:\t%lu\ttx:\t%lu\n",
1098 rx_bytes, tx_bytes);
1099 seq_printf(seq,
1100 " thru radio: \trx:\t%lu\ttx:\t%lu\n",
1101 rx_rbytes, tx_rbytes);
1102 seq_printf(seq,
1103 " thru serial port: \trx:\t%lu\ttx:\t%lu\n",
1104 rx_sbytes, tx_sbytes);
1105 seq_printf(seq,
1106 " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n",
1107 rx_ebytes, tx_ebytes);
1108 #endif
1109 strip_seq_neighbours(seq, &strip_info->poletops,
1110 "Poletops:");
1111 strip_seq_neighbours(seq, &strip_info->portables,
1112 "Portables:");
1117 * This function is exports status information from the STRIP driver through
1118 * the /proc file system.
1120 static int strip_seq_show(struct seq_file *seq, void *v)
1122 if (v == SEQ_START_TOKEN)
1123 seq_printf(seq, "strip_version: %s\n", StripVersion);
1124 else
1125 strip_seq_status_info(seq, (const struct strip *)v);
1126 return 0;
1130 static const struct seq_operations strip_seq_ops = {
1131 .start = strip_seq_start,
1132 .next = strip_seq_next,
1133 .stop = strip_seq_stop,
1134 .show = strip_seq_show,
1137 static int strip_seq_open(struct inode *inode, struct file *file)
1139 return seq_open(file, &strip_seq_ops);
1142 static const struct file_operations strip_seq_fops = {
1143 .owner = THIS_MODULE,
1144 .open = strip_seq_open,
1145 .read = seq_read,
1146 .llseek = seq_lseek,
1147 .release = seq_release,
1149 #endif
1153 /************************************************************************/
1154 /* Sending routines */
1156 static void ResetRadio(struct strip *strip_info)
1158 struct tty_struct *tty = strip_info->tty;
1159 static const char init[] = "ate0q1dt**starmode\r**";
1160 StringDescriptor s = { init, sizeof(init) - 1 };
1163 * If the radio isn't working anymore,
1164 * we should clear the old status information.
1166 if (strip_info->working) {
1167 printk(KERN_INFO "%s: No response: Resetting radio.\n",
1168 strip_info->dev->name);
1169 strip_info->firmware_version.c[0] = '\0';
1170 strip_info->serial_number.c[0] = '\0';
1171 strip_info->battery_voltage.c[0] = '\0';
1172 strip_info->portables.num_nodes = 0;
1173 do_gettimeofday(&strip_info->portables.timestamp);
1174 strip_info->poletops.num_nodes = 0;
1175 do_gettimeofday(&strip_info->poletops.timestamp);
1178 strip_info->pps_timer = jiffies;
1179 strip_info->rx_pps_count = 0;
1180 strip_info->tx_pps_count = 0;
1181 strip_info->sx_pps_count = 0;
1182 strip_info->rx_average_pps = 0;
1183 strip_info->tx_average_pps = 0;
1184 strip_info->sx_average_pps = 0;
1186 /* Mark radio address as unknown */
1187 *(MetricomAddress *) & strip_info->true_dev_addr = zero_address;
1188 if (!strip_info->manual_dev_addr)
1189 *(MetricomAddress *) strip_info->dev->dev_addr =
1190 zero_address;
1191 strip_info->working = FALSE;
1192 strip_info->firmware_level = NoStructure;
1193 strip_info->next_command = CompatibilityCommand;
1194 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1195 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1197 /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1198 if (strip_info->user_baud > 38400) {
1200 * Subtle stuff: Pay attention :-)
1201 * If the serial port is currently at the user's selected (>38.4) rate,
1202 * then we temporarily switch to 19.2 and issue the ATS304 command
1203 * to tell the radio to switch to the user's selected rate.
1204 * If the serial port is not currently at that rate, that means we just
1205 * issued the ATS304 command last time through, so this time we restore
1206 * the user's selected rate and issue the normal starmode reset string.
1208 if (strip_info->user_baud == tty_get_baud_rate(tty)) {
1209 static const char b0[] = "ate0q1s304=57600\r";
1210 static const char b1[] = "ate0q1s304=115200\r";
1211 static const StringDescriptor baudstring[2] =
1212 { {b0, sizeof(b0) - 1}
1213 , {b1, sizeof(b1) - 1}
1215 set_baud(tty, 19200);
1216 if (strip_info->user_baud == 57600)
1217 s = baudstring[0];
1218 else if (strip_info->user_baud == 115200)
1219 s = baudstring[1];
1220 else
1221 s = baudstring[1]; /* For now */
1222 } else
1223 set_baud(tty, strip_info->user_baud);
1226 tty->ops->write(tty, s.string, s.length);
1227 #ifdef EXT_COUNTERS
1228 strip_info->tx_ebytes += s.length;
1229 #endif
1233 * Called by the driver when there's room for more data. If we have
1234 * more packets to send, we send them here.
1237 static void strip_write_some_more(struct tty_struct *tty)
1239 struct strip *strip_info = tty->disc_data;
1241 /* First make sure we're connected. */
1242 if (!strip_info || strip_info->magic != STRIP_MAGIC ||
1243 !netif_running(strip_info->dev))
1244 return;
1246 if (strip_info->tx_left > 0) {
1247 int num_written =
1248 tty->ops->write(tty, strip_info->tx_head,
1249 strip_info->tx_left);
1250 strip_info->tx_left -= num_written;
1251 strip_info->tx_head += num_written;
1252 #ifdef EXT_COUNTERS
1253 strip_info->tx_sbytes += num_written;
1254 #endif
1255 } else { /* Else start transmission of another packet */
1257 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
1258 strip_unlock(strip_info);
1262 static __u8 *add_checksum(__u8 * buffer, __u8 * end)
1264 __u16 sum = 0;
1265 __u8 *p = buffer;
1266 while (p < end)
1267 sum += *p++;
1268 end[3] = hextable[sum & 0xF];
1269 sum >>= 4;
1270 end[2] = hextable[sum & 0xF];
1271 sum >>= 4;
1272 end[1] = hextable[sum & 0xF];
1273 sum >>= 4;
1274 end[0] = hextable[sum & 0xF];
1275 return (end + 4);
1278 static unsigned char *strip_make_packet(unsigned char *buffer,
1279 struct strip *strip_info,
1280 struct sk_buff *skb)
1282 __u8 *ptr = buffer;
1283 __u8 *stuffstate = NULL;
1284 STRIP_Header *header = (STRIP_Header *) skb->data;
1285 MetricomAddress haddr = header->dst_addr;
1286 int len = skb->len - sizeof(STRIP_Header);
1287 MetricomKey key;
1289 /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */
1291 if (header->protocol == htons(ETH_P_IP))
1292 key = SIP0Key;
1293 else if (header->protocol == htons(ETH_P_ARP))
1294 key = ARP0Key;
1295 else {
1296 printk(KERN_ERR
1297 "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1298 strip_info->dev->name, ntohs(header->protocol));
1299 return (NULL);
1302 if (len > strip_info->mtu) {
1303 printk(KERN_ERR
1304 "%s: Dropping oversized transmit packet: %d bytes\n",
1305 strip_info->dev->name, len);
1306 return (NULL);
1310 * If we're sending to ourselves, discard the packet.
