mm-only debug patch...
[mmotm.git] / drivers / staging / et131x / et1310_rx.c
blob10e21db57ac3d87143ad6dbb2f3a8ed16e8dcd15
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 *------------------------------------------------------------------------------
11 * et1310_rx.c - Routines used to perform data reception
13 *------------------------------------------------------------------------------
15 * SOFTWARE LICENSE
17 * This software is provided subject to the following terms and conditions,
18 * which you should read carefully before using the software. Using this
19 * software indicates your acceptance of these terms and conditions. If you do
20 * not agree with these terms and conditions, do not use the software.
22 * Copyright © 2005 Agere Systems Inc.
23 * All rights reserved.
25 * Redistribution and use in source or binary forms, with or without
26 * modifications, are permitted provided that the following conditions are met:
28 * . Redistributions of source code must retain the above copyright notice, this
29 * list of conditions and the following Disclaimer as comments in the code as
30 * well as in the documentation and/or other materials provided with the
31 * distribution.
33 * . Redistributions in binary form must reproduce the above copyright notice,
34 * this list of conditions and the following Disclaimer in the documentation
35 * and/or other materials provided with the distribution.
37 * . Neither the name of Agere Systems Inc. nor the names of the contributors
38 * may be used to endorse or promote products derived from this software
39 * without specific prior written permission.
41 * Disclaimer
43 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
44 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
46 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
47 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
48 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
50 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
54 * DAMAGE.
58 #include "et131x_version.h"
59 #include "et131x_defs.h"
61 #include <linux/pci.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/types.h>
65 #include <linux/kernel.h>
67 #include <linux/sched.h>
68 #include <linux/ptrace.h>
69 #include <linux/slab.h>
70 #include <linux/ctype.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/interrupt.h>
74 #include <linux/in.h>
75 #include <linux/delay.h>
76 #include <linux/io.h>
77 #include <linux/bitops.h>
78 #include <asm/system.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/if_arp.h>
84 #include <linux/ioport.h>
86 #include "et1310_phy.h"
87 #include "et1310_pm.h"
88 #include "et1310_jagcore.h"
90 #include "et131x_adapter.h"
91 #include "et131x_initpci.h"
93 #include "et1310_rx.h"
96 void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd);
98 /**
99 * et131x_rx_dma_memory_alloc
100 * @adapter: pointer to our private adapter structure
102 * Returns 0 on success and errno on failure (as defined in errno.h)
104 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
105 * and the Packet Status Ring.
107 int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
109 uint32_t OuterLoop, InnerLoop;
110 uint32_t bufsize;
111 uint32_t pktStatRingSize, FBRChunkSize;
112 RX_RING_t *rx_ring;
114 /* Setup some convenience pointers */
115 rx_ring = (RX_RING_t *) &adapter->RxRing;
117 /* Alloc memory for the lookup table */
118 #ifdef USE_FBR0
119 rx_ring->Fbr[0] = kmalloc(sizeof(FBRLOOKUPTABLE), GFP_KERNEL);
120 #endif
122 rx_ring->Fbr[1] = kmalloc(sizeof(FBRLOOKUPTABLE), GFP_KERNEL);
124 /* The first thing we will do is configure the sizes of the buffer
125 * rings. These will change based on jumbo packet support. Larger
126 * jumbo packets increases the size of each entry in FBR0, and the
127 * number of entries in FBR0, while at the same time decreasing the
128 * number of entries in FBR1.
130 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
131 * entries are huge in order to accomodate a "jumbo" frame, then it
132 * will have less entries. Conversely, FBR1 will now be relied upon
133 * to carry more "normal" frames, thus it's entry size also increases
134 * and the number of entries goes up too (since it now carries
135 * "small" + "regular" packets.
137 * In this scheme, we try to maintain 512 entries between the two
138 * rings. Also, FBR1 remains a constant size - when it's size doubles
139 * the number of entries halves. FBR0 increases in size, however.
142 if (adapter->RegistryJumboPacket < 2048) {
143 #ifdef USE_FBR0
144 rx_ring->Fbr0BufferSize = 256;
145 rx_ring->Fbr0NumEntries = 512;
146 #endif
147 rx_ring->Fbr1BufferSize = 2048;
148 rx_ring->Fbr1NumEntries = 512;
149 } else if (adapter->RegistryJumboPacket < 4096) {
150 #ifdef USE_FBR0
151 rx_ring->Fbr0BufferSize = 512;
152 rx_ring->Fbr0NumEntries = 1024;
153 #endif
154 rx_ring->Fbr1BufferSize = 4096;
155 rx_ring->Fbr1NumEntries = 512;
156 } else {
157 #ifdef USE_FBR0
158 rx_ring->Fbr0BufferSize = 1024;
159 rx_ring->Fbr0NumEntries = 768;
160 #endif
161 rx_ring->Fbr1BufferSize = 16384;
162 rx_ring->Fbr1NumEntries = 128;
165 #ifdef USE_FBR0
166 adapter->RxRing.PsrNumEntries = adapter->RxRing.Fbr0NumEntries +
167 adapter->RxRing.Fbr1NumEntries;
168 #else
169 adapter->RxRing.PsrNumEntries = adapter->RxRing.Fbr1NumEntries;
170 #endif
172 /* Allocate an area of memory for Free Buffer Ring 1 */
173 bufsize = (sizeof(FBR_DESC_t) * rx_ring->Fbr1NumEntries) + 0xfff;
174 rx_ring->pFbr1RingVa = pci_alloc_consistent(adapter->pdev,
175 bufsize,
176 &rx_ring->pFbr1RingPa);
177 if (!rx_ring->pFbr1RingVa) {
178 dev_err(&adapter->pdev->dev,
179 "Cannot alloc memory for Free Buffer Ring 1\n");
180 return -ENOMEM;
183 /* Save physical address
185 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
186 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
187 * are ever returned, make sure the high part is retrieved here
188 * before storing the adjusted address.
