mm-only debug patch...
[mmotm.git] / fs / btrfs / disk-io.c
blob100551a66c46dc7d3ad51eb341039ee362724d20
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 static void free_fs_root(struct btrfs_root *root);
46 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
49 * end_io_wq structs are used to do processing in task context when an IO is
50 * complete. This is used during reads to verify checksums, and it is used
51 * by writes to insert metadata for new file extents after IO is complete.
53 struct end_io_wq {
54 struct bio *bio;
55 bio_end_io_t *end_io;
56 void *private;
57 struct btrfs_fs_info *info;
58 int error;
59 int metadata;
60 struct list_head list;
61 struct btrfs_work work;
65 * async submit bios are used to offload expensive checksumming
66 * onto the worker threads. They checksum file and metadata bios
67 * just before they are sent down the IO stack.
69 struct async_submit_bio {
70 struct inode *inode;
71 struct bio *bio;
72 struct list_head list;
73 extent_submit_bio_hook_t *submit_bio_start;
74 extent_submit_bio_hook_t *submit_bio_done;
75 int rw;
76 int mirror_num;
77 unsigned long bio_flags;
78 struct btrfs_work work;
81 /* These are used to set the lockdep class on the extent buffer locks.
82 * The class is set by the readpage_end_io_hook after the buffer has
83 * passed csum validation but before the pages are unlocked.
85 * The lockdep class is also set by btrfs_init_new_buffer on freshly
86 * allocated blocks.
88 * The class is based on the level in the tree block, which allows lockdep
89 * to know that lower nodes nest inside the locks of higher nodes.
91 * We also add a check to make sure the highest level of the tree is
92 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
93 * code needs update as well.
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
97 # error
98 # endif
99 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
100 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
101 /* leaf */
102 "btrfs-extent-00",
103 "btrfs-extent-01",
104 "btrfs-extent-02",
105 "btrfs-extent-03",
106 "btrfs-extent-04",
107 "btrfs-extent-05",
108 "btrfs-extent-06",
109 "btrfs-extent-07",
110 /* highest possible level */
111 "btrfs-extent-08",
113 #endif
116 * extents on the btree inode are pretty simple, there's one extent
117 * that covers the entire device
119 static struct extent_map *btree_get_extent(struct inode *inode,
120 struct page *page, size_t page_offset, u64 start, u64 len,
121 int create)
123 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
124 struct extent_map *em;
125 int ret;
127 read_lock(&em_tree->lock);
128 em = lookup_extent_mapping(em_tree, start, len);
129 if (em) {
130 em->bdev =
131 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
132 read_unlock(&em_tree->lock);
133 goto out;
135 read_unlock(&em_tree->lock);
137 em = alloc_extent_map(GFP_NOFS);
138 if (!em) {
139 em = ERR_PTR(-ENOMEM);
140 goto out;
142 em->start = 0;
143 em->len = (u64)-1;
144 em->block_len = (u64)-1;
145 em->block_start = 0;
146 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
148 write_lock(&em_tree->lock);
149 ret = add_extent_mapping(em_tree, em);
150 if (ret == -EEXIST) {
151 u64 failed_start = em->start;
152 u64 failed_len = em->len;
154 free_extent_map(em);
155 em = lookup_extent_mapping(em_tree, start, len);
156 if (em) {
157 ret = 0;
158 } else {
159 em = lookup_extent_mapping(em_tree, failed_start,
160 failed_len);
161 ret = -EIO;
163 } else if (ret) {
164 free_extent_map(em);
165 em = NULL;
167 write_unlock(&em_tree->lock);
169 if (ret)
170 em = ERR_PTR(ret);
171 out:
172 return em;
175 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
177 return crc32c(seed, data, len);
180 void btrfs_csum_final(u32 crc, char *result)
182 *(__le32 *)result = ~cpu_to_le32(crc);
186 * compute the csum for a btree block, and either verify it or write it
187 * into the csum field of the block.
189 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
190 int verify)
192 u16 csum_size =
193 btrfs_super_csum_size(&root->fs_info->super_copy);
194 char *result = NULL;
195 unsigned long len;
196 unsigned long cur_len;
197 unsigned long offset = BTRFS_CSUM_SIZE;
198 char *map_token = NULL;
199 char *kaddr;
200 unsigned long map_start;
201 unsigned long map_len;
202 int err;
203 u32 crc = ~(u32)0;
204 unsigned long inline_result;
206 len = buf->len - offset;
207 while (len > 0) {
208 err = map_private_extent_buffer(buf, offset, 32,
209 &map_token, &kaddr,
210 &map_start, &map_len, KM_USER0);
211 if (err)
212 return 1;
213 cur_len = min(len, map_len - (offset - map_start));
214 crc = btrfs_csum_data(root, kaddr + offset - map_start,
215 crc, cur_len);
216 len -= cur_len;
217 offset += cur_len;
218 unmap_extent_buffer(buf, map_token, KM_USER0);
220 if (csum_size > sizeof(inline_result)) {
221 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
222 if (!result)
223 return 1;
224 } else {
225 result = (char *)&inline_result;
228 btrfs_csum_final(crc, result);
230 if (verify) {
231 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
232 u32 val;
233 u32 found = 0;
234 memcpy(&found, result, csum_size);
236 read_extent_buffer(buf, &val, 0, csum_size);
237 if (printk_ratelimit()) {
238 printk(KERN_INFO "btrfs: %s checksum verify "
239 "failed on %llu wanted %X found %X "
240 "level %d\n",
241 root->fs_info->sb->s_id,
242 (unsigned long long)buf->start, val, found,
243 btrfs_header_level(buf));
245 if (result != (char *)&inline_result)
246 kfree(result);
247 return 1;
249 } else {
250 write_extent_buffer(buf, result, 0, csum_size);
252 if (result != (char *)&inline_result)
253 kfree(result);
254 return 0;
258 * we can't consider a given block up to date unless the transid of the
259 * block matches the transid in the parent node's pointer. This is how we
260 * detect blocks that either didn't get written at all or got written
261 * in the wrong place.
263 static int verify_parent_transid(struct extent_io_tree *io_tree,
264 struct extent_buffer *eb, u64 parent_transid)
266 int ret;
268 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
269 return 0;
271 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
272 if (extent_buffer_uptodate(io_tree, eb) &&
273 btrfs_header_generation(eb) == parent_transid) {
274 ret = 0;
275 goto out;
277 if (printk_ratelimit()) {
278 printk("parent transid verify failed on %llu wanted %llu "
279 "found %llu\n",
280 (unsigned long long)eb->start,
281 (unsigned long long)parent_transid,
282 (unsigned long long)btrfs_header_generation(eb));
284 ret = 1;
285 clear_extent_buffer_uptodate(io_tree, eb);
286 out:
287 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
288 GFP_NOFS);
289 return ret;
293 * helper to read a given tree block, doing retries as required when
294 * the checksums don't match and we have alternate mirrors to try.
