mm-only debug patch...
[mmotm.git] / drivers / video / pxafb.c
blob1820c4a2443411130bdfab5c8c78cef81942e690
1 /*
2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
19 * email address:
21 * linux-arm-kernel@lists.arm.linux.org.uk
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
25 * Copyright (C) 2004, Intel Corporation
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
31 * Copyright (C) 2006-2008 Marvell International Ltd.
32 * All Rights Reserved
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
58 #include <mach/hardware.h>
59 #include <asm/io.h>
60 #include <asm/irq.h>
61 #include <asm/div64.h>
62 #include <mach/bitfield.h>
63 #include <mach/pxafb.h>
66 * Complain if VAR is out of range.
68 #define DEBUG_VAR 1
70 #include "pxafb.h"
72 /* Bits which should not be set in machine configuration structures */
73 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
74 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
75 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
77 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
78 LCCR3_PCD | LCCR3_BPP(0xf))
80 static int pxafb_activate_var(struct fb_var_screeninfo *var,
81 struct pxafb_info *);
82 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
83 static void setup_base_frame(struct pxafb_info *fbi, int branch);
84 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
85 unsigned long offset, size_t size);
87 static unsigned long video_mem_size = 0;
89 static inline unsigned long
90 lcd_readl(struct pxafb_info *fbi, unsigned int off)
92 return __raw_readl(fbi->mmio_base + off);
95 static inline void
96 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
98 __raw_writel(val, fbi->mmio_base + off);
101 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
103 unsigned long flags;
105 local_irq_save(flags);
107 * We need to handle two requests being made at the same time.
108 * There are two important cases:
109 * 1. When we are changing VT (C_REENABLE) while unblanking
110 * (C_ENABLE) We must perform the unblanking, which will
111 * do our REENABLE for us.
112 * 2. When we are blanking, but immediately unblank before
113 * we have blanked. We do the "REENABLE" thing here as
114 * well, just to be sure.
116 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
117 state = (u_int) -1;
118 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
119 state = C_REENABLE;
121 if (state != (u_int)-1) {
122 fbi->task_state = state;
123 schedule_work(&fbi->task);
125 local_irq_restore(flags);
128 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
130 chan &= 0xffff;
131 chan >>= 16 - bf->length;
132 return chan << bf->offset;
135 static int
136 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
137 u_int trans, struct fb_info *info)
139 struct pxafb_info *fbi = (struct pxafb_info *)info;
140 u_int val;
142 if (regno >= fbi->palette_size)
143 return 1;
145 if (fbi->fb.var.grayscale) {
146 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
147 return 0;
150 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
151 case LCCR4_PAL_FOR_0:
152 val = ((red >> 0) & 0xf800);
153 val |= ((green >> 5) & 0x07e0);
154 val |= ((blue >> 11) & 0x001f);
155 fbi->palette_cpu[regno] = val;
156 break;
157 case LCCR4_PAL_FOR_1:
158 val = ((red << 8) & 0x00f80000);
159 val |= ((green >> 0) & 0x0000fc00);
160 val |= ((blue >> 8) & 0x000000f8);
161 ((u32 *)(fbi->palette_cpu))[regno] = val;
162 break;
163 case LCCR4_PAL_FOR_2:
164 val = ((red << 8) & 0x00fc0000);
165 val |= ((green >> 0) & 0x0000fc00);
166 val |= ((blue >> 8) & 0x000000fc);
167 ((u32 *)(fbi->palette_cpu))[regno] = val;
168 break;
169 case LCCR4_PAL_FOR_3:
170 val = ((red << 8) & 0x00ff0000);
171 val |= ((green >> 0) & 0x0000ff00);
172 val |= ((blue >> 8) & 0x000000ff);
173 ((u32 *)(fbi->palette_cpu))[regno] = val;
174 break;
177 return 0;
180 static int
181 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
182 u_int trans, struct fb_info *info)
184 struct pxafb_info *fbi = (struct pxafb_info *)info;
185 unsigned int val;
186 int ret = 1;
189 * If inverse mode was selected, invert all the colours
190 * rather than the register number. The register number
191 * is what you poke into the framebuffer to produce the
192 * colour you requested.
194 if (fbi->cmap_inverse) {
195 red = 0xffff - red;
196 green = 0xffff - green;
197 blue = 0xffff - blue;
201 * If greyscale is true, then we convert the RGB value
202 * to greyscale no matter what visual we are using.
204 if (fbi->fb.var.grayscale)
205 red = green = blue = (19595 * red + 38470 * green +
206 7471 * blue) >> 16;
208 switch (fbi->fb.fix.visual) {
209 case FB_VISUAL_TRUECOLOR:
211 * 16-bit True Colour. We encode the RGB value
212 * according to the RGB bitfield information.
214 if (regno < 16) {
215 u32 *pal = fbi->fb.pseudo_palette;
217 val = chan_to_field(red, &fbi->fb.var.red);
218 val |= chan_to_field(green, &fbi->fb.var.green);
219 val |= chan_to_field(blue, &fbi->fb.var.blue);
221 pal[regno] = val;
222 ret = 0;
224 break;
226 case FB_VISUAL_STATIC_PSEUDOCOLOR:
227 case FB_VISUAL_PSEUDOCOLOR:
228 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
229 break;
232 return ret;
235 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
236 static inline int var_to_depth(struct fb_var_screeninfo *var)
238 return var->red.length + var->green.length +
239 var->blue.length + var->transp.length;
242 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
243 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
245 int bpp = -EINVAL;
247 switch (var->bits_per_pixel) {
248 case 1: bpp = 0; break;
249 case 2: bpp = 1; break;
250 case 4: bpp = 2; break;
251 case 8: bpp = 3; break;
252 case 16: bpp = 4; break;
253 case 24:
254 switch (var_to_depth(var)) {
255 case 18: bpp = 6; break; /* 18-bits/pixel packed */
256 case 19: bpp = 8; break; /* 19-bits/pixel packed */
257 case 24: bpp = 9; break;
259 break;
260 case 32:
261 switch (var_to_depth(var)) {
262 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
263 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
264 case 25: bpp = 10; break;
266 break;
268 return bpp;
272 * pxafb_var_to_lccr3():
273 * Convert a bits per pixel value to the correct bit pattern for LCCR3
275 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
276 * implication of the acutal use of transparency bit, which we handle it
277 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
278 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
280 * Transparency for palette pixel formats is not supported at the moment.
282 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
284 int bpp = pxafb_var_to_bpp(var);
285 uint32_t lccr3;
287 if (bpp < 0)
288 return 0;
290 lccr3 = LCCR3_BPP(bpp);
292 switch (var_to_depth(var)) {
293 case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
294 case 18: lccr3 |= LCCR3_PDFOR_3; break;
295 case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
296 break;
297 case 19:
298 case 25: lccr3 |= LCCR3_PDFOR_0; break;
300 return lccr3;
303 #define SET_PIXFMT(v, r, g, b, t) \
304 ({ \
305 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
306 (v)->transp.length = (t) ? (t) : 0; \
307 (v)->blue.length = (b); (v)->blue.offset = 0; \
308 (v)->green.length = (g); (v)->green.offset = (b); \
309 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
312 /* set the RGBT bitfields of fb_var_screeninf according to
313 * var->bits_per_pixel and given depth
315 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
317 if (depth == 0)
318 depth = var->bits_per_pixel;
320 if (var->bits_per_pixel < 16) {
321 /* indexed pixel formats */
322 var->red.offset = 0; var->red.length = 8;
323 var->green.offset = 0; var->green.length = 8;
324 var->blue.offset = 0; var->blue.length = 8;
325 var->transp.offset = 0; var->transp.length = 8;
328 switch (depth) {
329 case 16: var->transp.length ?
