2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
29 #include "print-tree.h"
30 #include "transaction.h"
33 #include "free-space-cache.h"
35 static int update_block_group(struct btrfs_trans_handle
*trans
,
36 struct btrfs_root
*root
,
37 u64 bytenr
, u64 num_bytes
, int alloc
,
39 static int update_reserved_extents(struct btrfs_block_group_cache
*cache
,
40 u64 num_bytes
, int reserve
);
41 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
,
43 u64 bytenr
, u64 num_bytes
, u64 parent
,
44 u64 root_objectid
, u64 owner_objectid
,
45 u64 owner_offset
, int refs_to_drop
,
46 struct btrfs_delayed_extent_op
*extra_op
);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
48 struct extent_buffer
*leaf
,
49 struct btrfs_extent_item
*ei
);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
51 struct btrfs_root
*root
,
52 u64 parent
, u64 root_objectid
,
53 u64 flags
, u64 owner
, u64 offset
,
54 struct btrfs_key
*ins
, int ref_mod
);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 parent
, u64 root_objectid
,
58 u64 flags
, struct btrfs_disk_key
*key
,
59 int level
, struct btrfs_key
*ins
);
60 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
61 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
62 u64 flags
, int force
);
63 static int pin_down_bytes(struct btrfs_trans_handle
*trans
,
64 struct btrfs_root
*root
,
65 struct btrfs_path
*path
,
66 u64 bytenr
, u64 num_bytes
,
67 int is_data
, int reserved
,
68 struct extent_buffer
**must_clean
);
69 static int find_next_key(struct btrfs_path
*path
, int level
,
70 struct btrfs_key
*key
);
71 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
72 int dump_block_groups
);
75 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
78 return cache
->cached
== BTRFS_CACHE_FINISHED
;
81 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
83 return (cache
->flags
& bits
) == bits
;
87 * this adds the block group to the fs_info rb tree for the block group
90 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
91 struct btrfs_block_group_cache
*block_group
)
94 struct rb_node
*parent
= NULL
;
95 struct btrfs_block_group_cache
*cache
;
97 spin_lock(&info
->block_group_cache_lock
);
98 p
= &info
->block_group_cache_tree
.rb_node
;
102 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
104 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
106 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
109 spin_unlock(&info
->block_group_cache_lock
);
114 rb_link_node(&block_group
->cache_node
, parent
, p
);
115 rb_insert_color(&block_group
->cache_node
,
116 &info
->block_group_cache_tree
);
117 spin_unlock(&info
->block_group_cache_lock
);
123 * This will return the block group at or after bytenr if contains is 0, else
124 * it will return the block group that contains the bytenr
126 static struct btrfs_block_group_cache
*
127 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
130 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
134 spin_lock(&info
->block_group_cache_lock
);
135 n
= info
->block_group_cache_tree
.rb_node
;
138 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
140 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
141 start
= cache
->key
.objectid
;
143 if (bytenr
< start
) {
144 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
147 } else if (bytenr
> start
) {
148 if (contains
&& bytenr
<= end
) {
159 atomic_inc(&ret
->count
);
160 spin_unlock(&info
->block_group_cache_lock
);
165 static int add_excluded_extent(struct btrfs_root
*root
,
166 u64 start
, u64 num_bytes
)
168 u64 end
= start
+ num_bytes
- 1;
169 set_extent_bits(&root
->fs_info
->freed_extents
[0],
170 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
171 set_extent_bits(&root
->fs_info
->freed_extents
[1],
172 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
176 static void free_excluded_extents(struct btrfs_root
*root
,
177 struct btrfs_block_group_cache
*cache
)
181 start
= cache
->key
.objectid
;
182 end
= start
+ cache
->key
.offset
- 1;
184 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
185 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
186 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
187 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
190 static int exclude_super_stripes(struct btrfs_root
*root
,
191 struct btrfs_block_group_cache
*cache
)
198 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
199 bytenr
= btrfs_sb_offset(i
);
200 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
201 cache
->key
.objectid
, bytenr
,
202 0, &logical
, &nr
, &stripe_len
);
206 cache
->bytes_super
+= stripe_len
;
207 ret
= add_excluded_extent(root
, logical
[nr
],
217 static struct btrfs_caching_control
*
218 get_caching_control(struct btrfs_block_group_cache
*cache
)
220 struct btrfs_caching_control
*ctl
;
222 spin_lock(&cache
->lock
);
223 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
224 spin_unlock(&cache
->lock
);
228 ctl
= cache
->caching_ctl
;
229 atomic_inc(&ctl
->count
);
230 spin_unlock(&cache
->lock
);
234 static void put_caching_control(struct btrfs_caching_control
*ctl
)
236 if (atomic_dec_and_test(&ctl
->count
))
241 * this is only called by cache_block_group, since we could have freed extents
242 * we need to check the pinned_extents for any extents that can't be used yet
243 * since their free space will be released as soon as the transaction commits.
245 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
246 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
248 u64 extent_start
, extent_end
, size
, total_added
= 0;
251 while (start
< end
) {
252 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
253 &extent_start
, &extent_end
,
254 EXTENT_DIRTY
| EXTENT_UPTODATE
);
258 if (extent_start
== start
) {
259 start
= extent_end
+ 1;
260 } else if (extent_start
> start
&& extent_start
< end
) {
261 size
= extent_start
- start
;
263 ret
= btrfs_add_free_space(block_group
, start
,
266 start
= extent_end
+ 1;
275 ret
= btrfs_add_free_space(block_group
, start
, size
);
282 static int caching_kthread(void *data
)
284 struct btrfs_block_group_cache
*block_group
= data
;
285 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
286 struct btrfs_caching_control
*caching_ctl
= block_group
->caching_ctl
;
287 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
288 struct btrfs_path
*path
;
289 struct extent_buffer
*leaf
;
290 struct btrfs_key key
;
296 path
= btrfs_alloc_path();
300 exclude_super_stripes(extent_root
, block_group
);
301 spin_lock(&block_group
->space_info
->lock
);
302 block_group
->space_info
->bytes_super
+= block_group
->bytes_super
;
303 spin_unlock(&block_group
->space_info
->lock
);
305 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
308 * We don't want to deadlock with somebody trying to allocate a new
309 * extent for the extent root while also trying to search the extent
310 * root to add free space. So we skip locking and search the commit
311 * root, since its read-only
313 path
->skip_locking
= 1;
314 path
->search_commit_root
= 1;
319 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
321 mutex_lock(&caching_ctl
->mutex
);
322 /* need to make sure the commit_root doesn't disappear */
323 down_read(&fs_info
->extent_commit_sem
);
325 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
329 leaf
= path
->nodes
[0];
330 nritems
= btrfs_header_nritems(leaf
);
334 if (fs_info
->closing
> 1) {
339 if (path
->slots
[0] < nritems
) {
340 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
342 ret
= find_next_key(path
, 0, &key
);
346 caching_ctl
->progress
= last
;
347 btrfs_release_path(extent_root
, path
);
348 up_read(&fs_info
->extent_commit_sem
);
349 mutex_unlock(&caching_ctl
->mutex
);
350 if (btrfs_transaction_in_commit(fs_info
))
357 if (key
.objectid
< block_group
->key
.objectid
) {
362 if (key
.objectid
>= block_group
->key
.objectid
+
363 block_group
->key
.offset
)
366 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
367 total_found
+= add_new_free_space(block_group
,
370 last
= key
.objectid
+ key
.offset
;
372 if (total_found
> (1024 * 1024 * 2)) {
374 wake_up(&caching_ctl
->wait
);
381 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
382 block_group
->key
.objectid
+
383 block_group
->key
.offset
);
384 caching_ctl
->progress
= (u64
)-1;
386 spin_lock(&block_group
->lock
);
387 block_group
->caching_ctl
= NULL
;
388 block_group
->cached
= BTRFS_CACHE_FINISHED
;
389 spin_unlock(&block_group
->lock
);
392 btrfs_free_path(path
);
393 up_read(&fs_info
->extent_commit_sem
);
395 free_excluded_extents(extent_root
, block_group
);
397 mutex_unlock(&caching_ctl
->mutex
);
398 wake_up(&caching_ctl
->wait
);
400 put_caching_control(caching_ctl
);
401 atomic_dec(&block_group
->space_info
->caching_threads
);
405 static int cache_block_group(struct btrfs_block_group_cache
*cache
)
407 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
408 struct btrfs_caching_control
*caching_ctl
;
409 struct task_struct
*tsk
;
413 if (cache
->cached
!= BTRFS_CACHE_NO
)
416 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_KERNEL
);
417 BUG_ON(!caching_ctl
);
419 INIT_LIST_HEAD(&caching_ctl
->list
);
420 mutex_init(&caching_ctl
->mutex
);
421 init_waitqueue_head(&caching_ctl
->wait
);
422 caching_ctl
->block_group
= cache
;
423 caching_ctl
->progress
= cache
->key
.objectid
;
424 /* one for caching kthread, one for caching block group list */
425 atomic_set(&caching_ctl
->count
, 2);
427 spin_lock(&cache
->lock
);
428 if (cache
->cached
!= BTRFS_CACHE_NO
) {
429 spin_unlock(&cache
->lock
);
433 cache
->caching_ctl
= caching_ctl
;
434 cache
->cached
= BTRFS_CACHE_STARTED
;
435 spin_unlock(&cache
->lock
);
437 down_write(&fs_info
->extent_commit_sem
);
438 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
439 up_write(&fs_info
->extent_commit_sem
);
441 atomic_inc(&cache
->space_info
->caching_threads
);
443 tsk
= kthread_run(caching_kthread
, cache
, "btrfs-cache-%llu\n",
444 cache
->key
.objectid
);
447 printk(KERN_ERR
"error running thread %d\n", ret
);
455 * return the block group that starts at or after bytenr
457 static struct btrfs_block_group_cache
*
458 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
460 struct btrfs_block_group_cache
*cache
;
462 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
468 * return the block group that contains the given bytenr
470 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
471 struct btrfs_fs_info
*info
,
474 struct btrfs_block_group_cache
*cache
;
476 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
481 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
483 if (atomic_dec_and_test(&cache
->count
))
487 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
490 struct list_head
*head
= &info
->space_info
;
491 struct btrfs_space_info
*found
;
494 list_for_each_entry_rcu(found
, head
, list
) {
495 if (found
->flags
== flags
) {
505 * after adding space to the filesystem, we need to clear the full flags
506 * on all the space infos.
508 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
510 struct list_head
*head
= &info
->space_info
;
511 struct btrfs_space_info
*found
;
514 list_for_each_entry_rcu(found
, head
, list
)
519 static u64
div_factor(u64 num
, int factor
)
528 u64
btrfs_find_block_group(struct btrfs_root
*root
,
529 u64 search_start
, u64 search_hint
, int owner
)
531 struct btrfs_block_group_cache
*cache
;
533 u64 last
= max(search_hint
, search_start
);
540 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
544 spin_lock(&cache
->lock
);
545 last
= cache
->key
.objectid
+ cache
->key
.offset
;
546 used
= btrfs_block_group_used(&cache
->item
);
548 if ((full_search
|| !cache
->ro
) &&
549 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
550 if (used
+ cache
->pinned
+ cache
->reserved
<
551 div_factor(cache
->key
.offset
, factor
)) {
552 group_start
= cache
->key
.objectid
;
553 spin_unlock(&cache
->lock
);
554 btrfs_put_block_group(cache
);
558 spin_unlock(&cache
->lock
);
559 btrfs_put_block_group(cache
);
567 if (!full_search
&& factor
< 10) {
577 /* simple helper to search for an existing extent at a given offset */
578 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
581 struct btrfs_key key
;
582 struct btrfs_path
*path
;
584 path
= btrfs_alloc_path();
586 key
.objectid
= start
;
588 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
589 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
591 btrfs_free_path(path
);
596 * Back reference rules. Back refs have three main goals:
598 * 1) differentiate between all holders of references to an extent so that
599 * when a reference is dropped we can make sure it was a valid reference
600 * before freeing the extent.
602 * 2) Provide enough information to quickly find the holders of an extent
603 * if we notice a given block is corrupted or bad.
605 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
606 * maintenance. This is actually the same as #2, but with a slightly
607 * different use case.
609 * There are two kinds of back refs. The implicit back refs is optimized
610 * for pointers in non-shared tree blocks. For a given pointer in a block,
611 * back refs of this kind provide information about the block's owner tree
612 * and the pointer's key. These information allow us to find the block by
613 * b-tree searching. The full back refs is for pointers in tree blocks not
614 * referenced by their owner trees. The location of tree block is recorded
615 * in the back refs. Actually the full back refs is generic, and can be
616 * used in all cases the implicit back refs is used. The major shortcoming
617 * of the full back refs is its overhead. Every time a tree block gets
618 * COWed, we have to update back refs entry for all pointers in it.
620 * For a newly allocated tree block, we use implicit back refs for
621 * pointers in it. This means most tree related operations only involve
622 * implicit back refs. For a tree block created in old transaction, the
623 * only way to drop a reference to it is COW it. So we can detect the
624 * event that tree block loses its owner tree's reference and do the
625 * back refs conversion.
627 * When a tree block is COW'd through a tree, there are four cases:
629 * The reference count of the block is one and the tree is the block's
630 * owner tree. Nothing to do in this case.
632 * The reference count of the block is one and the tree is not the
633 * block's owner tree. In this case, full back refs is used for pointers
634 * in the block. Remove these full back refs, add implicit back refs for
635 * every pointers in the new block.
637 * The reference count of the block is greater than one and the tree is
638 * the block's owner tree. In this case, implicit back refs is used for
639 * pointers in the block. Add full back refs for every pointers in the
640 * block, increase lower level extents' reference counts. The original
641 * implicit back refs are entailed to the new block.
643 * The reference count of the block is greater than one and the tree is
644 * not the block's owner tree. Add implicit back refs for every pointer in
645 * the new block, increase lower level extents' reference count.
647 * Back Reference Key composing:
649 * The key objectid corresponds to the first byte in the extent,
650 * The key type is used to differentiate between types of back refs.
651 * There are different meanings of the key offset for different types
654 * File extents can be referenced by:
656 * - multiple snapshots, subvolumes, or different generations in one subvol
657 * - different files inside a single subvolume
658 * - different offsets inside a file (bookend extents in file.c)
660 * The extent ref structure for the implicit back refs has fields for:
662 * - Objectid of the subvolume root
663 * - objectid of the file holding the reference
664 * - original offset in the file
665 * - how many bookend extents
667 * The key offset for the implicit back refs is hash of the first
670 * The extent ref structure for the full back refs has field for:
672 * - number of pointers in the tree leaf
674 * The key offset for the implicit back refs is the first byte of
677 * When a file extent is allocated, The implicit back refs is used.
678 * the fields are filled in:
680 * (root_key.objectid, inode objectid, offset in file, 1)
682 * When a file extent is removed file truncation, we find the
683 * corresponding implicit back refs and check the following fields:
685 * (btrfs_header_owner(leaf), inode objectid, offset in file)
687 * Btree extents can be referenced by:
689 * - Different subvolumes
691 * Both the implicit back refs and the full back refs for tree blocks
692 * only consist of key. The key offset for the implicit back refs is
693 * objectid of block's owner tree. The key offset for the full back refs
694 * is the first byte of parent block.
696 * When implicit back refs is used, information about the lowest key and
697 * level of the tree block are required. These information are stored in
698 * tree block info structure.
701 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
702 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
703 struct btrfs_root
*root
,
704 struct btrfs_path
*path
,
705 u64 owner
, u32 extra_size
)
707 struct btrfs_extent_item
*item
;
708 struct btrfs_extent_item_v0
*ei0
;
709 struct btrfs_extent_ref_v0
*ref0
;
710 struct btrfs_tree_block_info
*bi
;
711 struct extent_buffer
*leaf
;
712 struct btrfs_key key
;
713 struct btrfs_key found_key
;
714 u32 new_size
= sizeof(*item
);
718 leaf
= path
->nodes
[0];
719 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
721 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
722 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
723 struct btrfs_extent_item_v0
);
724 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
726 if (owner
== (u64
)-1) {
728 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
729 ret
= btrfs_next_leaf(root
, path
);
733 leaf
= path
->nodes
[0];
735 btrfs_item_key_to_cpu(leaf
, &found_key
,
737 BUG_ON(key
.objectid
!= found_key
.objectid
);
738 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
742 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
743 struct btrfs_extent_ref_v0
);
744 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
748 btrfs_release_path(root
, path
);
750 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
751 new_size
+= sizeof(*bi
);
753 new_size
-= sizeof(*ei0
);
754 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
755 new_size
+ extra_size
, 1);
760 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
763 leaf
= path
->nodes
[0];
764 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
765 btrfs_set_extent_refs(leaf
, item
, refs
);
766 /* FIXME: get real generation */
767 btrfs_set_extent_generation(leaf
, item
, 0);
768 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
769 btrfs_set_extent_flags(leaf
, item
,
770 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
771 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
772 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
773 /* FIXME: get first key of the block */
774 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
775 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
777 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
779 btrfs_mark_buffer_dirty(leaf
);
784 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
786 u32 high_crc
= ~(u32
)0;
787 u32 low_crc
= ~(u32
)0;
790 lenum
= cpu_to_le64(root_objectid
);
791 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
792 lenum
= cpu_to_le64(owner
);
793 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
794 lenum
= cpu_to_le64(offset
);
795 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
797 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
800 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
801 struct btrfs_extent_data_ref
*ref
)
803 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
804 btrfs_extent_data_ref_objectid(leaf
, ref
),
805 btrfs_extent_data_ref_offset(leaf
, ref
));
808 static int match_extent_data_ref(struct extent_buffer
*leaf
,
809 struct btrfs_extent_data_ref
*ref
,
810 u64 root_objectid
, u64 owner
, u64 offset
)
812 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
813 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
814 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
819 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
820 struct btrfs_root
*root
,
821 struct btrfs_path
*path
,
822 u64 bytenr
, u64 parent
,
824 u64 owner
, u64 offset
)
826 struct btrfs_key key
;
827 struct btrfs_extent_data_ref
*ref
;
828 struct extent_buffer
*leaf
;
834 key
.objectid
= bytenr
;
836 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
839 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
840 key
.offset
= hash_extent_data_ref(root_objectid
,
845 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
854 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
855 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
856 btrfs_release_path(root
, path
);
857 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
868 leaf
= path
->nodes
[0];
869 nritems
= btrfs_header_nritems(leaf
);
871 if (path
->slots
[0] >= nritems
) {
872 ret
= btrfs_next_leaf(root
, path
);
878 leaf
= path
->nodes
[0];
879 nritems
= btrfs_header_nritems(leaf
);
883 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
884 if (key
.objectid
!= bytenr
||
885 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
888 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
889 struct btrfs_extent_data_ref
);
891 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
894 btrfs_release_path(root
, path
);
906 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
907 struct btrfs_root
*root
,
908 struct btrfs_path
*path
,
909 u64 bytenr
, u64 parent
,
910 u64 root_objectid
, u64 owner
,
911 u64 offset
, int refs_to_add
)
913 struct btrfs_key key
;
914 struct extent_buffer
*leaf
;
919 key
.objectid
= bytenr
;
921 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
923 size
= sizeof(struct btrfs_shared_data_ref
);
925 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
926 key
.offset
= hash_extent_data_ref(root_objectid
,
928 size
= sizeof(struct btrfs_extent_data_ref
);
931 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
932 if (ret
&& ret
!= -EEXIST
)
935 leaf
= path
->nodes
[0];
937 struct btrfs_shared_data_ref
*ref
;
938 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
939 struct btrfs_shared_data_ref
);
941 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
943 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
944 num_refs
+= refs_to_add
;
945 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
948 struct btrfs_extent_data_ref
*ref
;
949 while (ret
== -EEXIST
) {
950 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
951 struct btrfs_extent_data_ref
);
952 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
955 btrfs_release_path(root
, path
);
957 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
959 if (ret
&& ret
!= -EEXIST
)
962 leaf
= path
->nodes
[0];
964 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
965 struct btrfs_extent_data_ref
);
967 btrfs_set_extent_data_ref_root(leaf
, ref
,
969 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
970 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
971 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
973 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
974 num_refs
+= refs_to_add
;
975 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
978 btrfs_mark_buffer_dirty(leaf
);
981 btrfs_release_path(root
, path
);
985 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
986 struct btrfs_root
*root
,
987 struct btrfs_path
*path
,
990 struct btrfs_key key
;
991 struct btrfs_extent_data_ref
*ref1
= NULL
;
992 struct btrfs_shared_data_ref
*ref2
= NULL
;
993 struct extent_buffer
*leaf
;
997 leaf
= path
->nodes
[0];
998 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1000 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1001 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1002 struct btrfs_extent_data_ref
);
1003 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1004 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1005 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1006 struct btrfs_shared_data_ref
);
1007 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1008 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1009 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1010 struct btrfs_extent_ref_v0
*ref0
;
1011 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1012 struct btrfs_extent_ref_v0
);
1013 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1019 BUG_ON(num_refs
< refs_to_drop
);
1020 num_refs
-= refs_to_drop
;
1022 if (num_refs
== 0) {
1023 ret
= btrfs_del_item(trans
, root
, path
);
1025 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1026 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1027 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1028 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1029 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1031 struct btrfs_extent_ref_v0
*ref0
;
1032 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1033 struct btrfs_extent_ref_v0
);
1034 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1037 btrfs_mark_buffer_dirty(leaf
);
1042 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1043 struct btrfs_path
*path
,
1044 struct btrfs_extent_inline_ref
*iref
)
1046 struct btrfs_key key
;
1047 struct extent_buffer
*leaf
;
1048 struct btrfs_extent_data_ref
*ref1
;
1049 struct btrfs_shared_data_ref
*ref2
;
1052 leaf
= path
->nodes
[0];
1053 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1055 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1056 BTRFS_EXTENT_DATA_REF_KEY
) {
1057 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1058 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1060 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1061 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1063 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1064 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1065 struct btrfs_extent_data_ref
);
1066 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1067 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1068 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1069 struct btrfs_shared_data_ref
);
1070 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1071 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1072 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1073 struct btrfs_extent_ref_v0
*ref0
;
1074 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1075 struct btrfs_extent_ref_v0
);
1076 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1084 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1085 struct btrfs_root
*root
,
1086 struct btrfs_path
*path
,
1087 u64 bytenr
, u64 parent
,
1090 struct btrfs_key key
;
1093 key
.objectid
= bytenr
;
1095 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1096 key
.offset
= parent
;
1098 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1099 key
.offset
= root_objectid
;
1102 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 if (ret
== -ENOENT
&& parent
) {
1107 btrfs_release_path(root
, path
);
1108 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1109 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1117 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1118 struct btrfs_root
*root
,
1119 struct btrfs_path
*path
,
1120 u64 bytenr
, u64 parent
,
1123 struct btrfs_key key
;
1126 key
.objectid
= bytenr
;
1128 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1129 key
.offset
= parent
;
1131 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1132 key
.offset
= root_objectid
;
1135 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1136 btrfs_release_path(root
, path
);
1140 static inline int extent_ref_type(u64 parent
, u64 owner
)
1143 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1145 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1147 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1150 type
= BTRFS_SHARED_DATA_REF_KEY
;
1152 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1157 static int find_next_key(struct btrfs_path
*path
, int level
,
1158 struct btrfs_key
*key
)
1161 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1162 if (!path
->nodes
[level
])
1164 if (path
->slots
[level
] + 1 >=
1165 btrfs_header_nritems(path
->nodes
[level
]))
1168 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1169 path
->slots
[level
] + 1);
1171 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1172 path
->slots
[level
] + 1);
1179 * look for inline back ref. if back ref is found, *ref_ret is set
1180 * to the address of inline back ref, and 0 is returned.
