mm-only debug patch...
[mmotm.git] / drivers / oprofile / cpu_buffer.c
bloba7aae24f2889a4578ebd90dad52ae72aab916116
1 /**
2 * @file cpu_buffer.c
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf <barry.kasindorf@amd.com>
9 * @author Robert Richter <robert.richter@amd.com>
11 * Each CPU has a local buffer that stores PC value/event
12 * pairs. We also log context switches when we notice them.
13 * Eventually each CPU's buffer is processed into the global
14 * event buffer by sync_buffer().
16 * We use a local buffer for two reasons: an NMI or similar
17 * interrupt cannot synchronise, and high sampling rates
18 * would lead to catastrophic global synchronisation if
19 * a global buffer was used.
22 #include <linux/sched.h>
23 #include <linux/oprofile.h>
24 #include <linux/errno.h>
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
29 #include "oprof.h"
31 #define OP_BUFFER_FLAGS 0
34 * Read and write access is using spin locking. Thus, writing to the
35 * buffer by NMI handler (x86) could occur also during critical
36 * sections when reading the buffer. To avoid this, there are 2
37 * buffers for independent read and write access. Read access is in
38 * process context only, write access only in the NMI handler. If the
39 * read buffer runs empty, both buffers are swapped atomically. There
40 * is potentially a small window during swapping where the buffers are
41 * disabled and samples could be lost.
43 * Using 2 buffers is a little bit overhead, but the solution is clear
44 * and does not require changes in the ring buffer implementation. It
45 * can be changed to a single buffer solution when the ring buffer
46 * access is implemented as non-locking atomic code.
48 static struct ring_buffer *op_ring_buffer_read;
49 static struct ring_buffer *op_ring_buffer_write;
50 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
52 static void wq_sync_buffer(struct work_struct *work);
54 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
55 static int work_enabled;
57 unsigned long oprofile_get_cpu_buffer_size(void)
59 return oprofile_cpu_buffer_size;
62 void oprofile_cpu_buffer_inc_smpl_lost(void)
64 struct oprofile_cpu_buffer *cpu_buf
65 = &__get_cpu_var(cpu_buffer);
67 cpu_buf->sample_lost_overflow++;
70 void free_cpu_buffers(void)
72 if (op_ring_buffer_read)
73 ring_buffer_free(op_ring_buffer_read);
74 op_ring_buffer_read = NULL;
75 if (op_ring_buffer_write)
76 ring_buffer_free(op_ring_buffer_write);
77 op_ring_buffer_write = NULL;
80 #define RB_EVENT_HDR_SIZE 4
82 int alloc_cpu_buffers(void)
84 int i;
86 unsigned long buffer_size = oprofile_cpu_buffer_size;
87 unsigned long byte_size = buffer_size * (sizeof(struct op_sample) +
88 RB_EVENT_HDR_SIZE);
90 op_ring_buffer_read = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS);
91 if (!op_ring_buffer_read)
92 goto fail;
93 op_ring_buffer_write = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS);
94 if (!op_ring_buffer_write)
95 goto fail;
97 for_each_possible_cpu(i) {
98 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
100 b->last_task = NULL;
101 b->last_is_kernel = -1;
102 b->tracing = 0;
103 b->buffer_size = buffer_size;
104 b->sample_received = 0;
105 b->sample_lost_overflow = 0;
106 b->backtrace_aborted = 0;
107 b->sample_invalid_eip = 0;
108 b->cpu = i;
109 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
111 return 0;
113 fail:
114 free_cpu_buffers();
115 return -ENOMEM;
118 void start_cpu_work(void)
120 int i;
122 work_enabled = 1;
124 for_each_online_cpu(i) {
125 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
128 * Spread the work by 1 jiffy per cpu so they dont all
129 * fire at once.
131 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
135 void end_cpu_work(void)
137 int i;
139 work_enabled = 0;
141 for_each_online_cpu(i) {
142 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
144 cancel_delayed_work(&b->work);
147 flush_scheduled_work();
151 * This function prepares the cpu buffer to write a sample.