1311 * (Metricom radios choke if they try to send a packet to their own address.)
1313 if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) {
1314 printk(KERN_ERR "%s: Dropping packet addressed to self\n",
1315 strip_info->dev->name);
1316 return (NULL);
1320 * If this is a broadcast packet, send it to our designated Metricom
1321 * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1323 if (haddr.c[0] == 0xFF) {
1324 __be32 brd = 0;
1325 struct in_device *in_dev;
1327 rcu_read_lock();
1328 in_dev = __in_dev_get_rcu(strip_info->dev);
1329 if (in_dev == NULL) {
1330 rcu_read_unlock();
1331 return NULL;
1333 if (in_dev->ifa_list)
1334 brd = in_dev->ifa_list->ifa_broadcast;
1335 rcu_read_unlock();
1337 /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1338 if (!arp_query(haddr.c, brd, strip_info->dev)) {
1339 printk(KERN_ERR
1340 "%s: Unable to send packet (no broadcast hub configured)\n",
1341 strip_info->dev->name);
1342 return (NULL);
1345 * If we are the broadcast hub, don't bother sending to ourselves.
1346 * (Metricom radios choke if they try to send a packet to their own address.)
1348 if (!memcmp
1349 (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
1350 return (NULL);
1353 *ptr++ = 0x0D;
1354 *ptr++ = '*';
1355 *ptr++ = hextable[haddr.c[2] >> 4];
1356 *ptr++ = hextable[haddr.c[2] & 0xF];
1357 *ptr++ = hextable[haddr.c[3] >> 4];
1358 *ptr++ = hextable[haddr.c[3] & 0xF];
1359 *ptr++ = '-';
1360 *ptr++ = hextable[haddr.c[4] >> 4];
1361 *ptr++ = hextable[haddr.c[4] & 0xF];
1362 *ptr++ = hextable[haddr.c[5] >> 4];
1363 *ptr++ = hextable[haddr.c[5] & 0xF];
1364 *ptr++ = '*';
1365 *ptr++ = key.c[0];
1366 *ptr++ = key.c[1];
1367 *ptr++ = key.c[2];
1368 *ptr++ = key.c[3];
1370 ptr =
1371 StuffData(skb->data + sizeof(STRIP_Header), len, ptr,
1372 &stuffstate);
1374 if (strip_info->firmware_level >= ChecksummedMessages)
1375 ptr = add_checksum(buffer + 1, ptr);
1377 *ptr++ = 0x0D;
1378 return (ptr);
1381 static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1383 MetricomAddress haddr;
1384 unsigned char *ptr = strip_info->tx_buff;
1385 int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0;
1386 int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0
1387 && !doreset;
1388 __be32 addr, brd;
1391 * 1. If we have a packet, encapsulate it and put it in the buffer
1393 if (skb) {
1394 char *newptr = strip_make_packet(ptr, strip_info, skb);
1395 strip_info->tx_pps_count++;
1396 if (!newptr)
1397 strip_info->tx_dropped++;
1398 else {
1399 ptr = newptr;
1400 strip_info->sx_pps_count++;
1401 strip_info->tx_packets++; /* Count another successful packet */
1402 #ifdef EXT_COUNTERS
1403 strip_info->tx_bytes += skb->len;
1404 strip_info->tx_rbytes += ptr - strip_info->tx_buff;
1405 #endif
1406 /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */
1407 /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */
1412 * 2. If it is time for another tickle, tack it on, after the packet
1414 if (doprobe) {
1415 StringDescriptor ts = CommandString[strip_info->next_command];
1416 #if TICKLE_TIMERS
1418 struct timeval tv;
1419 do_gettimeofday(&tv);
1420 printk(KERN_INFO "**** Sending tickle string %d at %02d.%06d\n",
1421 strip_info->next_command, tv.tv_sec % 100,
1422 tv.tv_usec);
1424 #endif
1425 if (ptr == strip_info->tx_buff)
1426 *ptr++ = 0x0D;
1428 *ptr++ = '*'; /* First send "**" to provoke an error message */
1429 *ptr++ = '*';
1431 /* Then add the command */
1432 memcpy(ptr, ts.string, ts.length);
1434 /* Add a checksum ? */
1435 if (strip_info->firmware_level < ChecksummedMessages)
1436 ptr += ts.length;
1437 else
1438 ptr = add_checksum(ptr, ptr + ts.length);
1440 *ptr++ = 0x0D; /* Terminate the command with a <CR> */
1442 /* Cycle to next periodic command? */
1443 if (strip_info->firmware_level >= StructuredMessages)
1444 if (++strip_info->next_command >=
1445 ARRAY_SIZE(CommandString))
1446 strip_info->next_command = 0;
1447 #ifdef EXT_COUNTERS
1448 strip_info->tx_ebytes += ts.length;
1449 #endif
1450 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1451 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1452 /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */
1456 * 3. Set up the strip_info ready to send the data (if any).
1458 strip_info->tx_head = strip_info->tx_buff;
1459 strip_info->tx_left = ptr - strip_info->tx_buff;
1460 set_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags);
1462 * 4. Debugging check to make sure we're not overflowing the buffer.
1464 if (strip_info->tx_size - strip_info->tx_left < 20)
1465 printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n",
1466 strip_info->dev->name, strip_info->tx_left,
1467 strip_info->tx_size - strip_info->tx_left);
1470 * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1471 * the buffer, strip_write_some_more will send it after the reset has finished
1473 if (doreset) {
1474 ResetRadio(strip_info);
1475 return;
1478 if (1) {
1479 struct in_device *in_dev;
1481 brd = addr = 0;
1482 rcu_read_lock();
1483 in_dev = __in_dev_get_rcu(strip_info->dev);
1484 if (in_dev) {
1485 if (in_dev->ifa_list) {
1486 brd = in_dev->ifa_list->ifa_broadcast;
1487 addr = in_dev->ifa_list->ifa_local;
1490 rcu_read_unlock();
1495 * 6. If it is time for a periodic ARP, queue one up to be sent.
1496 * We only do this if:
1497 * 1. The radio is working
1498 * 2. It's time to send another periodic ARP
1499 * 3. We really know what our address is (and it is not manually set to zero)
1500 * 4. We have a designated broadcast address configured
1501 * If we queue up an ARP packet when we don't have a designated broadcast
1502 * address configured, then the packet will just have to be discarded in
1503 * strip_make_packet. This is not fatal, but it causes misleading information
1504 * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1505 * being sent, when in fact they are not, because they are all being dropped
1506 * in the strip_make_packet routine.