330 SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
331 SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
332 case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
333 case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
334 case 24: var->transp.length ?
335 SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
336 SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
337 case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
341 #ifdef CONFIG_CPU_FREQ
343 * pxafb_display_dma_period()
344 * Calculate the minimum period (in picoseconds) between two DMA
345 * requests for the LCD controller. If we hit this, it means we're
346 * doing nothing but LCD DMA.
348 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
351 * Period = pixclock * bits_per_byte * bytes_per_transfer
352 * / memory_bits_per_pixel;
354 return var->pixclock * 8 * 16 / var->bits_per_pixel;
356 #endif
359 * Select the smallest mode that allows the desired resolution to be
360 * displayed. If desired parameters can be rounded up.
362 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
363 struct fb_var_screeninfo *var)
365 struct pxafb_mode_info *mode = NULL;
366 struct pxafb_mode_info *modelist = mach->modes;
367 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
368 unsigned int i;
370 for (i = 0; i < mach->num_modes; i++) {
371 if (modelist[i].xres >= var->xres &&
372 modelist[i].yres >= var->yres &&
373 modelist[i].xres < best_x &&
374 modelist[i].yres < best_y &&
375 modelist[i].bpp >= var->bits_per_pixel) {
376 best_x = modelist[i].xres;
377 best_y = modelist[i].yres;
378 mode = &modelist[i];
382 return mode;
385 static void pxafb_setmode(struct fb_var_screeninfo *var,
386 struct pxafb_mode_info *mode)
388 var->xres = mode->xres;
389 var->yres = mode->yres;
390 var->bits_per_pixel = mode->bpp;
391 var->pixclock = mode->pixclock;
392 var->hsync_len = mode->hsync_len;
393 var->left_margin = mode->left_margin;
394 var->right_margin = mode->right_margin;
395 var->vsync_len = mode->vsync_len;
396 var->upper_margin = mode->upper_margin;
397 var->lower_margin = mode->lower_margin;
398 var->sync = mode->sync;
399 var->grayscale = mode->cmap_greyscale;
401 /* set the initial RGBA bitfields */
402 pxafb_set_pixfmt(var, mode->depth);
405 static int pxafb_adjust_timing(struct pxafb_info *fbi,
406 struct fb_var_screeninfo *var)
408 int line_length;
410 var->xres = max_t(int, var->xres, MIN_XRES);
411 var->yres = max_t(int, var->yres, MIN_YRES);
413 if (!(fbi->lccr0 & LCCR0_LCDT)) {
414 clamp_val(var->hsync_len, 1, 64);
415 clamp_val(var->vsync_len, 1, 64);
416 clamp_val(var->left_margin, 1, 255);
417 clamp_val(var->right_margin, 1, 255);
418 clamp_val(var->upper_margin, 1, 255);
419 clamp_val(var->lower_margin, 1, 255);
422 /* make sure each line is aligned on word boundary */
423 line_length = var->xres * var->bits_per_pixel / 8;
424 line_length = ALIGN(line_length, 4);
425 var->xres = line_length * 8 / var->bits_per_pixel;
427 /* we don't support xpan, force xres_virtual to be equal to xres */
428 var->xres_virtual = var->xres;
430 if (var->accel_flags & FB_ACCELF_TEXT)
431 var->yres_virtual = fbi->fb.fix.smem_len / line_length;
432 else
433 var->yres_virtual = max(var->yres_virtual, var->yres);
435 /* check for limits */
436 if (var->xres > MAX_XRES || var->yres > MAX_YRES)
437 return -EINVAL;
439 if (var->yres > var->yres_virtual)
440 return -EINVAL;
442 return 0;
446 * pxafb_check_var():
447 * Get the video params out of 'var'. If a value doesn't fit, round it up,
448 * if it's too big, return -EINVAL.
450 * Round up in the following order: bits_per_pixel, xres,
451 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
452 * bitfields, horizontal timing, vertical timing.
454 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
456 struct pxafb_info *fbi = (struct pxafb_info *)info;
457 struct pxafb_mach_info *inf = fbi->dev->platform_data;
458 int err;
460 if (inf->fixed_modes) {
461 struct pxafb_mode_info *mode;
463 mode = pxafb_getmode(inf, var);
464 if (!mode)
465 return -EINVAL;
466 pxafb_setmode(var, mode);
469 /* do a test conversion to BPP fields to check the color formats */
470 err = pxafb_var_to_bpp(var);
471 if (err < 0)
472 return err;
474 pxafb_set_pixfmt(var, var_to_depth(var));
476 err = pxafb_adjust_timing(fbi, var);
477 if (err)
478 return err;
480 #ifdef CONFIG_CPU_FREQ
481 pr_debug("pxafb: dma period = %d ps\n",
482 pxafb_display_dma_period(var));
483 #endif
485 return 0;
489 * pxafb_set_par():
490 * Set the user defined part of the display for the specified console
492 static int pxafb_set_par(struct fb_info *info)
494 struct pxafb_info *fbi = (struct pxafb_info *)info;
495 struct fb_var_screeninfo *var = &info->var;
497 if (var->bits_per_pixel >= 16)
498 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
499 else if (!fbi->cmap_static)
500 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
501 else {
503 * Some people have weird ideas about wanting static
504 * pseudocolor maps. I suspect their user space
505 * applications are broken.
507 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
510 fbi->fb.fix.line_length = var->xres_virtual *
511 var->bits_per_pixel / 8;
512 if (var->bits_per_pixel >= 16)
513 fbi->palette_size = 0;
514 else
515 fbi->palette_size = var->bits_per_pixel == 1 ?
516 4 : 1 << var->bits_per_pixel;
518 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
520 if (fbi->fb.var.bits_per_pixel >= 16)
521 fb_dealloc_cmap(&fbi->fb.cmap);
522 else
523 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
525 pxafb_activate_var(var, fbi);
527 return 0;
530 static int pxafb_pan_display(struct fb_var_screeninfo *var,
531 struct fb_info *info)
533 struct pxafb_info *fbi = (struct pxafb_info *)info;
534 int dma = DMA_MAX + DMA_BASE;
536 if (fbi->state != C_ENABLE)
537 return 0;
539 setup_base_frame(fbi, 1);
541 if (fbi->lccr0 & LCCR0_SDS)
542 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
544 lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
545 return 0;
549 * pxafb_blank():
550 * Blank the display by setting all palette values to zero. Note, the
551 * 16 bpp mode does not really use the palette, so this will not
552 * blank the display in all modes.
554 static int pxafb_blank(int blank, struct fb_info *info)
556 struct pxafb_info *fbi = (struct pxafb_info *)info;
557 int i;
559 switch (blank) {
560 case FB_BLANK_POWERDOWN:
561 case FB_BLANK_VSYNC_SUSPEND:
562 case FB_BLANK_HSYNC_SUSPEND:
563 case FB_BLANK_NORMAL:
564 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
565 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
566 for (i = 0; i < fbi->palette_size; i++)
567 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
569 pxafb_schedule_work(fbi, C_DISABLE);
570 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
571 break;
573 case FB_BLANK_UNBLANK:
574 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
575 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
576 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
577 fb_set_cmap(&fbi->fb.cmap, info);
578 pxafb_schedule_work(fbi, C_ENABLE);
580 return 0;
583 static struct fb_ops pxafb_ops = {
584 .owner = THIS_MODULE,
585 .fb_check_var = pxafb_check_var,
586 .fb_set_par = pxafb_set_par,
587 .fb_pan_display = pxafb_pan_display,
588 .fb_setcolreg = pxafb_setcolreg,
589 .fb_fillrect = cfb_fillrect,
590 .fb_copyarea = cfb_copyarea,
591 .fb_imageblit = cfb_imageblit,
592 .fb_blank = pxafb_blank,
595 #ifdef CONFIG_FB_PXA_OVERLAY
596 static void overlay1fb_setup(struct pxafb_layer *ofb)
598 int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
599 unsigned long start = ofb->video_mem_phys;
600 setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
603 /* Depending on the enable status of overlay1/2, the DMA should be
604 * updated from FDADRx (when disabled) or FBRx (when enabled).
