mm-only debug patch...
[mmotm.git] / drivers / staging / rtl8187se / r8185b_init.c
blobcd07059b25b51dc29da0651b769f5e57f743e803
1 /*++
2 Copyright (c) Realtek Semiconductor Corp. All rights reserved.
4 Module Name:
5 r8185b_init.c
7 Abstract:
8 Hardware Initialization and Hardware IO for RTL8185B
10 Major Change History:
11 When Who What
12 ---------- --------------- -------------------------------
13 2006-11-15 Xiong Created
15 Notes:
16 This file is ported from RTL8185B Windows driver.
19 --*/
21 /*--------------------------Include File------------------------------------*/
22 #include <linux/spinlock.h>
23 #include "r8180_hw.h"
24 #include "r8180.h"
25 #include "r8180_rtl8225.h" /* RTL8225 Radio frontend */
26 #include "r8180_93cx6.h" /* Card EEPROM */
27 #include "r8180_wx.h"
29 #include "ieee80211/dot11d.h"
32 //#define CONFIG_RTL8180_IO_MAP
34 #define TC_3W_POLL_MAX_TRY_CNT 5
35 static u8 MAC_REG_TABLE[][2]={
36 //PAGA 0:
37 // 0x34(BRSR), 0xBE(RATE_FALLBACK_CTL), 0x1E0(ARFR) would set in HwConfigureRTL8185()
38 // 0x272(RFSW_CTRL), 0x1CE(AESMSK_QC) set in InitializeAdapter8185().
39 // 0x1F0~0x1F8 set in MacConfig_85BASIC()
40 {0x08, 0xae}, {0x0a, 0x72}, {0x5b, 0x42},
41 {0x84, 0x88}, {0x85, 0x24}, {0x88, 0x54}, {0x8b, 0xb8}, {0x8c, 0x03},
42 {0x8d, 0x40}, {0x8e, 0x00}, {0x8f, 0x00}, {0x5b, 0x18}, {0x91, 0x03},
43 {0x94, 0x0F}, {0x95, 0x32},
44 {0x96, 0x00}, {0x97, 0x07}, {0xb4, 0x22}, {0xdb, 0x00},
45 {0xf0, 0x32}, {0xf1, 0x32}, {0xf2, 0x00}, {0xf3, 0x00}, {0xf4, 0x32},
46 {0xf5, 0x43}, {0xf6, 0x00}, {0xf7, 0x00}, {0xf8, 0x46}, {0xf9, 0xa4},
47 {0xfa, 0x00}, {0xfb, 0x00}, {0xfc, 0x96}, {0xfd, 0xa4}, {0xfe, 0x00},
48 {0xff, 0x00},
50 //PAGE 1:
51 // For Flextronics system Logo PCIHCT failure:
52 // 0x1C4~0x1CD set no-zero value to avoid PCI configuration space 0x45[7]=1
53 {0x5e, 0x01},
54 {0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x04}, {0x5b, 0x00}, {0x60, 0x24},
55 {0x61, 0x97}, {0x62, 0xF0}, {0x63, 0x09}, {0x80, 0x0F}, {0x81, 0xFF},
56 {0x82, 0xFF}, {0x83, 0x03},
57 {0xC4, 0x22}, {0xC5, 0x22}, {0xC6, 0x22}, {0xC7, 0x22}, {0xC8, 0x22}, //lzm add 080826
58 {0xC9, 0x22}, {0xCA, 0x22}, {0xCB, 0x22}, {0xCC, 0x22}, {0xCD, 0x22},//lzm add 080826
59 {0xe2, 0x00},
62 //PAGE 2:
63 {0x5e, 0x02},
64 {0x0c, 0x04}, {0x4c, 0x30}, {0x4d, 0x08}, {0x50, 0x05}, {0x51, 0xf5},
65 {0x52, 0x04}, {0x53, 0xa0}, {0x54, 0xff}, {0x55, 0xff}, {0x56, 0xff},
66 {0x57, 0xff}, {0x58, 0x08}, {0x59, 0x08}, {0x5a, 0x08}, {0x5b, 0x08},
67 {0x60, 0x08}, {0x61, 0x08}, {0x62, 0x08}, {0x63, 0x08}, {0x64, 0x2f},
68 {0x8c, 0x3f}, {0x8d, 0x3f}, {0x8e, 0x3f},
69 {0x8f, 0x3f}, {0xc4, 0xff}, {0xc5, 0xff}, {0xc6, 0xff}, {0xc7, 0xff},
70 {0xc8, 0x00}, {0xc9, 0x00}, {0xca, 0x80}, {0xcb, 0x00},
72 //PAGA 0:
73 {0x5e, 0x00},{0x9f, 0x03}
77 static u8 ZEBRA_AGC[]={
79 0x7E,0x7E,0x7E,0x7E,0x7D,0x7C,0x7B,0x7A,0x79,0x78,0x77,0x76,0x75,0x74,0x73,0x72,
80 0x71,0x70,0x6F,0x6E,0x6D,0x6C,0x6B,0x6A,0x69,0x68,0x67,0x66,0x65,0x64,0x63,0x62,
81 0x48,0x47,0x46,0x45,0x44,0x29,0x28,0x27,0x26,0x25,0x24,0x23,0x22,0x21,0x08,0x07,
82 0x06,0x05,0x04,0x03,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
83 0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x10,0x11,0x12,0x13,0x15,0x16,
84 0x17,0x17,0x18,0x18,0x19,0x1a,0x1a,0x1b,0x1b,0x1c,0x1c,0x1d,0x1d,0x1d,0x1e,0x1e,
85 0x1f,0x1f,0x1f,0x20,0x20,0x20,0x20,0x21,0x21,0x21,0x22,0x22,0x22,0x23,0x23,0x24,
86 0x24,0x25,0x25,0x25,0x26,0x26,0x27,0x27,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F
89 static u32 ZEBRA_RF_RX_GAIN_TABLE[]={
90 0x0096,0x0076,0x0056,0x0036,0x0016,0x01f6,0x01d6,0x01b6,
91 0x0196,0x0176,0x00F7,0x00D7,0x00B7,0x0097,0x0077,0x0057,
92 0x0037,0x00FB,0x00DB,0x00BB,0x00FF,0x00E3,0x00C3,0x00A3,
93 0x0083,0x0063,0x0043,0x0023,0x0003,0x01E3,0x01C3,0x01A3,
94 0x0183,0x0163,0x0143,0x0123,0x0103
97 static u8 OFDM_CONFIG[]={
98 // OFDM reg0x06[7:0]=0xFF: Enable power saving mode in RX
99 // OFDM reg0x3C[4]=1'b1: Enable RX power saving mode
100 // ofdm 0x3a = 0x7b ,(original : 0xfb) For ECS shielding room TP test
102 // 0x00
103 0x10, 0x0F, 0x0A, 0x0C, 0x14, 0xFA, 0xFF, 0x50,
104 0x00, 0x50, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00,
105 // 0x10
106 0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xA8, 0x26,
107 0x32, 0x33, 0x06, 0xA5, 0x6F, 0x55, 0xC8, 0xBB,
108 // 0x20
109 0x0A, 0xE1, 0x2C, 0x4A, 0x86, 0x83, 0x34, 0x00,
110 0x4F, 0x24, 0x6F, 0xC2, 0x03, 0x40, 0x80, 0x00,
111 // 0x30
112 0xC0, 0xC1, 0x58, 0xF1, 0x00, 0xC4, 0x90, 0x3e,
113 0xD8, 0x3C, 0x7B, 0x10, 0x10
116 /*---------------------------------------------------------------
117 * Hardware IO
118 * the code is ported from Windows source code
119 ----------------------------------------------------------------*/
121 void
122 PlatformIOWrite1Byte(
123 struct net_device *dev,
124 u32 offset,
125 u8 data
128 write_nic_byte(dev, offset, data);
129 read_nic_byte(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
133 void
134 PlatformIOWrite2Byte(
135 struct net_device *dev,
136 u32 offset,
137 u16 data
140 write_nic_word(dev, offset, data);
141 read_nic_word(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
145 u8 PlatformIORead1Byte(struct net_device *dev, u32 offset);
147 void
148 PlatformIOWrite4Byte(
149 struct net_device *dev,
150 u32 offset,
151 u32 data
154 //{by amy 080312
155 if (offset == PhyAddr)
156 {//For Base Band configuration.
157 unsigned char cmdByte;
158 unsigned long dataBytes;
159 unsigned char idx;
160 u8 u1bTmp;
162 cmdByte = (u8)(data & 0x000000ff);
163 dataBytes = data>>8;
166 // 071010, rcnjko:
167 // The critical section is only BB read/write race condition.
168 // Assumption:
169 // 1. We assume NO one will access BB at DIRQL, otherwise, system will crash for
170 // acquiring the spinlock in such context.
171 // 2. PlatformIOWrite4Byte() MUST NOT be recursive.
173 // NdisAcquireSpinLock( &(pDevice->IoSpinLock) );
175 for(idx = 0; idx < 30; idx++)
176 { // Make sure command bit is clear before access it.
177 u1bTmp = PlatformIORead1Byte(dev, PhyAddr);
178 if((u1bTmp & BIT7) == 0)
179 break;
180 else
181 mdelay(10);
184 for(idx=0; idx < 3; idx++)
186 PlatformIOWrite1Byte(dev,offset+1+idx,((u8*)&dataBytes)[idx] );
188 write_nic_byte(dev, offset, cmdByte);
190 // NdisReleaseSpinLock( &(pDevice->IoSpinLock) );
192 //by amy 080312}
193 else{
194 write_nic_dword(dev, offset, data);
195 read_nic_dword(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
200 PlatformIORead1Byte(
201 struct net_device *dev,
202 u32 offset
205 u8 data = 0;
207 data = read_nic_byte(dev, offset);
210 return data;
214 PlatformIORead2Byte(
215 struct net_device *dev,
216 u32 offset
219 u16 data = 0;
221 data = read_nic_word(dev, offset);
224 return data;
228 PlatformIORead4Byte(
229 struct net_device *dev,
230 u32 offset
233 u32 data = 0;
235 data = read_nic_dword(dev, offset);
238 return data;
241 void
242 SetOutputEnableOfRfPins(
243 struct net_device *dev
246 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
248 switch(priv->rf_chip)
250 case RFCHIPID_RTL8225:
251 case RF_ZEBRA2:
252 case RF_ZEBRA4:
253 write_nic_word(dev, RFPinsEnable, 0x1bff);
254 //write_nic_word(dev, RFPinsEnable, 0x1fff);
255 break;
259 void
260 ZEBRA_RFSerialWrite(
261 struct net_device *dev,
262 u32 data2Write,
263 u8 totalLength,
264 u8 low2high
267 ThreeWireReg twreg;
268 int i;
269 u16 oval,oval2,oval3;
270 u32 mask;
271 u16 UshortBuffer;
273 u8 u1bTmp;
274 // RTL8187S HSSI Read/Write Function
275 u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
276 u1bTmp |= RF_SW_CFG_SI; //reg08[1]=1 Serial Interface(SI)
277 write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
278 UshortBuffer = read_nic_word(dev, RFPinsOutput);
279 oval = UshortBuffer & 0xfff8; // We shall clear bit0, 1, 2 first, 2005.10.28, by rcnjko.
281 oval2 = read_nic_word(dev, RFPinsEnable);
282 oval3 = read_nic_word(dev, RFPinsSelect);
284 // <RJ_NOTE> 3-wire should be controled by HW when we finish SW 3-wire programming. 2005.08.10, by rcnjko.
285 oval3 &= 0xfff8;
287 write_nic_word(dev, RFPinsEnable, (oval2|0x0007)); // Set To Output Enable
288 write_nic_word(dev, RFPinsSelect, (oval3|0x0007)); // Set To SW Switch
289 udelay(10);
291 // Add this to avoid hardware and software 3-wire conflict.