1182 * if back ref isn't found, *ref_ret is set to the address where it
1183 * should be inserted, and -ENOENT is returned.
1185 * if insert is true and there are too many inline back refs, the path
1186 * points to the extent item, and -EAGAIN is returned.
1188 * NOTE: inline back refs are ordered in the same way that back ref
1189 * items in the tree are ordered.
1191 static noinline_for_stack
1192 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1193 struct btrfs_root
*root
,
1194 struct btrfs_path
*path
,
1195 struct btrfs_extent_inline_ref
**ref_ret
,
1196 u64 bytenr
, u64 num_bytes
,
1197 u64 parent
, u64 root_objectid
,
1198 u64 owner
, u64 offset
, int insert
)
1200 struct btrfs_key key
;
1201 struct extent_buffer
*leaf
;
1202 struct btrfs_extent_item
*ei
;
1203 struct btrfs_extent_inline_ref
*iref
;
1214 key
.objectid
= bytenr
;
1215 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1216 key
.offset
= num_bytes
;
1218 want
= extent_ref_type(parent
, owner
);
1220 extra_size
= btrfs_extent_inline_ref_size(want
);
1221 path
->keep_locks
= 1;
1224 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1231 leaf
= path
->nodes
[0];
1232 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1233 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1234 if (item_size
< sizeof(*ei
)) {
1239 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1245 leaf
= path
->nodes
[0];
1246 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1249 BUG_ON(item_size
< sizeof(*ei
));
1251 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1252 flags
= btrfs_extent_flags(leaf
, ei
);
1254 ptr
= (unsigned long)(ei
+ 1);
1255 end
= (unsigned long)ei
+ item_size
;
1257 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1258 ptr
+= sizeof(struct btrfs_tree_block_info
);
1261 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1270 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1271 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1275 ptr
+= btrfs_extent_inline_ref_size(type
);
1279 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1280 struct btrfs_extent_data_ref
*dref
;
1281 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1282 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1287 if (hash_extent_data_ref_item(leaf
, dref
) <
1288 hash_extent_data_ref(root_objectid
, owner
, offset
))
1292 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1294 if (parent
== ref_offset
) {
1298 if (ref_offset
< parent
)
1301 if (root_objectid
== ref_offset
) {
1305 if (ref_offset
< root_objectid
)
1309 ptr
+= btrfs_extent_inline_ref_size(type
);
1311 if (err
== -ENOENT
&& insert
) {
1312 if (item_size
+ extra_size
>=
1313 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1318 * To add new inline back ref, we have to make sure
1319 * there is no corresponding back ref item.
1320 * For simplicity, we just do not add new inline back
1321 * ref if there is any kind of item for this block
1323 if (find_next_key(path
, 0, &key
) == 0 &&
1324 key
.objectid
== bytenr
&&
1325 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1330 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1333 path
->keep_locks
= 0;
1334 btrfs_unlock_up_safe(path
, 1);
1340 * helper to add new inline back ref
1342 static noinline_for_stack
1343 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1344 struct btrfs_root
*root
,
1345 struct btrfs_path
*path
,
1346 struct btrfs_extent_inline_ref
*iref
,
1347 u64 parent
, u64 root_objectid
,
1348 u64 owner
, u64 offset
, int refs_to_add
,
1349 struct btrfs_delayed_extent_op
*extent_op
)
1351 struct extent_buffer
*leaf
;
1352 struct btrfs_extent_item
*ei
;
1355 unsigned long item_offset
;
1361 leaf
= path
->nodes
[0];
1362 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1363 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1365 type
= extent_ref_type(parent
, owner
);
1366 size
= btrfs_extent_inline_ref_size(type
);
1368 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1371 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1372 refs
= btrfs_extent_refs(leaf
, ei
);
1373 refs
+= refs_to_add
;
1374 btrfs_set_extent_refs(leaf
, ei
, refs
);
1376 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1378 ptr
= (unsigned long)ei
+ item_offset
;
1379 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1380 if (ptr
< end
- size
)
1381 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1384 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1385 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1386 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1387 struct btrfs_extent_data_ref
*dref
;
1388 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1389 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1390 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1391 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1392 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1393 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1394 struct btrfs_shared_data_ref
*sref
;
1395 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1396 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1397 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1398 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1399 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1401 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1403 btrfs_mark_buffer_dirty(leaf
);
1407 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1408 struct btrfs_root
*root
,
1409 struct btrfs_path
*path
,
1410 struct btrfs_extent_inline_ref
**ref_ret
,
1411 u64 bytenr
, u64 num_bytes
, u64 parent
,
1412 u64 root_objectid
, u64 owner
, u64 offset
)
1416 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1417 bytenr
, num_bytes
, parent
,
1418 root_objectid
, owner
, offset
, 0);
1422 btrfs_release_path(root
, path
);
1425 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1426 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1429 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1430 root_objectid
, owner
, offset
);
1436 * helper to update/remove inline back ref
1438 static noinline_for_stack
1439 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1440 struct btrfs_root
*root
,
1441 struct btrfs_path
*path
,
1442 struct btrfs_extent_inline_ref
*iref
,
1444 struct btrfs_delayed_extent_op
*extent_op
)
1446 struct extent_buffer
*leaf
;
1447 struct btrfs_extent_item
*ei
;
1448 struct btrfs_extent_data_ref
*dref
= NULL
;
1449 struct btrfs_shared_data_ref
*sref
= NULL
;
1458 leaf
= path
->nodes
[0];
1459 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1460 refs
= btrfs_extent_refs(leaf
, ei
);
1461 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1462 refs
+= refs_to_mod
;
1463 btrfs_set_extent_refs(leaf
, ei
, refs
);
1465 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1467 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1469 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1470 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1471 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1472 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1473 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1474 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1477 BUG_ON(refs_to_mod
!= -1);
1480 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1481 refs
+= refs_to_mod
;
1484 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1485 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1487 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1489 size
= btrfs_extent_inline_ref_size(type
);
1490 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1491 ptr
= (unsigned long)iref
;
1492 end
= (unsigned long)ei
+ item_size
;
1493 if (ptr
+ size
< end
)
1494 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1497 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1500 btrfs_mark_buffer_dirty(leaf
);
1504 static noinline_for_stack
1505 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1506 struct btrfs_root
*root
,
1507 struct btrfs_path
*path
,
1508 u64 bytenr
, u64 num_bytes
, u64 parent
,
1509 u64 root_objectid
, u64 owner
,
1510 u64 offset
, int refs_to_add
,
1511 struct btrfs_delayed_extent_op
*extent_op
)
1513 struct btrfs_extent_inline_ref
*iref
;
1516 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1517 bytenr
, num_bytes
, parent
,
1518 root_objectid
, owner
, offset
, 1);
1520 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1521 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1522 refs_to_add
, extent_op
);
1523 } else if (ret
== -ENOENT
) {
1524 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1525 parent
, root_objectid
,
1526 owner
, offset
, refs_to_add
,
1532 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1533 struct btrfs_root
*root
,
1534 struct btrfs_path
*path
,
1535 u64 bytenr
, u64 parent
, u64 root_objectid
,
1536 u64 owner
, u64 offset
, int refs_to_add
)
1539 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1540 BUG_ON(refs_to_add
!= 1);
1541 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1542 parent
, root_objectid
);
1544 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1545 parent
, root_objectid
,
1546 owner
, offset
, refs_to_add
);
1551 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1552 struct btrfs_root
*root
,
1553 struct btrfs_path
*path
,
1554 struct btrfs_extent_inline_ref
*iref
,
1555 int refs_to_drop
, int is_data
)
1559 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1561 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1562 -refs_to_drop
, NULL
);
1563 } else if (is_data
) {
1564 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1566 ret
= btrfs_del_item(trans
, root
, path
);
1571 #ifdef BIO_RW_DISCARD
1572 static void btrfs_issue_discard(struct block_device
*bdev
,
1575 blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_KERNEL
,
1576 DISCARD_FL_BARRIER
);
1580 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1583 #ifdef BIO_RW_DISCARD
1585 u64 map_length
= num_bytes
;
1586 struct btrfs_multi_bio
*multi
= NULL
;
1588 /* Tell the block device(s) that the sectors can be discarded */
1589 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, READ
,
1590 bytenr
, &map_length
, &multi
, 0);
1592 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1595 if (map_length
> num_bytes
)
1596 map_length
= num_bytes
;
1598 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1599 btrfs_issue_discard(stripe
->dev
->bdev
,
1612 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1613 struct btrfs_root
*root
,
1614 u64 bytenr
, u64 num_bytes
, u64 parent
,
1615 u64 root_objectid
, u64 owner
, u64 offset
)
1618 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1619 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1621 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1622 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1623 parent
, root_objectid
, (int)owner
,
1624 BTRFS_ADD_DELAYED_REF
, NULL
);
1626 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1627 parent
, root_objectid
, owner
, offset
,
1628 BTRFS_ADD_DELAYED_REF
, NULL
);
1633 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1634 struct btrfs_root
*root
,
1635 u64 bytenr
, u64 num_bytes
,
1636 u64 parent
, u64 root_objectid
,
1637 u64 owner
, u64 offset
, int refs_to_add
,
1638 struct btrfs_delayed_extent_op
*extent_op
)
1640 struct btrfs_path
*path
;
1641 struct extent_buffer
*leaf
;
1642 struct btrfs_extent_item
*item
;
1647 path
= btrfs_alloc_path();
1652 path
->leave_spinning
= 1;
1653 /* this will setup the path even if it fails to insert the back ref */
1654 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1655 path
, bytenr
, num_bytes
, parent
,
1656 root_objectid
, owner
, offset
,
1657 refs_to_add
, extent_op
);
1661 if (ret
!= -EAGAIN
) {
1666 leaf
= path
->nodes
[0];
1667 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1668 refs
= btrfs_extent_refs(leaf
, item
);
1669 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1671 __run_delayed_extent_op(extent_op
, leaf
, item
);
1673 btrfs_mark_buffer_dirty(leaf
);
1674 btrfs_release_path(root
->fs_info
->extent_root
, path
);
1677 path
->leave_spinning
= 1;
1679 /* now insert the actual backref */
1680 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1681 path
, bytenr
, parent
, root_objectid
,
1682 owner
, offset
, refs_to_add
);
1685 btrfs_free_path(path
);
1689 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1690 struct btrfs_root
*root
,
1691 struct btrfs_delayed_ref_node
*node
,
1692 struct btrfs_delayed_extent_op
*extent_op
,
1693 int insert_reserved
)
1696 struct btrfs_delayed_data_ref
*ref
;
1697 struct btrfs_key ins
;
1702 ins
.objectid
= node
->bytenr
;
1703 ins
.offset
= node
->num_bytes
;
1704 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1706 ref
= btrfs_delayed_node_to_data_ref(node
);
1707 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1708 parent
= ref
->parent
;
1710 ref_root
= ref
->root
;
1712 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1714 BUG_ON(extent_op
->update_key
);
1715 flags
|= extent_op
->flags_to_set
;
1717 ret
= alloc_reserved_file_extent(trans
, root
,
1718 parent
, ref_root
, flags
,
1719 ref
->objectid
, ref
->offset
,
1720 &ins
, node
->ref_mod
);
1721 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1722 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1723 node
->num_bytes
, parent
,
1724 ref_root
, ref
->objectid
,
1725 ref
->offset
, node
->ref_mod
,
1727 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1728 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1729 node
->num_bytes
, parent
,
1730 ref_root
, ref
->objectid
,
1731 ref
->offset
, node
->ref_mod
,
1739 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1740 struct extent_buffer
*leaf
,
1741 struct btrfs_extent_item
*ei
)
1743 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1744 if (extent_op
->update_flags
) {
1745 flags
|= extent_op
->flags_to_set
;
1746 btrfs_set_extent_flags(leaf
, ei
, flags
);
1749 if (extent_op
->update_key
) {
1750 struct btrfs_tree_block_info
*bi
;
1751 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1752 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1753 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1757 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1758 struct btrfs_root
*root
,
1759 struct btrfs_delayed_ref_node
*node
,
1760 struct btrfs_delayed_extent_op
*extent_op
)
1762 struct btrfs_key key
;
1763 struct btrfs_path
*path
;
1764 struct btrfs_extent_item
*ei
;
1765 struct extent_buffer
*leaf
;
1770 path
= btrfs_alloc_path();
1774 key
.objectid
= node
->bytenr
;
1775 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1776 key
.offset
= node
->num_bytes
;
1779 path
->leave_spinning
= 1;
1780 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1791 leaf
= path
->nodes
[0];
1792 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1793 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1794 if (item_size
< sizeof(*ei
)) {
1795 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
1801 leaf
= path
->nodes
[0];
1802 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1805 BUG_ON(item_size
< sizeof(*ei
));
1806 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1807 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1809 btrfs_mark_buffer_dirty(leaf
);
1811 btrfs_free_path(path
);
1815 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1816 struct btrfs_root
*root
,
1817 struct btrfs_delayed_ref_node
*node
,
1818 struct btrfs_delayed_extent_op
*extent_op
,
1819 int insert_reserved
)
1822 struct btrfs_delayed_tree_ref
*ref
;
1823 struct btrfs_key ins
;
1827 ins
.objectid
= node
->bytenr
;
1828 ins
.offset
= node
->num_bytes
;
1829 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1831 ref
= btrfs_delayed_node_to_tree_ref(node
);
1832 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1833 parent
= ref
->parent
;
1835 ref_root
= ref
->root
;
1837 BUG_ON(node
->ref_mod
!= 1);
1838 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1839 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
1840 !extent_op
->update_key
);
1841 ret
= alloc_reserved_tree_block(trans
, root
,
1843 extent_op
->flags_to_set
,
1846 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1847 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1848 node
->num_bytes
, parent
, ref_root
,
1849 ref
->level
, 0, 1, extent_op
);
1850 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1851 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1852 node
->num_bytes
, parent
, ref_root
,
1853 ref
->level
, 0, 1, extent_op
);
1861 /* helper function to actually process a single delayed ref entry */
1862 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
1863 struct btrfs_root
*root
,
1864 struct btrfs_delayed_ref_node
*node
,
1865 struct btrfs_delayed_extent_op
*extent_op
,
1866 int insert_reserved
)
1869 if (btrfs_delayed_ref_is_head(node
)) {
1870 struct btrfs_delayed_ref_head
*head
;
1872 * we've hit the end of the chain and we were supposed
1873 * to insert this extent into the tree. But, it got
1874 * deleted before we ever needed to insert it, so all
1875 * we have to do is clean up the accounting
1878 head
= btrfs_delayed_node_to_head(node
);
1879 if (insert_reserved
) {
1881 struct extent_buffer
*must_clean
= NULL
;
1883 ret
= pin_down_bytes(trans
, root
, NULL
,
1884 node
->bytenr
, node
->num_bytes
,
1885 head
->is_data
, 1, &must_clean
);
1890 clean_tree_block(NULL
, root
, must_clean
);
1891 btrfs_tree_unlock(must_clean
);
1892 free_extent_buffer(must_clean
);
1894 if (head
->is_data
) {
1895 ret
= btrfs_del_csums(trans
, root
,
1901 ret
= btrfs_free_reserved_extent(root
,
1907 mutex_unlock(&head
->mutex
);
1911 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
1912 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1913 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
1915 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
1916 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1917 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
1924 static noinline
struct btrfs_delayed_ref_node
*
1925 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
1927 struct rb_node
*node
;
1928 struct btrfs_delayed_ref_node
*ref
;
1929 int action
= BTRFS_ADD_DELAYED_REF
;
1932 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
1933 * this prevents ref count from going down to zero when
1934 * there still are pending delayed ref.