296 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
297 struct extent_buffer *eb,
298 u64 start, u64 parent_transid)
300 struct extent_io_tree *io_tree;
301 int ret;
302 int num_copies = 0;
303 int mirror_num = 0;
305 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
306 while (1) {
307 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
308 btree_get_extent, mirror_num);
309 if (!ret &&
310 !verify_parent_transid(io_tree, eb, parent_transid))
311 return ret;
313 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
314 eb->start, eb->len);
315 if (num_copies == 1)
316 return ret;
318 mirror_num++;
319 if (mirror_num > num_copies)
320 return ret;
322 return -EIO;
326 * checksum a dirty tree block before IO. This has extra checks to make sure
327 * we only fill in the checksum field in the first page of a multi-page block
330 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
332 struct extent_io_tree *tree;
333 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
334 u64 found_start;
335 int found_level;
336 unsigned long len;
337 struct extent_buffer *eb;
338 int ret;
340 tree = &BTRFS_I(page->mapping->host)->io_tree;
342 if (page->private == EXTENT_PAGE_PRIVATE)
343 goto out;
344 if (!page->private)
345 goto out;
346 len = page->private >> 2;
347 WARN_ON(len == 0);
349 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
350 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
351 btrfs_header_generation(eb));
352 BUG_ON(ret);
353 found_start = btrfs_header_bytenr(eb);
354 if (found_start != start) {
355 WARN_ON(1);
356 goto err;
358 if (eb->first_page != page) {
359 WARN_ON(1);
360 goto err;
362 if (!PageUptodate(page)) {
363 WARN_ON(1);
364 goto err;
366 found_level = btrfs_header_level(eb);
368 csum_tree_block(root, eb, 0);
369 err:
370 free_extent_buffer(eb);
371 out:
372 return 0;
375 static int check_tree_block_fsid(struct btrfs_root *root,
376 struct extent_buffer *eb)
378 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
379 u8 fsid[BTRFS_UUID_SIZE];
380 int ret = 1;
382 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
383 BTRFS_FSID_SIZE);
384 while (fs_devices) {
385 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
386 ret = 0;
387 break;
389 fs_devices = fs_devices->seed;
391 return ret;
394 #ifdef CONFIG_DEBUG_LOCK_ALLOC
395 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
397 lockdep_set_class_and_name(&eb->lock,
398 &btrfs_eb_class[level],
399 btrfs_eb_name[level]);
401 #endif
403 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
404 struct extent_state *state)
406 struct extent_io_tree *tree;
407 u64 found_start;
408 int found_level;
409 unsigned long len;
410 struct extent_buffer *eb;
411 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
412 int ret = 0;
414 tree = &BTRFS_I(page->mapping->host)->io_tree;
415 if (page->private == EXTENT_PAGE_PRIVATE)
416 goto out;
417 if (!page->private)
418 goto out;
420 len = page->private >> 2;
421 WARN_ON(len == 0);
423 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
425 found_start = btrfs_header_bytenr(eb);
426 if (found_start != start) {
427 if (printk_ratelimit()) {
428 printk(KERN_INFO "btrfs bad tree block start "
429 "%llu %llu\n",
430 (unsigned long long)found_start,
431 (unsigned long long)eb->start);
433 ret = -EIO;
434 goto err;
436 if (eb->first_page != page) {
437 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
438 eb->first_page->index, page->index);
439 WARN_ON(1);
440 ret = -EIO;
441 goto err;
443 if (check_tree_block_fsid(root, eb)) {
444 if (printk_ratelimit()) {
445 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
446 (unsigned long long)eb->start);
448 ret = -EIO;
449 goto err;
451 found_level = btrfs_header_level(eb);
453 btrfs_set_buffer_lockdep_class(eb, found_level);
455 ret = csum_tree_block(root, eb, 1);
456 if (ret)
457 ret = -EIO;
459 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
460 end = eb->start + end - 1;
461 err:
462 free_extent_buffer(eb);
463 out:
464 return ret;
467 static void end_workqueue_bio(struct bio *bio, int err)
469 struct end_io_wq *end_io_wq = bio->bi_private;
470 struct btrfs_fs_info *fs_info;
472 fs_info = end_io_wq->info;
473 end_io_wq->error = err;
474 end_io_wq->work.func = end_workqueue_fn;
475 end_io_wq->work.flags = 0;
477 if (bio->bi_rw & (1 << BIO_RW)) {
478 if (end_io_wq->metadata)
479 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
480 &end_io_wq->work);
481 else
482 btrfs_queue_worker(&fs_info->endio_write_workers,
483 &end_io_wq->work);
484 } else {
485 if (end_io_wq->metadata)
486 btrfs_queue_worker(&fs_info->endio_meta_workers,
487 &end_io_wq->work);
488 else
489 btrfs_queue_worker(&fs_info->endio_workers,
490 &end_io_wq->work);
494 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
495 int metadata)
497 struct end_io_wq *end_io_wq;
498 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
499 if (!end_io_wq)
500 return -ENOMEM;
502 end_io_wq->private = bio->bi_private;
503 end_io_wq->end_io = bio->bi_end_io;
504 end_io_wq->info = info;
505 end_io_wq->error = 0;
506 end_io_wq->bio = bio;
507 end_io_wq->metadata = metadata;
509 bio->bi_private = end_io_wq;
510 bio->bi_end_io = end_workqueue_bio;
511 return 0;
514 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
516 unsigned long limit = min_t(unsigned long,
517 info->workers.max_workers,
518 info->fs_devices->open_devices);
519 return 256 * limit;
522 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
524 return atomic_read(&info->nr_async_bios) >
525 btrfs_async_submit_limit(info);
528 static void run_one_async_start(struct btrfs_work *work)
530 struct btrfs_fs_info *fs_info;
531 struct async_submit_bio *async;
533 async = container_of(work, struct async_submit_bio, work);
534 fs_info = BTRFS_I(async->inode)->root->fs_info;
535 async->submit_bio_start(async->inode, async->rw, async->bio,
536 async->mirror_num, async->bio_flags);
539 static void run_one_async_done(struct btrfs_work *work)
541 struct btrfs_fs_info *fs_info;
542 struct async_submit_bio *async;
543 int limit;
545 async = container_of(work, struct async_submit_bio, work);
546 fs_info = BTRFS_I(async->inode)->root->fs_info;
548 limit = btrfs_async_submit_limit(fs_info);
549 limit = limit * 2 / 3;
551 atomic_dec(&fs_info->nr_async_submits);
553 if (atomic_read(&fs_info->nr_async_submits) < limit &&
554 waitqueue_active(&fs_info->async_submit_wait))
555 wake_up(&fs_info->async_submit_wait);
557 async->submit_bio_done(async->inode, async->rw, async->bio,
558 async->mirror_num, async->bio_flags);
561 static void run_one_async_free(struct btrfs_work *work)
563 struct async_submit_bio *async;
565 async = container_of(work, struct async_submit_bio, work);
566 kfree(async);
569 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
570 int rw, struct bio *bio, int mirror_num,
571 unsigned long bio_flags,
572 extent_submit_bio_hook_t *submit_bio_start,
573 extent_submit_bio_hook_t *submit_bio_done)
575 struct async_submit_bio *async;
577 async = kmalloc(sizeof(*async), GFP_NOFS);
578 if (!async)
579 return -ENOMEM;
581 async->inode = inode;
582 async->rw = rw;
583 async->bio = bio;
584 async->mirror_num = mirror_num;
585 async->submit_bio_start = submit_bio_start;
586 async->submit_bio_done = submit_bio_done;
588 async->work.func = run_one_async_start;
589 async->work.ordered_func = run_one_async_done;
590 async->work.ordered_free = run_one_async_free;
592 async->work.flags = 0;
593 async->bio_flags = bio_flags;
595 atomic_inc(&fs_info->nr_async_submits);
597 if (rw & (1 << BIO_RW_SYNCIO))
598 btrfs_set_work_high_prio(&async->work);
600 btrfs_queue_worker(&fs_info->workers, &async->work);
602 while (atomic_read(&fs_info->async_submit_draining) &&
603 atomic_read(&fs_info->nr_async_submits)) {
604 wait_event(fs_info->async_submit_wait,
605 (atomic_read(&fs_info->nr_async_submits) == 0));
608 return 0;
611 static int btree_csum_one_bio(struct bio *bio)
613 struct bio_vec *bvec = bio->bi_io_vec;
614 int bio_index = 0;
615 struct btrfs_root *root;
617 WARN_ON(bio->bi_vcnt <= 0);
618 while (bio_index < bio->bi_vcnt) {
619 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
620 csum_dirty_buffer(root, bvec->bv_page);
621 bio_index++;
622 bvec++;
624 return 0;
627 static int __btree_submit_bio_start(struct inode *inode, int rw,
628 struct bio *bio, int mirror_num,
629 unsigned long bio_flags)
632 * when we're called for a write, we're already in the async
633 * submission context. Just jump into btrfs_map_bio
635 btree_csum_one_bio(bio);
636 return 0;
639 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
640 int mirror_num, unsigned long bio_flags)
643 * when we're called for a write, we're already in the async
644 * submission context. Just jump into btrfs_map_bio
646 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
649 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
650 int mirror_num, unsigned long bio_flags)
652 int ret;
654 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
655 bio, 1);
656 BUG_ON(ret);
658 if (!(rw & (1 << BIO_RW))) {
660 * called for a read, do the setup so that checksum validation
661 * can happen in the async kernel threads
663 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
664 mirror_num, 0);
668 * kthread helpers are used to submit writes so that checksumming
669 * can happen in parallel across all CPUs
671 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
672 inode, rw, bio, mirror_num, 0,
673 __btree_submit_bio_start,
674 __btree_submit_bio_done);
677 static int btree_writepage(struct page *page, struct writeback_control *wbc)
679 struct extent_io_tree *tree;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681 struct extent_buffer *eb;
682 int was_dirty;
684 tree = &BTRFS_I(page->mapping->host)->io_tree;