606 static void overlay1fb_enable(struct pxafb_layer *ofb)
608 int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
609 uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
611 lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
612 lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
613 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
616 static void overlay1fb_disable(struct pxafb_layer *ofb)
618 uint32_t lccr5 = lcd_readl(ofb->fbi, LCCR5);
620 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
622 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
623 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
624 lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
626 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
627 pr_warning("%s: timeout disabling overlay1\n", __func__);
629 lcd_writel(ofb->fbi, LCCR5, lccr5);
632 static void overlay2fb_setup(struct pxafb_layer *ofb)
634 int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
635 unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
637 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
638 size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
639 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
640 } else {
641 size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
642 switch (pfor) {
643 case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
644 case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
645 case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
647 start[1] = start[0] + size;
648 start[2] = start[1] + size / div;
649 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
650 setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
651 setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
655 static void overlay2fb_enable(struct pxafb_layer *ofb)
657 int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
658 int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
659 uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
660 uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
661 uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
663 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
664 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
665 else {
666 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
667 lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
668 lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
670 lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
671 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
674 static void overlay2fb_disable(struct pxafb_layer *ofb)
676 uint32_t lccr5 = lcd_readl(ofb->fbi, LCCR5);
678 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
680 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
681 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
682 lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
683 lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
684 lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
686 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
687 pr_warning("%s: timeout disabling overlay2\n", __func__);
690 static struct pxafb_layer_ops ofb_ops[] = {
691 [0] = {
692 .enable = overlay1fb_enable,
693 .disable = overlay1fb_disable,
694 .setup = overlay1fb_setup,
696 [1] = {
697 .enable = overlay2fb_enable,
698 .disable = overlay2fb_disable,
699 .setup = overlay2fb_setup,
703 static int overlayfb_open(struct fb_info *info, int user)
705 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
707 /* no support for framebuffer console on overlay */
708 if (user == 0)
709 return -ENODEV;
711 /* allow only one user at a time */
712 if (atomic_inc_and_test(&ofb->usage))
713 return -EBUSY;
715 /* unblank the base framebuffer */
716 fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
717 return 0;
720 static int overlayfb_release(struct fb_info *info, int user)
722 struct pxafb_layer *ofb = (struct pxafb_layer*) info;
724 atomic_dec(&ofb->usage);
725 ofb->ops->disable(ofb);
727 free_pages_exact(ofb->video_mem, ofb->video_mem_size);
728 ofb->video_mem = NULL;
729 ofb->video_mem_size = 0;
730 return 0;
733 static int overlayfb_check_var(struct fb_var_screeninfo *var,
734 struct fb_info *info)
736 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
737 struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
738 int xpos, ypos, pfor, bpp;
740 xpos = NONSTD_TO_XPOS(var->nonstd);
741 ypos = NONSTD_TO_XPOS(var->nonstd);
742 pfor = NONSTD_TO_PFOR(var->nonstd);
744 bpp = pxafb_var_to_bpp(var);
745 if (bpp < 0)
746 return -EINVAL;
748 /* no support for YUV format on overlay1 */
749 if (ofb->id == OVERLAY1 && pfor != 0)
750 return -EINVAL;
752 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
753 switch (pfor) {
754 case OVERLAY_FORMAT_RGB:
755 bpp = pxafb_var_to_bpp(var);
756 if (bpp < 0)
757 return -EINVAL;
759 pxafb_set_pixfmt(var, var_to_depth(var));
760 break;
761 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
762 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
763 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
764 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
765 default:
766 return -EINVAL;
769 /* each line must start at a 32-bit word boundary */
770 if ((xpos * bpp) % 32)
771 return -EINVAL;
773 /* xres must align on 32-bit word boundary */
774 var->xres = roundup(var->xres * bpp, 32) / bpp;
776 if ((xpos + var->xres > base_var->xres) ||
777 (ypos + var->yres > base_var->yres))
778 return -EINVAL;
780 var->xres_virtual = var->xres;
781 var->yres_virtual = max(var->yres, var->yres_virtual);
782 return 0;
785 static int overlayfb_map_video_memory(struct pxafb_layer *ofb)
787 struct fb_var_screeninfo *var = &ofb->fb.var;
788 int pfor = NONSTD_TO_PFOR(var->nonstd);
789 int size, bpp = 0;
791 switch (pfor) {
792 case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
793 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
794 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
795 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
796 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
799 ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
801 size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
803 /* don't re-allocate if the original video memory is enough */
804 if (ofb->video_mem) {
805 if (ofb->video_mem_size >= size)
806 return 0;
808 free_pages_exact(ofb->video_mem, ofb->video_mem_size);
811 ofb->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
812 if (ofb->video_mem == NULL)
813 return -ENOMEM;
815 ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
816 ofb->video_mem_size = size;
818 mutex_lock(&ofb->fb.mm_lock);
819 ofb->fb.fix.smem_start = ofb->video_mem_phys;
820 ofb->fb.fix.smem_len = ofb->fb.fix.line_length * var->yres_virtual;
821 mutex_unlock(&ofb->fb.mm_lock);
822 ofb->fb.screen_base = ofb->video_mem;
823 return 0;
826 static int overlayfb_set_par(struct fb_info *info)
828 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
829 struct fb_var_screeninfo *var = &info->var;
830 int xpos, ypos, pfor, bpp, ret;
832 ret = overlayfb_map_video_memory(ofb);
833 if (ret)
834 return ret;
836 bpp = pxafb_var_to_bpp(var);
837 xpos = NONSTD_TO_XPOS(var->nonstd);
838 ypos = NONSTD_TO_XPOS(var->nonstd);
839 pfor = NONSTD_TO_PFOR(var->nonstd);
841 ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
842 OVLxC1_BPP(bpp);
843 ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
845 if (ofb->id == OVERLAY2)
846 ofb->control[1] |= OVL2C2_PFOR(pfor);
848 ofb->ops->setup(ofb);
849 ofb->ops->enable(ofb);
850 return 0;
853 static struct fb_ops overlay_fb_ops = {
854 .owner = THIS_MODULE,
855 .fb_open = overlayfb_open,
856 .fb_release = overlayfb_release,
857 .fb_check_var = overlayfb_check_var,
858 .fb_set_par = overlayfb_set_par,
861 static void __devinit init_pxafb_overlay(struct pxafb_info *fbi,
862 struct pxafb_layer *ofb, int id)
864 sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
866 ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
867 ofb->fb.fix.xpanstep = 0;
868 ofb->fb.fix.ypanstep = 1;
870 ofb->fb.var.activate = FB_ACTIVATE_NOW;
871 ofb->fb.var.height = -1;
872 ofb->fb.var.width = -1;
873 ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
875 ofb->fb.fbops = &overlay_fb_ops;
876 ofb->fb.flags = FBINFO_FLAG_DEFAULT;
877 ofb->fb.node = -1;
878 ofb->fb.pseudo_palette = NULL;
880 ofb->id = id;
881 ofb->ops = &ofb_ops[id];
882 atomic_set(&ofb->usage, 0);
883 ofb->fbi = fbi;
884 init_completion(&ofb->branch_done);
887 static inline int pxafb_overlay_supported(void)
889 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
890 return 1;
892 return 0;
895 static int __devinit pxafb_overlay_init(struct pxafb_info *fbi)
897 int i, ret;
899 if (!pxafb_overlay_supported())
900 return 0;
902 for (i = 0; i < 2; i++) {
903 init_pxafb_overlay(fbi, &fbi->overlay[i], i);
904 ret = register_framebuffer(&fbi->overlay[i].fb);
905 if (ret) {
906 dev_err(fbi->dev, "failed to register overlay %d\n", i);
907 return ret;
911 /* mask all IU/BS/EOF/SOF interrupts */
912 lcd_writel(fbi, LCCR5, ~0);
914 /* place overlay(s) on top of base */
915 fbi->lccr0 |= LCCR0_OUC;
916 pr_info("PXA Overlay driver loaded successfully!\n");
917 return 0;
920 static void __devexit pxafb_overlay_exit(struct pxafb_info *fbi)
922 int i;
924 if (!pxafb_overlay_supported())
925 return;
927 for (i = 0; i < 2; i++)
928 unregister_framebuffer(&fbi->overlay[i].fb);
930 #else
931 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
932 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
933 #endif /* CONFIG_FB_PXA_OVERLAY */
936 * Calculate the PCD value from the clock rate (in picoseconds).