1936 node
= rb_prev(&head
->node
.rb_node
);
1940 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
1942 if (ref
->bytenr
!= head
->node
.bytenr
)
1944 if (ref
->action
== action
)
1946 node
= rb_prev(node
);
1948 if (action
== BTRFS_ADD_DELAYED_REF
) {
1949 action
= BTRFS_DROP_DELAYED_REF
;
1955 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
1956 struct btrfs_root
*root
,
1957 struct list_head
*cluster
)
1959 struct btrfs_delayed_ref_root
*delayed_refs
;
1960 struct btrfs_delayed_ref_node
*ref
;
1961 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
1962 struct btrfs_delayed_extent_op
*extent_op
;
1965 int must_insert_reserved
= 0;
1967 delayed_refs
= &trans
->transaction
->delayed_refs
;
1970 /* pick a new head ref from the cluster list */
1971 if (list_empty(cluster
))
1974 locked_ref
= list_entry(cluster
->next
,
1975 struct btrfs_delayed_ref_head
, cluster
);
1977 /* grab the lock that says we are going to process
1978 * all the refs for this head */
1979 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
1982 * we may have dropped the spin lock to get the head
1983 * mutex lock, and that might have given someone else
1984 * time to free the head. If that's true, it has been
1985 * removed from our list and we can move on.
1987 if (ret
== -EAGAIN
) {
1995 * record the must insert reserved flag before we
1996 * drop the spin lock.
1998 must_insert_reserved
= locked_ref
->must_insert_reserved
;
1999 locked_ref
->must_insert_reserved
= 0;
2001 extent_op
= locked_ref
->extent_op
;
2002 locked_ref
->extent_op
= NULL
;
2005 * locked_ref is the head node, so we have to go one
2006 * node back for any delayed ref updates
2008 ref
= select_delayed_ref(locked_ref
);
2010 /* All delayed refs have been processed, Go ahead
2011 * and send the head node to run_one_delayed_ref,
2012 * so that any accounting fixes can happen
2014 ref
= &locked_ref
->node
;
2016 if (extent_op
&& must_insert_reserved
) {
2022 spin_unlock(&delayed_refs
->lock
);
2024 ret
= run_delayed_extent_op(trans
, root
,
2030 spin_lock(&delayed_refs
->lock
);
2034 list_del_init(&locked_ref
->cluster
);
2039 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2040 delayed_refs
->num_entries
--;
2042 spin_unlock(&delayed_refs
->lock
);
2044 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2045 must_insert_reserved
);
2048 btrfs_put_delayed_ref(ref
);
2053 spin_lock(&delayed_refs
->lock
);
2059 * this starts processing the delayed reference count updates and
2060 * extent insertions we have queued up so far. count can be
2061 * 0, which means to process everything in the tree at the start
2062 * of the run (but not newly added entries), or it can be some target
2063 * number you'd like to process.
2065 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2066 struct btrfs_root
*root
, unsigned long count
)
2068 struct rb_node
*node
;
2069 struct btrfs_delayed_ref_root
*delayed_refs
;
2070 struct btrfs_delayed_ref_node
*ref
;
2071 struct list_head cluster
;
2073 int run_all
= count
== (unsigned long)-1;
2076 if (root
== root
->fs_info
->extent_root
)
2077 root
= root
->fs_info
->tree_root
;
2079 delayed_refs
= &trans
->transaction
->delayed_refs
;
2080 INIT_LIST_HEAD(&cluster
);
2082 spin_lock(&delayed_refs
->lock
);
2084 count
= delayed_refs
->num_entries
* 2;
2088 if (!(run_all
|| run_most
) &&
2089 delayed_refs
->num_heads_ready
< 64)
2093 * go find something we can process in the rbtree. We start at
2094 * the beginning of the tree, and then build a cluster
2095 * of refs to process starting at the first one we are able to
2098 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2099 delayed_refs
->run_delayed_start
);
2103 ret
= run_clustered_refs(trans
, root
, &cluster
);
2106 count
-= min_t(unsigned long, ret
, count
);
2113 node
= rb_first(&delayed_refs
->root
);
2116 count
= (unsigned long)-1;
2119 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2121 if (btrfs_delayed_ref_is_head(ref
)) {
2122 struct btrfs_delayed_ref_head
*head
;
2124 head
= btrfs_delayed_node_to_head(ref
);
2125 atomic_inc(&ref
->refs
);
2127 spin_unlock(&delayed_refs
->lock
);
2128 mutex_lock(&head
->mutex
);
2129 mutex_unlock(&head
->mutex
);
2131 btrfs_put_delayed_ref(ref
);
2135 node
= rb_next(node
);
2137 spin_unlock(&delayed_refs
->lock
);
2138 schedule_timeout(1);
2142 spin_unlock(&delayed_refs
->lock
);
2146 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2147 struct btrfs_root
*root
,
2148 u64 bytenr
, u64 num_bytes
, u64 flags
,
2151 struct btrfs_delayed_extent_op
*extent_op
;
2154 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2158 extent_op
->flags_to_set
= flags
;
2159 extent_op
->update_flags
= 1;
2160 extent_op
->update_key
= 0;
2161 extent_op
->is_data
= is_data
? 1 : 0;
2163 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2169 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2170 struct btrfs_root
*root
,
2171 struct btrfs_path
*path
,
2172 u64 objectid
, u64 offset
, u64 bytenr
)
2174 struct btrfs_delayed_ref_head
*head
;
2175 struct btrfs_delayed_ref_node
*ref
;
2176 struct btrfs_delayed_data_ref
*data_ref
;
2177 struct btrfs_delayed_ref_root
*delayed_refs
;
2178 struct rb_node
*node
;
2182 delayed_refs
= &trans
->transaction
->delayed_refs
;
2183 spin_lock(&delayed_refs
->lock
);
2184 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2188 if (!mutex_trylock(&head
->mutex
)) {
2189 atomic_inc(&head
->node
.refs
);
2190 spin_unlock(&delayed_refs
->lock
);
2192 btrfs_release_path(root
->fs_info
->extent_root
, path
);
2194 mutex_lock(&head
->mutex
);
2195 mutex_unlock(&head
->mutex
);
2196 btrfs_put_delayed_ref(&head
->node
);
2200 node
= rb_prev(&head
->node
.rb_node
);
2204 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2206 if (ref
->bytenr
!= bytenr
)
2210 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2213 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2215 node
= rb_prev(node
);
2217 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2218 if (ref
->bytenr
== bytenr
)
2222 if (data_ref
->root
!= root
->root_key
.objectid
||
2223 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2228 mutex_unlock(&head
->mutex
);
2230 spin_unlock(&delayed_refs
->lock
);
2234 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2235 struct btrfs_root
*root
,
2236 struct btrfs_path
*path
,
2237 u64 objectid
, u64 offset
, u64 bytenr
)
2239 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2240 struct extent_buffer
*leaf
;
2241 struct btrfs_extent_data_ref
*ref
;
2242 struct btrfs_extent_inline_ref
*iref
;
2243 struct btrfs_extent_item
*ei
;
2244 struct btrfs_key key
;
2248 key
.objectid
= bytenr
;
2249 key
.offset
= (u64
)-1;
2250 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2252 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2258 if (path
->slots
[0] == 0)
2262 leaf
= path
->nodes
[0];
2263 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2265 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2269 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2271 if (item_size
< sizeof(*ei
)) {
2272 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2276 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2278 if (item_size
!= sizeof(*ei
) +
2279 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2282 if (btrfs_extent_generation(leaf
, ei
) <=
2283 btrfs_root_last_snapshot(&root
->root_item
))
2286 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2287 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2288 BTRFS_EXTENT_DATA_REF_KEY
)
2291 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2292 if (btrfs_extent_refs(leaf
, ei
) !=
2293 btrfs_extent_data_ref_count(leaf
, ref
) ||
2294 btrfs_extent_data_ref_root(leaf
, ref
) !=
2295 root
->root_key
.objectid
||
2296 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2297 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2305 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2306 struct btrfs_root
*root
,
2307 u64 objectid
, u64 offset
, u64 bytenr
)
2309 struct btrfs_path
*path
;
2313 path
= btrfs_alloc_path();
2318 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2320 if (ret
&& ret
!= -ENOENT
)
2323 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2325 } while (ret2
== -EAGAIN
);
2327 if (ret2
&& ret2
!= -ENOENT
) {
2332 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2335 btrfs_free_path(path
);
2340 int btrfs_cache_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2341 struct extent_buffer
*buf
, u32 nr_extents
)
2343 struct btrfs_key key
;
2344 struct btrfs_file_extent_item
*fi
;
2352 if (!root
->ref_cows
)
2355 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
2357 root_gen
= root
->root_key
.offset
;
2360 root_gen
= trans
->transid
- 1;
2363 level
= btrfs_header_level(buf
);
2364 nritems
= btrfs_header_nritems(buf
);
2367 struct btrfs_leaf_ref
*ref
;
2368 struct btrfs_extent_info
*info
;
2370 ref
= btrfs_alloc_leaf_ref(root
, nr_extents
);
2376 ref
->root_gen
= root_gen
;
2377 ref
->bytenr
= buf
->start
;
2378 ref
->owner
= btrfs_header_owner(buf
);
2379 ref
->generation
= btrfs_header_generation(buf
);
2380 ref
->nritems
= nr_extents
;
2381 info
= ref
->extents
;
2383 for (i
= 0; nr_extents
> 0 && i
< nritems
; i
++) {
2385 btrfs_item_key_to_cpu(buf
, &key
, i
);
2386 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2388 fi
= btrfs_item_ptr(buf
, i
,
2389 struct btrfs_file_extent_item
);
2390 if (btrfs_file_extent_type(buf
, fi
) ==
2391 BTRFS_FILE_EXTENT_INLINE
)
2393 disk_bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2394 if (disk_bytenr
== 0)
2397 info
->bytenr
= disk_bytenr
;
2399 btrfs_file_extent_disk_num_bytes(buf
, fi
);
2400 info
->objectid
= key
.objectid
;
2401 info
->offset
= key
.offset
;
2405 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2406 if (ret
== -EEXIST
&& shared
) {
2407 struct btrfs_leaf_ref
*old
;
2408 old
= btrfs_lookup_leaf_ref(root
, ref
->bytenr
);
2410 btrfs_remove_leaf_ref(root
, old
);
2411 btrfs_free_leaf_ref(root
, old
);
2412 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2415 btrfs_free_leaf_ref(root
, ref
);
2421 /* when a block goes through cow, we update the reference counts of
2422 * everything that block points to. The internal pointers of the block
2423 * can be in just about any order, and it is likely to have clusters of
2424 * things that are close together and clusters of things that are not.
2426 * To help reduce the seeks that come with updating all of these reference
2427 * counts, sort them by byte number before actual updates are done.
2429 * struct refsort is used to match byte number to slot in the btree block.
2430 * we sort based on the byte number and then use the slot to actually
2433 * struct refsort is smaller than strcut btrfs_item and smaller than
2434 * struct btrfs_key_ptr. Since we're currently limited to the page size
2435 * for a btree block, there's no way for a kmalloc of refsorts for a
2436 * single node to be bigger than a page.
2444 * for passing into sort()
2446 static int refsort_cmp(const void *a_void
, const void *b_void
)
2448 const struct refsort
*a
= a_void
;
2449 const struct refsort
*b
= b_void
;
2451 if (a
->bytenr
< b
->bytenr
)
2453 if (a
->bytenr
> b
->bytenr
)
2459 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2460 struct btrfs_root
*root
,
2461 struct extent_buffer
*buf
,
2462 int full_backref
, int inc
)
2469 struct btrfs_key key
;
2470 struct btrfs_file_extent_item
*fi
;
2474 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2475 u64
, u64
, u64
, u64
, u64
, u64
);
2477 ref_root
= btrfs_header_owner(buf
);
2478 nritems
= btrfs_header_nritems(buf
);
2479 level
= btrfs_header_level(buf
);
2481 if (!root
->ref_cows
&& level
== 0)
2485 process_func
= btrfs_inc_extent_ref
;
2487 process_func
= btrfs_free_extent
;
2490 parent
= buf
->start
;
2494 for (i
= 0; i
< nritems
; i
++) {
2496 btrfs_item_key_to_cpu(buf
, &key
, i
);
2497 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2499 fi
= btrfs_item_ptr(buf
, i
,
2500 struct btrfs_file_extent_item
);
2501 if (btrfs_file_extent_type(buf
, fi
) ==
2502 BTRFS_FILE_EXTENT_INLINE
)
2504 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2508 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2509 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2510 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2511 parent
, ref_root
, key
.objectid
,
2516 bytenr
= btrfs_node_blockptr(buf
, i
);
2517 num_bytes
= btrfs_level_size(root
, level
- 1);
2518 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2519 parent
, ref_root
, level
- 1, 0);
2530 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2531 struct extent_buffer
*buf
, int full_backref
)
2533 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2536 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2537 struct extent_buffer
*buf
, int full_backref
)
2539 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2542 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2543 struct btrfs_root
*root
,
2544 struct btrfs_path
*path
,
2545 struct btrfs_block_group_cache
*cache
)
2548 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2550 struct extent_buffer
*leaf
;
2552 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2557 leaf
= path
->nodes
[0];
2558 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2559 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2560 btrfs_mark_buffer_dirty(leaf
);
2561 btrfs_release_path(extent_root
, path
);
2569 static struct btrfs_block_group_cache
*
2570 next_block_group(struct btrfs_root
*root
,
2571 struct btrfs_block_group_cache
*cache
)
2573 struct rb_node
*node
;
2574 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2575 node
= rb_next(&cache
->cache_node
);
2576 btrfs_put_block_group(cache
);
2578 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2580 atomic_inc(&cache
->count
);
2583 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2587 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2588 struct btrfs_root
*root
)
2590 struct btrfs_block_group_cache
*cache
;
2592 struct btrfs_path
*path
;
2595 path
= btrfs_alloc_path();
2601 err
= btrfs_run_delayed_refs(trans
, root
,
2606 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2610 cache
= next_block_group(root
, cache
);
2620 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2622 err
= write_one_cache_group(trans
, root
, path
, cache
);
2624 btrfs_put_block_group(cache
);
2627 btrfs_free_path(path
);
2631 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2633 struct btrfs_block_group_cache
*block_group
;
2636 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2637 if (!block_group
|| block_group
->ro
)
2640 btrfs_put_block_group(block_group
);
2644 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2645 u64 total_bytes
, u64 bytes_used
,
2646 struct btrfs_space_info
**space_info
)
2648 struct btrfs_space_info
*found
;
2650 found
= __find_space_info(info
, flags
);
2652 spin_lock(&found
->lock
);
2653 found
->total_bytes
+= total_bytes
;
2654 found
->bytes_used
+= bytes_used
;
2656 spin_unlock(&found
->lock
);
2657 *space_info
= found
;
2660 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
2664 INIT_LIST_HEAD(&found
->block_groups
);
2665 init_rwsem(&found
->groups_sem
);
2666 spin_lock_init(&found
->lock
);
2667 found
->flags
= flags
;
2668 found
->total_bytes
= total_bytes
;
2669 found
->bytes_used
= bytes_used
;
2670 found
->bytes_pinned
= 0;
2671 found
->bytes_reserved
= 0;
2672 found
->bytes_readonly
= 0;
2673 found
->bytes_delalloc
= 0;
2675 found
->force_alloc
= 0;
2676 *space_info
= found
;
2677 list_add_rcu(&found
->list
, &info
->space_info
);
2678 atomic_set(&found
->caching_threads
, 0);
2682 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
2684 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
2685 BTRFS_BLOCK_GROUP_RAID1
|
2686 BTRFS_BLOCK_GROUP_RAID10
|
2687 BTRFS_BLOCK_GROUP_DUP
);
2689 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2690 fs_info
->avail_data_alloc_bits
|= extra_flags
;
2691 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
2692 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
2693 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2694 fs_info
->avail_system_alloc_bits
|= extra_flags
;
2698 static void set_block_group_readonly(struct btrfs_block_group_cache
*cache
)
2700 spin_lock(&cache
->space_info
->lock
);
2701 spin_lock(&cache
->lock
);
2703 cache
->space_info
->bytes_readonly
+= cache
->key
.offset
-
2704 btrfs_block_group_used(&cache
->item
);
2707 spin_unlock(&cache
->lock
);
2708 spin_unlock(&cache
->space_info
->lock
);
2711 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
2713 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
2715 if (num_devices
== 1)
2716 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
2717 if (num_devices
< 4)
2718 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
2720 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
2721 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
2722 BTRFS_BLOCK_GROUP_RAID10
))) {
2723 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
2726 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
2727 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
2728 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
2731 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
2732 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
2733 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
2734 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
2735 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
2739 static u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, u64 data
)
2741 struct btrfs_fs_info
*info
= root
->fs_info
;
2745 alloc_profile
= info
->avail_data_alloc_bits
&
2746 info
->data_alloc_profile
;
2747 data
= BTRFS_BLOCK_GROUP_DATA
| alloc_profile
;
2748 } else if (root
== root
->fs_info
->chunk_root
) {
2749 alloc_profile
= info
->avail_system_alloc_bits
&
2750 info
->system_alloc_profile
;
2751 data
= BTRFS_BLOCK_GROUP_SYSTEM
| alloc_profile
;
2753 alloc_profile
= info
->avail_metadata_alloc_bits
&
2754 info
->metadata_alloc_profile
;
2755 data
= BTRFS_BLOCK_GROUP_METADATA
| alloc_profile
;
2758 return btrfs_reduce_alloc_profile(root
, data
);
2761 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
2765 alloc_target
= btrfs_get_alloc_profile(root
, 1);
2766 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
2770 static u64
calculate_bytes_needed(struct btrfs_root
*root
, int num_items
)
2775 level
= BTRFS_MAX_LEVEL
- 2;
2777 * NOTE: these calculations are absolutely the worst possible case.
2778 * This assumes that _every_ item we insert will require a new leaf, and
2779 * that the tree has grown to its maximum level size.
2783 * for every item we insert we could insert both an extent item and a
2784 * extent ref item. Then for ever item we insert, we will need to cow
2785 * both the original leaf, plus the leaf to the left and right of it.
2787 * Unless we are talking about the extent root, then we just want the
2788 * number of items * 2, since we just need the extent item plus its ref.
2790 if (root
== root
->fs_info
->extent_root
)
2791 num_bytes
= num_items
* 2;
2793 num_bytes
= (num_items
+ (2 * num_items
)) * 3;
2796 * num_bytes is total number of leaves we could need times the leaf
2797 * size, and then for every leaf we could end up cow'ing 2 nodes per
2798 * level, down to the leaf level.
2800 num_bytes
= (num_bytes
* root
->leafsize
) +
2801 (num_bytes
* (level
* 2)) * root
->nodesize
;
2807 * Unreserve metadata space for delalloc. If we have less reserved credits than
2808 * we have extents, this function does nothing.