153 * Struct op_entry is used during operations on the ring buffer while
154 * struct op_sample contains the data that is stored in the ring
155 * buffer. Struct entry can be uninitialized. The function reserves a
156 * data array that is specified by size. Use
157 * op_cpu_buffer_write_commit() after preparing the sample. In case of
158 * errors a null pointer is returned, otherwise the pointer to the
159 * sample.
162 struct op_sample
163 *op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size)
165 entry->event = ring_buffer_lock_reserve
166 (op_ring_buffer_write, sizeof(struct op_sample) +
167 size * sizeof(entry->sample->data[0]));
168 if (entry->event)
169 entry->sample = ring_buffer_event_data(entry->event);
170 else
171 entry->sample = NULL;
173 if (!entry->sample)
174 return NULL;
176 entry->size = size;
177 entry->data = entry->sample->data;
179 return entry->sample;
182 int op_cpu_buffer_write_commit(struct op_entry *entry)
184 return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event);
187 struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu)
189 struct ring_buffer_event *e;
190 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
191 if (e)
192 goto event;
193 if (ring_buffer_swap_cpu(op_ring_buffer_read,
194 op_ring_buffer_write,
195 cpu))
196 return NULL;
197 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
198 if (e)
199 goto event;
200 return NULL;
202 event:
203 entry->event = e;
204 entry->sample = ring_buffer_event_data(e);
205 entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample))
206 / sizeof(entry->sample->data[0]);
207 entry->data = entry->sample->data;
208 return entry->sample;
211 unsigned long op_cpu_buffer_entries(int cpu)
213 return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
214 + ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
217 static int
218 op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace,
219 int is_kernel, struct task_struct *task)
221 struct op_entry entry;
222 struct op_sample *sample;
223 unsigned long flags;
224 int size;
226 flags = 0;
228 if (backtrace)
229 flags |= TRACE_BEGIN;
231 /* notice a switch from user->kernel or vice versa */
232 is_kernel = !!is_kernel;
233 if (cpu_buf->last_is_kernel != is_kernel) {
234 cpu_buf->last_is_kernel = is_kernel;
235 flags |= KERNEL_CTX_SWITCH;
236 if (is_kernel)
237 flags |= IS_KERNEL;
240 /* notice a task switch */
241 if (cpu_buf->last_task != task) {
242 cpu_buf->last_task = task;
243 flags |= USER_CTX_SWITCH;
246 if (!flags)
247 /* nothing to do */
248 return 0;
250 if (flags & USER_CTX_SWITCH)
251 size = 1;
252 else
253 size = 0;
255 sample = op_cpu_buffer_write_reserve(&entry, size);
256 if (!sample)
257 return -ENOMEM;
259 sample->eip = ESCAPE_CODE;
260 sample->event = flags;
262 if (size)
263 op_cpu_buffer_add_data(&entry, (unsigned long)task);
265 op_cpu_buffer_write_commit(&entry);
267 return 0;
270 static inline int
271 op_add_sample(struct oprofile_cpu_buffer *cpu_buf,
272 unsigned long pc, unsigned long event)
274 struct op_entry entry;
275 struct op_sample *sample;
277 sample = op_cpu_buffer_write_reserve(&entry, 0);
278 if (!sample)
279 return -ENOMEM;
281 sample->eip = pc;
282 sample->event = event;
284 return op_cpu_buffer_write_commit(&entry);
288 * This must be safe from any context.