190 rx_ring->Fbr1Realpa = rx_ring->pFbr1RingPa;
192 /* Align Free Buffer Ring 1 on a 4K boundary */
193 et131x_align_allocated_memory(adapter,
194 &rx_ring->Fbr1Realpa,
195 &rx_ring->Fbr1offset, 0x0FFF);
197 rx_ring->pFbr1RingVa = (void *)((uint8_t *) rx_ring->pFbr1RingVa +
198 rx_ring->Fbr1offset);
200 #ifdef USE_FBR0
201 /* Allocate an area of memory for Free Buffer Ring 0 */
202 bufsize = (sizeof(FBR_DESC_t) * rx_ring->Fbr0NumEntries) + 0xfff;
203 rx_ring->pFbr0RingVa = pci_alloc_consistent(adapter->pdev,
204 bufsize,
205 &rx_ring->pFbr0RingPa);
206 if (!rx_ring->pFbr0RingVa) {
207 dev_err(&adapter->pdev->dev,
208 "Cannot alloc memory for Free Buffer Ring 0\n");
209 return -ENOMEM;
212 /* Save physical address
214 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
215 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
216 * are ever returned, make sure the high part is retrieved here before
217 * storing the adjusted address.
219 rx_ring->Fbr0Realpa = rx_ring->pFbr0RingPa;
221 /* Align Free Buffer Ring 0 on a 4K boundary */
222 et131x_align_allocated_memory(adapter,
223 &rx_ring->Fbr0Realpa,
224 &rx_ring->Fbr0offset, 0x0FFF);
226 rx_ring->pFbr0RingVa = (void *)((uint8_t *) rx_ring->pFbr0RingVa +
227 rx_ring->Fbr0offset);
228 #endif
230 for (OuterLoop = 0; OuterLoop < (rx_ring->Fbr1NumEntries / FBR_CHUNKS);
231 OuterLoop++) {
232 uint64_t Fbr1Offset;
233 uint64_t Fbr1TempPa;
234 uint32_t Fbr1Align;
236 /* This code allocates an area of memory big enough for N
237 * free buffers + (buffer_size - 1) so that the buffers can
238 * be aligned on 4k boundaries. If each buffer were aligned
239 * to a buffer_size boundary, the effect would be to double
240 * the size of FBR0. By allocating N buffers at once, we
241 * reduce this overhead.
243 if (rx_ring->Fbr1BufferSize > 4096)
244 Fbr1Align = 4096;
245 else
246 Fbr1Align = rx_ring->Fbr1BufferSize;
248 FBRChunkSize =
249 (FBR_CHUNKS * rx_ring->Fbr1BufferSize) + Fbr1Align - 1;
250 rx_ring->Fbr1MemVa[OuterLoop] =
251 pci_alloc_consistent(adapter->pdev, FBRChunkSize,
252 &rx_ring->Fbr1MemPa[OuterLoop]);
254 if (!rx_ring->Fbr1MemVa[OuterLoop]) {
255 dev_err(&adapter->pdev->dev,
256 "Could not alloc memory\n");
257 return -ENOMEM;
260 /* See NOTE in "Save Physical Address" comment above */
261 Fbr1TempPa = rx_ring->Fbr1MemPa[OuterLoop];
263 et131x_align_allocated_memory(adapter,
264 &Fbr1TempPa,
265 &Fbr1Offset, (Fbr1Align - 1));
267 for (InnerLoop = 0; InnerLoop < FBR_CHUNKS; InnerLoop++) {
268 uint32_t index = (OuterLoop * FBR_CHUNKS) + InnerLoop;
270 /* Save the Virtual address of this index for quick
271 * access later
273 rx_ring->Fbr[1]->Va[index] =
274 (uint8_t *) rx_ring->Fbr1MemVa[OuterLoop] +
275 (InnerLoop * rx_ring->Fbr1BufferSize) + Fbr1Offset;
277 /* now store the physical address in the descriptor
278 * so the device can access it
280 rx_ring->Fbr[1]->PAHigh[index] =
281 (uint32_t) (Fbr1TempPa >> 32);
282 rx_ring->Fbr[1]->PALow[index] = (uint32_t) Fbr1TempPa;
284 Fbr1TempPa += rx_ring->Fbr1BufferSize;
286 rx_ring->Fbr[1]->Buffer1[index] =
287 rx_ring->Fbr[1]->Va[index];
288 rx_ring->Fbr[1]->Buffer2[index] =
289 rx_ring->Fbr[1]->Va[index] - 4;
293 #ifdef USE_FBR0
294 /* Same for FBR0 (if in use) */
295 for (OuterLoop = 0; OuterLoop < (rx_ring->Fbr0NumEntries / FBR_CHUNKS);
296 OuterLoop++) {
297 uint64_t Fbr0Offset;
298 uint64_t Fbr0TempPa;
300 FBRChunkSize = ((FBR_CHUNKS + 1) * rx_ring->Fbr0BufferSize) - 1;
301 rx_ring->Fbr0MemVa[OuterLoop] =
302 pci_alloc_consistent(adapter->pdev, FBRChunkSize,
303 &rx_ring->Fbr0MemPa[OuterLoop]);
305 if (!rx_ring->Fbr0MemVa[OuterLoop]) {
306 dev_err(&adapter->pdev->dev,
307 "Could not alloc memory\n");
308 return -ENOMEM;
311 /* See NOTE in "Save Physical Address" comment above */
312 Fbr0TempPa = rx_ring->Fbr0MemPa[OuterLoop];
314 et131x_align_allocated_memory(adapter,
315 &Fbr0TempPa,
316 &Fbr0Offset,
317 rx_ring->Fbr0BufferSize - 1);
319 for (InnerLoop = 0; InnerLoop < FBR_CHUNKS; InnerLoop++) {
320 uint32_t index = (OuterLoop * FBR_CHUNKS) + InnerLoop;
322 rx_ring->Fbr[0]->Va[index] =
323 (uint8_t *) rx_ring->Fbr0MemVa[OuterLoop] +
324 (InnerLoop * rx_ring->Fbr0BufferSize) + Fbr0Offset;
326 rx_ring->Fbr[0]->PAHigh[index] =
327 (uint32_t) (Fbr0TempPa >> 32);
328 rx_ring->Fbr[0]->PALow[index] = (uint32_t) Fbr0TempPa;
330 Fbr0TempPa += rx_ring->Fbr0BufferSize;
332 rx_ring->Fbr[0]->Buffer1[index] =
333 rx_ring->Fbr[0]->Va[index];
334 rx_ring->Fbr[0]->Buffer2[index] =
335 rx_ring->Fbr[0]->Va[index] - 4;
338 #endif
340 /* Allocate an area of memory for FIFO of Packet Status ring entries */
341 pktStatRingSize =
342 sizeof(PKT_STAT_DESC_t) * adapter->RxRing.PsrNumEntries;
344 rx_ring->pPSRingVa = pci_alloc_consistent(adapter->pdev,
345 pktStatRingSize + 0x0fff,
346 &rx_ring->pPSRingPa);
348 if (!rx_ring->pPSRingVa) {
349 dev_err(&adapter->pdev->dev,
350 "Cannot alloc memory for Packet Status Ring\n");
351 return -ENOMEM;
354 /* Save physical address
356 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
357 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
358 * are ever returned, make sure the high part is retrieved here before
359 * storing the adjusted address.