937 * We take account of the PPCR clock setting.
938 * From PXA Developer's Manual:
940 * PixelClock = LCLK
941 * -------------
942 * 2 ( PCD + 1 )
944 * PCD = LCLK
945 * ------------- - 1
946 * 2(PixelClock)
948 * Where:
949 * LCLK = LCD/Memory Clock
950 * PCD = LCCR3[7:0]
952 * PixelClock here is in Hz while the pixclock argument given is the
953 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
955 * The function get_lclk_frequency_10khz returns LCLK in units of
956 * 10khz. Calling the result of this function lclk gives us the
957 * following
959 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
960 * -------------------------------------- - 1
963 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
965 static inline unsigned int get_pcd(struct pxafb_info *fbi,
966 unsigned int pixclock)
968 unsigned long long pcd;
970 /* FIXME: Need to take into account Double Pixel Clock mode
971 * (DPC) bit? or perhaps set it based on the various clock
972 * speeds */
973 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
974 pcd *= pixclock;
975 do_div(pcd, 100000000 * 2);
976 /* no need for this, since we should subtract 1 anyway. they cancel */
977 /* pcd += 1; */ /* make up for integer math truncations */
978 return (unsigned int)pcd;
982 * Some touchscreens need hsync information from the video driver to
983 * function correctly. We export it here. Note that 'hsync_time' and
984 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
985 * of the hsync period in seconds.
987 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
989 unsigned long htime;
991 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
992 fbi->hsync_time = 0;
993 return;
996 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
998 fbi->hsync_time = htime;
1001 unsigned long pxafb_get_hsync_time(struct device *dev)
1003 struct pxafb_info *fbi = dev_get_drvdata(dev);
1005 /* If display is blanked/suspended, hsync isn't active */
1006 if (!fbi || (fbi->state != C_ENABLE))
1007 return 0;
1009 return fbi->hsync_time;
1011 EXPORT_SYMBOL(pxafb_get_hsync_time);
1013 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1014 unsigned long start, size_t size)
1016 struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1017 unsigned int dma_desc_off, pal_desc_off;
1019 if (dma < 0 || dma >= DMA_MAX * 2)
1020 return -EINVAL;
1022 dma_desc = &fbi->dma_buff->dma_desc[dma];
1023 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1025 dma_desc->fsadr = start;
1026 dma_desc->fidr = 0;
1027 dma_desc->ldcmd = size;
1029 if (pal < 0 || pal >= PAL_MAX * 2) {
1030 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1031 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1032 } else {
1033 pal_desc = &fbi->dma_buff->pal_desc[pal];
1034 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1036 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1037 pal_desc->fidr = 0;
1039 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1040 pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1041 else
1042 pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1044 pal_desc->ldcmd |= LDCMD_PAL;
1046 /* flip back and forth between palette and frame buffer */
1047 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1048 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1049 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1052 return 0;
1055 static void setup_base_frame(struct pxafb_info *fbi, int branch)
1057 struct fb_var_screeninfo *var = &fbi->fb.var;
1058 struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1059 int nbytes, dma, pal, bpp = var->bits_per_pixel;
1060 unsigned long offset;
1062 dma = DMA_BASE + (branch ? DMA_MAX : 0);
1063 pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1065 nbytes = fix->line_length * var->yres;
1066 offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1068 if (fbi->lccr0 & LCCR0_SDS) {
1069 nbytes = nbytes / 2;
1070 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1073 setup_frame_dma(fbi, dma, pal, offset, nbytes);
1076 #ifdef CONFIG_FB_PXA_SMARTPANEL
1077 static int setup_smart_dma(struct pxafb_info *fbi)
1079 struct pxafb_dma_descriptor *dma_desc;
1080 unsigned long dma_desc_off, cmd_buff_off;
1082 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1083 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1084 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1086 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1087 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1088 dma_desc->fidr = 0;
1089 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1091 fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1092 return 0;
1095 int pxafb_smart_flush(struct fb_info *info)
1097 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1098 uint32_t prsr;
1099 int ret = 0;
1101 /* disable controller until all registers are set up */
1102 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1104 /* 1. make it an even number of commands to align on 32-bit boundary
1105 * 2. add the interrupt command to the end of the chain so we can
1106 * keep track of the end of the transfer
1109 while (fbi->n_smart_cmds & 1)
1110 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1112 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1113 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1114 setup_smart_dma(fbi);
1116 /* continue to execute next command */
1117 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1118 lcd_writel(fbi, PRSR, prsr);
1120 /* stop the processor in case it executed "wait for sync" cmd */
1121 lcd_writel(fbi, CMDCR, 0x0001);
1123 /* don't send interrupts for fifo underruns on channel 6 */
1124 lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1126 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1127 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1128 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1129 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1130 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1131 lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1133 /* begin sending */
1134 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1136 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1137 pr_warning("%s: timeout waiting for command done\n",
1138 __func__);
1139 ret = -ETIMEDOUT;
1142 /* quick disable */
1143 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1144 lcd_writel(fbi, PRSR, prsr);
1145 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1146 lcd_writel(fbi, FDADR6, 0);
1147 fbi->n_smart_cmds = 0;
1148 return ret;
1151 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1153 int i;
1154 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1156 for (i = 0; i < n_cmds; i++, cmds++) {
1157 /* if it is a software delay, flush and delay */
1158 if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1159 pxafb_smart_flush(info);
1160 mdelay(*cmds & 0xff);
1161 continue;
1164 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1165 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1166 pxafb_smart_flush(info);
1168 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1171 return 0;
1174 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1176 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1177 return (t == 0) ? 1 : t;
1180 static void setup_smart_timing(struct pxafb_info *fbi,
1181 struct fb_var_screeninfo *var)
1183 struct pxafb_mach_info *inf = fbi->dev->platform_data;
1184 struct pxafb_mode_info *mode = &inf->modes[0];
1185 unsigned long lclk = clk_get_rate(fbi->clk);
1186 unsigned t1, t2, t3, t4;
1188 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1189 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1190 t3 = mode->op_hold_time;
1191 t4 = mode->cmd_inh_time;
1193 fbi->reg_lccr1 =
1194 LCCR1_DisWdth(var->xres) |
1195 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1196 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1197 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1199 fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1200 fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1201 fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1202 fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1204 /* FIXME: make this configurable */