1508 if (strip_info->working
1509 && (long) jiffies - strip_info->gratuitous_arp >= 0
1510 && memcmp(strip_info->dev->dev_addr, zero_address.c,
1511 sizeof(zero_address))
1512 && arp_query(haddr.c, brd, strip_info->dev)) {
1513 /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1514 strip_info->dev->name, strip_info->arp_interval / HZ); */
1515 strip_info->gratuitous_arp =
1516 jiffies + strip_info->arp_interval;
1517 strip_info->arp_interval *= 2;
1518 if (strip_info->arp_interval > MaxARPInterval)
1519 strip_info->arp_interval = MaxARPInterval;
1520 if (addr)
1521 arp_send(ARPOP_REPLY, ETH_P_ARP, addr, /* Target address of ARP packet is our address */
1522 strip_info->dev, /* Device to send packet on */
1523 addr, /* Source IP address this ARP packet comes from */
1524 NULL, /* Destination HW address is NULL (broadcast it) */
1525 strip_info->dev->dev_addr, /* Source HW address is our HW address */
1526 strip_info->dev->dev_addr); /* Target HW address is our HW address (redundant) */
1530 * 7. All ready. Start the transmission
1532 strip_write_some_more(strip_info->tty);
1535 /* Encapsulate a datagram and kick it into a TTY queue. */
1536 static netdev_tx_t strip_xmit(struct sk_buff *skb, struct net_device *dev)
1538 struct strip *strip_info = netdev_priv(dev);
1540 if (!netif_running(dev)) {
1541 printk(KERN_ERR "%s: xmit call when iface is down\n",
1542 dev->name);
1543 return NETDEV_TX_BUSY;
1546 netif_stop_queue(dev);
1548 del_timer(&strip_info->idle_timer);
1551 if (time_after(jiffies, strip_info->pps_timer + HZ)) {
1552 unsigned long t = jiffies - strip_info->pps_timer;
1553 unsigned long rx_pps_count =
1554 DIV_ROUND_CLOSEST(strip_info->rx_pps_count*HZ*8, t);
1555 unsigned long tx_pps_count =
1556 DIV_ROUND_CLOSEST(strip_info->tx_pps_count*HZ*8, t);
1557 unsigned long sx_pps_count =
1558 DIV_ROUND_CLOSEST(strip_info->sx_pps_count*HZ*8, t);
1560 strip_info->pps_timer = jiffies;
1561 strip_info->rx_pps_count = 0;
1562 strip_info->tx_pps_count = 0;
1563 strip_info->sx_pps_count = 0;
1565 strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
1566 strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
1567 strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
1569 if (rx_pps_count / 8 >= 10)
1570 printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
1571 strip_info->dev->name, rx_pps_count / 8);
1572 if (tx_pps_count / 8 >= 10)
1573 printk(KERN_INFO "%s: WARNING: Tx %ld packets per second.\n",
1574 strip_info->dev->name, tx_pps_count / 8);
1575 if (sx_pps_count / 8 >= 10)
1576 printk(KERN_INFO "%s: WARNING: Sending %ld packets per second.\n",
1577 strip_info->dev->name, sx_pps_count / 8);
1580 spin_lock_bh(&strip_lock);
1582 strip_send(strip_info, skb);
1584 spin_unlock_bh(&strip_lock);
1586 if (skb)
1587 dev_kfree_skb(skb);
1588 return NETDEV_TX_OK;
1592 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1593 * to send for an extended period of time, the watchdog processing still gets
1594 * done to ensure that the radio stays in Starmode
1597 static void strip_IdleTask(unsigned long parameter)
1599 strip_xmit(NULL, (struct net_device *) parameter);
1603 * Create the MAC header for an arbitrary protocol layer
1605 * saddr!=NULL means use this specific address (n/a for Metricom)
1606 * saddr==NULL means use default device source address
1607 * daddr!=NULL means use this destination address
1608 * daddr==NULL means leave destination address alone
1609 * (e.g. unresolved arp -- kernel will call
1610 * rebuild_header later to fill in the address)
1613 static int strip_header(struct sk_buff *skb, struct net_device *dev,
1614 unsigned short type, const void *daddr,
1615 const void *saddr, unsigned len)
1617 struct strip *strip_info = netdev_priv(dev);
1618 STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header));
1620 /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1621 type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */
1623 header->src_addr = strip_info->true_dev_addr;
1624 header->protocol = htons(type);
1626 /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */
1628 if (!daddr)
1629 return (-dev->hard_header_len);
1631 header->dst_addr = *(MetricomAddress *) daddr;
1632 return (dev->hard_header_len);
1636 * Rebuild the MAC header. This is called after an ARP
1637 * (or in future other address resolution) has completed on this
1638 * sk_buff. We now let ARP fill in the other fields.
1639 * I think this should return zero if packet is ready to send,
1640 * or non-zero if it needs more time to do an address lookup
1643 static int strip_rebuild_header(struct sk_buff *skb)
1645 #ifdef CONFIG_INET
1646 STRIP_Header *header = (STRIP_Header *) skb->data;
1648 /* Arp find returns zero if if knows the address, */
1649 /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1650 return arp_find(header->dst_addr.c, skb) ? 1 : 0;
1651 #else
1652 return 0;
1653 #endif
1657 /************************************************************************/
1658 /* Receiving routines */
1661 * This function parses the response to the ATS300? command,
1662 * extracting the radio version and serial number.
1664 static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end)
1666 __u8 *p, *value_begin, *value_end;
1667 int len;
1669 /* Determine the beginning of the second line of the payload */
1670 p = ptr;
1671 while (p < end && *p != 10)
1672 p++;
1673 if (p >= end)
1674 return;
1675 p++;
1676 value_begin = p;
1678 /* Determine the end of line */
1679 while (p < end && *p != 10)
1680 p++;
1681 if (p >= end)
1682 return;
1683 value_end = p;
1684 p++;
1686 len = value_end - value_begin;
1687 len = min_t(int, len, sizeof(FirmwareVersion) - 1);
1688 if (strip_info->firmware_version.c[0] == 0)
1689 printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
1690 strip_info->dev->name, len, value_begin);
1691 sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
1693 /* Look for the first colon */
1694 while (p < end && *p != ':')
1695 p++;
1696 if (p >= end)
1697 return;
1698 /* Skip over the space */
1699 p += 2;
1700 len = sizeof(SerialNumber) - 1;
1701 if (p + len <= end) {
1702 sprintf(strip_info->serial_number.c, "%.*s", len, p);
1703 } else {
1704 printk(KERN_DEBUG
1705 "STRIP: radio serial number shorter (%zd) than expected (%d)\n",
1706 end - p, len);
1711 * This function parses the response to the ATS325? command,
1712 * extracting the radio battery voltage.