361 rx_ring->pPSRingRealPa = rx_ring->pPSRingPa;
363 /* Align Packet Status Ring on a 4K boundary */
364 et131x_align_allocated_memory(adapter,
365 &rx_ring->pPSRingRealPa,
366 &rx_ring->pPSRingOffset, 0x0FFF);
368 rx_ring->pPSRingVa = (void *)((uint8_t *) rx_ring->pPSRingVa +
369 rx_ring->pPSRingOffset);
371 /* Allocate an area of memory for writeback of status information */
372 rx_ring->pRxStatusVa = pci_alloc_consistent(adapter->pdev,
373 sizeof(RX_STATUS_BLOCK_t) +
374 0x7, &rx_ring->pRxStatusPa);
375 if (!rx_ring->pRxStatusVa) {
376 dev_err(&adapter->pdev->dev,
377 "Cannot alloc memory for Status Block\n");
378 return -ENOMEM;
381 /* Save physical address */
382 rx_ring->RxStatusRealPA = rx_ring->pRxStatusPa;
384 /* Align write back on an 8 byte boundary */
385 et131x_align_allocated_memory(adapter,
386 &rx_ring->RxStatusRealPA,
387 &rx_ring->RxStatusOffset, 0x07);
389 rx_ring->pRxStatusVa = (void *)((uint8_t *) rx_ring->pRxStatusVa +
390 rx_ring->RxStatusOffset);
391 rx_ring->NumRfd = NIC_DEFAULT_NUM_RFD;
393 /* Recv
394 * pci_pool_create initializes a lookaside list. After successful
395 * creation, nonpaged fixed-size blocks can be allocated from and
396 * freed to the lookaside list.
397 * RFDs will be allocated from this pool.
399 rx_ring->RecvLookaside = kmem_cache_create(adapter->netdev->name,
400 sizeof(MP_RFD),
402 SLAB_CACHE_DMA |
403 SLAB_HWCACHE_ALIGN,
404 NULL);
406 adapter->Flags |= fMP_ADAPTER_RECV_LOOKASIDE;
408 /* The RFDs are going to be put on lists later on, so initialize the
409 * lists now.
411 INIT_LIST_HEAD(&rx_ring->RecvList);
412 INIT_LIST_HEAD(&rx_ring->RecvPendingList);
413 return 0;
417 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
418 * @adapter: pointer to our private adapter structure
420 void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
422 uint32_t index;
423 uint32_t bufsize;
424 uint32_t pktStatRingSize;
425 PMP_RFD pMpRfd;
426 RX_RING_t *rx_ring;
428 /* Setup some convenience pointers */
429 rx_ring = (RX_RING_t *) &adapter->RxRing;
431 /* Free RFDs and associated packet descriptors */
432 WARN_ON(rx_ring->nReadyRecv != rx_ring->NumRfd);
434 while (!list_empty(&rx_ring->RecvList)) {
435 pMpRfd = (MP_RFD *) list_entry(rx_ring->RecvList.next,
436 MP_RFD, list_node);
438 list_del(&pMpRfd->list_node);
439 et131x_rfd_resources_free(adapter, pMpRfd);
442 while (!list_empty(&rx_ring->RecvPendingList)) {
443 pMpRfd = (MP_RFD *) list_entry(rx_ring->RecvPendingList.next,
444 MP_RFD, list_node);
445 list_del(&pMpRfd->list_node);
446 et131x_rfd_resources_free(adapter, pMpRfd);
449 /* Free Free Buffer Ring 1 */
450 if (rx_ring->pFbr1RingVa) {
451 /* First the packet memory */
452 for (index = 0; index <
453 (rx_ring->Fbr1NumEntries / FBR_CHUNKS); index++) {
454 if (rx_ring->Fbr1MemVa[index]) {
455 uint32_t Fbr1Align;
457 if (rx_ring->Fbr1BufferSize > 4096)
458 Fbr1Align = 4096;
459 else
460 Fbr1Align = rx_ring->Fbr1BufferSize;
462 bufsize =
463 (rx_ring->Fbr1BufferSize * FBR_CHUNKS) +
464 Fbr1Align - 1;
466 pci_free_consistent(adapter->pdev,
467 bufsize,
468 rx_ring->Fbr1MemVa[index],
469 rx_ring->Fbr1MemPa[index]);
471 rx_ring->Fbr1MemVa[index] = NULL;
475 /* Now the FIFO itself */
476 rx_ring->pFbr1RingVa = (void *)((uint8_t *)
477 rx_ring->pFbr1RingVa - rx_ring->Fbr1offset);
479 bufsize =
480 (sizeof(FBR_DESC_t) * rx_ring->Fbr1NumEntries) + 0xfff;
482 pci_free_consistent(adapter->pdev,
483 bufsize,
484 rx_ring->pFbr1RingVa, rx_ring->pFbr1RingPa);
486 rx_ring->pFbr1RingVa = NULL;
489 #ifdef USE_FBR0
490 /* Now the same for Free Buffer Ring 0 */
491 if (rx_ring->pFbr0RingVa) {
492 /* First the packet memory */
493 for (index = 0; index <
494 (rx_ring->Fbr0NumEntries / FBR_CHUNKS); index++) {
495 if (rx_ring->Fbr0MemVa[index]) {
496 bufsize =
497 (rx_ring->Fbr0BufferSize *
498 (FBR_CHUNKS + 1)) - 1;
500 pci_free_consistent(adapter->pdev,
501 bufsize,
502 rx_ring->Fbr0MemVa[index],
503 rx_ring->Fbr0MemPa[index]);
505 rx_ring->Fbr0MemVa[index] = NULL;
509 /* Now the FIFO itself */
510 rx_ring->pFbr0RingVa = (void *)((uint8_t *)
511 rx_ring->pFbr0RingVa - rx_ring->Fbr0offset);
513 bufsize =
514 (sizeof(FBR_DESC_t) * rx_ring->Fbr0NumEntries) + 0xfff;
516 pci_free_consistent(adapter->pdev,