1205 fbi->reg_cmdcr = 1;
1208 static int pxafb_smart_thread(void *arg)
1210 struct pxafb_info *fbi = arg;
1211 struct pxafb_mach_info *inf = fbi->dev->platform_data;
1213 if (!fbi || !inf->smart_update) {
1214 pr_err("%s: not properly initialized, thread terminated\n",
1215 __func__);
1216 return -EINVAL;
1219 pr_debug("%s(): task starting\n", __func__);
1221 set_freezable();
1222 while (!kthread_should_stop()) {
1224 if (try_to_freeze())
1225 continue;
1227 mutex_lock(&fbi->ctrlr_lock);
1229 if (fbi->state == C_ENABLE) {
1230 inf->smart_update(&fbi->fb);
1231 complete(&fbi->refresh_done);
1234 mutex_unlock(&fbi->ctrlr_lock);
1236 set_current_state(TASK_INTERRUPTIBLE);
1237 schedule_timeout(30 * HZ / 1000);
1240 pr_debug("%s(): task ending\n", __func__);
1241 return 0;
1244 static int pxafb_smart_init(struct pxafb_info *fbi)
1246 if (!(fbi->lccr0 & LCCR0_LCDT))
1247 return 0;
1249 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1250 fbi->n_smart_cmds = 0;
1252 init_completion(&fbi->command_done);
1253 init_completion(&fbi->refresh_done);
1255 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1256 "lcd_refresh");
1257 if (IS_ERR(fbi->smart_thread)) {
1258 pr_err("%s: unable to create kernel thread\n", __func__);
1259 return PTR_ERR(fbi->smart_thread);
1262 return 0;
1264 #else
1265 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1267 return 0;
1270 int pxafb_smart_flush(struct fb_info *info)
1272 return 0;
1275 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1276 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1278 static void setup_parallel_timing(struct pxafb_info *fbi,
1279 struct fb_var_screeninfo *var)
1281 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1283 fbi->reg_lccr1 =
1284 LCCR1_DisWdth(var->xres) +
1285 LCCR1_HorSnchWdth(var->hsync_len) +
1286 LCCR1_BegLnDel(var->left_margin) +
1287 LCCR1_EndLnDel(var->right_margin);
1290 * If we have a dual scan LCD, we need to halve
1291 * the YRES parameter.
1293 lines_per_panel = var->yres;
1294 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1295 lines_per_panel /= 2;
1297 fbi->reg_lccr2 =
1298 LCCR2_DisHght(lines_per_panel) +
1299 LCCR2_VrtSnchWdth(var->vsync_len) +
1300 LCCR2_BegFrmDel(var->upper_margin) +
1301 LCCR2_EndFrmDel(var->lower_margin);
1303 fbi->reg_lccr3 = fbi->lccr3 |
1304 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
1305 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1306 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
1307 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1309 if (pcd) {
1310 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1311 set_hsync_time(fbi, pcd);
1316 * pxafb_activate_var():
1317 * Configures LCD Controller based on entries in var parameter.
1318 * Settings are only written to the controller if changes were made.
1320 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1321 struct pxafb_info *fbi)
1323 u_long flags;
1325 /* Update shadow copy atomically */
1326 local_irq_save(flags);
1328 #ifdef CONFIG_FB_PXA_SMARTPANEL
1329 if (fbi->lccr0 & LCCR0_LCDT)
1330 setup_smart_timing(fbi, var);
1331 else
1332 #endif
1333 setup_parallel_timing(fbi, var);
1335 setup_base_frame(fbi, 0);
1337 fbi->reg_lccr0 = fbi->lccr0 |
1338 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1339 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
1341 fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1343 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1344 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1345 local_irq_restore(flags);
1348 * Only update the registers if the controller is enabled
1349 * and something has changed.
1351 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1352 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1353 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1354 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1355 (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1356 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1357 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))
1358 pxafb_schedule_work(fbi, C_REENABLE);
1360 return 0;
1364 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1365 * Do not call them directly; set_ctrlr_state does the correct serialisation
1366 * to ensure that things happen in the right way 100% of time time.
1367 * -- rmk
1369 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1371 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1373 if (fbi->backlight_power)
1374 fbi->backlight_power(on);
1377 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1379 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1381 if (fbi->lcd_power)
1382 fbi->lcd_power(on, &fbi->fb.var);
1385 static void pxafb_enable_controller(struct pxafb_info *fbi)
1387 pr_debug("pxafb: Enabling LCD controller\n");
1388 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1389 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1390 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1391 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1392 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1393 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1395 /* enable LCD controller clock */
1396 clk_enable(fbi->clk);
1398 if (fbi->lccr0 & LCCR0_LCDT)
1399 return;
1401 /* Sequence from 11.7.10 */
1402 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1403 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1404 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1405 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1406 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1408 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1409 lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1410 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1413 static void pxafb_disable_controller(struct pxafb_info *fbi)
1415 uint32_t lccr0;
1417 #ifdef CONFIG_FB_PXA_SMARTPANEL
1418 if (fbi->lccr0 & LCCR0_LCDT) {
1419 wait_for_completion_timeout(&fbi->refresh_done,
1420 200 * HZ / 1000);
1421 return;
1423 #endif
1425 /* Clear LCD Status Register */
1426 lcd_writel(fbi, LCSR, 0xffffffff);
1428 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1429 lcd_writel(fbi, LCCR0, lccr0);
1430 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1432 wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1434 /* disable LCD controller clock */
1435 clk_disable(fbi->clk);
1439 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1441 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1443 struct pxafb_info *fbi = dev_id;
1444 unsigned int lccr0, lcsr;
1446 lcsr = lcd_readl(fbi, LCSR);
1447 if (lcsr & LCSR_LDD) {
1448 lccr0 = lcd_readl(fbi, LCCR0);
1449 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1450 complete(&fbi->disable_done);
1453 #ifdef CONFIG_FB_PXA_SMARTPANEL
1454 if (lcsr & LCSR_CMD_INT)
1455 complete(&fbi->command_done);
1456 #endif
1457 lcd_writel(fbi, LCSR, lcsr);
1459 #ifdef CONFIG_FB_PXA_OVERLAY
1461 unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1462 if (lcsr1 & LCSR1_BS(1))
1463 complete(&fbi->overlay[0].branch_done);
1465 if (lcsr1 & LCSR1_BS(2))
1466 complete(&fbi->overlay[1].branch_done);
1468 lcd_writel(fbi, LCSR1, lcsr1);
1470 #endif
1471 return IRQ_HANDLED;
1475 * This function must be called from task context only, since it will
1476 * sleep when disabling the LCD controller, or if we get two contending
1477 * processes trying to alter state.
1479 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1481 u_int old_state;
1483 mutex_lock(&fbi->ctrlr_lock);
1485 old_state = fbi->state;
1488 * Hack around fbcon initialisation.
1490 if (old_state == C_STARTUP && state == C_REENABLE)
1491 state = C_ENABLE;
1493 switch (state) {
1494 case C_DISABLE_CLKCHANGE:
1496 * Disable controller for clock change. If the
1497 * controller is already disabled, then do nothing.