685 if (!(current->flags & PF_MEMALLOC)) {
686 return extent_write_full_page(tree, page,
687 btree_get_extent, wbc);
690 redirty_page_for_writepage(wbc, page);
691 eb = btrfs_find_tree_block(root, page_offset(page),
692 PAGE_CACHE_SIZE);
693 WARN_ON(!eb);
695 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
696 if (!was_dirty) {
697 spin_lock(&root->fs_info->delalloc_lock);
698 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
699 spin_unlock(&root->fs_info->delalloc_lock);
701 free_extent_buffer(eb);
703 unlock_page(page);
704 return 0;
707 static int btree_writepages(struct address_space *mapping,
708 struct writeback_control *wbc)
710 struct extent_io_tree *tree;
711 tree = &BTRFS_I(mapping->host)->io_tree;
712 if (wbc->sync_mode == WB_SYNC_NONE) {
713 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
714 u64 num_dirty;
715 unsigned long thresh = 32 * 1024 * 1024;
717 if (wbc->for_kupdate)
718 return 0;
720 /* this is a bit racy, but that's ok */
721 num_dirty = root->fs_info->dirty_metadata_bytes;
722 if (num_dirty < thresh)
723 return 0;
725 return extent_writepages(tree, mapping, btree_get_extent, wbc);
728 static int btree_readpage(struct file *file, struct page *page)
730 struct extent_io_tree *tree;
731 tree = &BTRFS_I(page->mapping->host)->io_tree;
732 return extent_read_full_page(tree, page, btree_get_extent);
735 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
737 struct extent_io_tree *tree;
738 struct extent_map_tree *map;
739 int ret;
741 if (PageWriteback(page) || PageDirty(page))
742 return 0;
744 tree = &BTRFS_I(page->mapping->host)->io_tree;
745 map = &BTRFS_I(page->mapping->host)->extent_tree;
747 ret = try_release_extent_state(map, tree, page, gfp_flags);
748 if (!ret)
749 return 0;
751 ret = try_release_extent_buffer(tree, page);
752 if (ret == 1) {
753 ClearPagePrivate(page);
754 set_page_private(page, 0);
755 page_cache_release(page);
758 return ret;
761 static void btree_invalidatepage(struct page *page, unsigned long offset)
763 struct extent_io_tree *tree;
764 tree = &BTRFS_I(page->mapping->host)->io_tree;
765 extent_invalidatepage(tree, page, offset);
766 btree_releasepage(page, GFP_NOFS);
767 if (PagePrivate(page)) {
768 printk(KERN_WARNING "btrfs warning page private not zero "
769 "on page %llu\n", (unsigned long long)page_offset(page));
770 ClearPagePrivate(page);
771 set_page_private(page, 0);
772 page_cache_release(page);
776 static const struct address_space_operations btree_aops = {
777 .readpage = btree_readpage,
778 .writepage = btree_writepage,
779 .writepages = btree_writepages,
780 .releasepage = btree_releasepage,
781 .invalidatepage = btree_invalidatepage,
782 .sync_page = block_sync_page,
785 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
786 u64 parent_transid)
788 struct extent_buffer *buf = NULL;
789 struct inode *btree_inode = root->fs_info->btree_inode;
790 int ret = 0;
792 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
793 if (!buf)
794 return 0;
795 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
796 buf, 0, 0, btree_get_extent, 0);
797 free_extent_buffer(buf);
798 return ret;
801 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
802 u64 bytenr, u32 blocksize)
804 struct inode *btree_inode = root->fs_info->btree_inode;
805 struct extent_buffer *eb;
806 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
807 bytenr, blocksize, GFP_NOFS);
808 return eb;
811 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
812 u64 bytenr, u32 blocksize)
814 struct inode *btree_inode = root->fs_info->btree_inode;
815 struct extent_buffer *eb;
817 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
818 bytenr, blocksize, NULL, GFP_NOFS);
819 return eb;
823 int btrfs_write_tree_block(struct extent_buffer *buf)
825 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
826 buf->start + buf->len - 1);
829 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
831 return filemap_fdatawait_range(buf->first_page->mapping,
832 buf->start, buf->start + buf->len - 1);
835 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
836 u32 blocksize, u64 parent_transid)
838 struct extent_buffer *buf = NULL;
839 struct inode *btree_inode = root->fs_info->btree_inode;
840 struct extent_io_tree *io_tree;
841 int ret;
843 io_tree = &BTRFS_I(btree_inode)->io_tree;
845 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
846 if (!buf)
847 return NULL;
849 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
851 if (ret == 0)
852 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
853 return buf;
857 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
858 struct extent_buffer *buf)
860 struct inode *btree_inode = root->fs_info->btree_inode;
861 if (btrfs_header_generation(buf) ==
862 root->fs_info->running_transaction->transid) {
863 btrfs_assert_tree_locked(buf);
865 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
866 spin_lock(&root->fs_info->delalloc_lock);
867 if (root->fs_info->dirty_metadata_bytes >= buf->len)
868 root->fs_info->dirty_metadata_bytes -= buf->len;
869 else
870 WARN_ON(1);
871 spin_unlock(&root->fs_info->delalloc_lock);
874 /* ugh, clear_extent_buffer_dirty needs to lock the page */
875 btrfs_set_lock_blocking(buf);
876 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
877 buf);
879 return 0;
882 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
883 u32 stripesize, struct btrfs_root *root,
884 struct btrfs_fs_info *fs_info,
885 u64 objectid)
887 root->node = NULL;
888 root->commit_root = NULL;
889 root->sectorsize = sectorsize;
890 root->nodesize = nodesize;
891 root->leafsize = leafsize;
892 root->stripesize = stripesize;
893 root->ref_cows = 0;
894 root->track_dirty = 0;
896 root->fs_info = fs_info;
897 root->objectid = objectid;
898 root->last_trans = 0;
899 root->highest_objectid = 0;
900 root->name = NULL;
901 root->in_sysfs = 0;
902 root->inode_tree.rb_node = NULL;
904 INIT_LIST_HEAD(&root->dirty_list);
905 INIT_LIST_HEAD(&root->orphan_list);
906 INIT_LIST_HEAD(&root->root_list);
907 spin_lock_init(&root->node_lock);
908 spin_lock_init(&root->list_lock);
909 spin_lock_init(&root->inode_lock);
910 mutex_init(&root->objectid_mutex);
911 mutex_init(&root->log_mutex);
912 init_waitqueue_head(&root->log_writer_wait);
913 init_waitqueue_head(&root->log_commit_wait[0]);
914 init_waitqueue_head(&root->log_commit_wait[1]);
915 atomic_set(&root->log_commit[0], 0);
916 atomic_set(&root->log_commit[1], 0);
917 atomic_set(&root->log_writers, 0);
918 root->log_batch = 0;
919 root->log_transid = 0;
920 extent_io_tree_init(&root->dirty_log_pages,
921 fs_info->btree_inode->i_mapping, GFP_NOFS);
923 memset(&root->root_key, 0, sizeof(root->root_key));
924 memset(&root->root_item, 0, sizeof(root->root_item));
925 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
926 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
927 root->defrag_trans_start = fs_info->generation;
928 init_completion(&root->kobj_unregister);
929 root->defrag_running = 0;
930 root->defrag_level = 0;
931 root->root_key.objectid = objectid;
932 root->anon_super.s_root = NULL;
933 root->anon_super.s_dev = 0;
934 INIT_LIST_HEAD(&root->anon_super.s_list);
935 INIT_LIST_HEAD(&root->anon_super.s_instances);
936 init_rwsem(&root->anon_super.s_umount);
938 return 0;
941 static int find_and_setup_root(struct btrfs_root *tree_root,
942 struct btrfs_fs_info *fs_info,
943 u64 objectid,
944 struct btrfs_root *root)
946 int ret;
947 u32 blocksize;
948 u64 generation;
950 __setup_root(tree_root->nodesize, tree_root->leafsize,
951 tree_root->sectorsize, tree_root->stripesize,
952 root, fs_info, objectid);
953 ret = btrfs_find_last_root(tree_root, objectid,
954 &root->root_item, &root->root_key);
955 if (ret > 0)
956 return -ENOENT;
957 BUG_ON(ret);
959 generation = btrfs_root_generation(&root->root_item);
960 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
961 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
962 blocksize, generation);
963 BUG_ON(!root->node);
964 root->commit_root = btrfs_root_node(root);
965 return 0;
968 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
969 struct btrfs_fs_info *fs_info)
971 struct extent_buffer *eb;
972 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
973 u64 start = 0;
974 u64 end = 0;
975 int ret;
977 if (!log_root_tree)
978 return 0;
980 while (1) {
981 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
982 0, &start, &end, EXTENT_DIRTY);
983 if (ret)
984 break;
986 clear_extent_dirty(&log_root_tree->dirty_log_pages,
987 start, end, GFP_NOFS);
989 eb = fs_info->log_root_tree->node;
991 WARN_ON(btrfs_header_level(eb) != 0);
992 WARN_ON(btrfs_header_nritems(eb) != 0);
994 ret = btrfs_free_reserved_extent(fs_info->tree_root,
995 eb->start, eb->len);
996 BUG_ON(ret);
998 free_extent_buffer(eb);
999 kfree(fs_info->log_root_tree);
1000 fs_info->log_root_tree = NULL;
1001 return 0;
1004 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1005 struct btrfs_fs_info *fs_info)
1007 struct btrfs_root *root;
1008 struct btrfs_root *tree_root = fs_info->tree_root;
1009 struct extent_buffer *leaf;
1011 root = kzalloc(sizeof(*root), GFP_NOFS);
1012 if (!root)
1013 return ERR_PTR(-ENOMEM);
1015 __setup_root(tree_root->nodesize, tree_root->leafsize,
1016 tree_root->sectorsize, tree_root->stripesize,
1017 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1019 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1020 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1021 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1023 * log trees do not get reference counted because they go away
1024 * before a real commit is actually done. They do store pointers
1025 * to file data extents, and those reference counts still get
1026 * updated (along with back refs to the log tree).