2810 int btrfs_unreserve_metadata_for_delalloc(struct btrfs_root
*root
,
2811 struct inode
*inode
, int num_items
)
2813 struct btrfs_fs_info
*info
= root
->fs_info
;
2814 struct btrfs_space_info
*meta_sinfo
;
2819 /* get the space info for where the metadata will live */
2820 alloc_target
= btrfs_get_alloc_profile(root
, 0);
2821 meta_sinfo
= __find_space_info(info
, alloc_target
);
2823 num_bytes
= calculate_bytes_needed(root
->fs_info
->extent_root
,
2826 spin_lock(&meta_sinfo
->lock
);
2827 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
2828 if (BTRFS_I(inode
)->reserved_extents
<=
2829 BTRFS_I(inode
)->outstanding_extents
) {
2830 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
2831 spin_unlock(&meta_sinfo
->lock
);
2834 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
2836 BTRFS_I(inode
)->reserved_extents
--;
2837 BUG_ON(BTRFS_I(inode
)->reserved_extents
< 0);
2839 if (meta_sinfo
->bytes_delalloc
< num_bytes
) {
2841 meta_sinfo
->bytes_delalloc
= 0;
2843 meta_sinfo
->bytes_delalloc
-= num_bytes
;
2845 spin_unlock(&meta_sinfo
->lock
);
2852 static void check_force_delalloc(struct btrfs_space_info
*meta_sinfo
)
2856 thresh
= meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
2857 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
+
2858 meta_sinfo
->bytes_super
+ meta_sinfo
->bytes_root
+
2859 meta_sinfo
->bytes_may_use
;
2861 thresh
= meta_sinfo
->total_bytes
- thresh
;
2863 do_div(thresh
, 100);
2864 if (thresh
<= meta_sinfo
->bytes_delalloc
)
2865 meta_sinfo
->force_delalloc
= 1;
2867 meta_sinfo
->force_delalloc
= 0;
2870 struct async_flush
{
2871 struct btrfs_root
*root
;
2872 struct btrfs_space_info
*info
;
2873 struct btrfs_work work
;
2876 static noinline
void flush_delalloc_async(struct btrfs_work
*work
)
2878 struct async_flush
*async
;
2879 struct btrfs_root
*root
;
2880 struct btrfs_space_info
*info
;
2882 async
= container_of(work
, struct async_flush
, work
);
2886 btrfs_start_delalloc_inodes(root
);
2887 wake_up(&info
->flush_wait
);
2888 btrfs_wait_ordered_extents(root
, 0);
2890 spin_lock(&info
->lock
);
2892 spin_unlock(&info
->lock
);
2893 wake_up(&info
->flush_wait
);
2898 static void wait_on_flush(struct btrfs_space_info
*info
)
2904 prepare_to_wait(&info
->flush_wait
, &wait
,
2905 TASK_UNINTERRUPTIBLE
);
2906 spin_lock(&info
->lock
);
2907 if (!info
->flushing
) {
2908 spin_unlock(&info
->lock
);
2912 used
= info
->bytes_used
+ info
->bytes_reserved
+
2913 info
->bytes_pinned
+ info
->bytes_readonly
+
2914 info
->bytes_super
+ info
->bytes_root
+
2915 info
->bytes_may_use
+ info
->bytes_delalloc
;
2916 if (used
< info
->total_bytes
) {
2917 spin_unlock(&info
->lock
);
2920 spin_unlock(&info
->lock
);
2923 finish_wait(&info
->flush_wait
, &wait
);
2926 static void flush_delalloc(struct btrfs_root
*root
,
2927 struct btrfs_space_info
*info
)
2929 struct async_flush
*async
;
2932 spin_lock(&info
->lock
);
2934 if (!info
->flushing
) {
2936 init_waitqueue_head(&info
->flush_wait
);
2941 spin_unlock(&info
->lock
);
2944 wait_on_flush(info
);
2948 async
= kzalloc(sizeof(*async
), GFP_NOFS
);
2954 async
->work
.func
= flush_delalloc_async
;
2956 btrfs_queue_worker(&root
->fs_info
->enospc_workers
,
2958 wait_on_flush(info
);
2962 btrfs_start_delalloc_inodes(root
);
2963 btrfs_wait_ordered_extents(root
, 0);
2965 spin_lock(&info
->lock
);
2967 spin_unlock(&info
->lock
);
2968 wake_up(&info
->flush_wait
);
2971 static int maybe_allocate_chunk(struct btrfs_root
*root
,
2972 struct btrfs_space_info
*info
)
2974 struct btrfs_super_block
*disk_super
= &root
->fs_info
->super_copy
;
2975 struct btrfs_trans_handle
*trans
;
2981 free_space
= btrfs_super_total_bytes(disk_super
);
2983 * we allow the metadata to grow to a max of either 5gb or 5% of the
2984 * space in the volume.
2986 min_metadata
= min((u64
)5 * 1024 * 1024 * 1024,
2987 div64_u64(free_space
* 5, 100));
2988 if (info
->total_bytes
>= min_metadata
) {
2989 spin_unlock(&info
->lock
);
2994 spin_unlock(&info
->lock
);
2998 if (!info
->allocating_chunk
) {
2999 info
->force_alloc
= 1;
3000 info
->allocating_chunk
= 1;
3001 init_waitqueue_head(&info
->allocate_wait
);
3006 spin_unlock(&info
->lock
);
3009 wait_event(info
->allocate_wait
,
3010 !info
->allocating_chunk
);
3014 trans
= btrfs_start_transaction(root
, 1);
3020 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3021 4096 + 2 * 1024 * 1024,
3023 btrfs_end_transaction(trans
, root
);
3027 spin_lock(&info
->lock
);
3028 info
->allocating_chunk
= 0;
3029 spin_unlock(&info
->lock
);
3030 wake_up(&info
->allocate_wait
);
3038 * Reserve metadata space for delalloc.
3040 int btrfs_reserve_metadata_for_delalloc(struct btrfs_root
*root
,
3041 struct inode
*inode
, int num_items
)
3043 struct btrfs_fs_info
*info
= root
->fs_info
;
3044 struct btrfs_space_info
*meta_sinfo
;
3051 /* get the space info for where the metadata will live */
3052 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3053 meta_sinfo
= __find_space_info(info
, alloc_target
);
3055 num_bytes
= calculate_bytes_needed(root
->fs_info
->extent_root
,
3058 spin_lock(&meta_sinfo
->lock
);
3060 force_delalloc
= meta_sinfo
->force_delalloc
;
3062 if (unlikely(!meta_sinfo
->bytes_root
))
3063 meta_sinfo
->bytes_root
= calculate_bytes_needed(root
, 6);
3066 meta_sinfo
->bytes_delalloc
+= num_bytes
;
3068 used
= meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
3069 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
+
3070 meta_sinfo
->bytes_super
+ meta_sinfo
->bytes_root
+
3071 meta_sinfo
->bytes_may_use
+ meta_sinfo
->bytes_delalloc
;
3073 if (used
> meta_sinfo
->total_bytes
) {
3077 if (maybe_allocate_chunk(root
, meta_sinfo
))
3081 spin_unlock(&meta_sinfo
->lock
);
3085 filemap_flush(inode
->i_mapping
);
3087 } else if (flushed
== 3) {
3088 flush_delalloc(root
, meta_sinfo
);
3091 spin_lock(&meta_sinfo
->lock
);
3092 meta_sinfo
->bytes_delalloc
-= num_bytes
;
3093 spin_unlock(&meta_sinfo
->lock
);
3094 printk(KERN_ERR
"enospc, has %d, reserved %d\n",
3095 BTRFS_I(inode
)->outstanding_extents
,
3096 BTRFS_I(inode
)->reserved_extents
);
3097 dump_space_info(meta_sinfo
, 0, 0);
3101 BTRFS_I(inode
)->reserved_extents
++;
3102 check_force_delalloc(meta_sinfo
);
3103 spin_unlock(&meta_sinfo
->lock
);
3105 if (!flushed
&& force_delalloc
)
3106 filemap_flush(inode
->i_mapping
);
3112 * unreserve num_items number of items worth of metadata space. This needs to
3113 * be paired with btrfs_reserve_metadata_space.
3115 * NOTE: if you have the option, run this _AFTER_ you do a
3116 * btrfs_end_transaction, since btrfs_end_transaction will run delayed ref
3117 * oprations which will result in more used metadata, so we want to make sure we
3118 * can do that without issue.
3120 int btrfs_unreserve_metadata_space(struct btrfs_root
*root
, int num_items
)
3122 struct btrfs_fs_info
*info
= root
->fs_info
;
3123 struct btrfs_space_info
*meta_sinfo
;
3128 /* get the space info for where the metadata will live */
3129 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3130 meta_sinfo
= __find_space_info(info
, alloc_target
);
3132 num_bytes
= calculate_bytes_needed(root
, num_items
);
3134 spin_lock(&meta_sinfo
->lock
);
3135 if (meta_sinfo
->bytes_may_use
< num_bytes
) {
3137 meta_sinfo
->bytes_may_use
= 0;
3139 meta_sinfo
->bytes_may_use
-= num_bytes
;
3141 spin_unlock(&meta_sinfo
->lock
);
3149 * Reserve some metadata space for use. We'll calculate the worste case number
3150 * of bytes that would be needed to modify num_items number of items. If we
3151 * have space, fantastic, if not, you get -ENOSPC. Please call
3152 * btrfs_unreserve_metadata_space when you are done for the _SAME_ number of
3153 * items you reserved, since whatever metadata you needed should have already
3156 * This will commit the transaction to make more space if we don't have enough
3157 * metadata space. THe only time we don't do this is if we're reserving space
3158 * inside of a transaction, then we will just return -ENOSPC and it is the
3159 * callers responsibility to handle it properly.
3161 int btrfs_reserve_metadata_space(struct btrfs_root
*root
, int num_items
)
3163 struct btrfs_fs_info
*info
= root
->fs_info
;
3164 struct btrfs_space_info
*meta_sinfo
;
3170 /* get the space info for where the metadata will live */
3171 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3172 meta_sinfo
= __find_space_info(info
, alloc_target
);
3174 num_bytes
= calculate_bytes_needed(root
, num_items
);
3176 spin_lock(&meta_sinfo
->lock
);
3178 if (unlikely(!meta_sinfo
->bytes_root
))
3179 meta_sinfo
->bytes_root
= calculate_bytes_needed(root
, 6);
3182 meta_sinfo
->bytes_may_use
+= num_bytes
;
3184 used
= meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
3185 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
+
3186 meta_sinfo
->bytes_super
+ meta_sinfo
->bytes_root
+
3187 meta_sinfo
->bytes_may_use
+ meta_sinfo
->bytes_delalloc
;
3189 if (used
> meta_sinfo
->total_bytes
) {
3192 if (maybe_allocate_chunk(root
, meta_sinfo
))
3196 spin_unlock(&meta_sinfo
->lock
);
3200 flush_delalloc(root
, meta_sinfo
);
3203 spin_lock(&meta_sinfo
->lock
);
3204 meta_sinfo
->bytes_may_use
-= num_bytes
;
3205 spin_unlock(&meta_sinfo
->lock
);
3207 dump_space_info(meta_sinfo
, 0, 0);
3211 check_force_delalloc(meta_sinfo
);
3212 spin_unlock(&meta_sinfo
->lock
);
3218 * This will check the space that the inode allocates from to make sure we have
3219 * enough space for bytes.
3221 int btrfs_check_data_free_space(struct btrfs_root
*root
, struct inode
*inode
,
3224 struct btrfs_space_info
*data_sinfo
;
3225 int ret
= 0, committed
= 0;
3227 /* make sure bytes are sectorsize aligned */
3228 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3230 data_sinfo
= BTRFS_I(inode
)->space_info
;
3235 /* make sure we have enough space to handle the data first */
3236 spin_lock(&data_sinfo
->lock
);
3237 if (data_sinfo
->total_bytes
- data_sinfo
->bytes_used
-
3238 data_sinfo
->bytes_delalloc
- data_sinfo
->bytes_reserved
-
3239 data_sinfo
->bytes_pinned
- data_sinfo
->bytes_readonly
-
3240 data_sinfo
->bytes_may_use
- data_sinfo
->bytes_super
< bytes
) {
3241 struct btrfs_trans_handle
*trans
;
3244 * if we don't have enough free bytes in this space then we need
3245 * to alloc a new chunk.
3247 if (!data_sinfo
->full
) {
3250 data_sinfo
->force_alloc
= 1;
3251 spin_unlock(&data_sinfo
->lock
);
3253 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3254 trans
= btrfs_start_transaction(root
, 1);
3258 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3259 bytes
+ 2 * 1024 * 1024,
3261 btrfs_end_transaction(trans
, root
);
3266 btrfs_set_inode_space_info(root
, inode
);
3267 data_sinfo
= BTRFS_I(inode
)->space_info
;
3271 spin_unlock(&data_sinfo
->lock
);
3273 /* commit the current transaction and try again */
3274 if (!committed
&& !root
->fs_info
->open_ioctl_trans
) {
3276 trans
= btrfs_join_transaction(root
, 1);
3279 ret
= btrfs_commit_transaction(trans
, root
);
3285 printk(KERN_ERR
"no space left, need %llu, %llu delalloc bytes"
3286 ", %llu bytes_used, %llu bytes_reserved, "
3287 "%llu bytes_pinned, %llu bytes_readonly, %llu may use "
3288 "%llu total\n", (unsigned long long)bytes
,
3289 (unsigned long long)data_sinfo
->bytes_delalloc
,
3290 (unsigned long long)data_sinfo
->bytes_used
,
3291 (unsigned long long)data_sinfo
->bytes_reserved
,
3292 (unsigned long long)data_sinfo
->bytes_pinned
,
3293 (unsigned long long)data_sinfo
->bytes_readonly
,
3294 (unsigned long long)data_sinfo
->bytes_may_use
,
3295 (unsigned long long)data_sinfo
->total_bytes
);
3298 data_sinfo
->bytes_may_use
+= bytes
;
3299 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
3300 spin_unlock(&data_sinfo
->lock
);
3306 * if there was an error for whatever reason after calling
3307 * btrfs_check_data_free_space, call this so we can cleanup the counters.
3309 void btrfs_free_reserved_data_space(struct btrfs_root
*root
,
3310 struct inode
*inode
, u64 bytes
)
3312 struct btrfs_space_info
*data_sinfo
;
3314 /* make sure bytes are sectorsize aligned */
3315 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3317 data_sinfo
= BTRFS_I(inode
)->space_info
;
3318 spin_lock(&data_sinfo
->lock
);
3319 data_sinfo
->bytes_may_use
-= bytes
;
3320 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3321 spin_unlock(&data_sinfo
->lock
);
3324 /* called when we are adding a delalloc extent to the inode's io_tree */
3325 void btrfs_delalloc_reserve_space(struct btrfs_root
*root
, struct inode
*inode
,
3328 struct btrfs_space_info
*data_sinfo
;
3330 /* get the space info for where this inode will be storing its data */
3331 data_sinfo
= BTRFS_I(inode
)->space_info
;
3333 /* make sure we have enough space to handle the data first */
3334 spin_lock(&data_sinfo
->lock
);
3335 data_sinfo
->bytes_delalloc
+= bytes
;
3338 * we are adding a delalloc extent without calling
3339 * btrfs_check_data_free_space first. This happens on a weird
3340 * writepage condition, but shouldn't hurt our accounting
3342 if (unlikely(bytes
> BTRFS_I(inode
)->reserved_bytes
)) {
3343 data_sinfo
->bytes_may_use
-= BTRFS_I(inode
)->reserved_bytes
;
3344 BTRFS_I(inode
)->reserved_bytes
= 0;
3346 data_sinfo
->bytes_may_use
-= bytes
;
3347 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3350 spin_unlock(&data_sinfo
->lock
);
3353 /* called when we are clearing an delalloc extent from the inode's io_tree */
3354 void btrfs_delalloc_free_space(struct btrfs_root
*root
, struct inode
*inode
,
3357 struct btrfs_space_info
*info
;
3359 info
= BTRFS_I(inode
)->space_info
;
3361 spin_lock(&info
->lock
);
3362 info
->bytes_delalloc
-= bytes
;
3363 spin_unlock(&info
->lock
);
3366 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3368 struct list_head
*head
= &info
->space_info
;
3369 struct btrfs_space_info
*found
;
3372 list_for_each_entry_rcu(found
, head
, list
) {
3373 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3374 found
->force_alloc
= 1;
3379 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3380 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3381 u64 flags
, int force
)
3383 struct btrfs_space_info
*space_info
;
3384 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3388 mutex_lock(&fs_info
->chunk_mutex
);
3390 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3392 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3394 ret
= update_space_info(extent_root
->fs_info
, flags
,
3398 BUG_ON(!space_info
);
3400 spin_lock(&space_info
->lock
);
3401 if (space_info
->force_alloc
)
3403 if (space_info
->full
) {
3404 spin_unlock(&space_info
->lock
);
3408 thresh
= space_info
->total_bytes
- space_info
->bytes_readonly
;
3409 thresh
= div_factor(thresh
, 8);
3411 (space_info
->bytes_used
+ space_info
->bytes_pinned
+
3412 space_info
->bytes_reserved
+ alloc_bytes
) < thresh
) {
3413 spin_unlock(&space_info
->lock
);
3416 spin_unlock(&space_info
->lock
);
3419 * if we're doing a data chunk, go ahead and make sure that
3420 * we keep a reasonable number of metadata chunks allocated in the
3423 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3424 fs_info
->data_chunk_allocations
++;
3425 if (!(fs_info
->data_chunk_allocations
%
3426 fs_info
->metadata_ratio
))
3427 force_metadata_allocation(fs_info
);
3430 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3431 spin_lock(&space_info
->lock
);
3433 space_info
->full
= 1;
3434 space_info
->force_alloc
= 0;
3435 spin_unlock(&space_info
->lock
);
3437 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3441 static int update_block_group(struct btrfs_trans_handle
*trans
,
3442 struct btrfs_root
*root
,
3443 u64 bytenr
, u64 num_bytes
, int alloc
,
3446 struct btrfs_block_group_cache
*cache
;
3447 struct btrfs_fs_info
*info
= root
->fs_info
;
3448 u64 total
= num_bytes
;
3452 /* block accounting for super block */
3453 spin_lock(&info
->delalloc_lock
);
3454 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
3456 old_val
+= num_bytes
;
3458 old_val
-= num_bytes
;
3459 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
3461 /* block accounting for root item */
3462 old_val
= btrfs_root_used(&root
->root_item
);
3464 old_val
+= num_bytes
;
3466 old_val
-= num_bytes
;
3467 btrfs_set_root_used(&root
->root_item
, old_val
);
3468 spin_unlock(&info
->delalloc_lock
);
3471 cache
= btrfs_lookup_block_group(info
, bytenr
);
3474 byte_in_group
= bytenr
- cache
->key
.objectid
;
3475 WARN_ON(byte_in_group
> cache
->key
.offset
);
3477 spin_lock(&cache
->space_info
->lock
);
3478 spin_lock(&cache
->lock
);
3480 old_val
= btrfs_block_group_used(&cache
->item
);
3481 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
3483 old_val
+= num_bytes
;
3484 btrfs_set_block_group_used(&cache
->item
, old_val
);
3485 cache
->reserved
-= num_bytes
;
3486 cache
->space_info
->bytes_used
+= num_bytes
;
3487 cache
->space_info
->bytes_reserved
-= num_bytes
;
3489 cache
->space_info
->bytes_readonly
-= num_bytes
;
3490 spin_unlock(&cache
->lock
);
3491 spin_unlock(&cache
->space_info
->lock
);
3493 old_val
-= num_bytes
;
3494 cache
->space_info
->bytes_used
-= num_bytes
;
3496 cache
->space_info
->bytes_readonly
+= num_bytes
;
3497 btrfs_set_block_group_used(&cache
->item
, old_val
);
3498 spin_unlock(&cache
->lock
);
3499 spin_unlock(&cache
->space_info
->lock
);
3503 ret
= btrfs_discard_extent(root
, bytenr
,
3507 ret
= btrfs_add_free_space(cache
, bytenr
,
3512 btrfs_put_block_group(cache
);
3514 bytenr
+= num_bytes
;
3519 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
3521 struct btrfs_block_group_cache
*cache
;
3524 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
3528 bytenr
= cache
->key
.objectid
;
3529 btrfs_put_block_group(cache
);
3535 * this function must be called within transaction
3537 int btrfs_pin_extent(struct btrfs_root
*root
,
3538 u64 bytenr
, u64 num_bytes
, int reserved
)
3540 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3541 struct btrfs_block_group_cache
*cache
;
3543 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
3546 spin_lock(&cache
->space_info
->lock
);
3547 spin_lock(&cache
->lock
);
3548 cache
->pinned
+= num_bytes
;
3549 cache
->space_info
->bytes_pinned
+= num_bytes
;
3551 cache
->reserved
-= num_bytes
;
3552 cache
->space_info
->bytes_reserved
-= num_bytes
;
3554 spin_unlock(&cache
->lock
);
3555 spin_unlock(&cache
->space_info
->lock
);
3557 btrfs_put_block_group(cache
);
3559 set_extent_dirty(fs_info
->pinned_extents
,
3560 bytenr
, bytenr
+ num_bytes
- 1, GFP_NOFS
);
3564 static int update_reserved_extents(struct btrfs_block_group_cache
*cache
,
3565 u64 num_bytes
, int reserve
)
3567 spin_lock(&cache
->space_info
->lock
);
3568 spin_lock(&cache
->lock
);
3570 cache
->reserved
+= num_bytes
;
3571 cache
->space_info
->bytes_reserved
+= num_bytes
;
3573 cache
->reserved
-= num_bytes
;
3574 cache
->space_info
->bytes_reserved
-= num_bytes
;
3576 spin_unlock(&cache
->lock
);
3577 spin_unlock(&cache
->space_info
->lock
);
3581 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
3582 struct btrfs_root
*root
)
3584 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3585 struct btrfs_caching_control
*next
;
3586 struct btrfs_caching_control
*caching_ctl
;
3587 struct btrfs_block_group_cache
*cache
;
3589 down_write(&fs_info
->extent_commit_sem
);
3591 list_for_each_entry_safe(caching_ctl
, next
,
3592 &fs_info
->caching_block_groups
, list
) {
3593 cache
= caching_ctl
->block_group
;
3594 if (block_group_cache_done(cache
)) {
3595 cache
->last_byte_to_unpin
= (u64
)-1;
3596 list_del_init(&caching_ctl
->list
);
3597 put_caching_control(caching_ctl
);
3599 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
3603 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
3604 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
3606 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
3608 up_write(&fs_info
->extent_commit_sem
);
3612 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
3614 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3615 struct btrfs_block_group_cache
*cache
= NULL
;
3618 while (start
<= end
) {
3620 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
3622 btrfs_put_block_group(cache
);
3623 cache
= btrfs_lookup_block_group(fs_info
, start
);
3627 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
3628 len
= min(len
, end
+ 1 - start
);
3630 if (start
< cache
->last_byte_to_unpin
) {
3631 len
= min(len
, cache
->last_byte_to_unpin
- start
);
3632 btrfs_add_free_space(cache
, start
, len
);
3635 spin_lock(&cache
->space_info
->lock
);
3636 spin_lock(&cache
->lock
);
3637 cache
->pinned
-= len
;
3638 cache
->space_info
->bytes_pinned
-= len
;
3639 spin_unlock(&cache
->lock
);
3640 spin_unlock(&cache
->space_info
->lock
);
3646 btrfs_put_block_group(cache
);
3650 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
3651 struct btrfs_root
*root
)
3653 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3654 struct extent_io_tree
*unpin
;
3659 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
3660 unpin
= &fs_info
->freed_extents
[1];
3662 unpin
= &fs_info
->freed_extents
[0];
3665 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3670 ret
= btrfs_discard_extent(root
, start
, end
+ 1 - start
);
3672 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3673 unpin_extent_range(root
, start
, end
);
3680 static int pin_down_bytes(struct btrfs_trans_handle
*trans
,
3681 struct btrfs_root
*root
,
3682 struct btrfs_path
*path
,
3683 u64 bytenr
, u64 num_bytes
,
3684 int is_data
, int reserved
,
3685 struct extent_buffer
**must_clean
)
3688 struct extent_buffer
*buf
;
3693 buf
= btrfs_find_tree_block(root
, bytenr
, num_bytes
);
3697 /* we can reuse a block if it hasn't been written
3698 * and it is from this transaction. We can't
3699 * reuse anything from the tree log root because
3700 * it has tiny sub-transactions.