517 bufsize,
518 rx_ring->pFbr0RingVa, rx_ring->pFbr0RingPa);
520 rx_ring->pFbr0RingVa = NULL;
522 #endif
524 /* Free Packet Status Ring */
525 if (rx_ring->pPSRingVa) {
526 rx_ring->pPSRingVa = (void *)((uint8_t *) rx_ring->pPSRingVa -
527 rx_ring->pPSRingOffset);
529 pktStatRingSize =
530 sizeof(PKT_STAT_DESC_t) * adapter->RxRing.PsrNumEntries;
532 pci_free_consistent(adapter->pdev,
533 pktStatRingSize + 0x0fff,
534 rx_ring->pPSRingVa, rx_ring->pPSRingPa);
536 rx_ring->pPSRingVa = NULL;
539 /* Free area of memory for the writeback of status information */
540 if (rx_ring->pRxStatusVa) {
541 rx_ring->pRxStatusVa = (void *)((uint8_t *)
542 rx_ring->pRxStatusVa - rx_ring->RxStatusOffset);
544 pci_free_consistent(adapter->pdev,
545 sizeof(RX_STATUS_BLOCK_t) + 0x7,
546 rx_ring->pRxStatusVa, rx_ring->pRxStatusPa);
548 rx_ring->pRxStatusVa = NULL;
551 /* Free receive buffer pool */
553 /* Free receive packet pool */
555 /* Destroy the lookaside (RFD) pool */
556 if (adapter->Flags & fMP_ADAPTER_RECV_LOOKASIDE) {
557 kmem_cache_destroy(rx_ring->RecvLookaside);
558 adapter->Flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
561 /* Free the FBR Lookup Table */
562 #ifdef USE_FBR0
563 kfree(rx_ring->Fbr[0]);
564 #endif
566 kfree(rx_ring->Fbr[1]);
568 /* Reset Counters */
569 rx_ring->nReadyRecv = 0;
573 * et131x_init_recv - Initialize receive data structures.
574 * @adapter: pointer to our private adapter structure
576 * Returns 0 on success and errno on failure (as defined in errno.h)
578 int et131x_init_recv(struct et131x_adapter *adapter)
580 int status = -ENOMEM;
581 PMP_RFD pMpRfd = NULL;
582 uint32_t RfdCount;
583 uint32_t TotalNumRfd = 0;
584 RX_RING_t *rx_ring = NULL;
586 /* Setup some convenience pointers */
587 rx_ring = (RX_RING_t *) &adapter->RxRing;
589 /* Setup each RFD */
590 for (RfdCount = 0; RfdCount < rx_ring->NumRfd; RfdCount++) {
591 pMpRfd = (MP_RFD *) kmem_cache_alloc(rx_ring->RecvLookaside,
592 GFP_ATOMIC | GFP_DMA);
594 if (!pMpRfd) {
595 dev_err(&adapter->pdev->dev,
596 "Couldn't alloc RFD out of kmem_cache\n");
597 status = -ENOMEM;
598 continue;
601 status = et131x_rfd_resources_alloc(adapter, pMpRfd);
602 if (status != 0) {
603 dev_err(&adapter->pdev->dev,
604 "Couldn't alloc packet for RFD\n");
605 kmem_cache_free(rx_ring->RecvLookaside, pMpRfd);
606 continue;
609 /* Add this RFD to the RecvList */
610 list_add_tail(&pMpRfd->list_node, &rx_ring->RecvList);
612 /* Increment both the available RFD's, and the total RFD's. */
613 rx_ring->nReadyRecv++;
614 TotalNumRfd++;
617 if (TotalNumRfd > NIC_MIN_NUM_RFD)
618 status = 0;
620 rx_ring->NumRfd = TotalNumRfd;
622 if (status != 0) {
623 kmem_cache_free(rx_ring->RecvLookaside, pMpRfd);
624 dev_err(&adapter->pdev->dev,
625 "Allocation problems in et131x_init_recv\n");
627 return status;
631 * et131x_rfd_resources_alloc
632 * @adapter: pointer to our private adapter structure
633 * @pMpRfd: pointer to a RFD
635 * Returns 0 on success and errno on failure (as defined in errno.h)
637 int et131x_rfd_resources_alloc(struct et131x_adapter *adapter, MP_RFD *pMpRfd)
639 pMpRfd->Packet = NULL;
641 return 0;
645 * et131x_rfd_resources_free - Free the packet allocated for the given RFD
646 * @adapter: pointer to our private adapter structure
647 * @pMpRfd: pointer to a RFD
649 void et131x_rfd_resources_free(struct et131x_adapter *adapter, MP_RFD *pMpRfd)
651 pMpRfd->Packet = NULL;
652 kmem_cache_free(adapter->RxRing.RecvLookaside, pMpRfd);
656 * ConfigRxDmaRegs - Start of Rx_DMA init sequence
657 * @etdev: pointer to our adapter structure
659 void ConfigRxDmaRegs(struct et131x_adapter *etdev)
661 struct _RXDMA_t __iomem *rx_dma = &etdev->regs->rxdma;
662 struct _rx_ring_t *pRxLocal = &etdev->RxRing;
663 PFBR_DESC_t fbr_entry;
664 uint32_t entry;
665 RXDMA_PSR_NUM_DES_t psr_num_des;
666 unsigned long flags;
668 /* Halt RXDMA to perform the reconfigure. */
669 et131x_rx_dma_disable(etdev);
671 /* Load the completion writeback physical address
673 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
674 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
675 * are ever returned, make sure the high part is retrieved here
676 * before storing the adjusted address.