1499 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1500 fbi->state = state;
1501 /* TODO __pxafb_lcd_power(fbi, 0); */
1502 pxafb_disable_controller(fbi);
1504 break;
1506 case C_DISABLE_PM:
1507 case C_DISABLE:
1509 * Disable controller
1511 if (old_state != C_DISABLE) {
1512 fbi->state = state;
1513 __pxafb_backlight_power(fbi, 0);
1514 __pxafb_lcd_power(fbi, 0);
1515 if (old_state != C_DISABLE_CLKCHANGE)
1516 pxafb_disable_controller(fbi);
1518 break;
1520 case C_ENABLE_CLKCHANGE:
1522 * Enable the controller after clock change. Only
1523 * do this if we were disabled for the clock change.
1525 if (old_state == C_DISABLE_CLKCHANGE) {
1526 fbi->state = C_ENABLE;
1527 pxafb_enable_controller(fbi);
1528 /* TODO __pxafb_lcd_power(fbi, 1); */
1530 break;
1532 case C_REENABLE:
1534 * Re-enable the controller only if it was already
1535 * enabled. This is so we reprogram the control
1536 * registers.
1538 if (old_state == C_ENABLE) {
1539 __pxafb_lcd_power(fbi, 0);
1540 pxafb_disable_controller(fbi);
1541 pxafb_enable_controller(fbi);
1542 __pxafb_lcd_power(fbi, 1);
1544 break;
1546 case C_ENABLE_PM:
1548 * Re-enable the controller after PM. This is not
1549 * perfect - think about the case where we were doing
1550 * a clock change, and we suspended half-way through.
1552 if (old_state != C_DISABLE_PM)
1553 break;
1554 /* fall through */
1556 case C_ENABLE:
1558 * Power up the LCD screen, enable controller, and
1559 * turn on the backlight.
1561 if (old_state != C_ENABLE) {
1562 fbi->state = C_ENABLE;
1563 pxafb_enable_controller(fbi);
1564 __pxafb_lcd_power(fbi, 1);
1565 __pxafb_backlight_power(fbi, 1);
1567 break;
1569 mutex_unlock(&fbi->ctrlr_lock);
1573 * Our LCD controller task (which is called when we blank or unblank)
1574 * via keventd.
1576 static void pxafb_task(struct work_struct *work)
1578 struct pxafb_info *fbi =
1579 container_of(work, struct pxafb_info, task);
1580 u_int state = xchg(&fbi->task_state, -1);
1582 set_ctrlr_state(fbi, state);
1585 #ifdef CONFIG_CPU_FREQ
1587 * CPU clock speed change handler. We need to adjust the LCD timing
1588 * parameters when the CPU clock is adjusted by the power management
1589 * subsystem.
1591 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1593 static int
1594 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1596 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1597 /* TODO struct cpufreq_freqs *f = data; */
1598 u_int pcd;
1600 switch (val) {
1601 case CPUFREQ_PRECHANGE:
1602 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1603 break;
1605 case CPUFREQ_POSTCHANGE:
1606 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1607 set_hsync_time(fbi, pcd);
1608 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1609 LCCR3_PixClkDiv(pcd);
1610 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1611 break;
1613 return 0;
1616 static int
1617 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1619 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1620 struct fb_var_screeninfo *var = &fbi->fb.var;
1621 struct cpufreq_policy *policy = data;
1623 switch (val) {
1624 case CPUFREQ_ADJUST:
1625 case CPUFREQ_INCOMPATIBLE:
1626 pr_debug("min dma period: %d ps, "
1627 "new clock %d kHz\n", pxafb_display_dma_period(var),
1628 policy->max);
1629 /* TODO: fill in min/max values */
1630 break;
1632 return 0;
1634 #endif
1636 #ifdef CONFIG_PM
1638 * Power management hooks. Note that we won't be called from IRQ context,
1639 * unlike the blank functions above, so we may sleep.
1641 static int pxafb_suspend(struct device *dev)
1643 struct pxafb_info *fbi = dev_get_drvdata(dev);
1645 set_ctrlr_state(fbi, C_DISABLE_PM);
1646 return 0;
1649 static int pxafb_resume(struct device *dev)
1651 struct pxafb_info *fbi = dev_get_drvdata(dev);
1653 set_ctrlr_state(fbi, C_ENABLE_PM);
1654 return 0;
1657 static struct dev_pm_ops pxafb_pm_ops = {
1658 .suspend = pxafb_suspend,
1659 .resume = pxafb_resume,
1661 #endif
1663 static int __devinit pxafb_init_video_memory(struct pxafb_info *fbi)
1665 int size = PAGE_ALIGN(fbi->video_mem_size);
1667 fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1668 if (fbi->video_mem == NULL)
1669 return -ENOMEM;
1671 fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1672 fbi->video_mem_size = size;
1674 fbi->fb.fix.smem_start = fbi->video_mem_phys;
1675 fbi->fb.fix.smem_len = fbi->video_mem_size;
1676 fbi->fb.screen_base = fbi->video_mem;
1678 return fbi->video_mem ? 0 : -ENOMEM;
1681 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1682 struct pxafb_mach_info *inf)
1684 unsigned int lcd_conn = inf->lcd_conn;
1685 struct pxafb_mode_info *m;
1686 int i;
1688 fbi->cmap_inverse = inf->cmap_inverse;
1689 fbi->cmap_static = inf->cmap_static;
1690 fbi->lccr4 = inf->lccr4;
1692 switch (lcd_conn & LCD_TYPE_MASK) {
1693 case LCD_TYPE_MONO_STN:
1694 fbi->lccr0 = LCCR0_CMS;
1695 break;
1696 case LCD_TYPE_MONO_DSTN:
1697 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1698 break;
1699 case LCD_TYPE_COLOR_STN:
1700 fbi->lccr0 = 0;
1701 break;
1702 case LCD_TYPE_COLOR_DSTN:
1703 fbi->lccr0 = LCCR0_SDS;
1704 break;
1705 case LCD_TYPE_COLOR_TFT:
1706 fbi->lccr0 = LCCR0_PAS;
1707 break;
1708 case LCD_TYPE_SMART_PANEL:
1709 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1710 break;
1711 default:
1712 /* fall back to backward compatibility way */
1713 fbi->lccr0 = inf->lccr0;
1714 fbi->lccr3 = inf->lccr3;
1715 goto decode_mode;
1718 if (lcd_conn == LCD_MONO_STN_8BPP)
1719 fbi->lccr0 |= LCCR0_DPD;
1721 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1723 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1724 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1725 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1727 decode_mode:
1728 pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1730 /* decide video memory size as follows:
1731 * 1. default to mode of maximum resolution
1732 * 2. allow platform to override
1733 * 3. allow module parameter to override
1735 for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1736 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1737 m->xres * m->yres * m->bpp / 8);
1739 if (inf->video_mem_size > fbi->video_mem_size)
1740 fbi->video_mem_size = inf->video_mem_size;
1742 if (video_mem_size > fbi->video_mem_size)
1743 fbi->video_mem_size = video_mem_size;
1746 static struct pxafb_info * __devinit pxafb_init_fbinfo(struct device *dev)
1748 struct pxafb_info *fbi;
1749 void *addr;
1750 struct pxafb_mach_info *inf = dev->platform_data;
1752 /* Alloc the pxafb_info and pseudo_palette in one step */
1753 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1754 if (!fbi)
1755 return NULL;
1757 memset(fbi, 0, sizeof(struct pxafb_info));
1758 fbi->dev = dev;
1760 fbi->clk = clk_get(dev, NULL);
1761 if (IS_ERR(fbi->clk)) {
1762 kfree(fbi);
1763 return NULL;
1766 strcpy(fbi->fb.fix.id, PXA_NAME);
1768 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1769 fbi->fb.fix.type_aux = 0;
1770 fbi->fb.fix.xpanstep = 0;
1771 fbi->fb.fix.ypanstep = 1;
1772 fbi->fb.fix.ywrapstep = 0;
1773 fbi->fb.fix.accel = FB_ACCEL_NONE;
1775 fbi->fb.var.nonstd = 0;
1776 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1777 fbi->fb.var.height = -1;
1778 fbi->fb.var.width = -1;