1028 root->ref_cows = 0;
1030 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1031 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1032 if (IS_ERR(leaf)) {
1033 kfree(root);
1034 return ERR_CAST(leaf);
1037 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1038 btrfs_set_header_bytenr(leaf, leaf->start);
1039 btrfs_set_header_generation(leaf, trans->transid);
1040 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1041 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1042 root->node = leaf;
1044 write_extent_buffer(root->node, root->fs_info->fsid,
1045 (unsigned long)btrfs_header_fsid(root->node),
1046 BTRFS_FSID_SIZE);
1047 btrfs_mark_buffer_dirty(root->node);
1048 btrfs_tree_unlock(root->node);
1049 return root;
1052 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1053 struct btrfs_fs_info *fs_info)
1055 struct btrfs_root *log_root;
1057 log_root = alloc_log_tree(trans, fs_info);
1058 if (IS_ERR(log_root))
1059 return PTR_ERR(log_root);
1060 WARN_ON(fs_info->log_root_tree);
1061 fs_info->log_root_tree = log_root;
1062 return 0;
1065 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1066 struct btrfs_root *root)
1068 struct btrfs_root *log_root;
1069 struct btrfs_inode_item *inode_item;
1071 log_root = alloc_log_tree(trans, root->fs_info);
1072 if (IS_ERR(log_root))
1073 return PTR_ERR(log_root);
1075 log_root->last_trans = trans->transid;
1076 log_root->root_key.offset = root->root_key.objectid;
1078 inode_item = &log_root->root_item.inode;
1079 inode_item->generation = cpu_to_le64(1);
1080 inode_item->size = cpu_to_le64(3);
1081 inode_item->nlink = cpu_to_le32(1);
1082 inode_item->nbytes = cpu_to_le64(root->leafsize);
1083 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1085 btrfs_set_root_node(&log_root->root_item, log_root->node);
1087 WARN_ON(root->log_root);
1088 root->log_root = log_root;
1089 root->log_transid = 0;
1090 return 0;
1093 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1094 struct btrfs_key *location)
1096 struct btrfs_root *root;
1097 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1098 struct btrfs_path *path;
1099 struct extent_buffer *l;
1100 u64 generation;
1101 u32 blocksize;
1102 int ret = 0;
1104 root = kzalloc(sizeof(*root), GFP_NOFS);
1105 if (!root)
1106 return ERR_PTR(-ENOMEM);
1107 if (location->offset == (u64)-1) {
1108 ret = find_and_setup_root(tree_root, fs_info,
1109 location->objectid, root);
1110 if (ret) {
1111 kfree(root);
1112 return ERR_PTR(ret);
1114 goto out;
1117 __setup_root(tree_root->nodesize, tree_root->leafsize,
1118 tree_root->sectorsize, tree_root->stripesize,
1119 root, fs_info, location->objectid);
1121 path = btrfs_alloc_path();
1122 BUG_ON(!path);
1123 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1124 if (ret == 0) {
1125 l = path->nodes[0];
1126 read_extent_buffer(l, &root->root_item,
1127 btrfs_item_ptr_offset(l, path->slots[0]),
1128 sizeof(root->root_item));
1129 memcpy(&root->root_key, location, sizeof(*location));
1131 btrfs_free_path(path);
1132 if (ret) {
1133 if (ret > 0)
1134 ret = -ENOENT;
1135 return ERR_PTR(ret);
1138 generation = btrfs_root_generation(&root->root_item);
1139 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1140 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1141 blocksize, generation);
1142 root->commit_root = btrfs_root_node(root);
1143 BUG_ON(!root->node);
1144 out:
1145 if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1146 root->ref_cows = 1;
1148 return root;
1151 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1152 u64 root_objectid)
1154 struct btrfs_root *root;
1156 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1157 return fs_info->tree_root;
1158 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1159 return fs_info->extent_root;
1161 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1162 (unsigned long)root_objectid);
1163 return root;
1166 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1167 struct btrfs_key *location)
1169 struct btrfs_root *root;
1170 int ret;
1172 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1173 return fs_info->tree_root;
1174 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1175 return fs_info->extent_root;
1176 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1177 return fs_info->chunk_root;
1178 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1179 return fs_info->dev_root;
1180 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1181 return fs_info->csum_root;
1182 again:
1183 spin_lock(&fs_info->fs_roots_radix_lock);
1184 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1185 (unsigned long)location->objectid);
1186 spin_unlock(&fs_info->fs_roots_radix_lock);
1187 if (root)
1188 return root;
1190 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1191 if (ret == 0)
1192 ret = -ENOENT;
1193 if (ret < 0)
1194 return ERR_PTR(ret);
1196 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1197 if (IS_ERR(root))
1198 return root;
1200 WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1201 set_anon_super(&root->anon_super, NULL);
1203 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1204 if (ret)
1205 goto fail;
1207 spin_lock(&fs_info->fs_roots_radix_lock);
1208 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1209 (unsigned long)root->root_key.objectid,
1210 root);
1211 if (ret == 0)
1212 root->in_radix = 1;
1213 spin_unlock(&fs_info->fs_roots_radix_lock);
1214 radix_tree_preload_end();
1215 if (ret) {
1216 if (ret == -EEXIST) {
1217 free_fs_root(root);
1218 goto again;
1220 goto fail;
1223 ret = btrfs_find_dead_roots(fs_info->tree_root,
1224 root->root_key.objectid);
1225 WARN_ON(ret);
1227 if (!(fs_info->sb->s_flags & MS_RDONLY))
1228 btrfs_orphan_cleanup(root);
1230 return root;
1231 fail:
1232 free_fs_root(root);
1233 return ERR_PTR(ret);
1236 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1237 struct btrfs_key *location,
1238 const char *name, int namelen)
1240 return btrfs_read_fs_root_no_name(fs_info, location);
1241 #if 0
1242 struct btrfs_root *root;
1243 int ret;
1245 root = btrfs_read_fs_root_no_name(fs_info, location);
1246 if (!root)
1247 return NULL;
1249 if (root->in_sysfs)
1250 return root;
1252 ret = btrfs_set_root_name(root, name, namelen);
1253 if (ret) {
1254 free_extent_buffer(root->node);
1255 kfree(root);
1256 return ERR_PTR(ret);
1259 ret = btrfs_sysfs_add_root(root);
1260 if (ret) {
1261 free_extent_buffer(root->node);
1262 kfree(root->name);
1263 kfree(root);
1264 return ERR_PTR(ret);
1266 root->in_sysfs = 1;
1267 return root;
1268 #endif
1271 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1273 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1274 int ret = 0;
1275 struct btrfs_device *device;
1276 struct backing_dev_info *bdi;
1278 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1279 if (!device->bdev)
1280 continue;
1281 bdi = blk_get_backing_dev_info(device->bdev);
1282 if (bdi && bdi_congested(bdi, bdi_bits)) {
1283 ret = 1;
1284 break;
1287 return ret;
1291 * this unplugs every device on the box, and it is only used when page
1292 * is null
1294 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1296 struct btrfs_device *device;
1297 struct btrfs_fs_info *info;
1299 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1300 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1301 if (!device->bdev)
1302 continue;
1304 bdi = blk_get_backing_dev_info(device->bdev);
1305 if (bdi->unplug_io_fn)
1306 bdi->unplug_io_fn(bdi, page);
1310 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1312 struct inode *inode;
1313 struct extent_map_tree *em_tree;
1314 struct extent_map *em;
1315 struct address_space *mapping;
1316 u64 offset;
1318 /* the generic O_DIRECT read code does this */
1319 if (1 || !page) {
1320 __unplug_io_fn(bdi, page);
1321 return;
1325 * page->mapping may change at any time. Get a consistent copy
1326 * and use that for everything below
1328 smp_mb();
1329 mapping = page->mapping;
1330 if (!mapping)
1331 return;
1333 inode = mapping->host;
1336 * don't do the expensive searching for a small number of
1337 * devices
1339 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1340 __unplug_io_fn(bdi, page);
1341 return;
1344 offset = page_offset(page);
1346 em_tree = &BTRFS_I(inode)->extent_tree;
1347 read_lock(&em_tree->lock);
1348 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1349 read_unlock(&em_tree->lock);
1350 if (!em) {
1351 __unplug_io_fn(bdi, page);
1352 return;
1355 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1356 free_extent_map(em);
1357 __unplug_io_fn(bdi, page);
1358 return;
1360 offset = offset - em->start;
1361 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1362 em->block_start + offset, page);
1363 free_extent_map(em);
1367 * If this fails, caller must call bdi_destroy() to get rid of the
1368 * bdi again.