678 writel((uint32_t) (pRxLocal->RxStatusRealPA >> 32),
679 &rx_dma->dma_wb_base_hi);
680 writel((uint32_t) pRxLocal->RxStatusRealPA, &rx_dma->dma_wb_base_lo);
682 memset(pRxLocal->pRxStatusVa, 0, sizeof(RX_STATUS_BLOCK_t));
684 /* Set the address and parameters of the packet status ring into the
685 * 1310's registers
687 writel((uint32_t) (pRxLocal->pPSRingRealPa >> 32),
688 &rx_dma->psr_base_hi);
689 writel((uint32_t) pRxLocal->pPSRingRealPa, &rx_dma->psr_base_lo);
690 writel(pRxLocal->PsrNumEntries - 1, &rx_dma->psr_num_des.value);
691 writel(0, &rx_dma->psr_full_offset.value);
693 psr_num_des.value = readl(&rx_dma->psr_num_des.value);
694 writel((psr_num_des.bits.psr_ndes * LO_MARK_PERCENT_FOR_PSR) / 100,
695 &rx_dma->psr_min_des.value);
697 spin_lock_irqsave(&etdev->RcvLock, flags);
699 /* These local variables track the PSR in the adapter structure */
700 pRxLocal->local_psr_full.bits.psr_full = 0;
701 pRxLocal->local_psr_full.bits.psr_full_wrap = 0;
703 /* Now's the best time to initialize FBR1 contents */
704 fbr_entry = (PFBR_DESC_t) pRxLocal->pFbr1RingVa;
705 for (entry = 0; entry < pRxLocal->Fbr1NumEntries; entry++) {
706 fbr_entry->addr_hi = pRxLocal->Fbr[1]->PAHigh[entry];
707 fbr_entry->addr_lo = pRxLocal->Fbr[1]->PALow[entry];
708 fbr_entry->word2.bits.bi = entry;
709 fbr_entry++;
712 /* Set the address and parameters of Free buffer ring 1 (and 0 if
713 * required) into the 1310's registers
715 writel((uint32_t) (pRxLocal->Fbr1Realpa >> 32), &rx_dma->fbr1_base_hi);
716 writel((uint32_t) pRxLocal->Fbr1Realpa, &rx_dma->fbr1_base_lo);
717 writel(pRxLocal->Fbr1NumEntries - 1, &rx_dma->fbr1_num_des.value);
718 writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
720 /* This variable tracks the free buffer ring 1 full position, so it
721 * has to match the above.
723 pRxLocal->local_Fbr1_full = ET_DMA10_WRAP;
724 writel(((pRxLocal->Fbr1NumEntries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
725 &rx_dma->fbr1_min_des.value);
727 #ifdef USE_FBR0
728 /* Now's the best time to initialize FBR0 contents */
729 fbr_entry = (PFBR_DESC_t) pRxLocal->pFbr0RingVa;
730 for (entry = 0; entry < pRxLocal->Fbr0NumEntries; entry++) {
731 fbr_entry->addr_hi = pRxLocal->Fbr[0]->PAHigh[entry];
732 fbr_entry->addr_lo = pRxLocal->Fbr[0]->PALow[entry];
733 fbr_entry->word2.bits.bi = entry;
734 fbr_entry++;
737 writel((uint32_t) (pRxLocal->Fbr0Realpa >> 32), &rx_dma->fbr0_base_hi);
738 writel((uint32_t) pRxLocal->Fbr0Realpa, &rx_dma->fbr0_base_lo);
739 writel(pRxLocal->Fbr0NumEntries - 1, &rx_dma->fbr0_num_des.value);
740 writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
742 /* This variable tracks the free buffer ring 0 full position, so it
743 * has to match the above.
745 pRxLocal->local_Fbr0_full = ET_DMA10_WRAP;
746 writel(((pRxLocal->Fbr0NumEntries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
747 &rx_dma->fbr0_min_des.value);
748 #endif
750 /* Program the number of packets we will receive before generating an
751 * interrupt.
752 * For version B silicon, this value gets updated once autoneg is
753 *complete.
755 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done.value);
757 /* The "time_done" is not working correctly to coalesce interrupts
758 * after a given time period, but rather is giving us an interrupt
759 * regardless of whether we have received packets.
760 * This value gets updated once autoneg is complete.
762 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time.value);
764 spin_unlock_irqrestore(&etdev->RcvLock, flags);
768 * SetRxDmaTimer - Set the heartbeat timer according to line rate.