292 // 2005.03.01, by rcnjko.
293 twreg.longData = 0;
294 twreg.struc.enableB = 1;
295 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval)); // Set SI_EN (RFLE)
296 udelay(2);
297 twreg.struc.enableB = 0;
298 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval)); // Clear SI_EN (RFLE)
299 udelay(10);
301 mask = (low2high)?0x01:((u32)0x01<<(totalLength-1));
303 for(i=0; i<totalLength/2; i++)
305 twreg.struc.data = ((data2Write&mask)!=0) ? 1 : 0;
306 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
307 twreg.struc.clk = 1;
308 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
309 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
311 mask = (low2high)?(mask<<1):(mask>>1);
312 twreg.struc.data = ((data2Write&mask)!=0) ? 1 : 0;
313 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
314 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
315 twreg.struc.clk = 0;
316 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
317 mask = (low2high)?(mask<<1):(mask>>1);
320 twreg.struc.enableB = 1;
321 twreg.struc.clk = 0;
322 twreg.struc.data = 0;
323 write_nic_word(dev, RFPinsOutput, twreg.longData|oval);
324 udelay(10);
326 write_nic_word(dev, RFPinsOutput, oval|0x0004);
327 write_nic_word(dev, RFPinsSelect, oval3|0x0000);
329 SetOutputEnableOfRfPins(dev);
331 //by amy
335 HwHSSIThreeWire(
336 struct net_device *dev,
337 u8 *pDataBuf,
338 u8 nDataBufBitCnt,
339 int bSI,
340 int bWrite
343 int bResult = 1;
344 u8 TryCnt;
345 u8 u1bTmp;
349 // Check if WE and RE are cleared.
350 for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
352 u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
353 if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 )
355 break;
357 udelay(10);
359 if (TryCnt == TC_3W_POLL_MAX_TRY_CNT)
360 panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp);
362 // RTL8187S HSSI Read/Write Function
363 u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
365 if(bSI)
367 u1bTmp |= RF_SW_CFG_SI; //reg08[1]=1 Serial Interface(SI)
368 }else
370 u1bTmp &= ~RF_SW_CFG_SI; //reg08[1]=0 Parallel Interface(PI)
373 write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
375 if(bSI)
377 // jong: HW SI read must set reg84[3]=0.
378 u1bTmp = read_nic_byte(dev, RFPinsSelect);
379 u1bTmp &= ~BIT3;
380 write_nic_byte(dev, RFPinsSelect, u1bTmp );
382 // Fill up data buffer for write operation.
384 if(bWrite)
386 if(nDataBufBitCnt == 16)
388 write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf));
390 else if(nDataBufBitCnt == 64) // RTL8187S shouldn't enter this case
392 write_nic_dword(dev, SW_3W_DB0, *((u32*)pDataBuf));
393 write_nic_dword(dev, SW_3W_DB1, *((u32*)(pDataBuf + 4)));
395 else
397 int idx;
398 int ByteCnt = nDataBufBitCnt / 8;
399 //printk("%d\n",nDataBufBitCnt);
400 if ((nDataBufBitCnt % 8) != 0)
401 panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
402 nDataBufBitCnt);
404 if (nDataBufBitCnt > 64)
405 panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
406 nDataBufBitCnt);
408 for(idx = 0; idx < ByteCnt; idx++)
410 write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
414 else //read
416 if(bSI)
418 // SI - reg274[3:0] : RF register's Address
419 write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf) );
421 else
423 // PI - reg274[15:12] : RF register's Address
424 write_nic_word(dev, SW_3W_DB0, (*((u16*)pDataBuf)) << 12);
428 // Set up command: WE or RE.
429 if(bWrite)
431 write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
433 else
435 write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
438 // Check if DONE is set.
439 for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
441 u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
442 if( (u1bTmp & SW_3W_CMD1_DONE) != 0 )
444 break;
446 udelay(10);
449 write_nic_byte(dev, SW_3W_CMD1, 0);
451 // Read back data for read operation.
452 if(bWrite == 0)
454 if(bSI)
456 //Serial Interface : reg363_362[11:0]
457 *((u16*)pDataBuf) = read_nic_word(dev, SI_DATA_READ) ;
459 else
461 //Parallel Interface : reg361_360[11:0]
462 *((u16*)pDataBuf) = read_nic_word(dev, PI_DATA_READ);
465 *((u16*)pDataBuf) &= 0x0FFF;
468 }while(0);
470 return bResult;
472 //by amy
475 HwThreeWire(
476 struct net_device *dev,
477 u8 *pDataBuf,
478 u8 nDataBufBitCnt,
479 int bHold,
480 int bWrite
483 int bResult = 1;
484 u8 TryCnt;
485 u8 u1bTmp;
489 // Check if WE and RE are cleared.
490 for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
492 u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
493 if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 )
495 break;
497 udelay(10);
499 if (TryCnt == TC_3W_POLL_MAX_TRY_CNT)
500 panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp);
502 // Fill up data buffer for write operation.
503 if(nDataBufBitCnt == 16)
505 write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
507 else if(nDataBufBitCnt == 64)
509 write_nic_dword(dev, SW_3W_DB0, *((u32 *)pDataBuf));
510 write_nic_dword(dev, SW_3W_DB1, *((u32 *)(pDataBuf + 4)));
512 else
514 int idx;
515 int ByteCnt = nDataBufBitCnt / 8;
517 if ((nDataBufBitCnt % 8) != 0)
518 panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
519 nDataBufBitCnt);
521 if (nDataBufBitCnt > 64)
522 panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
523 nDataBufBitCnt);
525 for(idx = 0; idx < ByteCnt; idx++)
527 write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
531 // Fill up length field.
532 u1bTmp = (u8)(nDataBufBitCnt - 1); // Number of bits - 1.
533 if(bHold)
534 u1bTmp |= SW_3W_CMD0_HOLD;
535 write_nic_byte(dev, SW_3W_CMD0, u1bTmp);
537 // Set up command: WE or RE.
538 if(bWrite)
540 write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
542 else
544 write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
547 // Check if WE and RE are cleared and DONE is set.
548 for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
550 u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
551 if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 &&
552 (u1bTmp & SW_3W_CMD1_DONE) != 0 )
554 break;
556 udelay(10);
558 if(TryCnt == TC_3W_POLL_MAX_TRY_CNT)
560 //RT_ASSERT(TryCnt != TC_3W_POLL_MAX_TRY_CNT,
561 // ("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear or DONE is not set!!\n", u1bTmp));
562 // Workaround suggested by wcchu: clear WE here. 2006.07.07, by rcnjko.
563 write_nic_byte(dev, SW_3W_CMD1, 0);
566 // Read back data for read operation.
567 // <RJ_TODO> I am not sure if this is correct output format of a read operation.
568 if(bWrite == 0)
570 if(nDataBufBitCnt == 16)
572 *((u16 *)pDataBuf) = read_nic_word(dev, SW_3W_DB0);
574 else if(nDataBufBitCnt == 64)
576 *((u32 *)pDataBuf) = read_nic_dword(dev, SW_3W_DB0);
577 *((u32 *)(pDataBuf + 4)) = read_nic_dword(dev, SW_3W_DB1);
579 else
581 int idx;
582 int ByteCnt = nDataBufBitCnt / 8;
584 if ((nDataBufBitCnt % 8) != 0)
585 panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
586 nDataBufBitCnt);
588 if (nDataBufBitCnt > 64)
589 panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
590 nDataBufBitCnt);
592 for(idx = 0; idx < ByteCnt; idx++)
594 *(pDataBuf+idx) = read_nic_byte(dev, (SW_3W_DB0+idx));
599 }while(0);
601 return bResult;
605 void
606 RF_WriteReg(
607 struct net_device *dev,
608 u8 offset,
609 u32 data
612 //RFReg reg;
613 u32 data2Write;
614 u8 len;
615 u8 low2high;
616 //u32 RF_Read = 0;
617 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
620 switch(priv->rf_chip)
622 case RFCHIPID_RTL8225:
623 case RF_ZEBRA2: // Annie 2006-05-12.
624 case RF_ZEBRA4: //by amy
625 switch(priv->RegThreeWireMode)
627 case SW_THREE_WIRE:
628 { // Perform SW 3-wire programming by driver.
629 data2Write = (data << 4) | (u32)(offset & 0x0f);
630 len = 16;
631 low2high = 0;
632 ZEBRA_RFSerialWrite(dev, data2Write, len, low2high);
634 break;
636 case HW_THREE_WIRE:
637 { // Pure HW 3-wire.
638 data2Write = (data << 4) | (u32)(offset & 0x0f);
639 len = 16;
640 HwThreeWire(
641 dev,
642 (u8 *)(&data2Write), // pDataBuf,
643 len, // nDataBufBitCnt,
644 0, // bHold,
645 1); // bWrite
647 break;
648 case HW_THREE_WIRE_PI: //Parallel Interface
649 { // Pure HW 3-wire.
650 data2Write = (data << 4) | (u32)(offset & 0x0f);
651 len = 16;
652 HwHSSIThreeWire(
653 dev,
654 (u8*)(&data2Write), // pDataBuf,
655 len, // nDataBufBitCnt,
656 0, // bSI
657 1); // bWrite
659 //printk("33333\n");
661 break;
663 case HW_THREE_WIRE_SI: //Serial Interface
664 { // Pure HW 3-wire.
665 data2Write = (data << 4) | (u32)(offset & 0x0f);
666 len = 16;
667 // printk(" enter ZEBRA_RFSerialWrite\n ");
668 // low2high = 0;
669 // ZEBRA_RFSerialWrite(dev, data2Write, len, low2high);
671 HwHSSIThreeWire(
672 dev,
673 (u8*)(&data2Write), // pDataBuf,
674 len, // nDataBufBitCnt,
675 1, // bSI
676 1); // bWrite
678 // printk(" exit ZEBRA_RFSerialWrite\n ");
680 break;
683 default:
684 DMESGE("RF_WriteReg(): invalid RegThreeWireMode(%d) !!!", priv->RegThreeWireMode);
685 break;
687 break;
689 default:
690 DMESGE("RF_WriteReg(): unknown RFChipID: %#X", priv->rf_chip);
691 break;
696 void
697 ZEBRA_RFSerialRead(
698 struct net_device *dev,
699 u32 data2Write,
700 u8 wLength,
701 u32 *data2Read,
702 u8 rLength,
703 u8 low2high
706 ThreeWireReg twreg;
707 int i;
708 u16 oval,oval2,oval3,tmp, wReg80;
709 u32 mask;
710 u8 u1bTmp;
711 ThreeWireReg tdata;
712 //PHAL_DATA_8187 pHalData = GetHalData8187(pAdapter);
713 { // RTL8187S HSSI Read/Write Function
714 u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
715 u1bTmp |= RF_SW_CFG_SI; //reg08[1]=1 Serial Interface(SI)
716 write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
719 wReg80 = oval = read_nic_word(dev, RFPinsOutput);
720 oval2 = read_nic_word(dev, RFPinsEnable);
721 oval3 = read_nic_word(dev, RFPinsSelect);
723 write_nic_word(dev, RFPinsEnable, oval2|0xf);
724 write_nic_word(dev, RFPinsSelect, oval3|0xf);
726 *data2Read = 0;
728 // We must clear BIT0-3 here, otherwise,
729 // SW_Enalbe will be true when we first call ZEBRA_RFSerialRead() after 8187MPVC open,
730 // which will cause the value read become 0. 2005.04.11, by rcnjko.
731 oval &= ~0xf;
733 // Avoid collision with hardware three-wire.