290 * is_kernel is needed because on some architectures you cannot
291 * tell if you are in kernel or user space simply by looking at
292 * pc. We tag this in the buffer by generating kernel enter/exit
293 * events whenever is_kernel changes
295 static int
296 log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
297 unsigned long backtrace, int is_kernel, unsigned long event)
299 cpu_buf->sample_received++;
301 if (pc == ESCAPE_CODE) {
302 cpu_buf->sample_invalid_eip++;
303 return 0;
306 if (op_add_code(cpu_buf, backtrace, is_kernel, current))
307 goto fail;
309 if (op_add_sample(cpu_buf, pc, event))
310 goto fail;
312 return 1;
314 fail:
315 cpu_buf->sample_lost_overflow++;
316 return 0;
319 static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
321 cpu_buf->tracing = 1;
324 static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
326 cpu_buf->tracing = 0;
329 static inline void
330 __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
331 unsigned long event, int is_kernel)
333 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
334 unsigned long backtrace = oprofile_backtrace_depth;
337 * if log_sample() fail we can't backtrace since we lost the
338 * source of this event
340 if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event))
341 /* failed */
342 return;
344 if (!backtrace)
345 return;
347 oprofile_begin_trace(cpu_buf);
348 oprofile_ops.backtrace(regs, backtrace);
349 oprofile_end_trace(cpu_buf);
352 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
353 unsigned long event, int is_kernel)
355 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
358 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
360 int is_kernel = !user_mode(regs);
361 unsigned long pc = profile_pc(regs);
363 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
367 * Add samples with data to the ring buffer.
369 * Use oprofile_add_data(&entry, val) to add data and
370 * oprofile_write_commit(&entry) to commit the sample.
372 void
373 oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
374 unsigned long pc, int code, int size)
376 struct op_sample *sample;
377 int is_kernel = !user_mode(regs);
378 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
380 cpu_buf->sample_received++;
382 /* no backtraces for samples with data */
383 if (op_add_code(cpu_buf, 0, is_kernel, current))
384 goto fail;
386 sample = op_cpu_buffer_write_reserve(entry, size + 2);
387 if (!sample)
388 goto fail;
389 sample->eip = ESCAPE_CODE;
390 sample->event = 0; /* no flags */
392 op_cpu_buffer_add_data(entry, code);
393 op_cpu_buffer_add_data(entry, pc);
395 return;
397 fail:
398 entry->event = NULL;
399 cpu_buf->sample_lost_overflow++;
402 int oprofile_add_data(struct op_entry *entry, unsigned long val)
404 if (!entry->event)
405 return 0;
406 return op_cpu_buffer_add_data(entry, val);
409 int oprofile_add_data64(struct op_entry *entry, u64 val)
411 if (!entry->event)
412 return 0;
413 if (op_cpu_buffer_get_size(entry) < 2)
415 * the function returns 0 to indicate a too small
416 * buffer, even if there is some space left
418 return 0;
419 if (!op_cpu_buffer_add_data(entry, (u32)val))
420 return 0;
421 return op_cpu_buffer_add_data(entry, (u32)(val >> 32));
424 int oprofile_write_commit(struct op_entry *entry)
426 if (!entry->event)
427 return -EINVAL;
428 return op_cpu_buffer_write_commit(entry);
431 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
433 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
434 log_sample(cpu_buf, pc, 0, is_kernel, event);
437 void oprofile_add_trace(unsigned long pc)
439 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
441 if (!cpu_buf->tracing)
442 return;
445 * broken frame can give an eip with the same value as an
446 * escape code, abort the trace if we get it
448 if (pc == ESCAPE_CODE)
449 goto fail;
451 if (op_add_sample(cpu_buf, pc, 0))
452 goto fail;
454 return;
455 fail:
456 cpu_buf->tracing = 0;
457 cpu_buf->backtrace_aborted++;
458 return;
462 * This serves to avoid cpu buffer overflow, and makes sure
463 * the task mortuary progresses
465 * By using schedule_delayed_work_on and then schedule_delayed_work
466 * we guarantee this will stay on the correct cpu
468 static void wq_sync_buffer(struct work_struct *work)
470 struct oprofile_cpu_buffer *b =
471 container_of(work, struct oprofile_cpu_buffer, work.work);
472 if (b->cpu != smp_processor_id()) {
473 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
474 smp_processor_id(), b->cpu);
476 if (!cpu_online(b->cpu)) {
477 cancel_delayed_work(&b->work);
478 return;
481 sync_buffer(b->cpu);
483 /* don't re-add the work if we're shutting down */
484 if (work_enabled)
485 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);