1714 static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end)
1716 int len;
1718 len = sizeof(BatteryVoltage) - 1;
1719 if (ptr + len <= end) {
1720 sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
1721 } else {
1722 printk(KERN_DEBUG
1723 "STRIP: radio voltage string shorter (%zd) than expected (%d)\n",
1724 end - ptr, len);
1729 * This function parses the responses to the AT~LA and ATS311 commands,
1730 * which list the radio's neighbours.
1732 static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end)
1734 table->num_nodes = 0;
1735 while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) {
1736 MetricomNode *node = &table->node[table->num_nodes++];
1737 char *dst = node->c, *limit = dst + sizeof(*node) - 1;
1738 while (ptr < end && *ptr <= 32)
1739 ptr++;
1740 while (ptr < end && dst < limit && *ptr != 10)
1741 *dst++ = *ptr++;
1742 *dst++ = 0;
1743 while (ptr < end && ptr[-1] != 10)
1744 ptr++;
1746 do_gettimeofday(&table->timestamp);
1749 static int get_radio_address(struct strip *strip_info, __u8 * p)
1751 MetricomAddress addr;
1753 if (string_to_radio_address(&addr, p))
1754 return (1);
1756 /* See if our radio address has changed */
1757 if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) {
1758 MetricomAddressString addr_string;
1759 radio_address_to_string(&addr, &addr_string);
1760 printk(KERN_INFO "%s: Radio address = %s\n",
1761 strip_info->dev->name, addr_string.c);
1762 strip_info->true_dev_addr = addr;
1763 if (!strip_info->manual_dev_addr)
1764 *(MetricomAddress *) strip_info->dev->dev_addr =
1765 addr;
1766 /* Give the radio a few seconds to get its head straight, then send an arp */
1767 strip_info->gratuitous_arp = jiffies + 15 * HZ;
1768 strip_info->arp_interval = 1 * HZ;
1770 return (0);
1773 static int verify_checksum(struct strip *strip_info)
1775 __u8 *p = strip_info->sx_buff;
1776 __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
1777 u_short sum =
1778 (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
1779 (READHEX16(end[2]) << 4) | (READHEX16(end[3]));
1780 while (p < end)
1781 sum -= *p++;
1782 if (sum == 0 && strip_info->firmware_level == StructuredMessages) {
1783 strip_info->firmware_level = ChecksummedMessages;
1784 printk(KERN_INFO "%s: Radio provides message checksums\n",
1785 strip_info->dev->name);
1787 return (sum == 0);
1790 static void RecvErr(char *msg, struct strip *strip_info)
1792 __u8 *ptr = strip_info->sx_buff;
1793 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
1794 DumpData(msg, strip_info, ptr, end);
1795 strip_info->rx_errors++;
1798 static void RecvErr_Message(struct strip *strip_info, __u8 * sendername,
1799 const __u8 * msg, u_long len)
1801 if (has_prefix(msg, len, "001")) { /* Not in StarMode! */
1802 RecvErr("Error Msg:", strip_info);
1803 printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
1804 strip_info->dev->name, sendername);
1807 else if (has_prefix(msg, len, "002")) { /* Remap handle */
1808 /* We ignore "Remap handle" messages for now */
1811 else if (has_prefix(msg, len, "003")) { /* Can't resolve name */
1812 RecvErr("Error Msg:", strip_info);
1813 printk(KERN_INFO "%s: Destination radio name is unknown\n",
1814 strip_info->dev->name);
1817 else if (has_prefix(msg, len, "004")) { /* Name too small or missing */
1818 strip_info->watchdog_doreset = jiffies + LongTime;
1819 #if TICKLE_TIMERS
1821 struct timeval tv;
1822 do_gettimeofday(&tv);
1823 printk(KERN_INFO
1824 "**** Got ERR_004 response at %02d.%06d\n",
1825 tv.tv_sec % 100, tv.tv_usec);
1827 #endif
1828 if (!strip_info->working) {
1829 strip_info->working = TRUE;
1830 printk(KERN_INFO "%s: Radio now in starmode\n",
1831 strip_info->dev->name);
1833 * If the radio has just entered a working state, we should do our first
1834 * probe ASAP, so that we find out our radio address etc. without delay.
1836 strip_info->watchdog_doprobe = jiffies;
1838 if (strip_info->firmware_level == NoStructure && sendername) {
1839 strip_info->firmware_level = StructuredMessages;
1840 strip_info->next_command = 0; /* Try to enable checksums ASAP */
1841 printk(KERN_INFO
1842 "%s: Radio provides structured messages\n",
1843 strip_info->dev->name);
1845 if (strip_info->firmware_level >= StructuredMessages) {
1847 * If this message has a valid checksum on the end, then the call to verify_checksum
1848 * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1849 * code from verify_checksum is ignored here.)
1851 verify_checksum(strip_info);
1853 * If the radio has structured messages but we don't yet have all our information about it,
1854 * we should do probes without delay, until we have gathered all the information
1856 if (!GOT_ALL_RADIO_INFO(strip_info))
1857 strip_info->watchdog_doprobe = jiffies;
1861 else if (has_prefix(msg, len, "005")) /* Bad count specification */
1862 RecvErr("Error Msg:", strip_info);
1864 else if (has_prefix(msg, len, "006")) /* Header too big */
1865 RecvErr("Error Msg:", strip_info);
1867 else if (has_prefix(msg, len, "007")) { /* Body too big */
1868 RecvErr("Error Msg:", strip_info);
1869 printk(KERN_ERR
1870 "%s: Error! Packet size too big for radio.\n",
1871 strip_info->dev->name);
1874 else if (has_prefix(msg, len, "008")) { /* Bad character in name */
1875 RecvErr("Error Msg:", strip_info);
1876 printk(KERN_ERR
1877 "%s: Radio name contains illegal character\n",
1878 strip_info->dev->name);
1881 else if (has_prefix(msg, len, "009")) /* No count or line terminator */
1882 RecvErr("Error Msg:", strip_info);
1884 else if (has_prefix(msg, len, "010")) /* Invalid checksum */
1885 RecvErr("Error Msg:", strip_info);
1887 else if (has_prefix(msg, len, "011")) /* Checksum didn't match */
1888 RecvErr("Error Msg:", strip_info);
1890 else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */
1891 RecvErr("Error Msg:", strip_info);
1893 else
1894 RecvErr("Error Msg:", strip_info);
1897 static void process_AT_response(struct strip *strip_info, __u8 * ptr,
1898 __u8 * end)
1900 u_long len;
1901 __u8 *p = ptr;
1902 while (p < end && p[-1] != 10)
1903 p++; /* Skip past first newline character */
1904 /* Now ptr points to the AT command, and p points to the text of the response. */
1905 len = p - ptr;
1907 #if TICKLE_TIMERS
1909 struct timeval tv;
1910 do_gettimeofday(&tv);
1911 printk(KERN_INFO "**** Got AT response %.7s at %02d.%06d\n",
1912 ptr, tv.tv_sec % 100, tv.tv_usec);
1914 #endif
1916 if (has_prefix(ptr, len, "ATS300?"))