734 twreg.longData = 0;
735 twreg.struc.enableB = 1;
736 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(4);
738 twreg.longData = 0;
739 twreg.struc.enableB = 0;
740 twreg.struc.clk = 0;
741 twreg.struc.read_write = 0;
742 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(5);
744 mask = (low2high) ? 0x01 : ((u32)0x01<<(32-1));
745 for(i = 0; i < wLength/2; i++)
747 twreg.struc.data = ((data2Write&mask) != 0) ? 1 : 0;
748 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
749 twreg.struc.clk = 1;
750 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
751 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
753 mask = (low2high) ? (mask<<1): (mask>>1);
755 if(i == 2)
757 // Commented out by Jackie, 2004.08.26. <RJ_NOTE> We must comment out the following two lines for we cannot pull down VCOPDN during RF Serail Read.
758 //PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, 0xe); // turn off data enable
759 //PlatformEFIOWrite2Byte(pAdapter, RFPinsSelect, 0xe);
761 twreg.struc.read_write=1;
762 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
763 twreg.struc.clk = 0;
764 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
765 break;
767 twreg.struc.data = ((data2Write&mask) != 0) ? 1: 0;
768 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
769 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
771 twreg.struc.clk = 0;
772 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
774 mask = (low2high) ? (mask<<1) : (mask>>1);
777 twreg.struc.clk = 0;
778 twreg.struc.data = 0;
779 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
780 mask = (low2high) ? 0x01 : ((u32)0x01 << (12-1));
783 // 061016, by rcnjko:
784 // We must set data pin to HW controled, otherwise RF can't driver it and
785 // value RF register won't be able to read back properly.
787 write_nic_word(dev, RFPinsEnable, ( ((oval2|0x0E) & (~0x01))) );
789 for(i = 0; i < rLength; i++)
791 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
792 twreg.struc.clk = 1;
793 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
794 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
795 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
796 tmp = read_nic_word(dev, RFPinsInput);
797 tdata.longData = tmp;
798 *data2Read |= tdata.struc.clk ? mask : 0;
800 twreg.struc.clk = 0;
801 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
803 mask = (low2high) ? (mask<<1) : (mask>>1);
805 twreg.struc.enableB = 1;
806 twreg.struc.clk = 0;
807 twreg.struc.data = 0;
808 twreg.struc.read_write = 1;
809 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
811 //PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, oval2|0x8); // Set To Output Enable
812 write_nic_word(dev, RFPinsEnable, oval2); // Set To Output Enable, <RJ_NOTE> We cannot enable BIT3 here, otherwise, we will failed to switch channel. 2005.04.12.
813 //PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, 0x1bff);
814 write_nic_word(dev, RFPinsSelect, oval3); // Set To SW Switch
815 //PlatformEFIOWrite2Byte(pAdapter, RFPinsSelect, 0x0488);
816 write_nic_word(dev, RFPinsOutput, 0x3a0);
817 //PlatformEFIOWrite2Byte(pAdapter, RFPinsOutput, 0x0480);
822 RF_ReadReg(
823 struct net_device *dev,
824 u8 offset
827 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
828 u32 data2Write;
829 u8 wlen;
830 u8 rlen;
831 u8 low2high;
832 u32 dataRead;
834 switch(priv->rf_chip)
836 case RFCHIPID_RTL8225:
837 case RF_ZEBRA2:
838 case RF_ZEBRA4:
839 switch(priv->RegThreeWireMode)
841 case HW_THREE_WIRE_PI: // For 87S Parallel Interface.
843 data2Write = ((u32)(offset&0x0f));
844 wlen=16;
845 HwHSSIThreeWire(
846 dev,
847 (u8*)(&data2Write), // pDataBuf,
848 wlen, // nDataBufBitCnt,
849 0, // bSI
850 0); // bWrite
851 dataRead= data2Write;
853 break;
855 case HW_THREE_WIRE_SI: // For 87S Serial Interface.
857 data2Write = ((u32)(offset&0x0f)) ;
858 wlen=16;
859 HwHSSIThreeWire(
860 dev,
861 (u8*)(&data2Write), // pDataBuf,
862 wlen, // nDataBufBitCnt,
863 1, // bSI
864 0 // bWrite
866 dataRead= data2Write;
868 break;
870 // Perform SW 3-wire programming by driver.
871 default:
873 data2Write = ((u32)(offset&0x1f)) << 27; // For Zebra E-cut. 2005.04.11, by rcnjko.
874 wlen = 6;
875 rlen = 12;
876 low2high = 0;
877 ZEBRA_RFSerialRead(dev, data2Write, wlen,&dataRead,rlen, low2high);
879 break;
881 break;
882 default:
883 dataRead = 0;
884 break;
887 return dataRead;
891 // by Owen on 04/07/14 for writing BB register successfully
892 void
893 WriteBBPortUchar(
894 struct net_device *dev,
895 u32 Data
898 //u8 TimeoutCounter;
899 u8 RegisterContent;
900 u8 UCharData;
902 UCharData = (u8)((Data & 0x0000ff00) >> 8);
903 PlatformIOWrite4Byte(dev, PhyAddr, Data);
904 //for(TimeoutCounter = 10; TimeoutCounter > 0; TimeoutCounter--)
906 PlatformIOWrite4Byte(dev, PhyAddr, Data & 0xffffff7f);
907 RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
908 //if(UCharData == RegisterContent)
909 // break;
914 ReadBBPortUchar(
915 struct net_device *dev,
916 u32 addr
919 //u8 TimeoutCounter;
920 u8 RegisterContent;
922 PlatformIOWrite4Byte(dev, PhyAddr, addr & 0xffffff7f);
923 RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
925 return RegisterContent;
927 //{by amy 080312
929 // Description:
930 // Perform Antenna settings with antenna diversity on 87SE.
931 // Created by Roger, 2008.01.25.
933 bool
934 SetAntennaConfig87SE(
935 struct net_device *dev,
936 u8 DefaultAnt, // 0: Main, 1: Aux.
937 bool bAntDiversity // 1:Enable, 0: Disable.
940 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
941 bool bAntennaSwitched = true;
943 //printk("SetAntennaConfig87SE(): DefaultAnt(%d), bAntDiversity(%d)\n", DefaultAnt, bAntDiversity);
945 // Threshold for antenna diversity.
946 write_phy_cck(dev, 0x0c, 0x09); // Reg0c : 09
948 if( bAntDiversity ) // Enable Antenna Diversity.
950 if( DefaultAnt == 1 ) // aux antenna
952 // Mac register, aux antenna
953 write_nic_byte(dev, ANTSEL, 0x00);
955 // Config CCK RX antenna.
956 write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb
957 write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7
959 // Config OFDM RX antenna.
960 write_phy_ofdm(dev, 0x0D, 0x54); // Reg0d : 54
961 write_phy_ofdm(dev, 0x18, 0xb2); // Reg18 : b2
963 else // use main antenna
965 // Mac register, main antenna
966 write_nic_byte(dev, ANTSEL, 0x03);
967 //base band
968 // Config CCK RX antenna.
969 write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b
970 write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7
972 // Config OFDM RX antenna.
973 write_phy_ofdm(dev, 0x0d, 0x5c); // Reg0d : 5c
974 write_phy_ofdm(dev, 0x18, 0xb2); // Reg18 : b2
977 else // Disable Antenna Diversity.
979 if( DefaultAnt == 1 ) // aux Antenna
981 // Mac register, aux antenna
982 write_nic_byte(dev, ANTSEL, 0x00);
984 // Config CCK RX antenna.
985 write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb
986 write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47
988 // Config OFDM RX antenna.
989 write_phy_ofdm(dev, 0x0D, 0x54); // Reg0d : 54
990 write_phy_ofdm(dev, 0x18, 0x32); // Reg18 : 32
992 else // main Antenna
994 // Mac register, main antenna
995 write_nic_byte(dev, ANTSEL, 0x03);
997 // Config CCK RX antenna.
998 write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b
999 write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47
1001 // Config OFDM RX antenna.
1002 write_phy_ofdm(dev, 0x0D, 0x5c); // Reg0d : 5c
1003 write_phy_ofdm(dev, 0x18, 0x32); // Reg18 : 32
1006 priv->CurrAntennaIndex = DefaultAnt; // Update default settings.
1007 return bAntennaSwitched;
1009 //by amy 080312
1010 /*---------------------------------------------------------------
1011 * Hardware Initialization.
1012 * the code is ported from Windows source code
1013 ----------------------------------------------------------------*/
1015 void
1016 ZEBRA_Config_85BASIC_HardCode(
1017 struct net_device *dev
1021 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1022 u32 i;
1023 u32 addr,data;
1024 u32 u4bRegOffset, u4bRegValue, u4bRF23, u4bRF24;
1025 u8 u1b24E;
1028 //=============================================================================
1029 // 87S_PCIE :: RADIOCFG.TXT
1030 //=============================================================================
1033 // Page1 : reg16-reg30
1034 RF_WriteReg(dev, 0x00, 0x013f); mdelay(1); // switch to page1
1035 u4bRF23= RF_ReadReg(dev, 0x08); mdelay(1);
1036 u4bRF24= RF_ReadReg(dev, 0x09); mdelay(1);
1038 if (u4bRF23==0x818 && u4bRF24==0x70C && priv->card_8185 == VERSION_8187S_C)
1039 priv->card_8185 = VERSION_8187S_D;
1041 // Page0 : reg0-reg15
1043 // RF_WriteReg(dev, 0x00, 0x003f); mdelay(1);//1
1044 RF_WriteReg(dev, 0x00, 0x009f); mdelay(1);// 1
1046 RF_WriteReg(dev, 0x01, 0x06e0); mdelay(1);
1048 // RF_WriteReg(dev, 0x02, 0x004c); mdelay(1);//2
1049 RF_WriteReg(dev, 0x02, 0x004d); mdelay(1);// 2
1051 // RF_WriteReg(dev, 0x03, 0x0000); mdelay(1);//3
1052 RF_WriteReg(dev, 0x03, 0x07f1); mdelay(1);// 3
1054 RF_WriteReg(dev, 0x04, 0x0975); mdelay(1);
1055 RF_WriteReg(dev, 0x05, 0x0c72); mdelay(1);
1056 RF_WriteReg(dev, 0x06, 0x0ae6); mdelay(1);
1057 RF_WriteReg(dev, 0x07, 0x00ca); mdelay(1);
1058 RF_WriteReg(dev, 0x08, 0x0e1c); mdelay(1);
1059 RF_WriteReg(dev, 0x09, 0x02f0); mdelay(1);
1060 RF_WriteReg(dev, 0x0a, 0x09d0); mdelay(1);
1061 RF_WriteReg(dev, 0x0b, 0x01ba); mdelay(1);
1062 RF_WriteReg(dev, 0x0c, 0x0640); mdelay(1);
1063 RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1);
1064 RF_WriteReg(dev, 0x0e, 0x0020); mdelay(1);
1065 RF_WriteReg(dev, 0x0f, 0x0990); mdelay(1);
1068 // Page1 : reg16-reg30
1069 RF_WriteReg(dev, 0x00, 0x013f); mdelay(1);
1071 RF_WriteReg(dev, 0x03, 0x0806); mdelay(1);
1073 if(priv->card_8185 < VERSION_8187S_C)
1075 RF_WriteReg(dev, 0x04, 0x03f7); mdelay(1);
1076 RF_WriteReg(dev, 0x05, 0x05ab); mdelay(1);
1077 RF_WriteReg(dev, 0x06, 0x00c1); mdelay(1);
1079 else
1081 RF_WriteReg(dev, 0x04, 0x03a7); mdelay(1);
1082 RF_WriteReg(dev, 0x05, 0x059b); mdelay(1);
1083 RF_WriteReg(dev, 0x06, 0x0081); mdelay(1);
1087 RF_WriteReg(dev, 0x07, 0x01A0); mdelay(1);
1088 // Don't write RF23/RF24 to make a difference between 87S C cut and D cut. asked by SD3 stevenl.