769 * @etdev: pointer to our adapter structure
771 void SetRxDmaTimer(struct et131x_adapter *etdev)
773 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
774 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
776 if ((etdev->linkspeed == TRUEPHY_SPEED_100MBPS) ||
777 (etdev->linkspeed == TRUEPHY_SPEED_10MBPS)) {
778 writel(0, &etdev->regs->rxdma.max_pkt_time.value);
779 writel(1, &etdev->regs->rxdma.num_pkt_done.value);
784 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
785 * @etdev: pointer to our adapter structure
787 void et131x_rx_dma_disable(struct et131x_adapter *etdev)
789 RXDMA_CSR_t csr;
791 /* Setup the receive dma configuration register */
792 writel(0x00002001, &etdev->regs->rxdma.csr.value);
793 csr.value = readl(&etdev->regs->rxdma.csr.value);
794 if (csr.bits.halt_status != 1) {
795 udelay(5);
796 csr.value = readl(&etdev->regs->rxdma.csr.value);
797 if (csr.bits.halt_status != 1)
798 dev_err(&etdev->pdev->dev,
799 "RX Dma failed to enter halt state. CSR 0x%08x\n",
800 csr.value);
805 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
806 * @etdev: pointer to our adapter structure
808 void et131x_rx_dma_enable(struct et131x_adapter *etdev)
810 if (etdev->RegistryPhyLoopbk)
811 /* RxDMA is disabled for loopback operation. */
812 writel(0x1, &etdev->regs->rxdma.csr.value);
813 else {
814 /* Setup the receive dma configuration register for normal operation */
815 RXDMA_CSR_t csr = { 0 };
817 csr.bits.fbr1_enable = 1;
818 if (etdev->RxRing.Fbr1BufferSize == 4096)
819 csr.bits.fbr1_size = 1;
820 else if (etdev->RxRing.Fbr1BufferSize == 8192)
821 csr.bits.fbr1_size = 2;
822 else if (etdev->RxRing.Fbr1BufferSize == 16384)
823 csr.bits.fbr1_size = 3;
824 #ifdef USE_FBR0
825 csr.bits.fbr0_enable = 1;
826 if (etdev->RxRing.Fbr0BufferSize == 256)
827 csr.bits.fbr0_size = 1;
828 else if (etdev->RxRing.Fbr0BufferSize == 512)
829 csr.bits.fbr0_size = 2;
830 else if (etdev->RxRing.Fbr0BufferSize == 1024)
831 csr.bits.fbr0_size = 3;
832 #endif
833 writel(csr.value, &etdev->regs->rxdma.csr.value);
835 csr.value = readl(&etdev->regs->rxdma.csr.value);
836 if (csr.bits.halt_status != 0) {
837 udelay(5);
838 csr.value = readl(&etdev->regs->rxdma.csr.value);
839 if (csr.bits.halt_status != 0) {
840 dev_err(&etdev->pdev->dev,
841 "RX Dma failed to exit halt state. CSR 0x%08x\n",
842 csr.value);
849 * nic_rx_pkts - Checks the hardware for available packets
850 * @etdev: pointer to our adapter
852 * Returns pMpRfd, a pointer to our MPRFD.
854 * Checks the hardware for available packets, using completion ring
855 * If packets are available, it gets an RFD from the RecvList, attaches
856 * the packet to it, puts the RFD in the RecvPendList, and also returns
857 * the pointer to the RFD.
859 PMP_RFD nic_rx_pkts(struct et131x_adapter *etdev)
861 struct _rx_ring_t *pRxLocal = &etdev->RxRing;
862 PRX_STATUS_BLOCK_t pRxStatusBlock;
863 PPKT_STAT_DESC_t pPSREntry;
864 PMP_RFD pMpRfd;
865 uint32_t nIndex;
866 uint8_t *pBufVa;
867 unsigned long flags;
868 struct list_head *element;
869 uint8_t ringIndex;
870 uint16_t bufferIndex;
871 uint32_t localLen;
872 PKT_STAT_DESC_WORD0_t Word0;
874 /* RX Status block is written by the DMA engine prior to every
875 * interrupt. It contains the next to be used entry in the Packet
876 * Status Ring, and also the two Free Buffer rings.
878 pRxStatusBlock = (PRX_STATUS_BLOCK_t) pRxLocal->pRxStatusVa;
880 if (pRxStatusBlock->Word1.bits.PSRoffset ==
881 pRxLocal->local_psr_full.bits.psr_full &&
882 pRxStatusBlock->Word1.bits.PSRwrap ==
883 pRxLocal->local_psr_full.bits.psr_full_wrap) {
884 /* Looks like this ring is not updated yet */
885 return NULL;
888 /* The packet status ring indicates that data is available. */
889 pPSREntry = (PPKT_STAT_DESC_t) (pRxLocal->pPSRingVa) +
890 pRxLocal->local_psr_full.bits.psr_full;
892 /* Grab any information that is required once the PSR is
893 * advanced, since we can no longer rely on the memory being
894 * accurate
896 localLen = pPSREntry->word1.bits.length;
897 ringIndex = (uint8_t) pPSREntry->word1.bits.ri;
898 bufferIndex = (uint16_t) pPSREntry->word1.bits.bi;
899 Word0 = pPSREntry->word0;
901 /* Indicate that we have used this PSR entry. */
902 if (++pRxLocal->local_psr_full.bits.psr_full >
903 pRxLocal->PsrNumEntries - 1) {
904 pRxLocal->local_psr_full.bits.psr_full = 0;
905 pRxLocal->local_psr_full.bits.psr_full_wrap ^= 1;
908 writel(pRxLocal->local_psr_full.value,
909 &etdev->regs->rxdma.psr_full_offset.value);
911 #ifndef USE_FBR0
912 if (ringIndex != 1) {
913 return NULL;
915 #endif
917 #ifdef USE_FBR0
918 if (ringIndex > 1 ||
919 (ringIndex == 0 &&
920 bufferIndex > pRxLocal->Fbr0NumEntries - 1) ||
921 (ringIndex == 1 &&
922 bufferIndex > pRxLocal->Fbr1NumEntries - 1))
923 #else
924 if (ringIndex != 1 ||
925 bufferIndex > pRxLocal->Fbr1NumEntries - 1)
926 #endif
928 /* Illegal buffer or ring index cannot be used by S/W*/
929 dev_err(&etdev->pdev->dev,
930 "NICRxPkts PSR Entry %d indicates "
931 "length of %d and/or bad bi(%d)\n",
932 pRxLocal->local_psr_full.bits.psr_full,
933 localLen, bufferIndex);
934 return NULL;
937 /* Get and fill the RFD. */
938 spin_lock_irqsave(&etdev->RcvLock, flags);
940 pMpRfd = NULL;
941 element = pRxLocal->RecvList.next;
942 pMpRfd = (PMP_RFD) list_entry(element, MP_RFD, list_node);
944 if (pMpRfd == NULL) {
945 spin_unlock_irqrestore(&etdev->RcvLock, flags);
946 return NULL;
949 list_del(&pMpRfd->list_node);
950 pRxLocal->nReadyRecv--;
952 spin_unlock_irqrestore(&etdev->RcvLock, flags);
954 pMpRfd->bufferindex = bufferIndex;
955 pMpRfd->ringindex = ringIndex;
957 /* In V1 silicon, there is a bug which screws up filtering of
958 * runt packets. Therefore runt packet filtering is disabled
959 * in the MAC and the packets are dropped here. They are
960 * also counted here.