1917 get_radio_version(strip_info, p, end);
1918 else if (has_prefix(ptr, len, "ATS305?"))
1919 get_radio_address(strip_info, p);
1920 else if (has_prefix(ptr, len, "ATS311?"))
1921 get_radio_neighbours(&strip_info->poletops, p, end);
1922 else if (has_prefix(ptr, len, "ATS319=7"))
1923 verify_checksum(strip_info);
1924 else if (has_prefix(ptr, len, "ATS325?"))
1925 get_radio_voltage(strip_info, p, end);
1926 else if (has_prefix(ptr, len, "AT~LA"))
1927 get_radio_neighbours(&strip_info->portables, p, end);
1928 else
1929 RecvErr("Unknown AT Response:", strip_info);
1932 static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end)
1934 /* Currently we don't do anything with ACKs from the radio */
1937 static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end)
1939 if (ptr + 16 > end)
1940 RecvErr("Bad Info Msg:", strip_info);
1943 static struct net_device *get_strip_dev(struct strip *strip_info)
1945 /* If our hardware address is *manually set* to zero, and we know our */
1946 /* real radio hardware address, try to find another strip device that has been */
1947 /* manually set to that address that we can 'transfer ownership' of this packet to */
1948 if (strip_info->manual_dev_addr &&
1949 !memcmp(strip_info->dev->dev_addr, zero_address.c,
1950 sizeof(zero_address))
1951 && memcmp(&strip_info->true_dev_addr, zero_address.c,
1952 sizeof(zero_address))) {
1953 struct net_device *dev;
1954 read_lock_bh(&dev_base_lock);
1955 for_each_netdev(&init_net, dev) {
1956 if (dev->type == strip_info->dev->type &&
1957 !memcmp(dev->dev_addr,
1958 &strip_info->true_dev_addr,
1959 sizeof(MetricomAddress))) {
1960 printk(KERN_INFO
1961 "%s: Transferred packet ownership to %s.\n",
1962 strip_info->dev->name, dev->name);
1963 read_unlock_bh(&dev_base_lock);
1964 return (dev);
1967 read_unlock_bh(&dev_base_lock);
1969 return (strip_info->dev);
1973 * Send one completely decapsulated datagram to the next layer.
1976 static void deliver_packet(struct strip *strip_info, STRIP_Header * header,
1977 __u16 packetlen)
1979 struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
1980 if (!skb) {
1981 printk(KERN_ERR "%s: memory squeeze, dropping packet.\n",
1982 strip_info->dev->name);
1983 strip_info->rx_dropped++;
1984 } else {
1985 memcpy(skb_put(skb, sizeof(STRIP_Header)), header,
1986 sizeof(STRIP_Header));
1987 memcpy(skb_put(skb, packetlen), strip_info->rx_buff,
1988 packetlen);
1989 skb->dev = get_strip_dev(strip_info);
1990 skb->protocol = header->protocol;
1991 skb_reset_mac_header(skb);
1993 /* Having put a fake header on the front of the sk_buff for the */
1994 /* benefit of tools like tcpdump, skb_pull now 'consumes' that */
1995 /* fake header before we hand the packet up to the next layer. */
1996 skb_pull(skb, sizeof(STRIP_Header));
1998 /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
1999 strip_info->rx_packets++;
2000 strip_info->rx_pps_count++;
2001 #ifdef EXT_COUNTERS
2002 strip_info->rx_bytes += packetlen;
2003 #endif
2004 netif_rx(skb);
2008 static void process_IP_packet(struct strip *strip_info,
2009 STRIP_Header * header, __u8 * ptr,
2010 __u8 * end)
2012 __u16 packetlen;
2014 /* Decode start of the IP packet header */
2015 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
2016 if (!ptr) {
2017 RecvErr("IP Packet too short", strip_info);
2018 return;
2021 packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
2023 if (packetlen > MAX_RECV_MTU) {
2024 printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
2025 strip_info->dev->name, packetlen);
2026 strip_info->rx_dropped++;
2027 return;
2030 /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */
2032 /* Decode remainder of the IP packet */
2033 ptr =
2034 UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4);
2035 if (!ptr) {
2036 RecvErr("IP Packet too short", strip_info);
2037 return;
2040 if (ptr < end) {
2041 RecvErr("IP Packet too long", strip_info);
2042 return;
2045 header->protocol = htons(ETH_P_IP);
2047 deliver_packet(strip_info, header, packetlen);
2050 static void process_ARP_packet(struct strip *strip_info,
2051 STRIP_Header * header, __u8 * ptr,
2052 __u8 * end)
2054 __u16 packetlen;
2055 struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff;
2057 /* Decode start of the ARP packet */
2058 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
2059 if (!ptr) {
2060 RecvErr("ARP Packet too short", strip_info);
2061 return;
2064 packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
2066 if (packetlen > MAX_RECV_MTU) {
2067 printk(KERN_INFO
2068 "%s: Dropping oversized received ARP packet: %d bytes\n",
2069 strip_info->dev->name, packetlen);
2070 strip_info->rx_dropped++;
2071 return;
2074 /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2075 strip_info->dev->name, packetlen,
2076 ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */
2078 /* Decode remainder of the ARP packet */
2079 ptr =
2080 UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8);
2081 if (!ptr) {
2082 RecvErr("ARP Packet too short", strip_info);
2083 return;
2086 if (ptr < end) {
2087 RecvErr("ARP Packet too long", strip_info);
2088 return;
2091 header->protocol = htons(ETH_P_ARP);
2093 deliver_packet(strip_info, header, packetlen);
2097 * process_text_message processes a <CR>-terminated block of data received
2098 * from the radio that doesn't begin with a '*' character. All normal
2099 * Starmode communication messages with the radio begin with a '*',
2100 * so any text that does not indicates a serial port error, a radio that
2101 * is in Hayes command mode instead of Starmode, or a radio with really
2102 * old firmware that doesn't frame its Starmode responses properly.
2104 static void process_text_message(struct strip *strip_info)
2106 __u8 *msg = strip_info->sx_buff;
2107 int len = strip_info->sx_count;
2109 /* Check for anything that looks like it might be our radio name */
2110 /* (This is here for backwards compatibility with old firmware) */
2111 if (len == 9 && get_radio_address(strip_info, msg) == 0)
2112 return;
2114 if (text_equal(msg, len, "OK"))
2115 return; /* Ignore 'OK' responses from prior commands */
2116 if (text_equal(msg, len, "ERROR"))
2117 return; /* Ignore 'ERROR' messages */
2118 if (has_prefix(msg, len, "ate0q1"))
2119 return; /* Ignore character echo back from the radio */
2121 /* Catch other error messages */
2122 /* (This is here for backwards compatibility with old firmware) */
2123 if (has_prefix(msg, len, "ERR_")) {
2124 RecvErr_Message(strip_info, NULL, &msg[4], len - 4);
2125 return;
2128 RecvErr("No initial *", strip_info);
2132 * process_message processes a <CR>-terminated block of data received
2133 * from the radio. If the radio is not in Starmode or has old firmware,
2134 * it may be a line of text in response to an AT command. Ideally, with
2135 * a current radio that's properly in Starmode, all data received should
2136 * be properly framed and checksummed radio message blocks, containing
2137 * either a starmode packet, or a other communication from the radio
2138 * firmware, like "INF_" Info messages and &COMMAND responses.