1089 // RF_WriteReg(dev, 0x08, 0x0597); mdelay(1);
1090 // RF_WriteReg(dev, 0x09, 0x050a); mdelay(1);
1091 RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
1092 RF_WriteReg(dev, 0x0b, 0x0418); mdelay(1);
1094 if(priv->card_8185 == VERSION_8187S_D)
1096 RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
1097 RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
1098 RF_WriteReg(dev, 0x0e, 0x0807); mdelay(1); // RX LO buffer
1100 else
1102 RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
1103 RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
1104 RF_WriteReg(dev, 0x0e, 0x0806); mdelay(1); // RX LO buffer
1107 RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
1109 // RF_WriteReg(dev, 0x00, 0x017f); mdelay(1);//6
1110 RF_WriteReg(dev, 0x00, 0x01d7); mdelay(1);// 6
1112 RF_WriteReg(dev, 0x03, 0x0e00); mdelay(1);
1113 RF_WriteReg(dev, 0x04, 0x0e50); mdelay(1);
1114 for(i=0;i<=36;i++)
1116 RF_WriteReg(dev, 0x01, i); mdelay(1);
1117 RF_WriteReg(dev, 0x02, ZEBRA_RF_RX_GAIN_TABLE[i]); mdelay(1);
1118 //DbgPrint("RF - 0x%x = 0x%x", i, ZEBRA_RF_RX_GAIN_TABLE[i]);
1121 RF_WriteReg(dev, 0x05, 0x0203); mdelay(1); /// 203, 343
1122 //RF_WriteReg(dev, 0x06, 0x0300); mdelay(1); // 400
1123 RF_WriteReg(dev, 0x06, 0x0200); mdelay(1); // 400
1125 RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); // switch to reg16-reg30, and HSSI disable 137
1126 mdelay(10); // Deay 10 ms. //0xfd
1128 // RF_WriteReg(dev, 0x0c, 0x09be); mdelay(1); // 7
1129 //RF_WriteReg(dev, 0x0c, 0x07be); mdelay(1);
1130 //mdelay(10); // Deay 10 ms. //0xfd
1132 RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1); // Z4 synthesizer loop filter setting, 392
1133 mdelay(10); // Deay 10 ms. //0xfd
1135 RF_WriteReg(dev, 0x00, 0x0037); mdelay(1); // switch to reg0-reg15, and HSSI disable
1136 mdelay(10); // Deay 10 ms. //0xfd
1138 RF_WriteReg(dev, 0x04, 0x0160); mdelay(1); // CBC on, Tx Rx disable, High gain
1139 mdelay(10); // Deay 10 ms. //0xfd
1141 RF_WriteReg(dev, 0x07, 0x0080); mdelay(1); // Z4 setted channel 1
1142 mdelay(10); // Deay 10 ms. //0xfd
1144 RF_WriteReg(dev, 0x02, 0x088D); mdelay(1); // LC calibration
1145 mdelay(200); // Deay 200 ms. //0xfd
1146 mdelay(10); // Deay 10 ms. //0xfd
1147 mdelay(10); // Deay 10 ms. //0xfd
1149 RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); // switch to reg16-reg30 137, and HSSI disable 137
1150 mdelay(10); // Deay 10 ms. //0xfd
1152 RF_WriteReg(dev, 0x07, 0x0000); mdelay(1);
1153 RF_WriteReg(dev, 0x07, 0x0180); mdelay(1);
1154 RF_WriteReg(dev, 0x07, 0x0220); mdelay(1);
1155 RF_WriteReg(dev, 0x07, 0x03E0); mdelay(1);
1157 // DAC calibration off 20070702
1158 RF_WriteReg(dev, 0x06, 0x00c1); mdelay(1);
1159 RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
1160 //{by amy 080312
1161 // For crystal calibration, added by Roger, 2007.12.11.
1162 if( priv->bXtalCalibration ) // reg 30.
1163 { // enable crystal calibration.
1164 // RF Reg[30], (1)Xin:[12:9], Xout:[8:5], addr[4:0].
1165 // (2)PA Pwr delay timer[15:14], default: 2.4us, set BIT15=0
1166 // (3)RF signal on/off when calibration[13], default: on, set BIT13=0.
1167 // So we should minus 4 BITs offset.
1168 RF_WriteReg(dev, 0x0f, (priv->XtalCal_Xin<<5)|(priv->XtalCal_Xout<<1)|BIT11|BIT9); mdelay(1);
1169 printk("ZEBRA_Config_85BASIC_HardCode(): (%02x)\n",
1170 (priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11| BIT9);
1172 else
1173 { // using default value. Xin=6, Xout=6.
1174 RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
1176 //by amy 080312
1177 // RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1); //-by amy 080312
1179 RF_WriteReg(dev, 0x00, 0x00bf); mdelay(1); // switch to reg0-reg15, and HSSI enable
1180 // RF_WriteReg(dev, 0x0d, 0x009f); mdelay(1); // Rx BB start calibration, 00c//-edward
1181 RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1); // Rx BB start calibration, 00c//+edward
1182 RF_WriteReg(dev, 0x02, 0x004d); mdelay(1); // temperature meter off
1183 RF_WriteReg(dev, 0x04, 0x0975); mdelay(1); // Rx mode
1184 mdelay(10); // Deay 10 ms. //0xfe
1185 mdelay(10); // Deay 10 ms. //0xfe
1186 mdelay(10); // Deay 10 ms. //0xfe
1187 RF_WriteReg(dev, 0x00, 0x0197); mdelay(1); // Rx mode//+edward
1188 RF_WriteReg(dev, 0x05, 0x05ab); mdelay(1); // Rx mode//+edward
1189 RF_WriteReg(dev, 0x00, 0x009f); mdelay(1); // Rx mode//+edward
1191 RF_WriteReg(dev, 0x01, 0x0000); mdelay(1); // Rx mode//+edward
1192 RF_WriteReg(dev, 0x02, 0x0000); mdelay(1); // Rx mode//+edward
1193 //power save parameters.
1194 u1b24E = read_nic_byte(dev, 0x24E);
1195 write_nic_byte(dev, 0x24E, (u1b24E & (~(BIT5|BIT6))));
1197 //=============================================================================
1199 //=============================================================================
1200 // CCKCONF.TXT
1201 //=============================================================================
1203 /* [POWER SAVE] Power Saving Parameters by jong. 2007-11-27
1204 CCK reg0x00[7]=1'b1 :power saving for TX (default)
1205 CCK reg0x00[6]=1'b1: power saving for RX (default)
1206 CCK reg0x06[4]=1'b1: turn off channel estimation related circuits if not doing channel estimation.
1207 CCK reg0x06[3]=1'b1: turn off unused circuits before cca = 1
1208 CCK reg0x06[2]=1'b1: turn off cck's circuit if macrst =0
1211 write_phy_cck(dev,0x00,0xc8);
1212 write_phy_cck(dev,0x06,0x1c);
1213 write_phy_cck(dev,0x10,0x78);
1214 write_phy_cck(dev,0x2e,0xd0);
1215 write_phy_cck(dev,0x2f,0x06);
1216 write_phy_cck(dev,0x01,0x46);
1218 // power control
1219 write_nic_byte(dev, CCK_TXAGC, 0x10);
1220 write_nic_byte(dev, OFDM_TXAGC, 0x1B);
1221 write_nic_byte(dev, ANTSEL, 0x03);
1225 //=============================================================================
1226 // AGC.txt
1227 //=============================================================================
1229 // PlatformIOWrite4Byte( dev, PhyAddr, 0x00001280); // Annie, 2006-05-05
1230 write_phy_ofdm(dev, 0x00, 0x12);
1231 //WriteBBPortUchar(dev, 0x00001280);
1233 for (i=0; i<128; i++)
1235 //DbgPrint("AGC - [%x+1] = 0x%x\n", i, ZEBRA_AGC[i+1]);
1237 data = ZEBRA_AGC[i+1];
1238 data = data << 8;
1239 data = data | 0x0000008F;
1241 addr = i + 0x80; //enable writing AGC table
1242 addr = addr << 8;
1243 addr = addr | 0x0000008E;
1245 WriteBBPortUchar(dev, data);
1246 WriteBBPortUchar(dev, addr);
1247 WriteBBPortUchar(dev, 0x0000008E);
1250 PlatformIOWrite4Byte( dev, PhyAddr, 0x00001080); // Annie, 2006-05-05
1251 //WriteBBPortUchar(dev, 0x00001080);
1253 //=============================================================================
1255 //=============================================================================
1256 // OFDMCONF.TXT
1257 //=============================================================================
1259 for(i=0; i<60; i++)
1261 u4bRegOffset=i;
1262 u4bRegValue=OFDM_CONFIG[i];
1264 //DbgPrint("OFDM - 0x%x = 0x%x\n", u4bRegOffset, u4bRegValue);
1266 WriteBBPortUchar(dev,
1267 (0x00000080 |
1268 (u4bRegOffset & 0x7f) |
1269 ((u4bRegValue & 0xff) << 8)));
1272 //=============================================================================
1273 //by amy for antenna
1274 //=============================================================================
1275 //{by amy 080312
1276 // Config Sw/Hw Combinational Antenna Diversity. Added by Roger, 2008.02.26.
1277 SetAntennaConfig87SE(dev, priv->bDefaultAntenna1, priv->bSwAntennaDiverity);
1278 //by amy 080312}
1279 //by amy for antenna
1283 void
1284 UpdateInitialGain(
1285 struct net_device *dev
1288 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1289 //unsigned char* IGTable;
1290 //u8 DIG_CurrentInitialGain = 4;
1291 //unsigned char u1Tmp;
1293 //lzm add 080826
1294 if(priv->eRFPowerState != eRfOn)
1296 //Don't access BB/RF under disable PLL situation.
1297 //RT_TRACE(COMP_DIG, DBG_LOUD, ("UpdateInitialGain - pHalData->eRFPowerState!=eRfOn\n"));
1298 // Back to the original state
1299 priv->InitialGain= priv->InitialGainBackUp;
1300 return;
1303 switch(priv->rf_chip)
1305 case RF_ZEBRA4:
1306 // Dynamic set initial gain, follow 87B
1307 switch(priv->InitialGain)
1309 case 1: //m861dBm
1310 //DMESG("RTL8187 + 8225 Initial Gain State 1: -82 dBm \n");
1311 write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
1312 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
1313 write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
1314 break;
1316 case 2: //m862dBm
1317 //DMESG("RTL8187 + 8225 Initial Gain State 2: -82 dBm \n");
1318 write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
1319 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
1320 write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
1321 break;
1323 case 3: //m863dBm
1324 //DMESG("RTL8187 + 8225 Initial Gain State 3: -82 dBm \n");
1325 write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
1326 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
1327 write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
1328 break;
1330 case 4: //m864dBm
1331 //DMESG("RTL8187 + 8225 Initial Gain State 4: -78 dBm \n");
1332 write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
1333 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
1334 write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
1335 break;
1337 case 5: //m82dBm
1338 //DMESG("RTL8187 + 8225 Initial Gain State 5: -74 dBm \n");
1339 write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
1340 write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
1341 write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
1342 break;
1344 case 6: //m78dBm
1345 //DMESG ("RTL8187 + 8225 Initial Gain State 6: -70 dBm \n");
1346 write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
1347 write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
1348 write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
1349 break;
1351 case 7: //m74dBm
1352 //DMESG("RTL8187 + 8225 Initial Gain State 7: -66 dBm \n");
1353 write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
1354 write_phy_ofdm(dev, 0x24, 0xa6); mdelay(1);
1355 write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
1356 break;
1358 case 8:
1359 //DMESG("RTL8187 + 8225 Initial Gain State 8:\n");
1360 write_phy_ofdm(dev, 0x17, 0x66); mdelay(1);
1361 write_phy_ofdm(dev, 0x24, 0xb6); mdelay(1);
1362 write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
1363 break;
1366 default: //MP
1367 //DMESG("RTL8187 + 8225 Initial Gain State 1: -82 dBm (default)\n");
1368 write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
1369 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
1370 write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
1371 break;
1373 break;
1376 default:
1377 DMESG("UpdateInitialGain(): unknown RFChipID: %#X\n", priv->rf_chip);
1378 break;
1382 // Description:
1383 // Tx Power tracking mechanism routine on 87SE.