962 if (localLen < (NIC_MIN_PACKET_SIZE + 4)) {
963 etdev->Stats.other_errors++;
964 localLen = 0;
967 if (localLen) {
968 if (etdev->ReplicaPhyLoopbk == 1) {
969 pBufVa = pRxLocal->Fbr[ringIndex]->Va[bufferIndex];
971 if (memcmp(&pBufVa[6], &etdev->CurrentAddress[0],
972 ETH_ALEN) == 0) {
973 if (memcmp(&pBufVa[42], "Replica packet",
974 ETH_HLEN)) {
975 etdev->ReplicaPhyLoopbkPF = 1;
980 /* Determine if this is a multicast packet coming in */
981 if ((Word0.value & ALCATEL_MULTICAST_PKT) &&
982 !(Word0.value & ALCATEL_BROADCAST_PKT)) {
983 /* Promiscuous mode and Multicast mode are
984 * not mutually exclusive as was first
985 * thought. I guess Promiscuous is just
986 * considered a super-set of the other
987 * filters. Generally filter is 0x2b when in
988 * promiscuous mode.
990 if ((etdev->PacketFilter & ET131X_PACKET_TYPE_MULTICAST)
991 && !(etdev->PacketFilter & ET131X_PACKET_TYPE_PROMISCUOUS)
992 && !(etdev->PacketFilter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
993 pBufVa = pRxLocal->Fbr[ringIndex]->
994 Va[bufferIndex];
996 /* Loop through our list to see if the
997 * destination address of this packet
998 * matches one in our list.
1000 for (nIndex = 0;
1001 nIndex < etdev->MCAddressCount;
1002 nIndex++) {
1003 if (pBufVa[0] ==
1004 etdev->MCList[nIndex][0]
1005 && pBufVa[1] ==
1006 etdev->MCList[nIndex][1]
1007 && pBufVa[2] ==
1008 etdev->MCList[nIndex][2]
1009 && pBufVa[3] ==
1010 etdev->MCList[nIndex][3]
1011 && pBufVa[4] ==
1012 etdev->MCList[nIndex][4]
1013 && pBufVa[5] ==
1014 etdev->MCList[nIndex][5]) {
1015 break;
1019 /* If our index is equal to the number
1020 * of Multicast address we have, then
1021 * this means we did not find this
1022 * packet's matching address in our
1023 * list. Set the PacketSize to zero,
1024 * so we free our RFD when we return
1025 * from this function.
1027 if (nIndex == etdev->MCAddressCount)
1028 localLen = 0;
1031 if (localLen > 0)
1032 etdev->Stats.multircv++;
1033 } else if (Word0.value & ALCATEL_BROADCAST_PKT)
1034 etdev->Stats.brdcstrcv++;
1035 else
1036 /* Not sure what this counter measures in
1037 * promiscuous mode. Perhaps we should check
1038 * the MAC address to see if it is directed
1039 * to us in promiscuous mode.
1041 etdev->Stats.unircv++;
1044 if (localLen > 0) {
1045 struct sk_buff *skb = NULL;
1047 /* pMpRfd->PacketSize = localLen - 4; */
1048 pMpRfd->PacketSize = localLen;
1050 skb = dev_alloc_skb(pMpRfd->PacketSize + 2);
1051 if (!skb) {
1052 dev_err(&etdev->pdev->dev,
1053 "Couldn't alloc an SKB for Rx\n");
1054 return NULL;
1057 etdev->net_stats.rx_bytes += pMpRfd->PacketSize;
1059 memcpy(skb_put(skb, pMpRfd->PacketSize),
1060 pRxLocal->Fbr[ringIndex]->Va[bufferIndex],
1061 pMpRfd->PacketSize);
1063 skb->dev = etdev->netdev;
1064 skb->protocol = eth_type_trans(skb, etdev->netdev);
1065 skb->ip_summed = CHECKSUM_NONE;
1067 netif_rx(skb);
1068 } else {
1069 pMpRfd->PacketSize = 0;
1072 nic_return_rfd(etdev, pMpRfd);
1073 return pMpRfd;
1077 * et131x_reset_recv - Reset the receive list
1078 * @etdev: pointer to our adapter
1080 * Assumption, Rcv spinlock has been acquired.
1082 void et131x_reset_recv(struct et131x_adapter *etdev)
1084 PMP_RFD pMpRfd;
1085 struct list_head *element;
1087 WARN_ON(list_empty(&etdev->RxRing.RecvList));
1089 /* Take all the RFD's from the pending list, and stick them on the
1090 * RecvList.
1092 while (!list_empty(&etdev->RxRing.RecvPendingList)) {
1093 element = etdev->RxRing.RecvPendingList.next;
1095 pMpRfd = (PMP_RFD) list_entry(element, MP_RFD, list_node);
1097 list_move_tail(&pMpRfd->list_node, &etdev->RxRing.RecvList);
1102 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
1103 * @etdev: pointer to our adapter
1105 * Assumption, Rcv spinlock has been acquired.