2140 static void process_message(struct strip *strip_info)
2142 STRIP_Header header = { zero_address, zero_address, 0 };
2143 __u8 *ptr = strip_info->sx_buff;
2144 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
2145 __u8 sendername[32], *sptr = sendername;
2146 MetricomKey key;
2148 /*HexDump("Receiving", strip_info, ptr, end); */
2150 /* Check for start of address marker, and then skip over it */
2151 if (*ptr == '*')
2152 ptr++;
2153 else {
2154 process_text_message(strip_info);
2155 return;
2158 /* Copy out the return address */
2159 while (ptr < end && *ptr != '*'
2160 && sptr < ARRAY_END(sendername) - 1)
2161 *sptr++ = *ptr++;
2162 *sptr = 0; /* Null terminate the sender name */
2164 /* Check for end of address marker, and skip over it */
2165 if (ptr >= end || *ptr != '*') {
2166 RecvErr("No second *", strip_info);
2167 return;
2169 ptr++; /* Skip the second '*' */
2171 /* If the sender name is "&COMMAND", ignore this 'packet' */
2172 /* (This is here for backwards compatibility with old firmware) */
2173 if (!strcmp(sendername, "&COMMAND")) {
2174 strip_info->firmware_level = NoStructure;
2175 strip_info->next_command = CompatibilityCommand;
2176 return;
2179 if (ptr + 4 > end) {
2180 RecvErr("No proto key", strip_info);
2181 return;
2184 /* Get the protocol key out of the buffer */
2185 key.c[0] = *ptr++;
2186 key.c[1] = *ptr++;
2187 key.c[2] = *ptr++;
2188 key.c[3] = *ptr++;
2190 /* If we're using checksums, verify the checksum at the end of the packet */
2191 if (strip_info->firmware_level >= ChecksummedMessages) {
2192 end -= 4; /* Chop the last four bytes off the packet (they're the checksum) */
2193 if (ptr > end) {
2194 RecvErr("Missing Checksum", strip_info);
2195 return;
2197 if (!verify_checksum(strip_info)) {
2198 RecvErr("Bad Checksum", strip_info);
2199 return;
2203 /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */
2206 * Fill in (pseudo) source and destination addresses in the packet.
2207 * We assume that the destination address was our address (the radio does not
2208 * tell us this). If the radio supplies a source address, then we use it.
2210 header.dst_addr = strip_info->true_dev_addr;
2211 string_to_radio_address(&header.src_addr, sendername);
2213 #ifdef EXT_COUNTERS
2214 if (key.l == SIP0Key.l) {
2215 strip_info->rx_rbytes += (end - ptr);
2216 process_IP_packet(strip_info, &header, ptr, end);
2217 } else if (key.l == ARP0Key.l) {
2218 strip_info->rx_rbytes += (end - ptr);
2219 process_ARP_packet(strip_info, &header, ptr, end);
2220 } else if (key.l == ATR_Key.l) {
2221 strip_info->rx_ebytes += (end - ptr);
2222 process_AT_response(strip_info, ptr, end);
2223 } else if (key.l == ACK_Key.l) {
2224 strip_info->rx_ebytes += (end - ptr);
2225 process_ACK(strip_info, ptr, end);
2226 } else if (key.l == INF_Key.l) {
2227 strip_info->rx_ebytes += (end - ptr);
2228 process_Info(strip_info, ptr, end);
2229 } else if (key.l == ERR_Key.l) {
2230 strip_info->rx_ebytes += (end - ptr);
2231 RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2232 } else
2233 RecvErr("Unrecognized protocol key", strip_info);
2234 #else
2235 if (key.l == SIP0Key.l)
2236 process_IP_packet(strip_info, &header, ptr, end);
2237 else if (key.l == ARP0Key.l)
2238 process_ARP_packet(strip_info, &header, ptr, end);
2239 else if (key.l == ATR_Key.l)
2240 process_AT_response(strip_info, ptr, end);
2241 else if (key.l == ACK_Key.l)
2242 process_ACK(strip_info, ptr, end);
2243 else if (key.l == INF_Key.l)
2244 process_Info(strip_info, ptr, end);
2245 else if (key.l == ERR_Key.l)
2246 RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2247 else
2248 RecvErr("Unrecognized protocol key", strip_info);
2249 #endif
2252 #define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \
2253 (X) == TTY_FRAME ? "Framing Error" : \
2254 (X) == TTY_PARITY ? "Parity Error" : \
2255 (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2258 * Handle the 'receiver data ready' interrupt.
2259 * This function is called by the 'tty_io' module in the kernel when
2260 * a block of STRIP data has been received, which can now be decapsulated
2261 * and sent on to some IP layer for further processing.
2264 static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp,
2265 char *fp, int count)
2267 struct strip *strip_info = tty->disc_data;
2268 const unsigned char *end = cp + count;
2270 if (!strip_info || strip_info->magic != STRIP_MAGIC
2271 || !netif_running(strip_info->dev))
2272 return;
2274 spin_lock_bh(&strip_lock);
2275 #if 0
2277 struct timeval tv;
2278 do_gettimeofday(&tv);
2279 printk(KERN_INFO
2280 "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2281 count, tv.tv_sec % 100, tv.tv_usec);
2283 #endif
2285 #ifdef EXT_COUNTERS
2286 strip_info->rx_sbytes += count;
2287 #endif
2289 /* Read the characters out of the buffer */
2290 while (cp < end) {
2291 if (fp && *fp)
2292 printk(KERN_INFO "%s: %s on serial port\n",
2293 strip_info->dev->name, TTYERROR(*fp));
2294 if (fp && *fp++ && !strip_info->discard) { /* If there's a serial error, record it */
2295 /* If we have some characters in the buffer, discard them */
2296 strip_info->discard = strip_info->sx_count;
2297 strip_info->rx_errors++;
2300 /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2301 if (strip_info->sx_count > 0 || *cp >= ' ') {
2302 if (*cp == 0x0D) { /* If end of packet, decide what to do with it */
2303 if (strip_info->sx_count > 3000)
2304 printk(KERN_INFO
2305 "%s: Cut a %d byte packet (%zd bytes remaining)%s\n",
2306 strip_info->dev->name,
2307 strip_info->sx_count,
2308 end - cp - 1,
2309 strip_info->
2310 discard ? " (discarded)" :
2311 "");
2312 if (strip_info->sx_count >
2313 strip_info->sx_size) {
2314 strip_info->rx_over_errors++;
2315 printk(KERN_INFO
2316 "%s: sx_buff overflow (%d bytes total)\n",
2317 strip_info->dev->name,
2318 strip_info->sx_count);
2319 } else if (strip_info->discard)
2320 printk(KERN_INFO
2321 "%s: Discarding bad packet (%d/%d)\n",
2322 strip_info->dev->name,
2323 strip_info->discard,
2324 strip_info->sx_count);
2325 else
2326 process_message(strip_info);
2327 strip_info->discard = 0;
2328 strip_info->sx_count = 0;
2329 } else {
2330 /* Make sure we have space in the buffer */
2331 if (strip_info->sx_count <
2332 strip_info->sx_size)
2333 strip_info->sx_buff[strip_info->
2334 sx_count] =
2335 *cp;
2336 strip_info->sx_count++;
2339 cp++;
2341 spin_unlock_bh(&strip_lock);
2345 /************************************************************************/
2346 /* General control routines */
2348 static int set_mac_address(struct strip *strip_info,
2349 MetricomAddress * addr)
2352 * We're using a manually specified address if the address is set
2353 * to anything other than all ones. Setting the address to all ones
2354 * disables manual mode and goes back to automatic address determination
2355 * (tracking the true address that the radio has).