1384 // Created by Roger, 2007.12.11.
1386 void
1387 InitTxPwrTracking87SE(
1388 struct net_device *dev
1391 //struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1392 u32 u4bRfReg;
1394 u4bRfReg = RF_ReadReg(dev, 0x02);
1396 // Enable Thermal meter indication.
1397 //printk("InitTxPwrTracking87SE(): Enable thermal meter indication, Write RF[0x02] = %#x", u4bRfReg|PWR_METER_EN);
1398 RF_WriteReg(dev, 0x02, u4bRfReg|PWR_METER_EN); mdelay(1);
1401 void
1402 PhyConfig8185(
1403 struct net_device *dev
1406 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1407 write_nic_dword(dev, RCR, priv->ReceiveConfig);
1408 priv->RFProgType = read_nic_byte(dev, CONFIG4) & 0x03;
1409 // RF config
1410 switch(priv->rf_chip)
1412 case RF_ZEBRA2:
1413 case RF_ZEBRA4:
1414 ZEBRA_Config_85BASIC_HardCode( dev);
1415 break;
1417 //{by amy 080312
1418 // Set default initial gain state to 4, approved by SD3 DZ, by Bruce, 2007-06-06.
1419 if(priv->bDigMechanism)
1421 if(priv->InitialGain == 0)
1422 priv->InitialGain = 4;
1423 //printk("PhyConfig8185(): DIG is enabled, set default initial gain index to %d\n", priv->InitialGain);
1427 // Enable thermal meter indication to implement TxPower tracking on 87SE.
1428 // We initialize thermal meter here to avoid unsuccessful configuration.
1429 // Added by Roger, 2007.12.11.
1431 if(priv->bTxPowerTrack)
1432 InitTxPwrTracking87SE(dev);
1434 //by amy 080312}
1435 priv->InitialGainBackUp= priv->InitialGain;
1436 UpdateInitialGain(dev);
1438 return;
1444 void
1445 HwConfigureRTL8185(
1446 struct net_device *dev
1449 //RTL8185_TODO: Determine Retrylimit, TxAGC, AutoRateFallback control.
1450 // u8 bUNIVERSAL_CONTROL_RL = 1;
1451 u8 bUNIVERSAL_CONTROL_RL = 0;
1453 u8 bUNIVERSAL_CONTROL_AGC = 1;
1454 u8 bUNIVERSAL_CONTROL_ANT = 1;
1455 u8 bAUTO_RATE_FALLBACK_CTL = 1;
1456 u8 val8;
1457 //struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1458 //struct ieee80211_device *ieee = priv->ieee80211;
1459 //if(IS_WIRELESS_MODE_A(dev) || IS_WIRELESS_MODE_G(dev))
1460 //{by amy 080312 if((ieee->mode == IEEE_G)||(ieee->mode == IEEE_A))
1461 // {
1462 // write_nic_word(dev, BRSR, 0xffff);
1463 // }
1464 // else
1465 // {
1466 // write_nic_word(dev, BRSR, 0x000f);
1467 // }
1468 //by amy 080312}
1469 write_nic_word(dev, BRSR, 0x0fff);
1470 // Retry limit
1471 val8 = read_nic_byte(dev, CW_CONF);
1473 if(bUNIVERSAL_CONTROL_RL)
1474 val8 = val8 & 0xfd;
1475 else
1476 val8 = val8 | 0x02;
1478 write_nic_byte(dev, CW_CONF, val8);
1480 // Tx AGC
1481 val8 = read_nic_byte(dev, TXAGC_CTL);
1482 if(bUNIVERSAL_CONTROL_AGC)
1484 write_nic_byte(dev, CCK_TXAGC, 128);
1485 write_nic_byte(dev, OFDM_TXAGC, 128);
1486 val8 = val8 & 0xfe;
1488 else
1490 val8 = val8 | 0x01 ;
1494 write_nic_byte(dev, TXAGC_CTL, val8);
1496 // Tx Antenna including Feedback control
1497 val8 = read_nic_byte(dev, TXAGC_CTL );
1499 if(bUNIVERSAL_CONTROL_ANT)
1501 write_nic_byte(dev, ANTSEL, 0x00);
1502 val8 = val8 & 0xfd;
1504 else
1506 val8 = val8 & (val8|0x02); //xiong-2006-11-15
1509 write_nic_byte(dev, TXAGC_CTL, val8);
1511 // Auto Rate fallback control
1512 val8 = read_nic_byte(dev, RATE_FALLBACK);
1513 val8 &= 0x7c;
1514 if( bAUTO_RATE_FALLBACK_CTL )
1516 val8 |= RATE_FALLBACK_CTL_ENABLE | RATE_FALLBACK_CTL_AUTO_STEP1;
1518 // <RJ_TODO_8185B> We shall set up the ARFR according to user's setting.
1519 //write_nic_word(dev, ARFR, 0x0fff); // set 1M ~ 54M
1520 //by amy
1521 // Aadded by Roger, 2007.11.15.
1522 PlatformIOWrite2Byte(dev, ARFR, 0x0fff); //set 1M ~ 54Mbps.
1523 //by amy
1525 else
1528 write_nic_byte(dev, RATE_FALLBACK, val8);
1533 static void
1534 MacConfig_85BASIC_HardCode(
1535 struct net_device *dev)
1537 //============================================================================
1538 // MACREG.TXT
1539 //============================================================================
1540 int nLinesRead = 0;
1542 u32 u4bRegOffset, u4bRegValue,u4bPageIndex = 0;
1543 int i;
1545 nLinesRead=sizeof(MAC_REG_TABLE)/2;
1547 for(i = 0; i < nLinesRead; i++) //nLinesRead=101
1549 u4bRegOffset=MAC_REG_TABLE[i][0];
1550 u4bRegValue=MAC_REG_TABLE[i][1];
1552 if(u4bRegOffset == 0x5e)
1554 u4bPageIndex = u4bRegValue;
1556 else
1558 u4bRegOffset |= (u4bPageIndex << 8);
1560 //DbgPrint("MAC - 0x%x = 0x%x\n", u4bRegOffset, u4bRegValue);
1561 write_nic_byte(dev, u4bRegOffset, (u8)u4bRegValue);
1563 //============================================================================
1568 static void
1569 MacConfig_85BASIC(
1570 struct net_device *dev)
1573 u8 u1DA;
1574 MacConfig_85BASIC_HardCode(dev);
1576 //============================================================================
1578 // Follow TID_AC_MAP of WMac.
1579 write_nic_word(dev, TID_AC_MAP, 0xfa50);
1581 // Interrupt Migration, Jong suggested we use set 0x0000 first, 2005.12.14, by rcnjko.
1582 write_nic_word(dev, IntMig, 0x0000);
1584 // Prevent TPC to cause CRC error. Added by Annie, 2006-06-10.
1585 PlatformIOWrite4Byte(dev, 0x1F0, 0x00000000);
1586 PlatformIOWrite4Byte(dev, 0x1F4, 0x00000000);
1587 PlatformIOWrite1Byte(dev, 0x1F8, 0x00);
1589 // Asked for by SD3 CM Lin, 2006.06.27, by rcnjko.
1590 //PlatformIOWrite4Byte(dev, RFTiming, 0x00004001);
1591 //by amy
1592 // power save parameter based on "87SE power save parameters 20071127.doc", as follow.
1594 //Enable DA10 TX power saving
1595 u1DA = read_nic_byte(dev, PHYPR);
1596 write_nic_byte(dev, PHYPR, (u1DA | BIT2) );
1598 //POWER:
1599 write_nic_word(dev, 0x360, 0x1000);
1600 write_nic_word(dev, 0x362, 0x1000);
1602 // AFE.
1603 write_nic_word(dev, 0x370, 0x0560);
1604 write_nic_word(dev, 0x372, 0x0560);
1605 write_nic_word(dev, 0x374, 0x0DA4);
1606 write_nic_word(dev, 0x376, 0x0DA4);
1607 write_nic_word(dev, 0x378, 0x0560);
1608 write_nic_word(dev, 0x37A, 0x0560);
1609 write_nic_word(dev, 0x37C, 0x00EC);
1610 // write_nic_word(dev, 0x37E, 0x00FE);//-edward
1611 write_nic_word(dev, 0x37E, 0x00EC);//+edward
1612 write_nic_byte(dev, 0x24E,0x01);
1613 //by amy
1621 GetSupportedWirelessMode8185(
1622 struct net_device *dev
1625 u8 btSupportedWirelessMode = 0;
1626 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1628 switch(priv->rf_chip)
1630 case RF_ZEBRA2:
1631 case RF_ZEBRA4:
1632 btSupportedWirelessMode = (WIRELESS_MODE_B | WIRELESS_MODE_G);
1633 break;
1634 default:
1635 btSupportedWirelessMode = WIRELESS_MODE_B;
1636 break;
1639 return btSupportedWirelessMode;
1642 void
1643 ActUpdateChannelAccessSetting(
1644 struct net_device *dev,
1645 WIRELESS_MODE WirelessMode,
1646 PCHANNEL_ACCESS_SETTING ChnlAccessSetting
1649 struct r8180_priv *priv = ieee80211_priv(dev);
1650 struct ieee80211_device *ieee = priv->ieee80211;
1651 AC_CODING eACI;
1652 AC_PARAM AcParam;
1653 //PSTA_QOS pStaQos = Adapter->MgntInfo.pStaQos;
1654 u8 bFollowLegacySetting = 0;
1655 u8 u1bAIFS;
1658 // <RJ_TODO_8185B>
1659 // TODO: We still don't know how to set up these registers, just follow WMAC to
1660 // verify 8185B FPAG.
1662 // <RJ_TODO_8185B>
1663 // Jong said CWmin/CWmax register are not functional in 8185B,
1664 // so we shall fill channel access realted register into AC parameter registers,
1665 // even in nQBss.
1667 ChnlAccessSetting->SIFS_Timer = 0x22; // Suggested by Jong, 2005.12.08.
1668 ChnlAccessSetting->DIFS_Timer = 0x1C; // 2006.06.02, by rcnjko.
1669 ChnlAccessSetting->SlotTimeTimer = 9; // 2006.06.02, by rcnjko.
1670 ChnlAccessSetting->EIFS_Timer = 0x5B; // Suggested by wcchu, it is the default value of EIFS register, 2005.12.08.
1671 ChnlAccessSetting->CWminIndex = 3; // 2006.06.02, by rcnjko.
1672 ChnlAccessSetting->CWmaxIndex = 7; // 2006.06.02, by rcnjko.
1674 write_nic_byte(dev, SIFS, ChnlAccessSetting->SIFS_Timer);
1675 //Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_SLOT_TIME, &ChnlAccessSetting->SlotTimeTimer ); // Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29.
1676 write_nic_byte(dev, SLOT, ChnlAccessSetting->SlotTimeTimer); // Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29.
1678 u1bAIFS = aSifsTime + (2 * ChnlAccessSetting->SlotTimeTimer );
1680 //write_nic_byte(dev, AC_VO_PARAM, u1bAIFS);
1681 //write_nic_byte(dev, AC_VI_PARAM, u1bAIFS);
1682 //write_nic_byte(dev, AC_BE_PARAM, u1bAIFS);
1683 //write_nic_byte(dev, AC_BK_PARAM, u1bAIFS);
1685 write_nic_byte(dev, EIFS, ChnlAccessSetting->EIFS_Timer);
1687 write_nic_byte(dev, AckTimeOutReg, 0x5B); // <RJ_EXPR_QOS> Suggested by wcchu, it is the default value of EIFS register, 2005.12.08.