1370 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1372 int err;
1374 bdi->name = "btrfs";
1375 bdi->capabilities = BDI_CAP_MAP_COPY;
1376 err = bdi_init(bdi);
1377 if (err)
1378 return err;
1380 err = bdi_register(bdi, NULL, "btrfs-%d",
1381 atomic_inc_return(&btrfs_bdi_num));
1382 if (err) {
1383 bdi_destroy(bdi);
1384 return err;
1387 bdi->ra_pages = default_backing_dev_info.ra_pages;
1388 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1389 bdi->unplug_io_data = info;
1390 bdi->congested_fn = btrfs_congested_fn;
1391 bdi->congested_data = info;
1392 return 0;
1395 static int bio_ready_for_csum(struct bio *bio)
1397 u64 length = 0;
1398 u64 buf_len = 0;
1399 u64 start = 0;
1400 struct page *page;
1401 struct extent_io_tree *io_tree = NULL;
1402 struct btrfs_fs_info *info = NULL;
1403 struct bio_vec *bvec;
1404 int i;
1405 int ret;
1407 bio_for_each_segment(bvec, bio, i) {
1408 page = bvec->bv_page;
1409 if (page->private == EXTENT_PAGE_PRIVATE) {
1410 length += bvec->bv_len;
1411 continue;
1413 if (!page->private) {
1414 length += bvec->bv_len;
1415 continue;
1417 length = bvec->bv_len;
1418 buf_len = page->private >> 2;
1419 start = page_offset(page) + bvec->bv_offset;
1420 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1421 info = BTRFS_I(page->mapping->host)->root->fs_info;
1423 /* are we fully contained in this bio? */
1424 if (buf_len <= length)
1425 return 1;
1427 ret = extent_range_uptodate(io_tree, start + length,
1428 start + buf_len - 1);
1429 return ret;
1433 * called by the kthread helper functions to finally call the bio end_io
1434 * functions. This is where read checksum verification actually happens
1436 static void end_workqueue_fn(struct btrfs_work *work)
1438 struct bio *bio;
1439 struct end_io_wq *end_io_wq;
1440 struct btrfs_fs_info *fs_info;
1441 int error;
1443 end_io_wq = container_of(work, struct end_io_wq, work);
1444 bio = end_io_wq->bio;
1445 fs_info = end_io_wq->info;
1447 /* metadata bio reads are special because the whole tree block must
1448 * be checksummed at once. This makes sure the entire block is in
1449 * ram and up to date before trying to verify things. For
1450 * blocksize <= pagesize, it is basically a noop
1452 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1453 !bio_ready_for_csum(bio)) {
1454 btrfs_queue_worker(&fs_info->endio_meta_workers,
1455 &end_io_wq->work);
1456 return;
1458 error = end_io_wq->error;
1459 bio->bi_private = end_io_wq->private;
1460 bio->bi_end_io = end_io_wq->end_io;
1461 kfree(end_io_wq);
1462 bio_endio(bio, error);
1465 static int cleaner_kthread(void *arg)
1467 struct btrfs_root *root = arg;
1469 do {
1470 smp_mb();
1471 if (root->fs_info->closing)
1472 break;
1474 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1476 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1477 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1478 btrfs_clean_old_snapshots(root);
1479 mutex_unlock(&root->fs_info->cleaner_mutex);
1482 if (freezing(current)) {
1483 refrigerator();
1484 } else {
1485 smp_mb();
1486 if (root->fs_info->closing)
1487 break;
1488 set_current_state(TASK_INTERRUPTIBLE);
1489 schedule();
1490 __set_current_state(TASK_RUNNING);
1492 } while (!kthread_should_stop());
1493 return 0;
1496 static int transaction_kthread(void *arg)
1498 struct btrfs_root *root = arg;
1499 struct btrfs_trans_handle *trans;
1500 struct btrfs_transaction *cur;
1501 unsigned long now;
1502 unsigned long delay;
1503 int ret;
1505 do {
1506 smp_mb();
1507 if (root->fs_info->closing)
1508 break;
1510 delay = HZ * 30;
1511 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1512 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1514 mutex_lock(&root->fs_info->trans_mutex);
1515 cur = root->fs_info->running_transaction;
1516 if (!cur) {
1517 mutex_unlock(&root->fs_info->trans_mutex);
1518 goto sleep;
1521 now = get_seconds();
1522 if (now < cur->start_time || now - cur->start_time < 30) {
1523 mutex_unlock(&root->fs_info->trans_mutex);
1524 delay = HZ * 5;
1525 goto sleep;
1527 mutex_unlock(&root->fs_info->trans_mutex);
1528 trans = btrfs_start_transaction(root, 1);
1529 ret = btrfs_commit_transaction(trans, root);
1531 sleep:
1532 wake_up_process(root->fs_info->cleaner_kthread);
1533 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1535 if (freezing(current)) {
1536 refrigerator();
1537 } else {
1538 if (root->fs_info->closing)
1539 break;
1540 set_current_state(TASK_INTERRUPTIBLE);
1541 schedule_timeout(delay);
1542 __set_current_state(TASK_RUNNING);
1544 } while (!kthread_should_stop());
1545 return 0;
1548 struct btrfs_root *open_ctree(struct super_block *sb,
1549 struct btrfs_fs_devices *fs_devices,
1550 char *options)
1552 u32 sectorsize;
1553 u32 nodesize;
1554 u32 leafsize;
1555 u32 blocksize;
1556 u32 stripesize;
1557 u64 generation;
1558 u64 features;
1559 struct btrfs_key location;
1560 struct buffer_head *bh;
1561 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1562 GFP_NOFS);
1563 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1564 GFP_NOFS);
1565 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1566 GFP_NOFS);
1567 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1568 GFP_NOFS);
1569 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1570 GFP_NOFS);
1571 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1572 GFP_NOFS);
1573 struct btrfs_root *log_tree_root;
1575 int ret;
1576 int err = -EINVAL;
1578 struct btrfs_super_block *disk_super;
1580 if (!extent_root || !tree_root || !fs_info ||
1581 !chunk_root || !dev_root || !csum_root) {
1582 err = -ENOMEM;
1583 goto fail;
1586 ret = init_srcu_struct(&fs_info->subvol_srcu);
1587 if (ret) {
1588 err = ret;
1589 goto fail;
1592 ret = setup_bdi(fs_info, &fs_info->bdi);
1593 if (ret) {
1594 err = ret;
1595 goto fail_srcu;
1598 fs_info->btree_inode = new_inode(sb);
1599 if (!fs_info->btree_inode) {
1600 err = -ENOMEM;
1601 goto fail_bdi;
1604 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1605 INIT_LIST_HEAD(&fs_info->trans_list);
1606 INIT_LIST_HEAD(&fs_info->dead_roots);
1607 INIT_LIST_HEAD(&fs_info->hashers);
1608 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1609 INIT_LIST_HEAD(&fs_info->ordered_operations);
1610 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1611 spin_lock_init(&fs_info->delalloc_lock);
1612 spin_lock_init(&fs_info->new_trans_lock);
1613 spin_lock_init(&fs_info->ref_cache_lock);
1614 spin_lock_init(&fs_info->fs_roots_radix_lock);
1616 init_completion(&fs_info->kobj_unregister);
1617 fs_info->tree_root = tree_root;
1618 fs_info->extent_root = extent_root;
1619 fs_info->csum_root = csum_root;
1620 fs_info->chunk_root = chunk_root;
1621 fs_info->dev_root = dev_root;
1622 fs_info->fs_devices = fs_devices;
1623 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1624 INIT_LIST_HEAD(&fs_info->space_info);
1625 btrfs_mapping_init(&fs_info->mapping_tree);
1626 atomic_set(&fs_info->nr_async_submits, 0);
1627 atomic_set(&fs_info->async_delalloc_pages, 0);
1628 atomic_set(&fs_info->async_submit_draining, 0);
1629 atomic_set(&fs_info->nr_async_bios, 0);
1630 fs_info->sb = sb;
1631 fs_info->max_extent = (u64)-1;
1632 fs_info->max_inline = 8192 * 1024;
1633 fs_info->metadata_ratio = 0;
1635 fs_info->thread_pool_size = min_t(unsigned long,
1636 num_online_cpus() + 2, 8);
1638 INIT_LIST_HEAD(&fs_info->ordered_extents);
1639 spin_lock_init(&fs_info->ordered_extent_lock);
1641 sb->s_blocksize = 4096;
1642 sb->s_blocksize_bits = blksize_bits(4096);
1643 sb->s_bdi = &fs_info->bdi;
1645 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1646 fs_info->btree_inode->i_nlink = 1;
1648 * we set the i_size on the btree inode to the max possible int.