2357 strip_info->manual_dev_addr =
2358 memcmp(addr->c, broadcast_address.c,
2359 sizeof(broadcast_address));
2360 if (strip_info->manual_dev_addr)
2361 *(MetricomAddress *) strip_info->dev->dev_addr = *addr;
2362 else
2363 *(MetricomAddress *) strip_info->dev->dev_addr =
2364 strip_info->true_dev_addr;
2365 return 0;
2368 static int strip_set_mac_address(struct net_device *dev, void *addr)
2370 struct strip *strip_info = netdev_priv(dev);
2371 struct sockaddr *sa = addr;
2372 printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
2373 set_mac_address(strip_info, (MetricomAddress *) sa->sa_data);
2374 return 0;
2377 static struct net_device_stats *strip_get_stats(struct net_device *dev)
2379 struct strip *strip_info = netdev_priv(dev);
2380 static struct net_device_stats stats;
2382 memset(&stats, 0, sizeof(struct net_device_stats));
2384 stats.rx_packets = strip_info->rx_packets;
2385 stats.tx_packets = strip_info->tx_packets;
2386 stats.rx_dropped = strip_info->rx_dropped;
2387 stats.tx_dropped = strip_info->tx_dropped;
2388 stats.tx_errors = strip_info->tx_errors;
2389 stats.rx_errors = strip_info->rx_errors;
2390 stats.rx_over_errors = strip_info->rx_over_errors;
2391 return (&stats);
2395 /************************************************************************/
2396 /* Opening and closing */
2399 * Here's the order things happen:
2400 * When the user runs "slattach -p strip ..."
2401 * 1. The TTY module calls strip_open;;
2402 * 2. strip_open calls strip_alloc
2403 * 3. strip_alloc calls register_netdev
2404 * 4. register_netdev calls strip_dev_init
2405 * 5. then strip_open finishes setting up the strip_info
2407 * When the user runs "ifconfig st<x> up address netmask ..."
2408 * 6. strip_open_low gets called
2410 * When the user runs "ifconfig st<x> down"
2411 * 7. strip_close_low gets called
2413 * When the user kills the slattach process
2414 * 8. strip_close gets called
2415 * 9. strip_close calls dev_close
2416 * 10. if the device is still up, then dev_close calls strip_close_low
2417 * 11. strip_close calls strip_free
2420 /* Open the low-level part of the STRIP channel. Easy! */
2422 static int strip_open_low(struct net_device *dev)
2424 struct strip *strip_info = netdev_priv(dev);
2426 if (strip_info->tty == NULL)
2427 return (-ENODEV);
2429 if (!allocate_buffers(strip_info, dev->mtu))
2430 return (-ENOMEM);
2432 strip_info->sx_count = 0;
2433 strip_info->tx_left = 0;
2435 strip_info->discard = 0;
2436 strip_info->working = FALSE;
2437 strip_info->firmware_level = NoStructure;
2438 strip_info->next_command = CompatibilityCommand;
2439 strip_info->user_baud = tty_get_baud_rate(strip_info->tty);
2441 printk(KERN_INFO "%s: Initializing Radio.\n",
2442 strip_info->dev->name);
2443 ResetRadio(strip_info);
2444 strip_info->idle_timer.expires = jiffies + 1 * HZ;
2445 add_timer(&strip_info->idle_timer);
2446 netif_wake_queue(dev);
2447 return (0);
2452 * Close the low-level part of the STRIP channel. Easy!
2455 static int strip_close_low(struct net_device *dev)
2457 struct strip *strip_info = netdev_priv(dev);
2459 if (strip_info->tty == NULL)
2460 return -EBUSY;
2461 clear_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags);
2462 netif_stop_queue(dev);
2465 * Free all STRIP frame buffers.
2467 kfree(strip_info->rx_buff);
2468 strip_info->rx_buff = NULL;
2469 kfree(strip_info->sx_buff);
2470 strip_info->sx_buff = NULL;
2471 kfree(strip_info->tx_buff);
2472 strip_info->tx_buff = NULL;
2474 del_timer(&strip_info->idle_timer);
2475 return 0;
2478 static const struct header_ops strip_header_ops = {
2479 .create = strip_header,
2480 .rebuild = strip_rebuild_header,
2484 static const struct net_device_ops strip_netdev_ops = {
2485 .ndo_open = strip_open_low,
2486 .ndo_stop = strip_close_low,
2487 .ndo_start_xmit = strip_xmit,
2488 .ndo_set_mac_address = strip_set_mac_address,
2489 .ndo_get_stats = strip_get_stats,
2490 .ndo_change_mtu = strip_change_mtu,
2494 * This routine is called by DDI when the
2495 * (dynamically assigned) device is registered
2498 static void strip_dev_setup(struct net_device *dev)
2501 * Finish setting up the DEVICE info.
2504 dev->trans_start = 0;
2505 dev->tx_queue_len = 30; /* Drop after 30 frames queued */
2507 dev->flags = 0;
2508 dev->mtu = DEFAULT_STRIP_MTU;
2509 dev->type = ARPHRD_METRICOM; /* dtang */
2510 dev->hard_header_len = sizeof(STRIP_Header);
2512 * netdev_priv(dev) Already holds a pointer to our struct strip
2515 *(MetricomAddress *)dev->broadcast = broadcast_address;
2516 dev->dev_addr[0] = 0;
2517 dev->addr_len = sizeof(MetricomAddress);
2519 dev->header_ops = &strip_header_ops,
2520 dev->netdev_ops = &strip_netdev_ops;
2524 * Free a STRIP channel.