1689 #ifdef TODO
1690 // <RJ_TODO_NOW_8185B> Update ECWmin/ECWmax, AIFS, TXOP Limit of each AC to the value defined by SPEC.
1691 if( pStaQos->CurrentQosMode > QOS_DISABLE )
1692 { // QoS mode.
1693 if(pStaQos->QBssWirelessMode == WirelessMode)
1695 // Follow AC Parameters of the QBSS.
1696 for(eACI = 0; eACI < AC_MAX; eACI++)
1698 Adapter->HalFunc.SetHwRegHandler(Adapter, HW_VAR_AC_PARAM, (pu1Byte)(&(pStaQos->WMMParamEle.AcParam[eACI])) );
1701 else
1703 // Follow Default WMM AC Parameters.
1704 bFollowLegacySetting = 1;
1707 else
1708 #endif
1709 { // Legacy 802.11.
1710 bFollowLegacySetting = 1;
1714 // this setting is copied from rtl8187B. xiong-2006-11-13
1715 if(bFollowLegacySetting)
1720 // Follow 802.11 seeting to AC parameter, all AC shall use the same parameter.
1721 // 2005.12.01, by rcnjko.
1723 AcParam.longData = 0;
1724 AcParam.f.AciAifsn.f.AIFSN = 2; // Follow 802.11 DIFS.
1725 AcParam.f.AciAifsn.f.ACM = 0;
1726 AcParam.f.Ecw.f.ECWmin = ChnlAccessSetting->CWminIndex; // Follow 802.11 CWmin.
1727 AcParam.f.Ecw.f.ECWmax = ChnlAccessSetting->CWmaxIndex; // Follow 802.11 CWmax.
1728 AcParam.f.TXOPLimit = 0;
1730 //lzm reserved 080826
1731 #if 1
1732 // For turbo mode setting. port from 87B by Isaiah 2008-08-01
1733 if( ieee->current_network.Turbo_Enable == 1 )
1734 AcParam.f.TXOPLimit = 0x01FF;
1735 // For 87SE with Intel 4965 Ad-Hoc mode have poor throughput (19MB)
1736 if (ieee->iw_mode == IW_MODE_ADHOC)
1737 AcParam.f.TXOPLimit = 0x0020;
1738 #endif
1740 for(eACI = 0; eACI < AC_MAX; eACI++)
1742 AcParam.f.AciAifsn.f.ACI = (u8)eACI;
1744 PAC_PARAM pAcParam = (PAC_PARAM)(&AcParam);
1745 AC_CODING eACI;
1746 u8 u1bAIFS;
1747 u32 u4bAcParam;
1749 // Retrive paramters to udpate.
1750 eACI = pAcParam->f.AciAifsn.f.ACI;
1751 u1bAIFS = pAcParam->f.AciAifsn.f.AIFSN * ChnlAccessSetting->SlotTimeTimer + aSifsTime;
1752 u4bAcParam = ( (((u32)(pAcParam->f.TXOPLimit)) << AC_PARAM_TXOP_LIMIT_OFFSET) |
1753 (((u32)(pAcParam->f.Ecw.f.ECWmax)) << AC_PARAM_ECW_MAX_OFFSET) |
1754 (((u32)(pAcParam->f.Ecw.f.ECWmin)) << AC_PARAM_ECW_MIN_OFFSET) |
1755 (((u32)u1bAIFS) << AC_PARAM_AIFS_OFFSET));
1757 switch(eACI)
1759 case AC1_BK:
1760 //write_nic_dword(dev, AC_BK_PARAM, u4bAcParam);
1761 break;
1763 case AC0_BE:
1764 //write_nic_dword(dev, AC_BE_PARAM, u4bAcParam);
1765 break;
1767 case AC2_VI:
1768 //write_nic_dword(dev, AC_VI_PARAM, u4bAcParam);
1769 break;
1771 case AC3_VO:
1772 //write_nic_dword(dev, AC_VO_PARAM, u4bAcParam);
1773 break;
1775 default:
1776 DMESGW( "SetHwReg8185(): invalid ACI: %d !\n", eACI);
1777 break;
1780 // Cehck ACM bit.
1781 // If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13.
1782 //write_nic_byte(dev, ACM_CONTROL, pAcParam->f.AciAifsn);
1784 PACI_AIFSN pAciAifsn = (PACI_AIFSN)(&pAcParam->f.AciAifsn);
1785 AC_CODING eACI = pAciAifsn->f.ACI;
1787 //modified Joseph
1788 //for 8187B AsynIORead issue
1789 #ifdef TODO
1790 u8 AcmCtrl = pHalData->AcmControl;
1791 #else
1792 u8 AcmCtrl = 0;
1793 #endif
1794 if( pAciAifsn->f.ACM )
1795 { // ACM bit is 1.
1796 switch(eACI)
1798 case AC0_BE:
1799 AcmCtrl |= (BEQ_ACM_EN|BEQ_ACM_CTL|ACM_HW_EN); // or 0x21
1800 break;
1802 case AC2_VI:
1803 AcmCtrl |= (VIQ_ACM_EN|VIQ_ACM_CTL|ACM_HW_EN); // or 0x42
1804 break;
1806 case AC3_VO:
1807 AcmCtrl |= (VOQ_ACM_EN|VOQ_ACM_CTL|ACM_HW_EN); // or 0x84
1808 break;
1810 default:
1811 DMESGW("SetHwReg8185(): [HW_VAR_ACM_CTRL] ACM set failed: eACI is %d\n", eACI );
1812 break;
1815 else
1816 { // ACM bit is 0.
1817 switch(eACI)
1819 case AC0_BE:
1820 AcmCtrl &= ( (~BEQ_ACM_EN) & (~BEQ_ACM_CTL) & (~ACM_HW_EN) ); // and 0xDE
1821 break;
1823 case AC2_VI:
1824 AcmCtrl &= ( (~VIQ_ACM_EN) & (~VIQ_ACM_CTL) & (~ACM_HW_EN) ); // and 0xBD
1825 break;
1827 case AC3_VO:
1828 AcmCtrl &= ( (~VOQ_ACM_EN) & (~VOQ_ACM_CTL) & (~ACM_HW_EN) ); // and 0x7B
1829 break;
1831 default:
1832 break;
1836 //printk(KERN_WARNING "SetHwReg8185(): [HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
1838 #ifdef TO_DO
1839 pHalData->AcmControl = AcmCtrl;
1840 #endif
1841 //write_nic_byte(dev, ACM_CONTROL, AcmCtrl);
1842 write_nic_byte(dev, ACM_CONTROL, 0);
1851 void
1852 ActSetWirelessMode8185(
1853 struct net_device *dev,
1854 u8 btWirelessMode
1857 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1858 struct ieee80211_device *ieee = priv->ieee80211;
1859 //PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
1860 u8 btSupportedWirelessMode = GetSupportedWirelessMode8185(dev);
1862 if( (btWirelessMode & btSupportedWirelessMode) == 0 )
1863 { // Don't switch to unsupported wireless mode, 2006.02.15, by rcnjko.
1864 DMESGW("ActSetWirelessMode8185(): WirelessMode(%d) is not supported (%d)!\n",
1865 btWirelessMode, btSupportedWirelessMode);
1866 return;
1869 // 1. Assign wireless mode to swtich if necessary.
1870 if (btWirelessMode == WIRELESS_MODE_AUTO)
1872 if((btSupportedWirelessMode & WIRELESS_MODE_A))
1874 btWirelessMode = WIRELESS_MODE_A;
1876 else if((btSupportedWirelessMode & WIRELESS_MODE_G))
1878 btWirelessMode = WIRELESS_MODE_G;
1880 else if((btSupportedWirelessMode & WIRELESS_MODE_B))
1882 btWirelessMode = WIRELESS_MODE_B;
1884 else
1886 DMESGW("ActSetWirelessMode8185(): No valid wireless mode supported, btSupportedWirelessMode(%x)!!!\n",
1887 btSupportedWirelessMode);
1888 btWirelessMode = WIRELESS_MODE_B;
1893 // 2. Swtich band: RF or BB specific actions,
1894 // for example, refresh tables in omc8255, or change initial gain if necessary.
1895 switch(priv->rf_chip)
1897 case RF_ZEBRA2:
1898 case RF_ZEBRA4:
1900 // Nothing to do for Zebra to switch band.
1901 // Update current wireless mode if we swtich to specified band successfully.
1902 ieee->mode = (WIRELESS_MODE)btWirelessMode;
1904 break;
1906 default:
1907 DMESGW("ActSetWirelessMode8185(): unsupported RF: 0x%X !!!\n", priv->rf_chip);
1908 break;
1911 // 3. Change related setting.
1912 if( ieee->mode == WIRELESS_MODE_A ){
1913 DMESG("WIRELESS_MODE_A\n");
1915 else if( ieee->mode == WIRELESS_MODE_B ){
1916 DMESG("WIRELESS_MODE_B\n");
1918 else if( ieee->mode == WIRELESS_MODE_G ){
1919 DMESG("WIRELESS_MODE_G\n");
1922 ActUpdateChannelAccessSetting( dev, ieee->mode, &priv->ChannelAccessSetting);
1925 void rtl8185b_irq_enable(struct net_device *dev)
1927 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1929 priv->irq_enabled = 1;
1930 write_nic_dword(dev, IMR, priv->IntrMask);
1932 //by amy for power save
1933 void
1934 DrvIFIndicateDisassociation(
1935 struct net_device *dev,
1936 u16 reason
1939 //printk("==> DrvIFIndicateDisassociation()\n");
1941 // nothing is needed after disassociation request.
1943 //printk("<== DrvIFIndicateDisassociation()\n");
1945 void
1946 MgntDisconnectIBSS(
1947 struct net_device *dev
1950 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1951 u8 i;
1953 //printk("XXXXXXXXXX MgntDisconnect IBSS\n");
1955 DrvIFIndicateDisassociation(dev, unspec_reason);
1957 // PlatformZeroMemory( pMgntInfo->Bssid, 6 );
1958 for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x55;
1960 priv->ieee80211->state = IEEE80211_NOLINK;
1962 //Stop Beacon.
1964 // Vista add a Adhoc profile, HW radio off untill OID_DOT11_RESET_REQUEST
1965 // Driver would set MSR=NO_LINK, then HW Radio ON, MgntQueue Stuck.
1966 // Because Bcn DMA isn't complete, mgnt queue would stuck until Bcn packet send.
1968 // Disable Beacon Queue Own bit, suggested by jong
1969 // Adapter->HalFunc.SetTxDescOWNHandler(Adapter, BEACON_QUEUE, 0, 0);
1970 ieee80211_stop_send_beacons(priv->ieee80211);
1972 priv->ieee80211->link_change(dev);
1973 notify_wx_assoc_event(priv->ieee80211);
1975 // Stop SW Beacon.Use hw beacon so do not need to do so.by amy
1977 // MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE );
1980 void
1981 MlmeDisassociateRequest(
1982 struct net_device *dev,
1983 u8* asSta,
1984 u8 asRsn
1987 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1988 u8 i;
1990 SendDisassociation(priv->ieee80211, asSta, asRsn );
1992 if( memcmp(priv->ieee80211->current_network.bssid, asSta, 6 ) == 0 ){
1993 //ShuChen TODO: change media status.
1994 //ShuChen TODO: What to do when disassociate.
1995 DrvIFIndicateDisassociation(dev, unspec_reason);
1998 // pMgntInfo->AsocTimestamp = 0;
1999 for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x22;
2000 // pMgntInfo->mBrates.Length = 0;
2001 // Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_BASIC_RATE, (pu1Byte)(&pMgntInfo->mBrates) );
2003 ieee80211_disassociate(priv->ieee80211);
2010 void
2011 MgntDisconnectAP(
2012 struct net_device *dev,
2013 u8 asRsn
2016 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2019 // Commented out by rcnjko, 2005.01.27:
2020 // I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE().