1779 fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
1780 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1782 fbi->fb.fbops = &pxafb_ops;
1783 fbi->fb.flags = FBINFO_DEFAULT;
1784 fbi->fb.node = -1;
1786 addr = fbi;
1787 addr = addr + sizeof(struct pxafb_info);
1788 fbi->fb.pseudo_palette = addr;
1790 fbi->state = C_STARTUP;
1791 fbi->task_state = (u_char)-1;
1793 pxafb_decode_mach_info(fbi, inf);
1795 init_waitqueue_head(&fbi->ctrlr_wait);
1796 INIT_WORK(&fbi->task, pxafb_task);
1797 mutex_init(&fbi->ctrlr_lock);
1798 init_completion(&fbi->disable_done);
1800 return fbi;
1803 #ifdef CONFIG_FB_PXA_PARAMETERS
1804 static int __devinit parse_opt_mode(struct device *dev, const char *this_opt)
1806 struct pxafb_mach_info *inf = dev->platform_data;
1808 const char *name = this_opt+5;
1809 unsigned int namelen = strlen(name);
1810 int res_specified = 0, bpp_specified = 0;
1811 unsigned int xres = 0, yres = 0, bpp = 0;
1812 int yres_specified = 0;
1813 int i;
1814 for (i = namelen-1; i >= 0; i--) {
1815 switch (name[i]) {
1816 case '-':
1817 namelen = i;
1818 if (!bpp_specified && !yres_specified) {
1819 bpp = simple_strtoul(&name[i+1], NULL, 0);
1820 bpp_specified = 1;
1821 } else
1822 goto done;
1823 break;
1824 case 'x':
1825 if (!yres_specified) {
1826 yres = simple_strtoul(&name[i+1], NULL, 0);
1827 yres_specified = 1;
1828 } else
1829 goto done;
1830 break;
1831 case '0' ... '9':
1832 break;
1833 default:
1834 goto done;
1837 if (i < 0 && yres_specified) {
1838 xres = simple_strtoul(name, NULL, 0);
1839 res_specified = 1;
1841 done:
1842 if (res_specified) {
1843 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1844 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1846 if (bpp_specified)
1847 switch (bpp) {
1848 case 1:
1849 case 2:
1850 case 4:
1851 case 8:
1852 case 16:
1853 inf->modes[0].bpp = bpp;
1854 dev_info(dev, "overriding bit depth: %d\n", bpp);
1855 break;
1856 default:
1857 dev_err(dev, "Depth %d is not valid\n", bpp);
1858 return -EINVAL;
1860 return 0;
1863 static int __devinit parse_opt(struct device *dev, char *this_opt)
1865 struct pxafb_mach_info *inf = dev->platform_data;
1866 struct pxafb_mode_info *mode = &inf->modes[0];
1867 char s[64];
1869 s[0] = '\0';
1871 if (!strncmp(this_opt, "vmem:", 5)) {
1872 video_mem_size = memparse(this_opt + 5, NULL);
1873 } else if (!strncmp(this_opt, "mode:", 5)) {
1874 return parse_opt_mode(dev, this_opt);
1875 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1876 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1877 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1878 } else if (!strncmp(this_opt, "left:", 5)) {
1879 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1880 sprintf(s, "left: %u\n", mode->left_margin);
1881 } else if (!strncmp(this_opt, "right:", 6)) {
1882 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1883 sprintf(s, "right: %u\n", mode->right_margin);
1884 } else if (!strncmp(this_opt, "upper:", 6)) {
1885 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1886 sprintf(s, "upper: %u\n", mode->upper_margin);
1887 } else if (!strncmp(this_opt, "lower:", 6)) {
1888 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1889 sprintf(s, "lower: %u\n", mode->lower_margin);
1890 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1891 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1892 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1893 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1894 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1895 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1896 } else if (!strncmp(this_opt, "hsync:", 6)) {
1897 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1898 sprintf(s, "hsync: Active Low\n");
1899 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1900 } else {
1901 sprintf(s, "hsync: Active High\n");
1902 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1904 } else if (!strncmp(this_opt, "vsync:", 6)) {
1905 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1906 sprintf(s, "vsync: Active Low\n");
1907 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1908 } else {
1909 sprintf(s, "vsync: Active High\n");
1910 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1912 } else if (!strncmp(this_opt, "dpc:", 4)) {
1913 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1914 sprintf(s, "double pixel clock: false\n");
1915 inf->lccr3 &= ~LCCR3_DPC;
1916 } else {
1917 sprintf(s, "double pixel clock: true\n");
1918 inf->lccr3 |= LCCR3_DPC;
1920 } else if (!strncmp(this_opt, "outputen:", 9)) {
1921 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1922 sprintf(s, "output enable: active low\n");
1923 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1924 } else {
1925 sprintf(s, "output enable: active high\n");
1926 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1928 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1929 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1930 sprintf(s, "pixel clock polarity: falling edge\n");
1931 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1932 } else {
1933 sprintf(s, "pixel clock polarity: rising edge\n");
1934 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1936 } else if (!strncmp(this_opt, "color", 5)) {
1937 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1938 } else if (!strncmp(this_opt, "mono", 4)) {
1939 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1940 } else if (!strncmp(this_opt, "active", 6)) {
1941 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1942 } else if (!strncmp(this_opt, "passive", 7)) {
1943 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1944 } else if (!strncmp(this_opt, "single", 6)) {
1945 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1946 } else if (!strncmp(this_opt, "dual", 4)) {
1947 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1948 } else if (!strncmp(this_opt, "4pix", 4)) {
1949 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1950 } else if (!strncmp(this_opt, "8pix", 4)) {
1951 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1952 } else {
1953 dev_err(dev, "unknown option: %s\n", this_opt);
1954 return -EINVAL;
1957 if (s[0] != '\0')
1958 dev_info(dev, "override %s", s);
1960 return 0;
1963 static int __devinit pxafb_parse_options(struct device *dev, char *options)
1965 char *this_opt;
1966 int ret;
1968 if (!options || !*options)
1969 return 0;
1971 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1973 /* could be made table driven or similar?... */
1974 while ((this_opt = strsep(&options, ",")) != NULL) {
1975 ret = parse_opt(dev, this_opt);
1976 if (ret)
1977 return ret;
1979 return 0;
1982 static char g_options[256] __devinitdata = "";
1984 #ifndef MODULE
1985 static int __init pxafb_setup_options(void)
1987 char *options = NULL;
1989 if (fb_get_options("pxafb", &options))
1990 return -ENODEV;
1992 if (options)
1993 strlcpy(g_options, options, sizeof(g_options));
1995 return 0;
1997 #else
1998 #define pxafb_setup_options() (0)
2000 module_param_string(options, g_options, sizeof(g_options), 0);
2001 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
2002 #endif
2004 #else
2005 #define pxafb_parse_options(...) (0)
2006 #define pxafb_setup_options() (0)
2007 #endif
2009 #ifdef DEBUG_VAR