3702 if (btrfs_buffer_uptodate(buf
, 0) &&
3703 btrfs_try_tree_lock(buf
)) {
3704 u64 header_owner
= btrfs_header_owner(buf
);
3705 u64 header_transid
= btrfs_header_generation(buf
);
3706 if (header_owner
!= BTRFS_TREE_LOG_OBJECTID
&&
3707 header_transid
== trans
->transid
&&
3708 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
3712 btrfs_tree_unlock(buf
);
3714 free_extent_buffer(buf
);
3717 btrfs_set_path_blocking(path
);
3718 /* unlocks the pinned mutex */
3719 btrfs_pin_extent(root
, bytenr
, num_bytes
, reserved
);
3725 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
3726 struct btrfs_root
*root
,
3727 u64 bytenr
, u64 num_bytes
, u64 parent
,
3728 u64 root_objectid
, u64 owner_objectid
,
3729 u64 owner_offset
, int refs_to_drop
,
3730 struct btrfs_delayed_extent_op
*extent_op
)
3732 struct btrfs_key key
;
3733 struct btrfs_path
*path
;
3734 struct btrfs_fs_info
*info
= root
->fs_info
;
3735 struct btrfs_root
*extent_root
= info
->extent_root
;
3736 struct extent_buffer
*leaf
;
3737 struct btrfs_extent_item
*ei
;
3738 struct btrfs_extent_inline_ref
*iref
;
3741 int extent_slot
= 0;
3742 int found_extent
= 0;
3747 path
= btrfs_alloc_path();
3752 path
->leave_spinning
= 1;
3754 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
3755 BUG_ON(!is_data
&& refs_to_drop
!= 1);
3757 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
3758 bytenr
, num_bytes
, parent
,
3759 root_objectid
, owner_objectid
,
3762 extent_slot
= path
->slots
[0];
3763 while (extent_slot
>= 0) {
3764 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3766 if (key
.objectid
!= bytenr
)
3768 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3769 key
.offset
== num_bytes
) {
3773 if (path
->slots
[0] - extent_slot
> 5)
3777 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3778 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
3779 if (found_extent
&& item_size
< sizeof(*ei
))
3782 if (!found_extent
) {
3784 ret
= remove_extent_backref(trans
, extent_root
, path
,
3788 btrfs_release_path(extent_root
, path
);
3789 path
->leave_spinning
= 1;
3791 key
.objectid
= bytenr
;
3792 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3793 key
.offset
= num_bytes
;
3795 ret
= btrfs_search_slot(trans
, extent_root
,
3798 printk(KERN_ERR
"umm, got %d back from search"
3799 ", was looking for %llu\n", ret
,
3800 (unsigned long long)bytenr
);
3801 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3804 extent_slot
= path
->slots
[0];
3807 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3809 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
3810 "parent %llu root %llu owner %llu offset %llu\n",
3811 (unsigned long long)bytenr
,
3812 (unsigned long long)parent
,
3813 (unsigned long long)root_objectid
,
3814 (unsigned long long)owner_objectid
,
3815 (unsigned long long)owner_offset
);
3818 leaf
= path
->nodes
[0];
3819 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3821 if (item_size
< sizeof(*ei
)) {
3822 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
3823 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
3827 btrfs_release_path(extent_root
, path
);
3828 path
->leave_spinning
= 1;
3830 key
.objectid
= bytenr
;
3831 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3832 key
.offset
= num_bytes
;
3834 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
3837 printk(KERN_ERR
"umm, got %d back from search"
3838 ", was looking for %llu\n", ret
,
3839 (unsigned long long)bytenr
);
3840 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3843 extent_slot
= path
->slots
[0];
3844 leaf
= path
->nodes
[0];
3845 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3848 BUG_ON(item_size
< sizeof(*ei
));
3849 ei
= btrfs_item_ptr(leaf
, extent_slot
,
3850 struct btrfs_extent_item
);
3851 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
3852 struct btrfs_tree_block_info
*bi
;
3853 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
3854 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
3855 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
3858 refs
= btrfs_extent_refs(leaf
, ei
);
3859 BUG_ON(refs
< refs_to_drop
);
3860 refs
-= refs_to_drop
;
3864 __run_delayed_extent_op(extent_op
, leaf
, ei
);
3866 * In the case of inline back ref, reference count will
3867 * be updated by remove_extent_backref
3870 BUG_ON(!found_extent
);
3872 btrfs_set_extent_refs(leaf
, ei
, refs
);
3873 btrfs_mark_buffer_dirty(leaf
);
3876 ret
= remove_extent_backref(trans
, extent_root
, path
,
3883 struct extent_buffer
*must_clean
= NULL
;
3886 BUG_ON(is_data
&& refs_to_drop
!=
3887 extent_data_ref_count(root
, path
, iref
));
3889 BUG_ON(path
->slots
[0] != extent_slot
);
3891 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
3892 path
->slots
[0] = extent_slot
;
3897 ret
= pin_down_bytes(trans
, root
, path
, bytenr
,
3898 num_bytes
, is_data
, 0, &must_clean
);
3903 * it is going to be very rare for someone to be waiting
3904 * on the block we're freeing. del_items might need to
3905 * schedule, so rather than get fancy, just force it
3909 btrfs_set_lock_blocking(must_clean
);
3911 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
3914 btrfs_release_path(extent_root
, path
);
3917 clean_tree_block(NULL
, root
, must_clean
);
3918 btrfs_tree_unlock(must_clean
);
3919 free_extent_buffer(must_clean
);
3923 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
3926 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
3927 bytenr
>> PAGE_CACHE_SHIFT
,
3928 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
3931 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0,
3935 btrfs_free_path(path
);
3940 * when we free an extent, it is possible (and likely) that we free the last
3941 * delayed ref for that extent as well. This searches the delayed ref tree for
3942 * a given extent, and if there are no other delayed refs to be processed, it
3943 * removes it from the tree.
3945 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
3946 struct btrfs_root
*root
, u64 bytenr
)
3948 struct btrfs_delayed_ref_head
*head
;
3949 struct btrfs_delayed_ref_root
*delayed_refs
;
3950 struct btrfs_delayed_ref_node
*ref
;
3951 struct rb_node
*node
;
3954 delayed_refs
= &trans
->transaction
->delayed_refs
;
3955 spin_lock(&delayed_refs
->lock
);
3956 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3960 node
= rb_prev(&head
->node
.rb_node
);
3964 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3966 /* there are still entries for this ref, we can't drop it */
3967 if (ref
->bytenr
== bytenr
)
3970 if (head
->extent_op
) {
3971 if (!head
->must_insert_reserved
)
3973 kfree(head
->extent_op
);
3974 head
->extent_op
= NULL
;
3978 * waiting for the lock here would deadlock. If someone else has it
3979 * locked they are already in the process of dropping it anyway
3981 if (!mutex_trylock(&head
->mutex
))
3985 * at this point we have a head with no other entries. Go
3986 * ahead and process it.
3988 head
->node
.in_tree
= 0;
3989 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
3991 delayed_refs
->num_entries
--;
3994 * we don't take a ref on the node because we're removing it from the
3995 * tree, so we just steal the ref the tree was holding.
3997 delayed_refs
->num_heads
--;
3998 if (list_empty(&head
->cluster
))
3999 delayed_refs
->num_heads_ready
--;
4001 list_del_init(&head
->cluster
);
4002 spin_unlock(&delayed_refs
->lock
);
4004 ret
= run_one_delayed_ref(trans
, root
->fs_info
->tree_root
,
4005 &head
->node
, head
->extent_op
,
4006 head
->must_insert_reserved
);
4008 btrfs_put_delayed_ref(&head
->node
);
4011 spin_unlock(&delayed_refs
->lock
);
4015 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4016 struct btrfs_root
*root
,
4017 u64 bytenr
, u64 num_bytes
, u64 parent
,
4018 u64 root_objectid
, u64 owner
, u64 offset
)
4023 * tree log blocks never actually go into the extent allocation
4024 * tree, just update pinning info and exit early.
4026 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4027 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
4028 /* unlocks the pinned mutex */
4029 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
4031 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
4032 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
4033 parent
, root_objectid
, (int)owner
,
4034 BTRFS_DROP_DELAYED_REF
, NULL
);
4036 ret
= check_ref_cleanup(trans
, root
, bytenr
);
4039 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
4040 parent
, root_objectid
, owner
,
4041 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
4047 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
4049 u64 mask
= ((u64
)root
->stripesize
- 1);
4050 u64 ret
= (val
+ mask
) & ~mask
;
4055 * when we wait for progress in the block group caching, its because
4056 * our allocation attempt failed at least once. So, we must sleep
4057 * and let some progress happen before we try again.
4059 * This function will sleep at least once waiting for new free space to
4060 * show up, and then it will check the block group free space numbers
4061 * for our min num_bytes. Another option is to have it go ahead
4062 * and look in the rbtree for a free extent of a given size, but this
4066 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
4069 struct btrfs_caching_control
*caching_ctl
;
4072 caching_ctl
= get_caching_control(cache
);
4076 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
4077 (cache
->free_space
>= num_bytes
));
4079 put_caching_control(caching_ctl
);
4084 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
4086 struct btrfs_caching_control
*caching_ctl
;
4089 caching_ctl
= get_caching_control(cache
);
4093 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
4095 put_caching_control(caching_ctl
);
4099 enum btrfs_loop_type
{
4100 LOOP_CACHED_ONLY
= 0,
4101 LOOP_CACHING_NOWAIT
= 1,
4102 LOOP_CACHING_WAIT
= 2,
4103 LOOP_ALLOC_CHUNK
= 3,
4104 LOOP_NO_EMPTY_SIZE
= 4,
4108 * walks the btree of allocated extents and find a hole of a given size.
4109 * The key ins is changed to record the hole:
4110 * ins->objectid == block start
4111 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4112 * ins->offset == number of blocks
4113 * Any available blocks before search_start are skipped.
4115 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
4116 struct btrfs_root
*orig_root
,
4117 u64 num_bytes
, u64 empty_size
,
4118 u64 search_start
, u64 search_end
,
4119 u64 hint_byte
, struct btrfs_key
*ins
,
4120 u64 exclude_start
, u64 exclude_nr
,
4124 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
4125 struct btrfs_free_cluster
*last_ptr
= NULL
;
4126 struct btrfs_block_group_cache
*block_group
= NULL
;
4127 int empty_cluster
= 2 * 1024 * 1024;
4128 int allowed_chunk_alloc
= 0;
4129 struct btrfs_space_info
*space_info
;
4130 int last_ptr_loop
= 0;
4132 bool found_uncached_bg
= false;
4133 bool failed_cluster_refill
= false;
4134 bool failed_alloc
= false;
4136 WARN_ON(num_bytes
< root
->sectorsize
);
4137 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
4141 space_info
= __find_space_info(root
->fs_info
, data
);
4143 if (orig_root
->ref_cows
|| empty_size
)
4144 allowed_chunk_alloc
= 1;
4146 if (data
& BTRFS_BLOCK_GROUP_METADATA
) {
4147 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
4148 if (!btrfs_test_opt(root
, SSD
))
4149 empty_cluster
= 64 * 1024;
4152 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && btrfs_test_opt(root
, SSD
)) {
4153 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
4157 spin_lock(&last_ptr
->lock
);
4158 if (last_ptr
->block_group
)
4159 hint_byte
= last_ptr
->window_start
;
4160 spin_unlock(&last_ptr
->lock
);
4163 search_start
= max(search_start
, first_logical_byte(root
, 0));
4164 search_start
= max(search_start
, hint_byte
);
4169 if (search_start
== hint_byte
) {
4170 block_group
= btrfs_lookup_block_group(root
->fs_info
,
4173 * we don't want to use the block group if it doesn't match our
4174 * allocation bits, or if its not cached.
4176 if (block_group
&& block_group_bits(block_group
, data
) &&
4177 block_group_cache_done(block_group
)) {
4178 down_read(&space_info
->groups_sem
);
4179 if (list_empty(&block_group
->list
) ||
4182 * someone is removing this block group,
4183 * we can't jump into the have_block_group
4184 * target because our list pointers are not
4187 btrfs_put_block_group(block_group
);
4188 up_read(&space_info
->groups_sem
);
4190 goto have_block_group
;
4191 } else if (block_group
) {
4192 btrfs_put_block_group(block_group
);
4197 down_read(&space_info
->groups_sem
);
4198 list_for_each_entry(block_group
, &space_info
->block_groups
, list
) {
4202 atomic_inc(&block_group
->count
);
4203 search_start
= block_group
->key
.objectid
;
4206 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
4208 * we want to start caching kthreads, but not too many
4209 * right off the bat so we don't overwhelm the system,
4210 * so only start them if there are less than 2 and we're
4211 * in the initial allocation phase.
4213 if (loop
> LOOP_CACHING_NOWAIT
||
4214 atomic_read(&space_info
->caching_threads
) < 2) {
4215 ret
= cache_block_group(block_group
);
4220 cached
= block_group_cache_done(block_group
);
4221 if (unlikely(!cached
)) {
4222 found_uncached_bg
= true;
4224 /* if we only want cached bgs, loop */
4225 if (loop
== LOOP_CACHED_ONLY
)
4229 if (unlikely(block_group
->ro
))
4233 * Ok we want to try and use the cluster allocator, so lets look
4234 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4235 * have tried the cluster allocator plenty of times at this
4236 * point and not have found anything, so we are likely way too
4237 * fragmented for the clustering stuff to find anything, so lets
4238 * just skip it and let the allocator find whatever block it can
4241 if (last_ptr
&& loop
< LOOP_NO_EMPTY_SIZE
) {
4243 * the refill lock keeps out other
4244 * people trying to start a new cluster
4246 spin_lock(&last_ptr
->refill_lock
);
4247 if (last_ptr
->block_group
&&
4248 (last_ptr
->block_group
->ro
||
4249 !block_group_bits(last_ptr
->block_group
, data
))) {
4251 goto refill_cluster
;
4254 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
4255 num_bytes
, search_start
);
4257 /* we have a block, we're done */
4258 spin_unlock(&last_ptr
->refill_lock
);
4262 spin_lock(&last_ptr
->lock
);
4264 * whoops, this cluster doesn't actually point to
4265 * this block group. Get a ref on the block
4266 * group is does point to and try again
4268 if (!last_ptr_loop
&& last_ptr
->block_group
&&
4269 last_ptr
->block_group
!= block_group
) {
4271 btrfs_put_block_group(block_group
);
4272 block_group
= last_ptr
->block_group
;
4273 atomic_inc(&block_group
->count
);
4274 spin_unlock(&last_ptr
->lock
);
4275 spin_unlock(&last_ptr
->refill_lock
);
4278 search_start
= block_group
->key
.objectid
;
4280 * we know this block group is properly
4281 * in the list because
4282 * btrfs_remove_block_group, drops the
4283 * cluster before it removes the block
4284 * group from the list
4286 goto have_block_group
;
4288 spin_unlock(&last_ptr
->lock
);
4291 * this cluster didn't work out, free it and
4294 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
4298 /* allocate a cluster in this block group */
4299 ret
= btrfs_find_space_cluster(trans
, root
,
4300 block_group
, last_ptr
,
4302 empty_cluster
+ empty_size
);
4305 * now pull our allocation out of this
4308 offset
= btrfs_alloc_from_cluster(block_group
,
4309 last_ptr
, num_bytes
,
4312 /* we found one, proceed */
4313 spin_unlock(&last_ptr
->refill_lock
);
4316 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
4317 && !failed_cluster_refill
) {
4318 spin_unlock(&last_ptr
->refill_lock
);
4320 failed_cluster_refill
= true;
4321 wait_block_group_cache_progress(block_group
,
4322 num_bytes
+ empty_cluster
+ empty_size
);
4323 goto have_block_group
;
4327 * at this point we either didn't find a cluster
4328 * or we weren't able to allocate a block from our
4329 * cluster. Free the cluster we've been trying
4330 * to use, and go to the next block group
4332 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
4333 spin_unlock(&last_ptr
->refill_lock
);
4337 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
4338 num_bytes
, empty_size
);
4340 * If we didn't find a chunk, and we haven't failed on this
4341 * block group before, and this block group is in the middle of
4342 * caching and we are ok with waiting, then go ahead and wait
4343 * for progress to be made, and set failed_alloc to true.