2022 // //2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success
2023 // SecClearAllKeys(Adapter);
2025 // In WPA WPA2 need to Clear all key ... because new key will set after new handshaking.
2026 #ifdef TODO
2027 if( pMgntInfo->SecurityInfo.AuthMode > RT_802_11AuthModeAutoSwitch ||
2028 (pMgntInfo->bAPSuportCCKM && pMgntInfo->bCCX8021xenable) ) // In CCKM mode will Clear key
2030 SecClearAllKeys(Adapter);
2031 RT_TRACE(COMP_SEC, DBG_LOUD,("======>CCKM clear key..."))
2033 #endif
2034 // 2004.10.11, by rcnjko.
2035 //MlmeDisassociateRequest( Adapter, pMgntInfo->Bssid, disas_lv_ss );
2036 MlmeDisassociateRequest( dev, priv->ieee80211->current_network.bssid, asRsn );
2038 priv->ieee80211->state = IEEE80211_NOLINK;
2039 // pMgntInfo->AsocTimestamp = 0;
2041 bool
2042 MgntDisconnect(
2043 struct net_device *dev,
2044 u8 asRsn
2047 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2049 // Schedule an workitem to wake up for ps mode, 070109, by rcnjko.
2051 #ifdef TODO
2052 if(pMgntInfo->mPss != eAwake)
2055 // Using AwkaeTimer to prevent mismatch ps state.
2056 // In the timer the state will be changed according to the RF is being awoke or not. By Bruce, 2007-10-31.
2058 // PlatformScheduleWorkItem( &(pMgntInfo->AwakeWorkItem) );
2059 PlatformSetTimer( Adapter, &(pMgntInfo->AwakeTimer), 0 );
2061 #endif
2063 // Indication of disassociation event.
2064 //DrvIFIndicateDisassociation(Adapter, asRsn);
2065 if(IS_DOT11D_ENABLE(priv->ieee80211))
2066 Dot11d_Reset(priv->ieee80211);
2067 // In adhoc mode, update beacon frame.
2068 if( priv->ieee80211->state == IEEE80211_LINKED )
2070 if( priv->ieee80211->iw_mode == IW_MODE_ADHOC )
2072 // RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> MgntDisconnectIBSS\n"));
2073 //printk("MgntDisconnect() ===> MgntDisconnectIBSS\n");
2074 MgntDisconnectIBSS(dev);
2076 if( priv->ieee80211->iw_mode == IW_MODE_INFRA )
2078 // We clear key here instead of MgntDisconnectAP() because that
2079 // MgntActSet_802_11_DISASSOCIATE() is an interface called by OS,
2080 // e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is
2081 // used to handle disassociation related things to AP, e.g. send Disassoc
2082 // frame to AP. 2005.01.27, by rcnjko.
2083 // SecClearAllKeys(Adapter);
2085 // RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> MgntDisconnectAP\n"));
2086 //printk("MgntDisconnect() ===> MgntDisconnectAP\n");
2087 MgntDisconnectAP(dev, asRsn);
2090 // Inidicate Disconnect, 2005.02.23, by rcnjko.
2091 // MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE);
2094 return true;
2097 // Description:
2098 // Chang RF Power State.
2099 // Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE.
2101 // Assumption:
2102 // PASSIVE LEVEL.
2104 bool
2105 SetRFPowerState(
2106 struct net_device *dev,
2107 RT_RF_POWER_STATE eRFPowerState
2110 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2111 bool bResult = false;
2113 // printk("---------> SetRFPowerState(): eRFPowerState(%d)\n", eRFPowerState);
2114 if(eRFPowerState == priv->eRFPowerState)
2116 // printk("<--------- SetRFPowerState(): discard the request for eRFPowerState(%d) is the same.\n", eRFPowerState);
2117 return bResult;
2120 switch(priv->rf_chip)
2122 case RF_ZEBRA2:
2123 case RF_ZEBRA4:
2124 bResult = SetZebraRFPowerState8185(dev, eRFPowerState);
2125 break;
2127 default:
2128 printk("SetRFPowerState8185(): unknown RFChipID: 0x%X!!!\n", priv->rf_chip);
2129 break;;
2131 // printk("<--------- SetRFPowerState(): bResult(%d)\n", bResult);
2133 return bResult;
2135 void
2136 HalEnableRx8185Dummy(
2137 struct net_device *dev
2141 void
2142 HalDisableRx8185Dummy(
2143 struct net_device *dev
2148 bool
2149 MgntActSet_RF_State(
2150 struct net_device *dev,
2151 RT_RF_POWER_STATE StateToSet,
2152 u32 ChangeSource
2155 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2156 bool bActionAllowed = false;
2157 bool bConnectBySSID = false;
2158 RT_RF_POWER_STATE rtState;
2159 u16 RFWaitCounter = 0;
2160 unsigned long flag;
2161 // printk("===>MgntActSet_RF_State(): StateToSet(%d), ChangeSource(0x%x)\n",StateToSet, ChangeSource);
2163 // Prevent the race condition of RF state change. By Bruce, 2007-11-28.
2164 // Only one thread can change the RF state at one time, and others should wait to be executed.
2166 #if 1
2167 while(true)
2169 // down(&priv->rf_state);
2170 spin_lock_irqsave(&priv->rf_ps_lock,flag);
2171 if(priv->RFChangeInProgress)
2173 // printk("====================>haha111111111\n");
2174 // up(&priv->rf_state);
2175 // RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): RF Change in progress! Wait to set..StateToSet(%d).\n", StateToSet));
2176 spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
2177 // Set RF after the previous action is done.
2178 while(priv->RFChangeInProgress)
2180 RFWaitCounter ++;
2181 // RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): Wait 1 ms (%d times)...\n", RFWaitCounter));
2182 udelay(1000); // 1 ms
2184 // Wait too long, return FALSE to avoid to be stuck here.
2185 if(RFWaitCounter > 1000) // 1sec
2187 // RT_ASSERT(FALSE, ("MgntActSet_RF_State(): Wait too logn to set RF\n"));
2188 printk("MgntActSet_RF_State(): Wait too long to set RF\n");
2189 // TODO: Reset RF state?
2190 return false;
2194 else
2196 // printk("========================>haha2\n");
2197 priv->RFChangeInProgress = true;
2198 // up(&priv->rf_state);
2199 spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
2200 break;
2203 #endif
2204 rtState = priv->eRFPowerState;
2207 switch(StateToSet)
2209 case eRfOn:
2211 // Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or
2212 // the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02.
2214 priv->RfOffReason &= (~ChangeSource);
2216 if(! priv->RfOffReason)
2218 priv->RfOffReason = 0;
2219 bActionAllowed = true;
2221 if(rtState == eRfOff && ChangeSource >=RF_CHANGE_BY_HW && !priv->bInHctTest)
2223 bConnectBySSID = true;
2226 else
2227 // RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State - eRfon reject pMgntInfo->RfOffReason= 0x%x, ChangeSource=0x%X\n", pMgntInfo->RfOffReason, ChangeSource));
2229 break;
2231 case eRfOff:
2232 // 070125, rcnjko: we always keep connected in AP mode.
2234 if (priv->RfOffReason > RF_CHANGE_BY_IPS)
2237 // 060808, Annie:
2238 // Disconnect to current BSS when radio off. Asked by QuanTa.
2242 // Calling MgntDisconnect() instead of MgntActSet_802_11_DISASSOCIATE(),
2243 // because we do NOT need to set ssid to dummy ones.
2244 // Revised by Roger, 2007.12.04.
2246 MgntDisconnect( dev, disas_lv_ss );
2248 // Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI.
2249 // 2007.05.28, by shien chang.
2250 // PlatformZeroMemory( pMgntInfo->bssDesc, sizeof(RT_WLAN_BSS)*MAX_BSS_DESC );
2251 // pMgntInfo->NumBssDesc = 0;
2252 // PlatformZeroMemory( pMgntInfo->bssDesc4Query, sizeof(RT_WLAN_BSS)*MAX_BSS_DESC );
2253 // pMgntInfo->NumBssDesc4Query = 0;
2258 priv->RfOffReason |= ChangeSource;
2259 bActionAllowed = true;
2260 break;
2262 case eRfSleep:
2263 priv->RfOffReason |= ChangeSource;
2264 bActionAllowed = true;
2265 break;
2267 default:
2268 break;
2271 if(bActionAllowed)
2273 // RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, pMgntInfo->RfOffReason));
2274 // Config HW to the specified mode.
2275 // printk("MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, priv->RfOffReason);
2276 SetRFPowerState(dev, StateToSet);
2278 // Turn on RF.
2279 if(StateToSet == eRfOn)
2281 HalEnableRx8185Dummy(dev);
2282 if(bConnectBySSID)
2284 // by amy not supported
2285 // MgntActSet_802_11_SSID(Adapter, Adapter->MgntInfo.Ssid.Octet, Adapter->MgntInfo.Ssid.Length, TRUE );
2288 // Turn off RF.
2289 else if(StateToSet == eRfOff)
2291 HalDisableRx8185Dummy(dev);
2294 else
2296 // printk("MgntActSet_RF_State(): Action is rejected.... StateToSet(%d), ChangeSource(%#X), RfOffReason(%#X)\n", StateToSet, ChangeSource, priv->RfOffReason);
2299 // Release RF spinlock
2300 // down(&priv->rf_state);
2301 spin_lock_irqsave(&priv->rf_ps_lock,flag);
2302 priv->RFChangeInProgress = false;
2303 // up(&priv->rf_state);
2304 spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
2305 // printk("<===MgntActSet_RF_State()\n");
2306 return bActionAllowed;
2308 void
2309 InactivePowerSave(
2310 struct net_device *dev
2313 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2314 //u8 index = 0;
2317 // This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem
2318 // is really scheduled.
2319 // The old code, sets this flag before scheduling the IPS workitem and however, at the same time the
2320 // previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing
2321 // blocks the IPS procedure of switching RF.
2322 // By Bruce, 2007-12-25.
2324 priv->bSwRfProcessing = true;
2326 MgntActSet_RF_State(dev, priv->eInactivePowerState, RF_CHANGE_BY_IPS);
2329 // To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20.
2332 priv->bSwRfProcessing = false;
2336 // Description:
2337 // Enter the inactive power save mode. RF will be off
2338 // 2007.08.17, by shien chang.
2340 void
2341 IPSEnter(
2342 struct net_device *dev
2345 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2346 RT_RF_POWER_STATE rtState;
2347 //printk("==============================>enter IPS\n");
2348 if (priv->bInactivePs)
2350 rtState = priv->eRFPowerState;
2353 // Added by Bruce, 2007-12-25.