2010 /* Check for various illegal bit-combinations. Currently only
2011 * a warning is given. */
2012 static void __devinit pxafb_check_options(struct device *dev,
2013 struct pxafb_mach_info *inf)
2015 if (inf->lcd_conn)
2016 return;
2018 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2019 dev_warn(dev, "machine LCCR0 setting contains "
2020 "illegal bits: %08x\n",
2021 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2022 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2023 dev_warn(dev, "machine LCCR3 setting contains "
2024 "illegal bits: %08x\n",
2025 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2026 if (inf->lccr0 & LCCR0_DPD &&
2027 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2028 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2029 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2030 dev_warn(dev, "Double Pixel Data (DPD) mode is "
2031 "only valid in passive mono"
2032 " single panel mode\n");
2033 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2034 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2035 dev_warn(dev, "Dual panel only valid in passive mode\n");
2036 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2037 (inf->modes->upper_margin || inf->modes->lower_margin))
2038 dev_warn(dev, "Upper and lower margins must be 0 in "
2039 "passive mode\n");
2041 #else
2042 #define pxafb_check_options(...) do {} while (0)
2043 #endif
2045 static int __devinit pxafb_probe(struct platform_device *dev)
2047 struct pxafb_info *fbi;
2048 struct pxafb_mach_info *inf;
2049 struct resource *r;
2050 int irq, ret;
2052 dev_dbg(&dev->dev, "pxafb_probe\n");
2054 inf = dev->dev.platform_data;
2055 ret = -ENOMEM;
2056 fbi = NULL;
2057 if (!inf)
2058 goto failed;
2060 ret = pxafb_parse_options(&dev->dev, g_options);
2061 if (ret < 0)
2062 goto failed;
2064 pxafb_check_options(&dev->dev, inf);
2066 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2067 inf->modes->xres,
2068 inf->modes->yres,
2069 inf->modes->bpp);
2070 if (inf->modes->xres == 0 ||
2071 inf->modes->yres == 0 ||
2072 inf->modes->bpp == 0) {
2073 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2074 ret = -EINVAL;
2075 goto failed;
2078 fbi = pxafb_init_fbinfo(&dev->dev);
2079 if (!fbi) {
2080 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
2081 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2082 ret = -ENOMEM;
2083 goto failed;
2086 if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2087 fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2089 fbi->backlight_power = inf->pxafb_backlight_power;
2090 fbi->lcd_power = inf->pxafb_lcd_power;
2092 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2093 if (r == NULL) {
2094 dev_err(&dev->dev, "no I/O memory resource defined\n");
2095 ret = -ENODEV;
2096 goto failed_fbi;
2099 r = request_mem_region(r->start, resource_size(r), dev->name);
2100 if (r == NULL) {
2101 dev_err(&dev->dev, "failed to request I/O memory\n");
2102 ret = -EBUSY;
2103 goto failed_fbi;
2106 fbi->mmio_base = ioremap(r->start, resource_size(r));
2107 if (fbi->mmio_base == NULL) {
2108 dev_err(&dev->dev, "failed to map I/O memory\n");
2109 ret = -EBUSY;
2110 goto failed_free_res;
2113 fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2114 fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2115 &fbi->dma_buff_phys, GFP_KERNEL);
2116 if (fbi->dma_buff == NULL) {
2117 dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2118 ret = -ENOMEM;
2119 goto failed_free_io;
2122 ret = pxafb_init_video_memory(fbi);
2123 if (ret) {
2124 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2125 ret = -ENOMEM;
2126 goto failed_free_dma;
2129 irq = platform_get_irq(dev, 0);
2130 if (irq < 0) {
2131 dev_err(&dev->dev, "no IRQ defined\n");
2132 ret = -ENODEV;
2133 goto failed_free_mem;
2136 ret = request_irq(irq, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
2137 if (ret) {
2138 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2139 ret = -EBUSY;
2140 goto failed_free_mem;
2143 ret = pxafb_smart_init(fbi);
2144 if (ret) {
2145 dev_err(&dev->dev, "failed to initialize smartpanel\n");
2146 goto failed_free_irq;
2150 * This makes sure that our colour bitfield
2151 * descriptors are correctly initialised.
2153 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2154 if (ret) {
2155 dev_err(&dev->dev, "failed to get suitable mode\n");
2156 goto failed_free_irq;
2159 ret = pxafb_set_par(&fbi->fb);
2160 if (ret) {
2161 dev_err(&dev->dev, "Failed to set parameters\n");
2162 goto failed_free_irq;
2165 platform_set_drvdata(dev, fbi);
2167 ret = register_framebuffer(&fbi->fb);
2168 if (ret < 0) {
2169 dev_err(&dev->dev,
2170 "Failed to register framebuffer device: %d\n", ret);
2171 goto failed_free_cmap;
2174 pxafb_overlay_init(fbi);
2176 #ifdef CONFIG_CPU_FREQ
2177 fbi->freq_transition.notifier_call = pxafb_freq_transition;
2178 fbi->freq_policy.notifier_call = pxafb_freq_policy;
2179 cpufreq_register_notifier(&fbi->freq_transition,
2180 CPUFREQ_TRANSITION_NOTIFIER);
2181 cpufreq_register_notifier(&fbi->freq_policy,
2182 CPUFREQ_POLICY_NOTIFIER);
2183 #endif
2186 * Ok, now enable the LCD controller
2188 set_ctrlr_state(fbi, C_ENABLE);
2190 return 0;
2192 failed_free_cmap:
2193 if (fbi->fb.cmap.len)
2194 fb_dealloc_cmap(&fbi->fb.cmap);
2195 failed_free_irq:
2196 free_irq(irq, fbi);
2197 failed_free_mem:
2198 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2199 failed_free_dma:
2200 dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2201 fbi->dma_buff, fbi->dma_buff_phys);
2202 failed_free_io:
2203 iounmap(fbi->mmio_base);
2204 failed_free_res:
2205 release_mem_region(r->start, resource_size(r));
2206 failed_fbi:
2207 clk_put(fbi->clk);
2208 platform_set_drvdata(dev, NULL);
2209 kfree(fbi);
2210 failed:
2211 return ret;
2214 static int __devexit pxafb_remove(struct platform_device *dev)
2216 struct pxafb_info *fbi = platform_get_drvdata(dev);
2217 struct resource *r;
2218 int irq;
2219 struct fb_info *info;
2221 if (!fbi)
2222 return 0;
2224 info = &fbi->fb;
2226 pxafb_overlay_exit(fbi);
2227 unregister_framebuffer(info);
2229 pxafb_disable_controller(fbi);
2231 if (fbi->fb.cmap.len)
2232 fb_dealloc_cmap(&fbi->fb.cmap);
2234 irq = platform_get_irq(dev, 0);
2235 free_irq(irq, fbi);
2237 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2239 dma_free_writecombine(&dev->dev, fbi->dma_buff_size,
2240 fbi->dma_buff, fbi->dma_buff_phys);
2242 iounmap(fbi->mmio_base);
2244 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2245 release_mem_region(r->start, resource_size(r));
2247 clk_put(fbi->clk);
2248 kfree(fbi);
2250 return 0;
2253 static struct platform_driver pxafb_driver = {
2254 .probe = pxafb_probe,
2255 .remove = __devexit_p(pxafb_remove),
2256 .driver = {
2257 .owner = THIS_MODULE,
2258 .name = "pxa2xx-fb",
2259 #ifdef CONFIG_PM
2260 .pm = &pxafb_pm_ops,
2261 #endif
2265 static int __init pxafb_init(void)
2267 if (pxafb_setup_options())
2268 return -EINVAL;
2270 return platform_driver_register(&pxafb_driver);
2273 static void __exit pxafb_exit(void)
2275 platform_driver_unregister(&pxafb_driver);
2278 module_init(pxafb_init);
2279 module_exit(pxafb_exit);
2281 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2282 MODULE_LICENSE("GPL");