4345 * If failed_alloc is true then we've already waited on this
4346 * block group once and should move on to the next block group.
4348 if (!offset
&& !failed_alloc
&& !cached
&&
4349 loop
> LOOP_CACHING_NOWAIT
) {
4350 wait_block_group_cache_progress(block_group
,
4351 num_bytes
+ empty_size
);
4352 failed_alloc
= true;
4353 goto have_block_group
;
4354 } else if (!offset
) {
4358 search_start
= stripe_align(root
, offset
);
4359 /* move on to the next group */
4360 if (search_start
+ num_bytes
>= search_end
) {
4361 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4365 /* move on to the next group */
4366 if (search_start
+ num_bytes
>
4367 block_group
->key
.objectid
+ block_group
->key
.offset
) {
4368 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4372 if (exclude_nr
> 0 &&
4373 (search_start
+ num_bytes
> exclude_start
&&
4374 search_start
< exclude_start
+ exclude_nr
)) {
4375 search_start
= exclude_start
+ exclude_nr
;
4377 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4379 * if search_start is still in this block group
4380 * then we just re-search this block group
4382 if (search_start
>= block_group
->key
.objectid
&&
4383 search_start
< (block_group
->key
.objectid
+
4384 block_group
->key
.offset
))
4385 goto have_block_group
;
4389 ins
->objectid
= search_start
;
4390 ins
->offset
= num_bytes
;
4392 if (offset
< search_start
)
4393 btrfs_add_free_space(block_group
, offset
,
4394 search_start
- offset
);
4395 BUG_ON(offset
> search_start
);
4397 update_reserved_extents(block_group
, num_bytes
, 1);
4399 /* we are all good, lets return */
4402 failed_cluster_refill
= false;
4403 failed_alloc
= false;
4404 btrfs_put_block_group(block_group
);
4406 up_read(&space_info
->groups_sem
);
4408 /* LOOP_CACHED_ONLY, only search fully cached block groups
4409 * LOOP_CACHING_NOWAIT, search partially cached block groups, but
4410 * dont wait foR them to finish caching
4411 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4412 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4413 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4416 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
&&
4417 (found_uncached_bg
|| empty_size
|| empty_cluster
||
4418 allowed_chunk_alloc
)) {
4419 if (found_uncached_bg
) {
4420 found_uncached_bg
= false;
4421 if (loop
< LOOP_CACHING_WAIT
) {
4427 if (loop
== LOOP_ALLOC_CHUNK
) {
4432 if (allowed_chunk_alloc
) {
4433 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
4434 2 * 1024 * 1024, data
, 1);
4435 allowed_chunk_alloc
= 0;
4437 space_info
->force_alloc
= 1;
4440 if (loop
< LOOP_NO_EMPTY_SIZE
) {
4445 } else if (!ins
->objectid
) {
4449 /* we found what we needed */
4450 if (ins
->objectid
) {
4451 if (!(data
& BTRFS_BLOCK_GROUP_DATA
))
4452 trans
->block_group
= block_group
->key
.objectid
;
4454 btrfs_put_block_group(block_group
);
4461 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
4462 int dump_block_groups
)
4464 struct btrfs_block_group_cache
*cache
;
4466 spin_lock(&info
->lock
);
4467 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
4468 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
4469 info
->bytes_pinned
- info
->bytes_reserved
-
4471 (info
->full
) ? "" : "not ");
4472 printk(KERN_INFO
"space_info total=%llu, pinned=%llu, delalloc=%llu,"
4473 " may_use=%llu, used=%llu, root=%llu, super=%llu, reserved=%llu"
4475 (unsigned long long)info
->total_bytes
,
4476 (unsigned long long)info
->bytes_pinned
,
4477 (unsigned long long)info
->bytes_delalloc
,
4478 (unsigned long long)info
->bytes_may_use
,
4479 (unsigned long long)info
->bytes_used
,
4480 (unsigned long long)info
->bytes_root
,
4481 (unsigned long long)info
->bytes_super
,
4482 (unsigned long long)info
->bytes_reserved
);
4483 spin_unlock(&info
->lock
);
4485 if (!dump_block_groups
)
4488 down_read(&info
->groups_sem
);
4489 list_for_each_entry(cache
, &info
->block_groups
, list
) {
4490 spin_lock(&cache
->lock
);
4491 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
4492 "%llu pinned %llu reserved\n",
4493 (unsigned long long)cache
->key
.objectid
,
4494 (unsigned long long)cache
->key
.offset
,
4495 (unsigned long long)btrfs_block_group_used(&cache
->item
),
4496 (unsigned long long)cache
->pinned
,
4497 (unsigned long long)cache
->reserved
);
4498 btrfs_dump_free_space(cache
, bytes
);
4499 spin_unlock(&cache
->lock
);
4501 up_read(&info
->groups_sem
);
4504 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
4505 struct btrfs_root
*root
,
4506 u64 num_bytes
, u64 min_alloc_size
,
4507 u64 empty_size
, u64 hint_byte
,
4508 u64 search_end
, struct btrfs_key
*ins
,
4512 u64 search_start
= 0;
4513 struct btrfs_fs_info
*info
= root
->fs_info
;
4515 data
= btrfs_get_alloc_profile(root
, data
);
4518 * the only place that sets empty_size is btrfs_realloc_node, which
4519 * is not called recursively on allocations
4521 if (empty_size
|| root
->ref_cows
) {
4522 if (!(data
& BTRFS_BLOCK_GROUP_METADATA
)) {
4523 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4525 BTRFS_BLOCK_GROUP_METADATA
|
4526 (info
->metadata_alloc_profile
&
4527 info
->avail_metadata_alloc_bits
), 0);
4529 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4530 num_bytes
+ 2 * 1024 * 1024, data
, 0);
4533 WARN_ON(num_bytes
< root
->sectorsize
);
4534 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
4535 search_start
, search_end
, hint_byte
, ins
,
4536 trans
->alloc_exclude_start
,
4537 trans
->alloc_exclude_nr
, data
);
4539 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
4540 num_bytes
= num_bytes
>> 1;
4541 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
4542 num_bytes
= max(num_bytes
, min_alloc_size
);
4543 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4544 num_bytes
, data
, 1);
4547 if (ret
== -ENOSPC
) {
4548 struct btrfs_space_info
*sinfo
;
4550 sinfo
= __find_space_info(root
->fs_info
, data
);
4551 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
4552 "wanted %llu\n", (unsigned long long)data
,
4553 (unsigned long long)num_bytes
);
4554 dump_space_info(sinfo
, num_bytes
, 1);
4560 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
4562 struct btrfs_block_group_cache
*cache
;
4565 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
4567 printk(KERN_ERR
"Unable to find block group for %llu\n",
4568 (unsigned long long)start
);
4572 ret
= btrfs_discard_extent(root
, start
, len
);
4574 btrfs_add_free_space(cache
, start
, len
);
4575 update_reserved_extents(cache
, len
, 0);
4576 btrfs_put_block_group(cache
);
4581 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4582 struct btrfs_root
*root
,
4583 u64 parent
, u64 root_objectid
,
4584 u64 flags
, u64 owner
, u64 offset
,
4585 struct btrfs_key
*ins
, int ref_mod
)
4588 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4589 struct btrfs_extent_item
*extent_item
;
4590 struct btrfs_extent_inline_ref
*iref
;
4591 struct btrfs_path
*path
;
4592 struct extent_buffer
*leaf
;
4597 type
= BTRFS_SHARED_DATA_REF_KEY
;
4599 type
= BTRFS_EXTENT_DATA_REF_KEY
;
4601 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
4603 path
= btrfs_alloc_path();
4606 path
->leave_spinning
= 1;
4607 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4611 leaf
= path
->nodes
[0];
4612 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4613 struct btrfs_extent_item
);
4614 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
4615 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4616 btrfs_set_extent_flags(leaf
, extent_item
,
4617 flags
| BTRFS_EXTENT_FLAG_DATA
);
4619 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4620 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
4622 struct btrfs_shared_data_ref
*ref
;
4623 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
4624 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4625 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
4627 struct btrfs_extent_data_ref
*ref
;
4628 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
4629 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
4630 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
4631 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
4632 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
4635 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4636 btrfs_free_path(path
);
4638 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
,
4641 printk(KERN_ERR
"btrfs update block group failed for %llu "
4642 "%llu\n", (unsigned long long)ins
->objectid
,
4643 (unsigned long long)ins
->offset
);
4649 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
4650 struct btrfs_root
*root
,
4651 u64 parent
, u64 root_objectid
,
4652 u64 flags
, struct btrfs_disk_key
*key
,
4653 int level
, struct btrfs_key
*ins
)
4656 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4657 struct btrfs_extent_item
*extent_item
;
4658 struct btrfs_tree_block_info
*block_info
;
4659 struct btrfs_extent_inline_ref
*iref
;
4660 struct btrfs_path
*path
;
4661 struct extent_buffer
*leaf
;
4662 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
4664 path
= btrfs_alloc_path();
4667 path
->leave_spinning
= 1;
4668 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4672 leaf
= path
->nodes
[0];
4673 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4674 struct btrfs_extent_item
);
4675 btrfs_set_extent_refs(leaf
, extent_item
, 1);
4676 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4677 btrfs_set_extent_flags(leaf
, extent_item
,
4678 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
4679 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
4681 btrfs_set_tree_block_key(leaf
, block_info
, key
);
4682 btrfs_set_tree_block_level(leaf
, block_info
, level
);
4684 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
4686 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
4687 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4688 BTRFS_SHARED_BLOCK_REF_KEY
);
4689 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4691 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4692 BTRFS_TREE_BLOCK_REF_KEY
);
4693 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
4696 btrfs_mark_buffer_dirty(leaf
);
4697 btrfs_free_path(path
);
4699 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
,
4702 printk(KERN_ERR
"btrfs update block group failed for %llu "
4703 "%llu\n", (unsigned long long)ins
->objectid
,
4704 (unsigned long long)ins
->offset
);
4710 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4711 struct btrfs_root
*root
,
4712 u64 root_objectid
, u64 owner
,
4713 u64 offset
, struct btrfs_key
*ins
)
4717 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
4719 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
4720 0, root_objectid
, owner
, offset
,
4721 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
4726 * this is used by the tree logging recovery code. It records that
4727 * an extent has been allocated and makes sure to clear the free
4728 * space cache bits as well
4730 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
4731 struct btrfs_root
*root
,
4732 u64 root_objectid
, u64 owner
, u64 offset
,
4733 struct btrfs_key
*ins
)
4736 struct btrfs_block_group_cache
*block_group
;
4737 struct btrfs_caching_control
*caching_ctl
;
4738 u64 start
= ins
->objectid
;
4739 u64 num_bytes
= ins
->offset
;
4741 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
4742 cache_block_group(block_group
);
4743 caching_ctl
= get_caching_control(block_group
);
4746 BUG_ON(!block_group_cache_done(block_group
));
4747 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
4750 mutex_lock(&caching_ctl
->mutex
);
4752 if (start
>= caching_ctl
->progress
) {
4753 ret
= add_excluded_extent(root
, start
, num_bytes
);
4755 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
4756 ret
= btrfs_remove_free_space(block_group
,
4760 num_bytes
= caching_ctl
->progress
- start
;
4761 ret
= btrfs_remove_free_space(block_group
,
4765 start
= caching_ctl
->progress
;
4766 num_bytes
= ins
->objectid
+ ins
->offset
-
4767 caching_ctl
->progress
;
4768 ret
= add_excluded_extent(root
, start
, num_bytes
);
4772 mutex_unlock(&caching_ctl
->mutex
);
4773 put_caching_control(caching_ctl
);
4776 update_reserved_extents(block_group
, ins
->offset
, 1);
4777 btrfs_put_block_group(block_group
);
4778 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
4779 0, owner
, offset
, ins
, 1);
4784 * finds a free extent and does all the dirty work required for allocation
4785 * returns the key for the extent through ins, and a tree buffer for
4786 * the first block of the extent through buf.
4788 * returns 0 if everything worked, non-zero otherwise.
4790 static int alloc_tree_block(struct btrfs_trans_handle
*trans
,
4791 struct btrfs_root
*root
,
4792 u64 num_bytes
, u64 parent
, u64 root_objectid
,
4793 struct btrfs_disk_key
*key
, int level
,
4794 u64 empty_size
, u64 hint_byte
, u64 search_end
,
4795 struct btrfs_key
*ins
)
4800 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, num_bytes
,
4801 empty_size
, hint_byte
, search_end
,
4806 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
4808 parent
= ins
->objectid
;
4809 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4813 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4814 struct btrfs_delayed_extent_op
*extent_op
;
4815 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
4818 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
4820 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
4821 extent_op
->flags_to_set
= flags
;
4822 extent_op
->update_key
= 1;
4823 extent_op
->update_flags
= 1;
4824 extent_op
->is_data
= 0;
4826 ret
= btrfs_add_delayed_tree_ref(trans
, ins
->objectid
,
4827 ins
->offset
, parent
, root_objectid
,
4828 level
, BTRFS_ADD_DELAYED_EXTENT
,
4835 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
4836 struct btrfs_root
*root
,
4837 u64 bytenr
, u32 blocksize
,
4840 struct extent_buffer
*buf
;
4842 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
4844 return ERR_PTR(-ENOMEM
);
4845 btrfs_set_header_generation(buf
, trans
->transid
);
4846 btrfs_set_buffer_lockdep_class(buf
, level
);
4847 btrfs_tree_lock(buf
);
4848 clean_tree_block(trans
, root
, buf
);
4850 btrfs_set_lock_blocking(buf
);
4851 btrfs_set_buffer_uptodate(buf
);
4853 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4854 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
4855 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4857 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
4858 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4860 trans
->blocks_used
++;
4861 /* this returns a buffer locked for blocking */
4866 * helper function to allocate a block for a given tree
4867 * returns the tree buffer or NULL.
4869 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
4870 struct btrfs_root
*root
, u32 blocksize
,
4871 u64 parent
, u64 root_objectid
,
4872 struct btrfs_disk_key
*key
, int level
,
4873 u64 hint
, u64 empty_size
)
4875 struct btrfs_key ins
;
4877 struct extent_buffer
*buf
;
4879 ret
= alloc_tree_block(trans
, root
, blocksize
, parent
, root_objectid
,
4880 key
, level
, empty_size
, hint
, (u64
)-1, &ins
);
4883 return ERR_PTR(ret
);
4886 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
4891 struct walk_control
{
4892 u64 refs
[BTRFS_MAX_LEVEL
];
4893 u64 flags
[BTRFS_MAX_LEVEL
];
4894 struct btrfs_key update_progress
;
4904 #define DROP_REFERENCE 1
4905 #define UPDATE_BACKREF 2
4907 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
4908 struct btrfs_root
*root
,
4909 struct walk_control
*wc
,
4910 struct btrfs_path
*path
)
4919 struct btrfs_key key
;
4920 struct extent_buffer
*eb
;
4925 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
4926 wc
->reada_count
= wc
->reada_count
* 2 / 3;
4927 wc
->reada_count
= max(wc
->reada_count
, 2);
4929 wc
->reada_count
= wc
->reada_count
* 3 / 2;
4930 wc
->reada_count
= min_t(int, wc
->reada_count
,
4931 BTRFS_NODEPTRS_PER_BLOCK(root
));
4934 eb
= path
->nodes
[wc
->level
];
4935 nritems
= btrfs_header_nritems(eb
);
4936 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
4938 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
4939 if (nread
>= wc
->reada_count
)
4943 bytenr
= btrfs_node_blockptr(eb
, slot
);
4944 generation
= btrfs_node_ptr_generation(eb
, slot
);
4946 if (slot
== path
->slots
[wc
->level
])
4949 if (wc
->stage
== UPDATE_BACKREF
&&
4950 generation
<= root
->root_key
.offset
)
4953 /* We don't lock the tree block, it's OK to be racy here */
4954 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
4959 if (wc
->stage
== DROP_REFERENCE
) {
4963 if (wc
->level
== 1 &&
4964 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4966 if (!wc
->update_ref
||
4967 generation
<= root
->root_key
.offset
)
4969 btrfs_node_key_to_cpu(eb
, &key
, slot
);
4970 ret
= btrfs_comp_cpu_keys(&key
,
4971 &wc
->update_progress
);
4975 if (wc
->level
== 1 &&
4976 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4980 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
4984 last
= bytenr
+ blocksize
;
4987 wc
->reada_slot
= slot
;
4991 * hepler to process tree block while walking down the tree.
4993 * when wc->stage == UPDATE_BACKREF, this function updates
4994 * back refs for pointers in the block.
4996 * NOTE: return value 1 means we should stop walking down.
4998 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
4999 struct btrfs_root
*root
,
5000 struct btrfs_path
*path
,
5001 struct walk_control
*wc
, int lookup_info
)
5003 int level
= wc
->level
;
5004 struct extent_buffer
*eb
= path
->nodes
[level
];
5005 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5008 if (wc
->stage
== UPDATE_BACKREF
&&
5009 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
5013 * when reference count of tree block is 1, it won't increase
5014 * again. once full backref flag is set, we never clear it.
5017 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
5018 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
5019 BUG_ON(!path
->locks
[level
]);
5020 ret
= btrfs_lookup_extent_info(trans
, root
,
5025 BUG_ON(wc
->refs
[level
] == 0);
5028 if (wc
->stage
== DROP_REFERENCE
) {
5029 if (wc
->refs
[level
] > 1)
5032 if (path
->locks
[level
] && !wc
->keep_locks
) {
5033 btrfs_tree_unlock(eb
);
5034 path
->locks
[level
] = 0;
5039 /* wc->stage == UPDATE_BACKREF */
5040 if (!(wc
->flags
[level
] & flag
)) {
5041 BUG_ON(!path
->locks
[level
]);
5042 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
5044 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5046 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
5049 wc
->flags
[level
] |= flag
;
5053 * the block is shared by multiple trees, so it's not good to
5054 * keep the tree lock
5056 if (path
->locks
[level
] && level
> 0) {
5057 btrfs_tree_unlock(eb
);
5058 path
->locks
[level
] = 0;
5064 * hepler to process tree block pointer.
5066 * when wc->stage == DROP_REFERENCE, this function checks
5067 * reference count of the block pointed to. if the block
5068 * is shared and we need update back refs for the subtree
5069 * rooted at the block, this function changes wc->stage to
5070 * UPDATE_BACKREF. if the block is shared and there is no
5071 * need to update back, this function drops the reference
5074 * NOTE: return value 1 means we should stop walking down.