2527 static void strip_free(struct strip *strip_info)
2529 spin_lock_bh(&strip_lock);
2530 list_del_rcu(&strip_info->list);
2531 spin_unlock_bh(&strip_lock);
2533 strip_info->magic = 0;
2535 free_netdev(strip_info->dev);
2540 * Allocate a new free STRIP channel
2542 static struct strip *strip_alloc(void)
2544 struct list_head *n;
2545 struct net_device *dev;
2546 struct strip *strip_info;
2548 dev = alloc_netdev(sizeof(struct strip), "st%d",
2549 strip_dev_setup);
2551 if (!dev)
2552 return NULL; /* If no more memory, return */
2555 strip_info = netdev_priv(dev);
2556 strip_info->dev = dev;
2558 strip_info->magic = STRIP_MAGIC;
2559 strip_info->tty = NULL;
2561 strip_info->gratuitous_arp = jiffies + LongTime;
2562 strip_info->arp_interval = 0;
2563 init_timer(&strip_info->idle_timer);
2564 strip_info->idle_timer.data = (long) dev;
2565 strip_info->idle_timer.function = strip_IdleTask;
2568 spin_lock_bh(&strip_lock);
2569 rescan:
2571 * Search the list to find where to put our new entry
2572 * (and in the process decide what channel number it is
2573 * going to be)
2575 list_for_each(n, &strip_list) {
2576 struct strip *s = hlist_entry(n, struct strip, list);
2578 if (s->dev->base_addr == dev->base_addr) {
2579 ++dev->base_addr;
2580 goto rescan;
2584 sprintf(dev->name, "st%ld", dev->base_addr);
2586 list_add_tail_rcu(&strip_info->list, &strip_list);
2587 spin_unlock_bh(&strip_lock);
2589 return strip_info;
2593 * Open the high-level part of the STRIP channel.
2594 * This function is called by the TTY module when the
2595 * STRIP line discipline is called for. Because we are
2596 * sure the tty line exists, we only have to link it to
2597 * a free STRIP channel...
2600 static int strip_open(struct tty_struct *tty)
2602 struct strip *strip_info = tty->disc_data;
2605 * First make sure we're not already connected.
2608 if (strip_info && strip_info->magic == STRIP_MAGIC)
2609 return -EEXIST;
2612 * We need a write method.
2615 if (tty->ops->write == NULL || tty->ops->set_termios == NULL)
2616 return -EOPNOTSUPP;
2619 * OK. Find a free STRIP channel to use.
2621 if ((strip_info = strip_alloc()) == NULL)
2622 return -ENFILE;
2625 * Register our newly created device so it can be ifconfig'd
2626 * strip_dev_init() will be called as a side-effect
2629 if (register_netdev(strip_info->dev) != 0) {
2630 printk(KERN_ERR "strip: register_netdev() failed.\n");
2631 strip_free(strip_info);
2632 return -ENFILE;
2635 strip_info->tty = tty;
2636 tty->disc_data = strip_info;
2637 tty->receive_room = 65536;
2639 tty_driver_flush_buffer(tty);
2642 * Restore default settings
2645 strip_info->dev->type = ARPHRD_METRICOM; /* dtang */
2648 * Set tty options
2651 tty->termios->c_iflag |= IGNBRK | IGNPAR; /* Ignore breaks and parity errors. */
2652 tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */
2653 tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */
2655 printk(KERN_INFO "STRIP: device \"%s\" activated\n",
2656 strip_info->dev->name);
2659 * Done. We have linked the TTY line to a channel.
2661 return (strip_info->dev->base_addr);
2665 * Close down a STRIP channel.
2666 * This means flushing out any pending queues, and then restoring the
2667 * TTY line discipline to what it was before it got hooked to STRIP
2668 * (which usually is TTY again).
2671 static void strip_close(struct tty_struct *tty)
2673 struct strip *strip_info = tty->disc_data;
2676 * First make sure we're connected.
2679 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2680 return;
2682 unregister_netdev(strip_info->dev);
2684 tty->disc_data = NULL;
2685 strip_info->tty = NULL;
2686 printk(KERN_INFO "STRIP: device \"%s\" closed down\n",
2687 strip_info->dev->name);
2688 strip_free(strip_info);
2689 tty->disc_data = NULL;
2693 /************************************************************************/
2694 /* Perform I/O control calls on an active STRIP channel. */
2696 static int strip_ioctl(struct tty_struct *tty, struct file *file,
2697 unsigned int cmd, unsigned long arg)
2699 struct strip *strip_info = tty->disc_data;
2702 * First make sure we're connected.
2705 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2706 return -EINVAL;
2708 switch (cmd) {
2709 case SIOCGIFNAME:
2710 if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1))
2711 return -EFAULT;
2712 break;
2713 case SIOCSIFHWADDR:
2715 MetricomAddress addr;
2716 //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name);
2717 if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress)))
2718 return -EFAULT;
2719 return set_mac_address(strip_info, &addr);
2721 default:
2722 return tty_mode_ioctl(tty, file, cmd, arg);
2723 break;
2725 return 0;
2729 /************************************************************************/
2730 /* Initialization */
2732 static struct tty_ldisc_ops strip_ldisc = {
2733 .magic = TTY_LDISC_MAGIC,
2734 .name = "strip",
2735 .owner = THIS_MODULE,
2736 .open = strip_open,
2737 .close = strip_close,
2738 .ioctl = strip_ioctl,
2739 .receive_buf = strip_receive_buf,
2740 .write_wakeup = strip_write_some_more,
2744 * Initialize the STRIP driver.
2745 * This routine is called at boot time, to bootstrap the multi-channel
2746 * STRIP driver
2749 static char signon[] __initdata =
2750 KERN_INFO "STRIP: Version %s (unlimited channels)\n";
2752 static int __init strip_init_driver(void)
2754 int status;
2756 printk(signon, StripVersion);
2760 * Fill in our line protocol discipline, and register it
2762 if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
2763 printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n",
2764 status);
2767 * Register the status file with /proc
2769 proc_net_fops_create(&init_net, "strip", S_IFREG | S_IRUGO, &strip_seq_fops);
2771 return status;
2774 module_init(strip_init_driver);
2776 static const char signoff[] __exitdata =
2777 KERN_INFO "STRIP: Module Unloaded\n";
2779 static void __exit strip_exit_driver(void)
2781 int i;
2782 struct list_head *p,*n;
2784 /* module ref count rules assure that all entries are unregistered */
2785 list_for_each_safe(p, n, &strip_list) {
2786 struct strip *s = list_entry(p, struct strip, list);
2787 strip_free(s);
2790 /* Unregister with the /proc/net file here. */
2791 proc_net_remove(&init_net, "strip");
2793 if ((i = tty_unregister_ldisc(N_STRIP)))
2794 printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
2796 printk(signoff);
2799 module_exit(strip_exit_driver);
2801 MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2802 MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2803 MODULE_LICENSE("Dual BSD/GPL");
2805 MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");