1107 void et131x_handle_recv_interrupt(struct et131x_adapter *etdev)
1109 PMP_RFD pMpRfd = NULL;
1110 struct sk_buff *PacketArray[NUM_PACKETS_HANDLED];
1111 PMP_RFD RFDFreeArray[NUM_PACKETS_HANDLED];
1112 uint32_t PacketArrayCount = 0;
1113 uint32_t PacketsToHandle;
1114 uint32_t PacketFreeCount = 0;
1115 bool TempUnfinishedRec = false;
1117 PacketsToHandle = NUM_PACKETS_HANDLED;
1119 /* Process up to available RFD's */
1120 while (PacketArrayCount < PacketsToHandle) {
1121 if (list_empty(&etdev->RxRing.RecvList)) {
1122 WARN_ON(etdev->RxRing.nReadyRecv != 0);
1123 TempUnfinishedRec = true;
1124 break;
1127 pMpRfd = nic_rx_pkts(etdev);
1129 if (pMpRfd == NULL)
1130 break;
1132 /* Do not receive any packets until a filter has been set.
1133 * Do not receive any packets until we have link.
1134 * If length is zero, return the RFD in order to advance the
1135 * Free buffer ring.
1137 if (!etdev->PacketFilter ||
1138 !(etdev->Flags & fMP_ADAPTER_LINK_DETECTION) ||
1139 pMpRfd->PacketSize == 0) {
1140 continue;
1143 /* Increment the number of packets we received */
1144 etdev->Stats.ipackets++;
1146 /* Set the status on the packet, either resources or success */
1147 if (etdev->RxRing.nReadyRecv >= RFD_LOW_WATER_MARK) {
1148 /* Put this RFD on the pending list
1150 * NOTE: nic_rx_pkts() above is already returning the
1151 * RFD to the RecvList, so don't additionally do that
1152 * here.
1153 * Besides, we don't really need (at this point) the
1154 * pending list anyway.
1156 } else {
1157 RFDFreeArray[PacketFreeCount] = pMpRfd;
1158 PacketFreeCount++;
1160 dev_warn(&etdev->pdev->dev,
1161 "RFD's are running out\n");
1164 PacketArray[PacketArrayCount] = pMpRfd->Packet;
1165 PacketArrayCount++;
1168 if ((PacketArrayCount == NUM_PACKETS_HANDLED) || TempUnfinishedRec) {
1169 etdev->RxRing.UnfinishedReceives = true;
1170 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
1171 &etdev->regs->global.watchdog_timer);
1172 } else {
1173 /* Watchdog timer will disable itself if appropriate. */
1174 etdev->RxRing.UnfinishedReceives = false;
1178 static inline u32 bump_fbr(u32 *fbr, u32 limit)
1180 u32 v = *fbr;
1181 v++;
1182 /* This works for all cases where limit < 1024. The 1023 case
1183 works because 1023++ is 1024 which means the if condition is not
1184 taken but the carry of the bit into the wrap bit toggles the wrap
1185 value correctly */
1186 if ((v & ET_DMA10_MASK) > limit) {
1187 v &= ~ET_DMA10_MASK;
1188 v ^= ET_DMA10_WRAP;
1190 /* For the 1023 case */
1191 v &= (ET_DMA10_MASK|ET_DMA10_WRAP);
1192 *fbr = v;
1193 return v;
1197 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
1198 * @etdev: pointer to our adapter
1199 * @pMpRfd: pointer to the RFD
1201 void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd)
1203 struct _rx_ring_t *rx_local = &etdev->RxRing;
1204 struct _RXDMA_t __iomem *rx_dma = &etdev->regs->rxdma;
1205 uint16_t bi = pMpRfd->bufferindex;
1206 uint8_t ri = pMpRfd->ringindex;
1207 unsigned long flags;
1209 /* We don't use any of the OOB data besides status. Otherwise, we
1210 * need to clean up OOB data
1212 if (
1213 #ifdef USE_FBR0
1214 (ri == 0 && bi < rx_local->Fbr0NumEntries) ||
1215 #endif
1216 (ri == 1 && bi < rx_local->Fbr1NumEntries)) {
1217 spin_lock_irqsave(&etdev->FbrLock, flags);
1219 if (ri == 1) {
1220 PFBR_DESC_t pNextDesc =
1221 (PFBR_DESC_t) (rx_local->pFbr1RingVa) +
1222 INDEX10(rx_local->local_Fbr1_full);
1224 /* Handle the Free Buffer Ring advancement here. Write
1225 * the PA / Buffer Index for the returned buffer into
1226 * the oldest (next to be freed)FBR entry
1228 pNextDesc->addr_hi = rx_local->Fbr[1]->PAHigh[bi];
1229 pNextDesc->addr_lo = rx_local->Fbr[1]->PALow[bi];
1230 pNextDesc->word2.value = bi;
1232 writel(bump_fbr(&rx_local->local_Fbr1_full,
1233 rx_local->Fbr1NumEntries - 1),
1234 &rx_dma->fbr1_full_offset);
1236 #ifdef USE_FBR0
1237 else {
1238 PFBR_DESC_t pNextDesc =
1239 (PFBR_DESC_t) rx_local->pFbr0RingVa +
1240 INDEX10(rx_local->local_Fbr0_full);
1242 /* Handle the Free Buffer Ring advancement here. Write
1243 * the PA / Buffer Index for the returned buffer into
1244 * the oldest (next to be freed) FBR entry
1246 pNextDesc->addr_hi = rx_local->Fbr[0]->PAHigh[bi];
1247 pNextDesc->addr_lo = rx_local->Fbr[0]->PALow[bi];
1248 pNextDesc->word2.value = bi;
1250 writel(bump_fbr(&rx_local->local_Fbr0_full,
1251 rx_local->Fbr0NumEntries - 1),
1252 &rx_dma->fbr0_full_offset);
1254 #endif
1255 spin_unlock_irqrestore(&etdev->FbrLock, flags);
1256 } else {
1257 dev_err(&etdev->pdev->dev,
1258 "NICReturnRFD illegal Buffer Index returned\n");
1261 /* The processing on this RFD is done, so put it back on the tail of
1262 * our list
1264 spin_lock_irqsave(&etdev->RcvLock, flags);
1265 list_add_tail(&pMpRfd->list_node, &rx_local->RecvList);
1266 rx_local->nReadyRecv++;
1267 spin_unlock_irqrestore(&etdev->RcvLock, flags);
1269 WARN_ON(rx_local->nReadyRecv > rx_local->NumRfd);