5076 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
5077 struct btrfs_root
*root
,
5078 struct btrfs_path
*path
,
5079 struct walk_control
*wc
, int *lookup_info
)
5085 struct btrfs_key key
;
5086 struct extent_buffer
*next
;
5087 int level
= wc
->level
;
5091 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
5092 path
->slots
[level
]);
5094 * if the lower level block was created before the snapshot
5095 * was created, we know there is no need to update back refs
5098 if (wc
->stage
== UPDATE_BACKREF
&&
5099 generation
<= root
->root_key
.offset
) {
5104 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
5105 blocksize
= btrfs_level_size(root
, level
- 1);
5107 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
5109 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5112 btrfs_tree_lock(next
);
5113 btrfs_set_lock_blocking(next
);
5115 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5116 &wc
->refs
[level
- 1],
5117 &wc
->flags
[level
- 1]);
5119 BUG_ON(wc
->refs
[level
- 1] == 0);
5122 if (wc
->stage
== DROP_REFERENCE
) {
5123 if (wc
->refs
[level
- 1] > 1) {
5125 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5128 if (!wc
->update_ref
||
5129 generation
<= root
->root_key
.offset
)
5132 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
5133 path
->slots
[level
]);
5134 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
5138 wc
->stage
= UPDATE_BACKREF
;
5139 wc
->shared_level
= level
- 1;
5143 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5147 if (!btrfs_buffer_uptodate(next
, generation
)) {
5148 btrfs_tree_unlock(next
);
5149 free_extent_buffer(next
);
5155 if (reada
&& level
== 1)
5156 reada_walk_down(trans
, root
, wc
, path
);
5157 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
5158 btrfs_tree_lock(next
);
5159 btrfs_set_lock_blocking(next
);
5163 BUG_ON(level
!= btrfs_header_level(next
));
5164 path
->nodes
[level
] = next
;
5165 path
->slots
[level
] = 0;
5166 path
->locks
[level
] = 1;
5172 wc
->refs
[level
- 1] = 0;
5173 wc
->flags
[level
- 1] = 0;
5174 if (wc
->stage
== DROP_REFERENCE
) {
5175 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
5176 parent
= path
->nodes
[level
]->start
;
5178 BUG_ON(root
->root_key
.objectid
!=
5179 btrfs_header_owner(path
->nodes
[level
]));
5183 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
5184 root
->root_key
.objectid
, level
- 1, 0);
5187 btrfs_tree_unlock(next
);
5188 free_extent_buffer(next
);
5194 * hepler to process tree block while walking up the tree.
5196 * when wc->stage == DROP_REFERENCE, this function drops
5197 * reference count on the block.
5199 * when wc->stage == UPDATE_BACKREF, this function changes
5200 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5201 * to UPDATE_BACKREF previously while processing the block.
5203 * NOTE: return value 1 means we should stop walking up.
5205 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
5206 struct btrfs_root
*root
,
5207 struct btrfs_path
*path
,
5208 struct walk_control
*wc
)
5211 int level
= wc
->level
;
5212 struct extent_buffer
*eb
= path
->nodes
[level
];
5215 if (wc
->stage
== UPDATE_BACKREF
) {
5216 BUG_ON(wc
->shared_level
< level
);
5217 if (level
< wc
->shared_level
)
5220 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
5224 wc
->stage
= DROP_REFERENCE
;
5225 wc
->shared_level
= -1;
5226 path
->slots
[level
] = 0;
5229 * check reference count again if the block isn't locked.
5230 * we should start walking down the tree again if reference
5233 if (!path
->locks
[level
]) {
5235 btrfs_tree_lock(eb
);
5236 btrfs_set_lock_blocking(eb
);
5237 path
->locks
[level
] = 1;
5239 ret
= btrfs_lookup_extent_info(trans
, root
,
5244 BUG_ON(wc
->refs
[level
] == 0);
5245 if (wc
->refs
[level
] == 1) {
5246 btrfs_tree_unlock(eb
);
5247 path
->locks
[level
] = 0;
5253 /* wc->stage == DROP_REFERENCE */
5254 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
5256 if (wc
->refs
[level
] == 1) {
5258 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5259 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
5261 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5264 /* make block locked assertion in clean_tree_block happy */
5265 if (!path
->locks
[level
] &&
5266 btrfs_header_generation(eb
) == trans
->transid
) {
5267 btrfs_tree_lock(eb
);
5268 btrfs_set_lock_blocking(eb
);
5269 path
->locks
[level
] = 1;
5271 clean_tree_block(trans
, root
, eb
);
5274 if (eb
== root
->node
) {
5275 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5278 BUG_ON(root
->root_key
.objectid
!=
5279 btrfs_header_owner(eb
));
5281 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5282 parent
= path
->nodes
[level
+ 1]->start
;
5284 BUG_ON(root
->root_key
.objectid
!=
5285 btrfs_header_owner(path
->nodes
[level
+ 1]));
5288 ret
= btrfs_free_extent(trans
, root
, eb
->start
, eb
->len
, parent
,
5289 root
->root_key
.objectid
, level
, 0);
5292 wc
->refs
[level
] = 0;
5293 wc
->flags
[level
] = 0;
5297 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
5298 struct btrfs_root
*root
,
5299 struct btrfs_path
*path
,
5300 struct walk_control
*wc
)
5302 int level
= wc
->level
;
5303 int lookup_info
= 1;
5306 while (level
>= 0) {
5307 if (path
->slots
[level
] >=
5308 btrfs_header_nritems(path
->nodes
[level
]))
5311 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
5318 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
5320 path
->slots
[level
]++;
5328 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
5329 struct btrfs_root
*root
,
5330 struct btrfs_path
*path
,
5331 struct walk_control
*wc
, int max_level
)
5333 int level
= wc
->level
;
5336 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
5337 while (level
< max_level
&& path
->nodes
[level
]) {
5339 if (path
->slots
[level
] + 1 <
5340 btrfs_header_nritems(path
->nodes
[level
])) {
5341 path
->slots
[level
]++;
5344 ret
= walk_up_proc(trans
, root
, path
, wc
);
5348 if (path
->locks
[level
]) {
5349 btrfs_tree_unlock(path
->nodes
[level
]);
5350 path
->locks
[level
] = 0;
5352 free_extent_buffer(path
->nodes
[level
]);
5353 path
->nodes
[level
] = NULL
;
5361 * drop a subvolume tree.
5363 * this function traverses the tree freeing any blocks that only
5364 * referenced by the tree.
5366 * when a shared tree block is found. this function decreases its
5367 * reference count by one. if update_ref is true, this function
5368 * also make sure backrefs for the shared block and all lower level
5369 * blocks are properly updated.
5371 int btrfs_drop_snapshot(struct btrfs_root
*root
, int update_ref
)
5373 struct btrfs_path
*path
;
5374 struct btrfs_trans_handle
*trans
;
5375 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
5376 struct btrfs_root_item
*root_item
= &root
->root_item
;
5377 struct walk_control
*wc
;
5378 struct btrfs_key key
;
5383 path
= btrfs_alloc_path();
5386 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5389 trans
= btrfs_start_transaction(tree_root
, 1);
5391 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
5392 level
= btrfs_header_level(root
->node
);
5393 path
->nodes
[level
] = btrfs_lock_root_node(root
);
5394 btrfs_set_lock_blocking(path
->nodes
[level
]);
5395 path
->slots
[level
] = 0;
5396 path
->locks
[level
] = 1;
5397 memset(&wc
->update_progress
, 0,
5398 sizeof(wc
->update_progress
));
5400 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
5401 memcpy(&wc
->update_progress
, &key
,
5402 sizeof(wc
->update_progress
));
5404 level
= root_item
->drop_level
;
5406 path
->lowest_level
= level
;
5407 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5408 path
->lowest_level
= 0;
5416 * unlock our path, this is safe because only this
5417 * function is allowed to delete this snapshot
5419 btrfs_unlock_up_safe(path
, 0);
5421 level
= btrfs_header_level(root
->node
);
5423 btrfs_tree_lock(path
->nodes
[level
]);
5424 btrfs_set_lock_blocking(path
->nodes
[level
]);
5426 ret
= btrfs_lookup_extent_info(trans
, root
,
5427 path
->nodes
[level
]->start
,
5428 path
->nodes
[level
]->len
,
5432 BUG_ON(wc
->refs
[level
] == 0);
5434 if (level
== root_item
->drop_level
)
5437 btrfs_tree_unlock(path
->nodes
[level
]);
5438 WARN_ON(wc
->refs
[level
] != 1);
5444 wc
->shared_level
= -1;
5445 wc
->stage
= DROP_REFERENCE
;
5446 wc
->update_ref
= update_ref
;
5448 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
5451 ret
= walk_down_tree(trans
, root
, path
, wc
);
5457 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
5464 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
5468 if (wc
->stage
== DROP_REFERENCE
) {
5470 btrfs_node_key(path
->nodes
[level
],
5471 &root_item
->drop_progress
,
5472 path
->slots
[level
]);
5473 root_item
->drop_level
= level
;
5476 BUG_ON(wc
->level
== 0);
5477 if (trans
->transaction
->in_commit
||
5478 trans
->transaction
->delayed_refs
.flushing
) {
5479 ret
= btrfs_update_root(trans
, tree_root
,
5484 btrfs_end_transaction(trans
, tree_root
);
5485 trans
= btrfs_start_transaction(tree_root
, 1);
5487 unsigned long update
;
5488 update
= trans
->delayed_ref_updates
;
5489 trans
->delayed_ref_updates
= 0;
5491 btrfs_run_delayed_refs(trans
, tree_root
,
5495 btrfs_release_path(root
, path
);
5498 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
5501 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
5502 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
5506 ret
= btrfs_del_orphan_item(trans
, tree_root
,
5507 root
->root_key
.objectid
);
5512 if (root
->in_radix
) {
5513 btrfs_free_fs_root(tree_root
->fs_info
, root
);
5515 free_extent_buffer(root
->node
);
5516 free_extent_buffer(root
->commit_root
);
5520 btrfs_end_transaction(trans
, tree_root
);
5522 btrfs_free_path(path
);
5527 * drop subtree rooted at tree block 'node'.
5529 * NOTE: this function will unlock and release tree block 'node'
5531 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
5532 struct btrfs_root
*root
,
5533 struct extent_buffer
*node
,
5534 struct extent_buffer
*parent
)
5536 struct btrfs_path
*path
;
5537 struct walk_control
*wc
;
5543 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
5545 path
= btrfs_alloc_path();
5548 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5551 btrfs_assert_tree_locked(parent
);
5552 parent_level
= btrfs_header_level(parent
);
5553 extent_buffer_get(parent
);
5554 path
->nodes
[parent_level
] = parent
;
5555 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
5557 btrfs_assert_tree_locked(node
);
5558 level
= btrfs_header_level(node
);
5559 path
->nodes
[level
] = node
;
5560 path
->slots
[level
] = 0;
5561 path
->locks
[level
] = 1;
5563 wc
->refs
[parent_level
] = 1;
5564 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5566 wc
->shared_level
= -1;
5567 wc
->stage
= DROP_REFERENCE
;
5570 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
5573 wret
= walk_down_tree(trans
, root
, path
, wc
);
5579 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
5587 btrfs_free_path(path
);
5592 static unsigned long calc_ra(unsigned long start
, unsigned long last
,
5595 return min(last
, start
+ nr
- 1);
5598 static noinline
int relocate_inode_pages(struct inode
*inode
, u64 start
,
5603 unsigned long first_index
;
5604 unsigned long last_index
;
5607 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5608 struct file_ra_state
*ra
;
5609 struct btrfs_ordered_extent
*ordered
;
5610 unsigned int total_read
= 0;
5611 unsigned int total_dirty
= 0;
5614 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
5616 mutex_lock(&inode
->i_mutex
);
5617 first_index
= start
>> PAGE_CACHE_SHIFT
;
5618 last_index
= (start
+ len
- 1) >> PAGE_CACHE_SHIFT
;
5620 /* make sure the dirty trick played by the caller work */
5621 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
5622 first_index
, last_index
);
5626 file_ra_state_init(ra
, inode
->i_mapping
);
5628 for (i
= first_index
; i
<= last_index
; i
++) {
5629 if (total_read
% ra
->ra_pages
== 0) {
5630 btrfs_force_ra(inode
->i_mapping
, ra
, NULL
, i
,
5631 calc_ra(i
, last_index
, ra
->ra_pages
));
5635 if (((u64
)i
<< PAGE_CACHE_SHIFT
) > i_size_read(inode
))
5637 page
= grab_cache_page(inode
->i_mapping
, i
);
5642 if (!PageUptodate(page
)) {
5643 btrfs_readpage(NULL
, page
);
5645 if (!PageUptodate(page
)) {
5647 page_cache_release(page
);
5652 wait_on_page_writeback(page
);
5654 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
5655 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
5656 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5658 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
5660 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5662 page_cache_release(page
);
5663 btrfs_start_ordered_extent(inode
, ordered
, 1);
5664 btrfs_put_ordered_extent(ordered
);
5667 set_page_extent_mapped(page
);
5669 if (i
== first_index
)
5670 set_extent_bits(io_tree
, page_start
, page_end
,
5671 EXTENT_BOUNDARY
, GFP_NOFS
);
5672 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
5674 set_page_dirty(page
);
5677 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5679 page_cache_release(page
);
5684 mutex_unlock(&inode
->i_mutex
);
5685 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, total_dirty
);
5689 static noinline
int relocate_data_extent(struct inode
*reloc_inode
,
5690 struct btrfs_key
*extent_key
,
5693 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
5694 struct extent_map_tree
*em_tree
= &BTRFS_I(reloc_inode
)->extent_tree
;
5695 struct extent_map
*em
;
5696 u64 start
= extent_key
->objectid
- offset
;
5697 u64 end
= start
+ extent_key
->offset
- 1;
5699 em
= alloc_extent_map(GFP_NOFS
);
5700 BUG_ON(!em
|| IS_ERR(em
));
5703 em
->len
= extent_key
->offset
;
5704 em
->block_len
= extent_key
->offset
;
5705 em
->block_start
= extent_key
->objectid
;
5706 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5707 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5709 /* setup extent map to cheat btrfs_readpage */
5710 lock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
5713 write_lock(&em_tree
->lock
);
5714 ret
= add_extent_mapping(em_tree
, em
);
5715 write_unlock(&em_tree
->lock
);
5716 if (ret
!= -EEXIST
) {
5717 free_extent_map(em
);
5720 btrfs_drop_extent_cache(reloc_inode
, start
, end
, 0);
5722 unlock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
5724 return relocate_inode_pages(reloc_inode
, start
, extent_key
->offset
);
5727 struct btrfs_ref_path
{
5729 u64 nodes
[BTRFS_MAX_LEVEL
];
5731 u64 root_generation
;
5738 struct btrfs_key node_keys
[BTRFS_MAX_LEVEL
];
5739 u64 new_nodes
[BTRFS_MAX_LEVEL
];
5742 struct disk_extent
{
5753 static int is_cowonly_root(u64 root_objectid
)
5755 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
||
5756 root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
||
5757 root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
||
5758 root_objectid
== BTRFS_DEV_TREE_OBJECTID
||
5759 root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
5760 root_objectid
== BTRFS_CSUM_TREE_OBJECTID
)
5765 static noinline
int __next_ref_path(struct btrfs_trans_handle
*trans
,
5766 struct btrfs_root
*extent_root
,
5767 struct btrfs_ref_path
*ref_path
,
5770 struct extent_buffer
*leaf
;
5771 struct btrfs_path
*path
;
5772 struct btrfs_extent_ref
*ref
;
5773 struct btrfs_key key
;
5774 struct btrfs_key found_key
;
5780 path
= btrfs_alloc_path();
5785 ref_path
->lowest_level
= -1;
5786 ref_path
->current_level
= -1;
5787 ref_path
->shared_level
= -1;
5791 level
= ref_path
->current_level
- 1;
5792 while (level
>= -1) {
5794 if (level
< ref_path
->lowest_level
)
5798 bytenr
= ref_path
->nodes
[level
];
5800 bytenr
= ref_path
->extent_start
;
5801 BUG_ON(bytenr
== 0);
5803 parent
= ref_path
->nodes
[level
+ 1];
5804 ref_path
->nodes
[level
+ 1] = 0;
5805 ref_path
->current_level
= level
;
5806 BUG_ON(parent
== 0);
5808 key
.objectid
= bytenr
;
5809 key
.offset
= parent
+ 1;
5810 key
.type
= BTRFS_EXTENT_REF_KEY
;
5812 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
5817 leaf
= path
->nodes
[0];
5818 nritems
= btrfs_header_nritems(leaf
);
5819 if (path
->slots
[0] >= nritems
) {
5820 ret
= btrfs_next_leaf(extent_root
, path
);
5825 leaf
= path
->nodes
[0];
5828 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5829 if (found_key
.objectid
== bytenr
&&
5830 found_key
.type
== BTRFS_EXTENT_REF_KEY
) {
5831 if (level
< ref_path
->shared_level
)
5832 ref_path
->shared_level
= level
;
5837 btrfs_release_path(extent_root
, path
);
5840 /* reached lowest level */
5844 level
= ref_path
->current_level
;
5845 while (level
< BTRFS_MAX_LEVEL
- 1) {
5849 bytenr
= ref_path
->nodes
[level
];
5851 bytenr
= ref_path
->extent_start
;
5853 BUG_ON(bytenr
== 0);
5855 key
.objectid
= bytenr
;
5857 key
.type
= BTRFS_EXTENT_REF_KEY
;
5859 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
5863 leaf
= path
->nodes
[0];
5864 nritems
= btrfs_header_nritems(leaf
);
5865 if (path
->slots
[0] >= nritems
) {
5866 ret
= btrfs_next_leaf(extent_root
, path
);
5870 /* the extent was freed by someone */
5871 if (ref_path
->lowest_level
== level
)
5873 btrfs_release_path(extent_root
, path
);
5876 leaf
= path
->nodes
[0];
5879 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5880 if (found_key
.objectid
!= bytenr
||
5881 found_key
.type
!= BTRFS_EXTENT_REF_KEY
) {
5882 /* the extent was freed by someone */
5883 if (ref_path
->lowest_level
== level
) {
5887 btrfs_release_path(extent_root
, path
);
5891 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
5892 struct btrfs_extent_ref
);
5893 ref_objectid
= btrfs_ref_objectid(leaf
, ref
);
5894 if (ref_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
5896 level
= (int)ref_objectid
;
5897 BUG_ON(level
>= BTRFS_MAX_LEVEL
);
5898 ref_path
->lowest_level
= level
;
5899 ref_path
->current_level
= level
;
5900 ref_path
->nodes
[level
] = bytenr
;
5902 WARN_ON(ref_objectid
!= level
);
5905 WARN_ON(level
!= -1);
5909 if (ref_path
->lowest_level
== level
) {
5910 ref_path
->owner_objectid
= ref_objectid
;
5911 ref_path
->num_refs
= btrfs_ref_num_refs(leaf
, ref
);
5915 * the block is tree root or the block isn't in reference
5918 if (found_key
.objectid
== found_key
.offset
||
5919 is_cowonly_root(btrfs_ref_root(leaf
, ref
))) {
5920 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
5921 ref_path
->root_generation
=
5922 btrfs_ref_generation(leaf
, ref
);
5924 /* special reference from the tree log */
5925 ref_path
->nodes
[0] = found_key
.offset
;
5926 ref_path
->current_level
= 0;
5933 BUG_ON(ref_path
->nodes
[level
] != 0);
5934 ref_path
->nodes
[level
] = found_key
.offset
;
5935 ref_path
->current_level
= level
;
5938 * the reference was created in the running transaction,
5939 * no need to continue walking up.