2354 // Do not enter IPS in the following conditions:
2355 // (1) RF is already OFF or Sleep
2356 // (2) bSwRfProcessing (indicates the IPS is still under going)
2357 // (3) Connectted (only disconnected can trigger IPS)
2358 // (4) IBSS (send Beacon)
2359 // (5) AP mode (send Beacon)
2361 if (rtState == eRfOn && !priv->bSwRfProcessing
2362 && (priv->ieee80211->state != IEEE80211_LINKED ))
2364 // printk("IPSEnter(): Turn off RF.\n");
2365 priv->eInactivePowerState = eRfOff;
2366 InactivePowerSave(dev);
2369 // printk("priv->eRFPowerState is %d\n",priv->eRFPowerState);
2371 void
2372 IPSLeave(
2373 struct net_device *dev
2376 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2377 RT_RF_POWER_STATE rtState;
2378 //printk("===================================>leave IPS\n");
2379 if (priv->bInactivePs)
2381 rtState = priv->eRFPowerState;
2382 if ((rtState == eRfOff || rtState == eRfSleep) && (!priv->bSwRfProcessing) && priv->RfOffReason <= RF_CHANGE_BY_IPS)
2384 // printk("IPSLeave(): Turn on RF.\n");
2385 priv->eInactivePowerState = eRfOn;
2386 InactivePowerSave(dev);
2389 // printk("priv->eRFPowerState is %d\n",priv->eRFPowerState);
2391 //by amy for power save
2392 void rtl8185b_adapter_start(struct net_device *dev)
2394 struct r8180_priv *priv = ieee80211_priv(dev);
2395 struct ieee80211_device *ieee = priv->ieee80211;
2397 u8 SupportedWirelessMode;
2398 u8 InitWirelessMode;
2399 u8 bInvalidWirelessMode = 0;
2400 //int i;
2401 u8 tmpu8;
2402 //u8 u1tmp,u2tmp;
2403 u8 btCR9346;
2404 u8 TmpU1b;
2405 u8 btPSR;
2407 //rtl8180_rtx_disable(dev);
2408 //{by amy 080312
2409 write_nic_byte(dev,0x24e, (BIT5|BIT6|BIT0));
2410 //by amy 080312}
2411 rtl8180_reset(dev);
2413 priv->dma_poll_mask = 0;
2414 priv->dma_poll_stop_mask = 0;
2416 //rtl8180_beacon_tx_disable(dev);
2418 HwConfigureRTL8185(dev);
2420 write_nic_dword(dev, MAC0, ((u32*)dev->dev_addr)[0]);
2421 write_nic_word(dev, MAC4, ((u32*)dev->dev_addr)[1] & 0xffff );
2423 write_nic_byte(dev, MSR, read_nic_byte(dev, MSR) & 0xf3); // default network type to 'No Link'
2425 //write_nic_byte(dev, BRSR, 0x0); // Set BRSR= 1M
2427 write_nic_word(dev, BcnItv, 100);
2428 write_nic_word(dev, AtimWnd, 2);
2430 //PlatformEFIOWrite2Byte(dev, FEMR, 0xFFFF);
2431 PlatformIOWrite2Byte(dev, FEMR, 0xFFFF);
2433 write_nic_byte(dev, WPA_CONFIG, 0);
2435 MacConfig_85BASIC(dev);
2437 // Override the RFSW_CTRL (MAC offset 0x272-0x273), 2006.06.07, by rcnjko.
2438 // BT_DEMO_BOARD type
2439 PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x569a);
2440 //by amy
2441 //#ifdef CONFIG_RTL818X_S
2442 // for jong required
2443 // PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x9a56);
2444 //#endif
2445 //by amy
2446 //BT_QA_BOARD
2447 //PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x9a56);
2449 //-----------------------------------------------------------------------------
2450 // Set up PHY related.
2451 //-----------------------------------------------------------------------------
2452 // Enable Config3.PARAM_En to revise AnaaParm.
2453 write_nic_byte(dev, CR9346, 0xc0); // enable config register write
2454 //by amy
2455 tmpu8 = read_nic_byte(dev, CONFIG3);
2456 write_nic_byte(dev, CONFIG3, (tmpu8 |CONFIG3_PARM_En) );
2457 //by amy
2458 // Turn on Analog power.
2459 // Asked for by William, otherwise, MAC 3-wire can't work, 2006.06.27, by rcnjko.
2460 write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
2461 write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
2462 //by amy
2463 write_nic_word(dev, ANAPARAM3, 0x0010);
2464 //by amy
2466 write_nic_byte(dev, CONFIG3, tmpu8);
2467 write_nic_byte(dev, CR9346, 0x00);
2468 //{by amy 080312 for led
2469 // enable EEM0 and EEM1 in 9346CR
2470 btCR9346 = read_nic_byte(dev, CR9346);
2471 write_nic_byte(dev, CR9346, (btCR9346|0xC0) );
2473 // B cut use LED1 to control HW RF on/off
2474 TmpU1b = read_nic_byte(dev, CONFIG5);
2475 TmpU1b = TmpU1b & ~BIT3;
2476 write_nic_byte(dev,CONFIG5, TmpU1b);
2478 // disable EEM0 and EEM1 in 9346CR
2479 btCR9346 &= ~(0xC0);
2480 write_nic_byte(dev, CR9346, btCR9346);
2482 //Enable Led (suggested by Jong)
2483 // B-cut RF Radio on/off 5e[3]=0
2484 btPSR = read_nic_byte(dev, PSR);
2485 write_nic_byte(dev, PSR, (btPSR | BIT3));
2486 //by amy 080312 for led}
2487 // setup initial timing for RFE.
2488 write_nic_word(dev, RFPinsOutput, 0x0480);
2489 SetOutputEnableOfRfPins(dev);
2490 write_nic_word(dev, RFPinsSelect, 0x2488);
2492 // PHY config.
2493 PhyConfig8185(dev);
2495 // We assume RegWirelessMode has already been initialized before,
2496 // however, we has to validate the wireless mode here and provide a reasonble
2497 // initialized value if necessary. 2005.01.13, by rcnjko.
2498 SupportedWirelessMode = GetSupportedWirelessMode8185(dev);
2499 if( (ieee->mode != WIRELESS_MODE_B) &&
2500 (ieee->mode != WIRELESS_MODE_G) &&
2501 (ieee->mode != WIRELESS_MODE_A) &&
2502 (ieee->mode != WIRELESS_MODE_AUTO))
2503 { // It should be one of B, G, A, or AUTO.
2504 bInvalidWirelessMode = 1;
2506 else
2507 { // One of B, G, A, or AUTO.
2508 // Check if the wireless mode is supported by RF.
2509 if( (ieee->mode != WIRELESS_MODE_AUTO) &&
2510 (ieee->mode & SupportedWirelessMode) == 0 )
2512 bInvalidWirelessMode = 1;
2516 if(bInvalidWirelessMode || ieee->mode==WIRELESS_MODE_AUTO)
2517 { // Auto or other invalid value.
2518 // Assigne a wireless mode to initialize.
2519 if((SupportedWirelessMode & WIRELESS_MODE_A))
2521 InitWirelessMode = WIRELESS_MODE_A;
2523 else if((SupportedWirelessMode & WIRELESS_MODE_G))
2525 InitWirelessMode = WIRELESS_MODE_G;
2527 else if((SupportedWirelessMode & WIRELESS_MODE_B))
2529 InitWirelessMode = WIRELESS_MODE_B;
2531 else
2533 DMESGW("InitializeAdapter8185(): No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n",
2534 SupportedWirelessMode);
2535 InitWirelessMode = WIRELESS_MODE_B;
2538 // Initialize RegWirelessMode if it is not a valid one.
2539 if(bInvalidWirelessMode)
2541 ieee->mode = (WIRELESS_MODE)InitWirelessMode;
2544 else
2545 { // One of B, G, A.
2546 InitWirelessMode = ieee->mode;
2548 //by amy for power save
2549 // printk("initialize ENABLE_IPS\n");
2550 priv->eRFPowerState = eRfOff;
2551 priv->RfOffReason = 0;
2553 // u32 tmp2;
2554 // u32 tmp = jiffies;
2555 MgntActSet_RF_State(dev, eRfOn, 0);
2556 // tmp2 = jiffies;
2557 // printk("rf on cost jiffies:%lx\n", (tmp2-tmp)*1000/HZ);
2559 // DrvIFIndicateCurrentPhyStatus(priv);
2561 // If inactive power mode is enabled, disable rf while in disconnected state.
2562 // 2007.07.16, by shien chang.
2564 if (priv->bInactivePs)
2566 // u32 tmp2;
2567 // u32 tmp = jiffies;
2568 MgntActSet_RF_State(dev,eRfOff, RF_CHANGE_BY_IPS);
2569 // tmp2 = jiffies;
2570 // printk("rf off cost jiffies:%lx\n", (tmp2-tmp)*1000/HZ);
2573 // IPSEnter(dev);
2574 //by amy for power save
2575 #ifdef TODO
2576 // Turn off RF if necessary. 2005.08.23, by rcnjko.
2577 // We shall turn off RF after setting CMDR, otherwise,
2578 // RF will be turnned on after we enable MAC Tx/Rx.
2579 if(Adapter->MgntInfo.RegRfOff == TRUE)
2581 SetRFPowerState8185(Adapter, RF_OFF);
2583 else
2585 SetRFPowerState8185(Adapter, RF_ON);
2587 #endif
2589 /* //these is equal with above TODO.
2590 write_nic_byte(dev, CR9346, 0xc0); // enable config register write
2591 write_nic_byte(dev, CONFIG3, read_nic_byte(dev, CONFIG3) | CONFIG3_PARM_En);
2592 RF_WriteReg(dev, 0x4, 0x9FF);
2593 write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
2594 write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
2595 write_nic_byte(dev, CONFIG3, (read_nic_byte(dev, CONFIG3)&(~CONFIG3_PARM_En)));
2596 write_nic_byte(dev, CR9346, 0x00);
2599 ActSetWirelessMode8185(dev, (u8)(InitWirelessMode));
2601 //-----------------------------------------------------------------------------
2603 rtl8185b_irq_enable(dev);
2605 netif_start_queue(dev);
2610 void rtl8185b_rx_enable(struct net_device *dev)
2612 u8 cmd;
2613 //u32 rxconf;
2614 /* for now we accept data, management & ctl frame*/
2615 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2617 if (dev->flags & IFF_PROMISC) DMESG ("NIC in promisc mode");
2619 if(priv->ieee80211->iw_mode == IW_MODE_MONITOR || \
2620 dev->flags & IFF_PROMISC){
2621 priv->ReceiveConfig = priv->ReceiveConfig & (~RCR_APM);
2622 priv->ReceiveConfig = priv->ReceiveConfig | RCR_AAP;
2625 /*if(priv->ieee80211->iw_mode == IW_MODE_MASTER){
2626 rxconf = rxconf | (1<<ACCEPT_ALLMAC_FRAME_SHIFT);
2627 rxconf = rxconf | (1<<RX_CHECK_BSSID_SHIFT);
2630 if(priv->ieee80211->iw_mode == IW_MODE_MONITOR){
2631 priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACF | RCR_APWRMGT | RCR_AICV;
2634 if( priv->crcmon == 1 && priv->ieee80211->iw_mode == IW_MODE_MONITOR)
2635 priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACRC32;
2637 write_nic_dword(dev, RCR, priv->ReceiveConfig);
2639 fix_rx_fifo(dev);
2641 #ifdef DEBUG_RX
2642 DMESG("rxconf: %x %x",priv->ReceiveConfig ,read_nic_dword(dev,RCR));
2643 #endif
2644 cmd=read_nic_byte(dev,CMD);
2645 write_nic_byte(dev,CMD,cmd | (1<<CMD_RX_ENABLE_SHIFT));
2649 void rtl8185b_tx_enable(struct net_device *dev)
2651 u8 cmd;
2652 //u8 tx_agc_ctl;
2653 u8 byte;
2654 //u32 txconf;
2655 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2657 write_nic_dword(dev, TCR, priv->TransmitConfig);
2658 byte = read_nic_byte(dev, MSR);
2659 byte |= MSR_LINK_ENEDCA;
2660 write_nic_byte(dev, MSR, byte);
2662 fix_tx_fifo(dev);
2664 #ifdef DEBUG_TX
2665 DMESG("txconf: %x %x",priv->TransmitConfig,read_nic_dword(dev,TCR));
2666 #endif
2668 cmd=read_nic_byte(dev,CMD);
2669 write_nic_byte(dev,CMD,cmd | (1<<CMD_TX_ENABLE_SHIFT));
2671 //write_nic_dword(dev,TX_CONF,txconf);
2675 rtl8180_set_mode(dev,EPROM_CMD_CONFIG);
2676 write_nic_byte(dev, TX_DMA_POLLING, priv->dma_poll_mask);
2677 rtl8180_set_mode(dev,EPROM_CMD_NORMAL);