1649 * the real end of the address space is determined by all of
1650 * the devices in the system
1652 fs_info->btree_inode->i_size = OFFSET_MAX;
1653 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1654 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1656 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1657 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1658 fs_info->btree_inode->i_mapping,
1659 GFP_NOFS);
1660 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1661 GFP_NOFS);
1663 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1665 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1666 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1667 sizeof(struct btrfs_key));
1668 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1669 insert_inode_hash(fs_info->btree_inode);
1671 spin_lock_init(&fs_info->block_group_cache_lock);
1672 fs_info->block_group_cache_tree.rb_node = NULL;
1674 extent_io_tree_init(&fs_info->freed_extents[0],
1675 fs_info->btree_inode->i_mapping, GFP_NOFS);
1676 extent_io_tree_init(&fs_info->freed_extents[1],
1677 fs_info->btree_inode->i_mapping, GFP_NOFS);
1678 fs_info->pinned_extents = &fs_info->freed_extents[0];
1679 fs_info->do_barriers = 1;
1682 mutex_init(&fs_info->trans_mutex);
1683 mutex_init(&fs_info->ordered_operations_mutex);
1684 mutex_init(&fs_info->tree_log_mutex);
1685 mutex_init(&fs_info->chunk_mutex);
1686 mutex_init(&fs_info->transaction_kthread_mutex);
1687 mutex_init(&fs_info->cleaner_mutex);
1688 mutex_init(&fs_info->volume_mutex);
1689 init_rwsem(&fs_info->extent_commit_sem);
1690 init_rwsem(&fs_info->subvol_sem);
1692 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1693 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1695 init_waitqueue_head(&fs_info->transaction_throttle);
1696 init_waitqueue_head(&fs_info->transaction_wait);
1697 init_waitqueue_head(&fs_info->async_submit_wait);
1699 __setup_root(4096, 4096, 4096, 4096, tree_root,
1700 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1703 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1704 if (!bh)
1705 goto fail_iput;
1707 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1708 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1709 sizeof(fs_info->super_for_commit));
1710 brelse(bh);
1712 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1714 disk_super = &fs_info->super_copy;
1715 if (!btrfs_super_root(disk_super))
1716 goto fail_iput;
1718 ret = btrfs_parse_options(tree_root, options);
1719 if (ret) {
1720 err = ret;
1721 goto fail_iput;
1724 features = btrfs_super_incompat_flags(disk_super) &
1725 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1726 if (features) {
1727 printk(KERN_ERR "BTRFS: couldn't mount because of "
1728 "unsupported optional features (%Lx).\n",
1729 (unsigned long long)features);
1730 err = -EINVAL;
1731 goto fail_iput;
1734 features = btrfs_super_incompat_flags(disk_super);
1735 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1736 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1737 btrfs_set_super_incompat_flags(disk_super, features);
1740 features = btrfs_super_compat_ro_flags(disk_super) &
1741 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1742 if (!(sb->s_flags & MS_RDONLY) && features) {
1743 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1744 "unsupported option features (%Lx).\n",
1745 (unsigned long long)features);
1746 err = -EINVAL;
1747 goto fail_iput;
1750 btrfs_init_workers(&fs_info->generic_worker,
1751 "genwork", 1, NULL);
1753 btrfs_init_workers(&fs_info->workers, "worker",
1754 fs_info->thread_pool_size,
1755 &fs_info->generic_worker);
1757 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1758 fs_info->thread_pool_size,
1759 &fs_info->generic_worker);
1761 btrfs_init_workers(&fs_info->submit_workers, "submit",
1762 min_t(u64, fs_devices->num_devices,
1763 fs_info->thread_pool_size),
1764 &fs_info->generic_worker);
1765 btrfs_init_workers(&fs_info->enospc_workers, "enospc",
1766 fs_info->thread_pool_size,
1767 &fs_info->generic_worker);
1769 /* a higher idle thresh on the submit workers makes it much more
1770 * likely that bios will be send down in a sane order to the
1771 * devices
1773 fs_info->submit_workers.idle_thresh = 64;
1775 fs_info->workers.idle_thresh = 16;
1776 fs_info->workers.ordered = 1;
1778 fs_info->delalloc_workers.idle_thresh = 2;
1779 fs_info->delalloc_workers.ordered = 1;
1781 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1782 &fs_info->generic_worker);
1783 btrfs_init_workers(&fs_info->endio_workers, "endio",
1784 fs_info->thread_pool_size,
1785 &fs_info->generic_worker);
1786 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1787 fs_info->thread_pool_size,
1788 &fs_info->generic_worker);
1789 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1790 "endio-meta-write", fs_info->thread_pool_size,
1791 &fs_info->generic_worker);
1792 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1793 fs_info->thread_pool_size,
1794 &fs_info->generic_worker);
1797 * endios are largely parallel and should have a very
1798 * low idle thresh
1800 fs_info->endio_workers.idle_thresh = 4;
1801 fs_info->endio_meta_workers.idle_thresh = 4;
1803 fs_info->endio_write_workers.idle_thresh = 2;
1804 fs_info->endio_meta_write_workers.idle_thresh = 2;
1806 btrfs_start_workers(&fs_info->workers, 1);
1807 btrfs_start_workers(&fs_info->generic_worker, 1);
1808 btrfs_start_workers(&fs_info->submit_workers, 1);
1809 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1810 btrfs_start_workers(&fs_info->fixup_workers, 1);
1811 btrfs_start_workers(&fs_info->endio_workers, 1);
1812 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1813 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1814 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1815 btrfs_start_workers(&fs_info->enospc_workers, 1);
1817 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1818 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1819 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1821 nodesize = btrfs_super_nodesize(disk_super);
1822 leafsize = btrfs_super_leafsize(disk_super);
1823 sectorsize = btrfs_super_sectorsize(disk_super);
1824 stripesize = btrfs_super_stripesize(disk_super);
1825 tree_root->nodesize = nodesize;
1826 tree_root->leafsize = leafsize;
1827 tree_root->sectorsize = sectorsize;
1828 tree_root->stripesize = stripesize;
1830 sb->s_blocksize = sectorsize;
1831 sb->s_blocksize_bits = blksize_bits(sectorsize);
1833 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1834 sizeof(disk_super->magic))) {
1835 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1836 goto fail_sb_buffer;
1839 mutex_lock(&fs_info->chunk_mutex);
1840 ret = btrfs_read_sys_array(tree_root);
1841 mutex_unlock(&fs_info->chunk_mutex);
1842 if (ret) {
1843 printk(KERN_WARNING "btrfs: failed to read the system "
1844 "array on %s\n", sb->s_id);
1845 goto fail_sb_buffer;
1848 blocksize = btrfs_level_size(tree_root,
1849 btrfs_super_chunk_root_level(disk_super));
1850 generation = btrfs_super_chunk_root_generation(disk_super);
1852 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1853 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1855 chunk_root->node = read_tree_block(chunk_root,
1856 btrfs_super_chunk_root(disk_super),
1857 blocksize, generation);
1858 BUG_ON(!chunk_root->node);
1859 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1860 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1861 sb->s_id);
1862 goto fail_chunk_root;
1864 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1865 chunk_root->commit_root = btrfs_root_node(chunk_root);
1867 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1868 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1869 BTRFS_UUID_SIZE);
1871 mutex_lock(&fs_info->chunk_mutex);
1872 ret = btrfs_read_chunk_tree(chunk_root);
1873 mutex_unlock(&fs_info->chunk_mutex);
1874 if (ret) {
1875 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1876 sb->s_id);
1877 goto fail_chunk_root;
1880 btrfs_close_extra_devices(fs_devices);
1882 blocksize = btrfs_level_size(tree_root,
1883 btrfs_super_root_level(disk_super));
1884 generation = btrfs_super_generation(disk_super);
1886 tree_root->node = read_tree_block(tree_root,
1887 btrfs_super_root(disk_super),
1888 blocksize, generation);
1889 if (!tree_root->node)
1890 goto fail_chunk_root;
1891 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1892 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1893 sb->s_id);
1894 goto fail_tree_root;
1896 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1897 tree_root->commit_root = btrfs_root_node(tree_root);
1899 ret = find_and_setup_root(tree_root, fs_info,
1900 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1901 if (ret)
1902 goto fail_tree_root;
1903 extent_root->track_dirty = 1;
1905 ret = find_and_setup_root(tree_root, fs_info,
1906 BTRFS_DEV_TREE_OBJECTID, dev_root);
1907 if (ret)
1908 goto fail_extent_root;
1909 dev_root->track_dirty = 1;
1911 ret = find_and_setup_root(tree_root, fs_info,
1912 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1913 if (ret)
1914 goto fail_dev_root;
1916 csum_root->track_dirty = 1;
1918 btrfs_read_block_groups(extent_root);
1920 fs_info->generation = generation;
1921 fs_info->last_trans_committed = generation;
1922 fs_info->data_alloc_profile = (u64)-1;
1923 fs_info->metadata_alloc_profile = (u64)-1;
1924 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1925 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1926 "btrfs-cleaner");
1927 if (IS_ERR(fs_info->cleaner_kthread))
1928 goto fail_csum_root;
1930 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1931 tree_root,
1932 "btrfs-transaction");
1933 if (IS_ERR(fs_info->transaction_kthread))
1934 goto fail_cleaner;
1936 if (!btrfs_test_opt(tree_root, SSD) &&
1937 !btrfs_test_opt(tree_root, NOSSD) &&
1938 !fs_info->fs_devices->rotating) {
1939 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1940 "mode\n");
1941 btrfs_set_opt(fs_info->mount_opt, SSD);
1944 if (btrfs_super_log_root(disk_super) != 0) {
1945 u64 bytenr = btrfs_super_log_root(disk_super);
1947 if (fs_devices->rw_devices == 0) {
1948 printk(KERN_WARNING "Btrfs log replay required "
1949 "on RO media\n");
1950 err = -EIO;
1951 goto fail_trans_kthread;
1953 blocksize =
1954 btrfs_level_size(tree_root,
1955 btrfs_super_log_root_level(disk_super));
1957 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1958 GFP_NOFS);
1960 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1961 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1963 log_tree_root->node = read_tree_block(tree_root, bytenr,
1964 blocksize,
1965 generation + 1);
1966 ret = btrfs_recover_log_trees(log_tree_root);
1967 BUG_ON(ret);
1969 if (sb->s_flags & MS_RDONLY) {
1970 ret = btrfs_commit_super(tree_root);
1971 BUG_ON(ret);
1975 ret = btrfs_find_orphan_roots(tree_root);
1976 BUG_ON(ret);
1978 if (!(sb->s_flags & MS_RDONLY)) {
1979 ret = btrfs_recover_relocation(tree_root);
1980 BUG_ON(ret);
1983 location.objectid = BTRFS_FS_TREE_OBJECTID;
1984 location.type = BTRFS_ROOT_ITEM_KEY;
1985 location.offset = (u64)-1;
1987 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1988 if (!fs_info->fs_root)
1989 goto fail_trans_kthread;
1991 return tree_root;
1993 fail_trans_kthread:
1994 kthread_stop(fs_info->transaction_kthread);
1995 fail_cleaner:
1996 kthread_stop(fs_info->cleaner_kthread);
1999 * make sure we're done with the btree inode before we stop our
2000 * kthreads
2002 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2003 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2005 fail_csum_root:
2006 free_extent_buffer(csum_root->node);
2007 free_extent_buffer(csum_root->commit_root);
2008 fail_dev_root:
2009 free_extent_buffer(dev_root->node);
2010 free_extent_buffer(dev_root->commit_root);
2011 fail_extent_root:
2012 free_extent_buffer(extent_root->node);
2013 free_extent_buffer(extent_root->commit_root);
2014 fail_tree_root:
2015 free_extent_buffer(tree_root->node);
2016 free_extent_buffer(tree_root->commit_root);
2017 fail_chunk_root:
2018 free_extent_buffer(chunk_root->node);
2019 free_extent_buffer(chunk_root->commit_root);
2020 fail_sb_buffer:
2021 btrfs_stop_workers(&fs_info->generic_worker);
2022 btrfs_stop_workers(&fs_info->fixup_workers);
2023 btrfs_stop_workers(&fs_info->delalloc_workers);
2024 btrfs_stop_workers(&fs_info->workers);
2025 btrfs_stop_workers(&fs_info->endio_workers);
2026 btrfs_stop_workers(&fs_info->endio_meta_workers);
2027 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2028 btrfs_stop_workers(&fs_info->endio_write_workers);
2029 btrfs_stop_workers(&fs_info->submit_workers);
2030 btrfs_stop_workers(&fs_info->enospc_workers);
2031 fail_iput:
2032 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2033 iput(fs_info->btree_inode);
2035 btrfs_close_devices(fs_info->fs_devices);
2036 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2037 fail_bdi:
2038 bdi_destroy(&fs_info->bdi);
2039 fail_srcu:
2040 cleanup_srcu_struct(&fs_info->subvol_srcu);
2041 fail:
2042 kfree(extent_root);
2043 kfree(tree_root);
2044 kfree(fs_info);
2045 kfree(chunk_root);
2046 kfree(dev_root);
2047 kfree(csum_root);
2048 return ERR_PTR(err);
2051 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2053 char b[BDEVNAME_SIZE];
2055 if (uptodate) {
2056 set_buffer_uptodate(bh);
2057 } else {
2058 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2059 printk(KERN_WARNING "lost page write due to "
2060 "I/O error on %s\n",
2061 bdevname(bh->b_bdev, b));
2063 /* note, we dont' set_buffer_write_io_error because we have
2064 * our own ways of dealing with the IO errors
2066 clear_buffer_uptodate(bh);
2068 unlock_buffer(bh);
2069 put_bh(bh);
2072 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2074 struct buffer_head *bh;
2075 struct buffer_head *latest = NULL;
2076 struct btrfs_super_block *super;
2077 int i;
2078 u64 transid = 0;
2079 u64 bytenr;
2081 /* we would like to check all the supers, but that would make
2082 * a btrfs mount succeed after a mkfs from a different FS.
2083 * So, we need to add a special mount option to scan for
2084 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2086 for (i = 0; i < 1; i++) {
2087 bytenr = btrfs_sb_offset(i);
2088 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2089 break;
2090 bh = __bread(bdev, bytenr / 4096, 4096);
2091 if (!bh)
2092 continue;
2094 super = (struct btrfs_super_block *)bh->b_data;
2095 if (btrfs_super_bytenr(super) != bytenr ||
2096 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2097 sizeof(super->magic))) {
2098 brelse(bh);
2099 continue;
2102 if (!latest || btrfs_super_generation(super) > transid) {
2103 brelse(latest);
2104 latest = bh;
2105 transid = btrfs_super_generation(super);
2106 } else {
2107 brelse(bh);
2110 return latest;
2114 * this should be called twice, once with wait == 0 and
2115 * once with wait == 1. When wait == 0 is done, all the buffer heads
2116 * we write are pinned.
2118 * They are released when wait == 1 is done.
2119 * max_mirrors must be the same for both runs, and it indicates how
2120 * many supers on this one device should be written.
2122 * max_mirrors == 0 means to write them all.
2124 static int write_dev_supers(struct btrfs_device *device,
2125 struct btrfs_super_block *sb,
2126 int do_barriers, int wait, int max_mirrors)
2128 struct buffer_head *bh;
2129 int i;
2130 int ret;
2131 int errors = 0;
2132 u32 crc;
2133 u64 bytenr;
2134 int last_barrier = 0;
2136 if (max_mirrors == 0)
2137 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2139 /* make sure only the last submit_bh does a barrier */
2140 if (do_barriers) {
2141 for (i = 0; i < max_mirrors; i++) {
2142 bytenr = btrfs_sb_offset(i);
2143 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2144 device->total_bytes)
2145 break;
2146 last_barrier = i;
2150 for (i = 0; i < max_mirrors; i++) {
2151 bytenr = btrfs_sb_offset(i);
2152 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2153 break;
2155 if (wait) {
2156 bh = __find_get_block(device->bdev, bytenr / 4096,
2157 BTRFS_SUPER_INFO_SIZE);
2158 BUG_ON(!bh);
2159 wait_on_buffer(bh);
2160 if (!buffer_uptodate(bh))
2161 errors++;
2163 /* drop our reference */
2164 brelse(bh);
2166 /* drop the reference from the wait == 0 run */
2167 brelse(bh);
2168 continue;
2169 } else {
2170 btrfs_set_super_bytenr(sb, bytenr);
2172 crc = ~(u32)0;
2173 crc = btrfs_csum_data(NULL, (char *)sb +
2174 BTRFS_CSUM_SIZE, crc,
2175 BTRFS_SUPER_INFO_SIZE -
2176 BTRFS_CSUM_SIZE);
2177 btrfs_csum_final(crc, sb->csum);
2180 * one reference for us, and we leave it for the
2181 * caller
2183 bh = __getblk(device->bdev, bytenr / 4096,
2184 BTRFS_SUPER_INFO_SIZE);
2185 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2187 /* one reference for submit_bh */
2188 get_bh(bh);
2190 set_buffer_uptodate(bh);
2191 lock_buffer(bh);
2192 bh->b_end_io = btrfs_end_buffer_write_sync;
2195 if (i == last_barrier && do_barriers && device->barriers) {
2196 ret = submit_bh(WRITE_BARRIER, bh);
2197 if (ret == -EOPNOTSUPP) {
2198 printk("btrfs: disabling barriers on dev %s\n",
2199 device->name);
2200 set_buffer_uptodate(bh);
2201 device->barriers = 0;
2202 /* one reference for submit_bh */
2203 get_bh(bh);
2204 lock_buffer(bh);
2205 ret = submit_bh(WRITE_SYNC, bh);
2207 } else {
2208 ret = submit_bh(WRITE_SYNC, bh);
2211 if (ret)
2212 errors++;
2214 return errors < i ? 0 : -1;
2217 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2219 struct list_head *head;
2220 struct btrfs_device *dev;
2221 struct btrfs_super_block *sb;
2222 struct btrfs_dev_item *dev_item;
2223 int ret;
2224 int do_barriers;
2225 int max_errors;
2226 int total_errors = 0;
2227 u64 flags;
2229 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2230 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2232 sb = &root->fs_info->super_for_commit;
2233 dev_item = &sb->dev_item;
2235 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2236 head = &root->fs_info->fs_devices->devices;
2237 list_for_each_entry(dev, head, dev_list) {
2238 if (!dev->bdev) {
2239 total_errors++;
2240 continue;
2242 if (!dev->in_fs_metadata || !dev->writeable)
2243 continue;
2245 btrfs_set_stack_device_generation(dev_item, 0);
2246 btrfs_set_stack_device_type(dev_item, dev->type);
2247 btrfs_set_stack_device_id(dev_item, dev->devid);
2248 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2249 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2250 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2251 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2252 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2253 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2254 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2256 flags = btrfs_super_flags(sb);
2257 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2259 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2260 if (ret)
2261 total_errors++;
2263 if (total_errors > max_errors) {
2264 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2265 total_errors);
2266 BUG();
2269 total_errors = 0;
2270 list_for_each_entry(dev, head, dev_list) {
2271 if (!dev->bdev)
2272 continue;
2273 if (!dev->in_fs_metadata || !dev->writeable)
2274 continue;
2276 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2277 if (ret)
2278 total_errors++;
2280 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2281 if (total_errors > max_errors) {
2282 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2283 total_errors);
2284 BUG();
2286 return 0;
2289 int write_ctree_super(struct btrfs_trans_handle *trans,
2290 struct btrfs_root *root, int max_mirrors)
2292 int ret;
2294 ret = write_all_supers(root, max_mirrors);
2295 return ret;
2298 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2300 spin_lock(&fs_info->fs_roots_radix_lock);
2301 radix_tree_delete(&fs_info->fs_roots_radix,
2302 (unsigned long)root->root_key.objectid);
2303 spin_unlock(&fs_info->fs_roots_radix_lock);
2305 if (btrfs_root_refs(&root->root_item) == 0)
2306 synchronize_srcu(&fs_info->subvol_srcu);
2308 free_fs_root(root);
2309 return 0;
2312 static void free_fs_root(struct btrfs_root *root)
2314 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2315 if (root->anon_super.s_dev) {
2316 down_write(&root->anon_super.s_umount);
2317 kill_anon_super(&root->anon_super);
2319 free_extent_buffer(root->node);
2320 free_extent_buffer(root->commit_root);
2321 kfree(root->name);
2322 kfree(root);
2325 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2327 int ret;
2328 struct btrfs_root *gang[8];
2329 int i;
2331 while (!list_empty(&fs_info->dead_roots)) {
2332 gang[0] = list_entry(fs_info->dead_roots.next,
2333 struct btrfs_root, root_list);
2334 list_del(&gang[0]->root_list);
2336 if (gang[0]->in_radix) {
2337 btrfs_free_fs_root(fs_info, gang[0]);
2338 } else {
2339 free_extent_buffer(gang[0]->node);
2340 free_extent_buffer(gang[0]->commit_root);
2341 kfree(gang[0]);
2345 while (1) {
2346 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2347 (void **)gang, 0,
2348 ARRAY_SIZE(gang));
2349 if (!ret)
2350 break;
2351 for (i = 0; i < ret; i++)
2352 btrfs_free_fs_root(fs_info, gang[i]);
2354 return 0;
2357 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2359 u64 root_objectid = 0;
2360 struct btrfs_root *gang[8];
2361 int i;
2362 int ret;
2364 while (1) {
2365 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2366 (void **)gang, root_objectid,
2367 ARRAY_SIZE(gang));
2368 if (!ret)
2369 break;
2371 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2372 for (i = 0; i < ret; i++) {
2373 root_objectid = gang[i]->root_key.objectid;
2374 btrfs_orphan_cleanup(gang[i]);
2376 root_objectid++;
2378 return 0;
2381 int btrfs_commit_super(struct btrfs_root *root)
2383 struct btrfs_trans_handle *trans;
2384 int ret;
2386 mutex_lock(&root->fs_info->cleaner_mutex);
2387 btrfs_clean_old_snapshots(root);
2388 mutex_unlock(&root->fs_info->cleaner_mutex);
2389 trans = btrfs_start_transaction(root, 1);
2390 ret = btrfs_commit_transaction(trans, root);
2391 BUG_ON(ret);
2392 /* run commit again to drop the original snapshot */
2393 trans = btrfs_start_transaction(root, 1);
2394 btrfs_commit_transaction(trans, root);
2395 ret = btrfs_write_and_wait_transaction(NULL, root);
2396 BUG_ON(ret);
2398 ret = write_ctree_super(NULL, root, 0);
2399 return ret;
2402 int close_ctree(struct btrfs_root *root)
2404 struct btrfs_fs_info *fs_info = root->fs_info;
2405 int ret;
2407 fs_info->closing = 1;
2408 smp_mb();
2410 kthread_stop(root->fs_info->transaction_kthread);
2411 kthread_stop(root->fs_info->cleaner_kthread);
2413 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2414 ret = btrfs_commit_super(root);
2415 if (ret)
2416 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2419 fs_info->closing = 2;
2420 smp_mb();
2422 if (fs_info->delalloc_bytes) {
2423 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2424 (unsigned long long)fs_info->delalloc_bytes);
2426 if (fs_info->total_ref_cache_size) {
2427 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2428 (unsigned long long)fs_info->total_ref_cache_size);
2431 free_extent_buffer(fs_info->extent_root->node);
2432 free_extent_buffer(fs_info->extent_root->commit_root);
2433 free_extent_buffer(fs_info->tree_root->node);
2434 free_extent_buffer(fs_info->tree_root->commit_root);
2435 free_extent_buffer(root->fs_info->chunk_root->node);
2436 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2437 free_extent_buffer(root->fs_info->dev_root->node);
2438 free_extent_buffer(root->fs_info->dev_root->commit_root);
2439 free_extent_buffer(root->fs_info->csum_root->node);
2440 free_extent_buffer(root->fs_info->csum_root->commit_root);
2442 btrfs_free_block_groups(root->fs_info);
2444 del_fs_roots(fs_info);
2446 iput(fs_info->btree_inode);
2448 btrfs_stop_workers(&fs_info->generic_worker);
2449 btrfs_stop_workers(&fs_info->fixup_workers);
2450 btrfs_stop_workers(&fs_info->delalloc_workers);
2451 btrfs_stop_workers(&fs_info->workers);
2452 btrfs_stop_workers(&fs_info->endio_workers);
2453 btrfs_stop_workers(&fs_info->endio_meta_workers);
2454 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2455 btrfs_stop_workers(&fs_info->endio_write_workers);
2456 btrfs_stop_workers(&fs_info->submit_workers);
2457 btrfs_stop_workers(&fs_info->enospc_workers);
2459 btrfs_close_devices(fs_info->fs_devices);
2460 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2462 bdi_destroy(&fs_info->bdi);
2463 cleanup_srcu_struct(&fs_info->subvol_srcu);
2465 kfree(fs_info->extent_root);
2466 kfree(fs_info->tree_root);
2467 kfree(fs_info->chunk_root);
2468 kfree(fs_info->dev_root);
2469 kfree(fs_info->csum_root);
2470 return 0;
2473 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2475 int ret;
2476 struct inode *btree_inode = buf->first_page->mapping->host;
2478 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2479 if (!ret)
2480 return ret;
2482 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2483 parent_transid);
2484 return !ret;
2487 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2489 struct inode *btree_inode = buf->first_page->mapping->host;
2490 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2491 buf);
2494 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2496 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2497 u64 transid = btrfs_header_generation(buf);
2498 struct inode *btree_inode = root->fs_info->btree_inode;
2499 int was_dirty;
2501 btrfs_assert_tree_locked(buf);
2502 if (transid != root->fs_info->generation) {
2503 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2504 "found %llu running %llu\n",
2505 (unsigned long long)buf->start,
2506 (unsigned long long)transid,
2507 (unsigned long long)root->fs_info->generation);
2508 WARN_ON(1);
2510 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2511 buf);
2512 if (!was_dirty) {
2513 spin_lock(&root->fs_info->delalloc_lock);
2514 root->fs_info->dirty_metadata_bytes += buf->len;
2515 spin_unlock(&root->fs_info->delalloc_lock);
2519 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2522 * looks as though older kernels can get into trouble with
2523 * this code, they end up stuck in balance_dirty_pages forever
2525 u64 num_dirty;
2526 unsigned long thresh = 32 * 1024 * 1024;
2528 if (current->flags & PF_MEMALLOC)
2529 return;
2531 num_dirty = root->fs_info->dirty_metadata_bytes;
2533 if (num_dirty > thresh) {
2534 balance_dirty_pages_ratelimited_nr(
2535 root->fs_info->btree_inode->i_mapping, 1);
2537 return;
2540 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2542 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2543 int ret;
2544 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2545 if (ret == 0)
2546 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2547 return ret;
2550 int btree_lock_page_hook(struct page *page)
2552 struct inode *inode = page->mapping->host;
2553 struct btrfs_root *root = BTRFS_I(inode)->root;
2554 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2555 struct extent_buffer *eb;
2556 unsigned long len;
2557 u64 bytenr = page_offset(page);
2559 if (page->private == EXTENT_PAGE_PRIVATE)
2560 goto out;
2562 len = page->private >> 2;
2563 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2564 if (!eb)
2565 goto out;
2567 btrfs_tree_lock(eb);
2568 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2570 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2571 spin_lock(&root->fs_info->delalloc_lock);
2572 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2573 root->fs_info->dirty_metadata_bytes -= eb->len;
2574 else
2575 WARN_ON(1);
2576 spin_unlock(&root->fs_info->delalloc_lock);
2579 btrfs_tree_unlock(eb);
2580 free_extent_buffer(eb);
2581 out:
2582 lock_page(page);
2583 return 0;
2586 static struct extent_io_ops btree_extent_io_ops = {
2587 .write_cache_pages_lock_hook = btree_lock_page_hook,
2588 .readpage_end_io_hook = btree_readpage_end_io_hook,
2589 .submit_bio_hook = btree_submit_bio_hook,
2590 /* note we're sharing with inode.c for the merge bio hook */
2591 .merge_bio_hook = btrfs_merge_bio_hook,