5941 if (btrfs_ref_generation(leaf
, ref
) == trans
->transid
) {
5942 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
5943 ref_path
->root_generation
=
5944 btrfs_ref_generation(leaf
, ref
);
5949 btrfs_release_path(extent_root
, path
);
5952 /* reached max tree level, but no tree root found. */
5955 btrfs_free_path(path
);
5959 static int btrfs_first_ref_path(struct btrfs_trans_handle
*trans
,
5960 struct btrfs_root
*extent_root
,
5961 struct btrfs_ref_path
*ref_path
,
5964 memset(ref_path
, 0, sizeof(*ref_path
));
5965 ref_path
->extent_start
= extent_start
;
5967 return __next_ref_path(trans
, extent_root
, ref_path
, 1);
5970 static int btrfs_next_ref_path(struct btrfs_trans_handle
*trans
,
5971 struct btrfs_root
*extent_root
,
5972 struct btrfs_ref_path
*ref_path
)
5974 return __next_ref_path(trans
, extent_root
, ref_path
, 0);
5977 static noinline
int get_new_locations(struct inode
*reloc_inode
,
5978 struct btrfs_key
*extent_key
,
5979 u64 offset
, int no_fragment
,
5980 struct disk_extent
**extents
,
5983 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
5984 struct btrfs_path
*path
;
5985 struct btrfs_file_extent_item
*fi
;
5986 struct extent_buffer
*leaf
;
5987 struct disk_extent
*exts
= *extents
;
5988 struct btrfs_key found_key
;
5993 int max
= *nr_extents
;
5996 WARN_ON(!no_fragment
&& *extents
);
5999 exts
= kmalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6004 path
= btrfs_alloc_path();
6007 cur_pos
= extent_key
->objectid
- offset
;
6008 last_byte
= extent_key
->objectid
+ extent_key
->offset
;
6009 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, reloc_inode
->i_ino
,
6019 leaf
= path
->nodes
[0];
6020 nritems
= btrfs_header_nritems(leaf
);
6021 if (path
->slots
[0] >= nritems
) {
6022 ret
= btrfs_next_leaf(root
, path
);
6027 leaf
= path
->nodes
[0];
6030 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6031 if (found_key
.offset
!= cur_pos
||
6032 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
||
6033 found_key
.objectid
!= reloc_inode
->i_ino
)
6036 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6037 struct btrfs_file_extent_item
);
6038 if (btrfs_file_extent_type(leaf
, fi
) !=
6039 BTRFS_FILE_EXTENT_REG
||
6040 btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6044 struct disk_extent
*old
= exts
;
6046 exts
= kzalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6047 memcpy(exts
, old
, sizeof(*exts
) * nr
);
6048 if (old
!= *extents
)
6052 exts
[nr
].disk_bytenr
=
6053 btrfs_file_extent_disk_bytenr(leaf
, fi
);
6054 exts
[nr
].disk_num_bytes
=
6055 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6056 exts
[nr
].offset
= btrfs_file_extent_offset(leaf
, fi
);
6057 exts
[nr
].num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6058 exts
[nr
].ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6059 exts
[nr
].compression
= btrfs_file_extent_compression(leaf
, fi
);
6060 exts
[nr
].encryption
= btrfs_file_extent_encryption(leaf
, fi
);
6061 exts
[nr
].other_encoding
= btrfs_file_extent_other_encoding(leaf
,
6063 BUG_ON(exts
[nr
].offset
> 0);
6064 BUG_ON(exts
[nr
].compression
|| exts
[nr
].encryption
);
6065 BUG_ON(exts
[nr
].num_bytes
!= exts
[nr
].disk_num_bytes
);
6067 cur_pos
+= exts
[nr
].num_bytes
;
6070 if (cur_pos
+ offset
>= last_byte
)
6080 BUG_ON(cur_pos
+ offset
> last_byte
);
6081 if (cur_pos
+ offset
< last_byte
) {
6087 btrfs_free_path(path
);
6089 if (exts
!= *extents
)
6098 static noinline
int replace_one_extent(struct btrfs_trans_handle
*trans
,
6099 struct btrfs_root
*root
,
6100 struct btrfs_path
*path
,
6101 struct btrfs_key
*extent_key
,
6102 struct btrfs_key
*leaf_key
,
6103 struct btrfs_ref_path
*ref_path
,
6104 struct disk_extent
*new_extents
,
6107 struct extent_buffer
*leaf
;
6108 struct btrfs_file_extent_item
*fi
;
6109 struct inode
*inode
= NULL
;
6110 struct btrfs_key key
;
6115 u64 search_end
= (u64
)-1;
6118 int extent_locked
= 0;
6122 memcpy(&key
, leaf_key
, sizeof(key
));
6123 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
6124 if (key
.objectid
< ref_path
->owner_objectid
||
6125 (key
.objectid
== ref_path
->owner_objectid
&&
6126 key
.type
< BTRFS_EXTENT_DATA_KEY
)) {
6127 key
.objectid
= ref_path
->owner_objectid
;
6128 key
.type
= BTRFS_EXTENT_DATA_KEY
;
6134 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
6138 leaf
= path
->nodes
[0];
6139 nritems
= btrfs_header_nritems(leaf
);
6141 if (extent_locked
&& ret
> 0) {
6143 * the file extent item was modified by someone
6144 * before the extent got locked.
6146 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6147 lock_end
, GFP_NOFS
);
6151 if (path
->slots
[0] >= nritems
) {
6152 if (++nr_scaned
> 2)
6155 BUG_ON(extent_locked
);
6156 ret
= btrfs_next_leaf(root
, path
);
6161 leaf
= path
->nodes
[0];
6162 nritems
= btrfs_header_nritems(leaf
);
6165 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
6167 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
6168 if ((key
.objectid
> ref_path
->owner_objectid
) ||
6169 (key
.objectid
== ref_path
->owner_objectid
&&
6170 key
.type
> BTRFS_EXTENT_DATA_KEY
) ||
6171 key
.offset
>= search_end
)
6175 if (inode
&& key
.objectid
!= inode
->i_ino
) {
6176 BUG_ON(extent_locked
);
6177 btrfs_release_path(root
, path
);
6178 mutex_unlock(&inode
->i_mutex
);
6184 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6189 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6190 struct btrfs_file_extent_item
);
6191 extent_type
= btrfs_file_extent_type(leaf
, fi
);
6192 if ((extent_type
!= BTRFS_FILE_EXTENT_REG
&&
6193 extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
) ||
6194 (btrfs_file_extent_disk_bytenr(leaf
, fi
) !=
6195 extent_key
->objectid
)) {
6201 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6202 ext_offset
= btrfs_file_extent_offset(leaf
, fi
);
6204 if (search_end
== (u64
)-1) {
6205 search_end
= key
.offset
- ext_offset
+
6206 btrfs_file_extent_ram_bytes(leaf
, fi
);
6209 if (!extent_locked
) {
6210 lock_start
= key
.offset
;
6211 lock_end
= lock_start
+ num_bytes
- 1;
6213 if (lock_start
> key
.offset
||
6214 lock_end
+ 1 < key
.offset
+ num_bytes
) {
6215 unlock_extent(&BTRFS_I(inode
)->io_tree
,
6216 lock_start
, lock_end
, GFP_NOFS
);
6222 btrfs_release_path(root
, path
);
6224 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
6225 key
.objectid
, root
);
6226 if (inode
->i_state
& I_NEW
) {
6227 BTRFS_I(inode
)->root
= root
;
6228 BTRFS_I(inode
)->location
.objectid
=
6230 BTRFS_I(inode
)->location
.type
=
6231 BTRFS_INODE_ITEM_KEY
;
6232 BTRFS_I(inode
)->location
.offset
= 0;
6233 btrfs_read_locked_inode(inode
);
6234 unlock_new_inode(inode
);
6237 * some code call btrfs_commit_transaction while
6238 * holding the i_mutex, so we can't use mutex_lock
6241 if (is_bad_inode(inode
) ||
6242 !mutex_trylock(&inode
->i_mutex
)) {
6245 key
.offset
= (u64
)-1;
6250 if (!extent_locked
) {
6251 struct btrfs_ordered_extent
*ordered
;
6253 btrfs_release_path(root
, path
);
6255 lock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6256 lock_end
, GFP_NOFS
);
6257 ordered
= btrfs_lookup_first_ordered_extent(inode
,
6260 ordered
->file_offset
<= lock_end
&&
6261 ordered
->file_offset
+ ordered
->len
> lock_start
) {
6262 unlock_extent(&BTRFS_I(inode
)->io_tree
,
6263 lock_start
, lock_end
, GFP_NOFS
);
6264 btrfs_start_ordered_extent(inode
, ordered
, 1);
6265 btrfs_put_ordered_extent(ordered
);
6266 key
.offset
+= num_bytes
;
6270 btrfs_put_ordered_extent(ordered
);
6276 if (nr_extents
== 1) {
6277 /* update extent pointer in place */
6278 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6279 new_extents
[0].disk_bytenr
);
6280 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6281 new_extents
[0].disk_num_bytes
);
6282 btrfs_mark_buffer_dirty(leaf
);
6284 btrfs_drop_extent_cache(inode
, key
.offset
,
6285 key
.offset
+ num_bytes
- 1, 0);
6287 ret
= btrfs_inc_extent_ref(trans
, root
,
6288 new_extents
[0].disk_bytenr
,
6289 new_extents
[0].disk_num_bytes
,
6291 root
->root_key
.objectid
,
6296 ret
= btrfs_free_extent(trans
, root
,
6297 extent_key
->objectid
,
6300 btrfs_header_owner(leaf
),
6301 btrfs_header_generation(leaf
),
6305 btrfs_release_path(root
, path
);
6306 key
.offset
+= num_bytes
;
6314 * drop old extent pointer at first, then insert the
6315 * new pointers one bye one
6317 btrfs_release_path(root
, path
);
6318 ret
= btrfs_drop_extents(trans
, root
, inode
, key
.offset
,
6319 key
.offset
+ num_bytes
,
6320 key
.offset
, &alloc_hint
);
6323 for (i
= 0; i
< nr_extents
; i
++) {
6324 if (ext_offset
>= new_extents
[i
].num_bytes
) {
6325 ext_offset
-= new_extents
[i
].num_bytes
;
6328 extent_len
= min(new_extents
[i
].num_bytes
-
6329 ext_offset
, num_bytes
);
6331 ret
= btrfs_insert_empty_item(trans
, root
,
6336 leaf
= path
->nodes
[0];
6337 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6338 struct btrfs_file_extent_item
);
6339 btrfs_set_file_extent_generation(leaf
, fi
,
6341 btrfs_set_file_extent_type(leaf
, fi
,
6342 BTRFS_FILE_EXTENT_REG
);
6343 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6344 new_extents
[i
].disk_bytenr
);
6345 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6346 new_extents
[i
].disk_num_bytes
);
6347 btrfs_set_file_extent_ram_bytes(leaf
, fi
,
6348 new_extents
[i
].ram_bytes
);
6350 btrfs_set_file_extent_compression(leaf
, fi
,
6351 new_extents
[i
].compression
);
6352 btrfs_set_file_extent_encryption(leaf
, fi
,
6353 new_extents
[i
].encryption
);
6354 btrfs_set_file_extent_other_encoding(leaf
, fi
,
6355 new_extents
[i
].other_encoding
);
6357 btrfs_set_file_extent_num_bytes(leaf
, fi
,
6359 ext_offset
+= new_extents
[i
].offset
;
6360 btrfs_set_file_extent_offset(leaf
, fi
,
6362 btrfs_mark_buffer_dirty(leaf
);
6364 btrfs_drop_extent_cache(inode
, key
.offset
,
6365 key
.offset
+ extent_len
- 1, 0);
6367 ret
= btrfs_inc_extent_ref(trans
, root
,
6368 new_extents
[i
].disk_bytenr
,
6369 new_extents
[i
].disk_num_bytes
,
6371 root
->root_key
.objectid
,
6372 trans
->transid
, key
.objectid
);
6374 btrfs_release_path(root
, path
);
6376 inode_add_bytes(inode
, extent_len
);
6379 num_bytes
-= extent_len
;
6380 key
.offset
+= extent_len
;
6385 BUG_ON(i
>= nr_extents
);
6389 if (extent_locked
) {
6390 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6391 lock_end
, GFP_NOFS
);
6395 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
&&
6396 key
.offset
>= search_end
)
6403 btrfs_release_path(root
, path
);
6405 mutex_unlock(&inode
->i_mutex
);
6406 if (extent_locked
) {
6407 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6408 lock_end
, GFP_NOFS
);
6415 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle
*trans
,
6416 struct btrfs_root
*root
,
6417 struct extent_buffer
*buf
, u64 orig_start
)
6422 BUG_ON(btrfs_header_generation(buf
) != trans
->transid
);
6423 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6425 level
= btrfs_header_level(buf
);
6427 struct btrfs_leaf_ref
*ref
;
6428 struct btrfs_leaf_ref
*orig_ref
;
6430 orig_ref
= btrfs_lookup_leaf_ref(root
, orig_start
);
6434 ref
= btrfs_alloc_leaf_ref(root
, orig_ref
->nritems
);
6436 btrfs_free_leaf_ref(root
, orig_ref
);
6440 ref
->nritems
= orig_ref
->nritems
;
6441 memcpy(ref
->extents
, orig_ref
->extents
,
6442 sizeof(ref
->extents
[0]) * ref
->nritems
);
6444 btrfs_free_leaf_ref(root
, orig_ref
);
6446 ref
->root_gen
= trans
->transid
;
6447 ref
->bytenr
= buf
->start
;
6448 ref
->owner
= btrfs_header_owner(buf
);
6449 ref
->generation
= btrfs_header_generation(buf
);
6451 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
6453 btrfs_free_leaf_ref(root
, ref
);
6458 static noinline
int invalidate_extent_cache(struct btrfs_root
*root
,
6459 struct extent_buffer
*leaf
,
6460 struct btrfs_block_group_cache
*group
,
6461 struct btrfs_root
*target_root
)
6463 struct btrfs_key key
;
6464 struct inode
*inode
= NULL
;
6465 struct btrfs_file_extent_item
*fi
;
6467 u64 skip_objectid
= 0;
6471 nritems
= btrfs_header_nritems(leaf
);
6472 for (i
= 0; i
< nritems
; i
++) {
6473 btrfs_item_key_to_cpu(leaf
, &key
, i
);
6474 if (key
.objectid
== skip_objectid
||
6475 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6477 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
6478 if (btrfs_file_extent_type(leaf
, fi
) ==
6479 BTRFS_FILE_EXTENT_INLINE
)
6481 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6483 if (!inode
|| inode
->i_ino
!= key
.objectid
) {
6485 inode
= btrfs_ilookup(target_root
->fs_info
->sb
,
6486 key
.objectid
, target_root
, 1);
6489 skip_objectid
= key
.objectid
;
6492 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6494 lock_extent(&BTRFS_I(inode
)->io_tree
, key
.offset
,
6495 key
.offset
+ num_bytes
- 1, GFP_NOFS
);
6496 btrfs_drop_extent_cache(inode
, key
.offset
,
6497 key
.offset
+ num_bytes
- 1, 1);
6498 unlock_extent(&BTRFS_I(inode
)->io_tree
, key
.offset
,
6499 key
.offset
+ num_bytes
- 1, GFP_NOFS
);
6506 static noinline
int replace_extents_in_leaf(struct btrfs_trans_handle
*trans
,
6507 struct btrfs_root
*root
,
6508 struct extent_buffer
*leaf
,
6509 struct btrfs_block_group_cache
*group
,
6510 struct inode
*reloc_inode
)
6512 struct btrfs_key key
;
6513 struct btrfs_key extent_key
;
6514 struct btrfs_file_extent_item
*fi
;
6515 struct btrfs_leaf_ref
*ref
;
6516 struct disk_extent
*new_extent
;
6525 new_extent
= kmalloc(sizeof(*new_extent
), GFP_NOFS
);
6526 BUG_ON(!new_extent
);
6528 ref
= btrfs_lookup_leaf_ref(root
, leaf
->start
);
6532 nritems
= btrfs_header_nritems(leaf
);
6533 for (i
= 0; i
< nritems
; i
++) {
6534 btrfs_item_key_to_cpu(leaf
, &key
, i
);
6535 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
6537 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
6538 if (btrfs_file_extent_type(leaf
, fi
) ==
6539 BTRFS_FILE_EXTENT_INLINE
)
6541 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6542 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6547 if (bytenr
>= group
->key
.objectid
+ group
->key
.offset
||
6548 bytenr
+ num_bytes
<= group
->key
.objectid
)
6551 extent_key
.objectid
= bytenr
;
6552 extent_key
.offset
= num_bytes
;
6553 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6555 ret
= get_new_locations(reloc_inode
, &extent_key
,
6556 group
->key
.objectid
, 1,
6557 &new_extent
, &nr_extent
);
6562 BUG_ON(ref
->extents
[ext_index
].bytenr
!= bytenr
);
6563 BUG_ON(ref
->extents
[ext_index
].num_bytes
!= num_bytes
);
6564 ref
->extents
[ext_index
].bytenr
= new_extent
->disk_bytenr
;
6565 ref
->extents
[ext_index
].num_bytes
= new_extent
->disk_num_bytes
;
6567 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6568 new_extent
->disk_bytenr
);
6569 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6570 new_extent
->disk_num_bytes
);
6571 btrfs_mark_buffer_dirty(leaf
);
6573 ret
= btrfs_inc_extent_ref(trans
, root
,
6574 new_extent
->disk_bytenr
,
6575 new_extent
->disk_num_bytes
,
6577 root
->root_key
.objectid
,
6578 trans
->transid
, key
.objectid
);
6581 ret
= btrfs_free_extent(trans
, root
,
6582 bytenr
, num_bytes
, leaf
->start
,
6583 btrfs_header_owner(leaf
),
6584 btrfs_header_generation(leaf
),
6590 BUG_ON(ext_index
+ 1 != ref
->nritems
);
6591 btrfs_free_leaf_ref(root
, ref
);
6595 int btrfs_free_reloc_root(struct btrfs_trans_handle
*trans
,
6596 struct btrfs_root
*root
)
6598 struct btrfs_root
*reloc_root
;
6601 if (root
->reloc_root
) {
6602 reloc_root
= root
->reloc_root
;
6603 root
->reloc_root
= NULL
;
6604 list_add(&reloc_root
->dead_list
,
6605 &root
->fs_info
->dead_reloc_roots
);
6607 btrfs_set_root_bytenr(&reloc_root
->root_item
,
6608 reloc_root
->node
->start
);
6609 btrfs_set_root_level(&root
->root_item
,
6610 btrfs_header_level(reloc_root
->node
));
6611 memset(&reloc_root
->root_item
.drop_progress
, 0,
6612 sizeof(struct btrfs_disk_key
));
6613 reloc_root
->root_item
.drop_level
= 0;
6615 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
6616 &reloc_root
->root_key
,
6617 &reloc_root
->root_item
);
6623 int btrfs_drop_dead_reloc_roots(struct btrfs_root
*root
)
6625 struct btrfs_trans_handle
*trans
;
6626 struct btrfs_root
*reloc_root
;
6627 struct btrfs_root
*prev_root
= NULL
;
6628 struct list_head dead_roots
;
6632 INIT_LIST_HEAD(&dead_roots
);
6633 list_splice_init(&root
->fs_info
->dead_reloc_roots
, &dead_roots
);
6635 while (!list_empty(&dead_roots
)) {
6636 reloc_root
= list_entry(dead_roots
.prev
,
6637 struct btrfs_root
, dead_list
);
6638 list_del_init(&reloc_root
->dead_list
);
6640 BUG_ON(reloc_root
->commit_root
!= NULL
);
6642 trans
= btrfs_join_transaction(root
, 1);
6645 mutex_lock(&root
->fs_info
->drop_mutex
);
6646 ret
= btrfs_drop_snapshot(trans
, reloc_root
);
6649 mutex_unlock(&root
->fs_info
->drop_mutex
);
6651 nr
= trans
->blocks_used
;
6652 ret
= btrfs_end_transaction(trans
, root
);
6654 btrfs_btree_balance_dirty(root
, nr
);
6657 free_extent_buffer(reloc_root
->node
);
6659 ret
= btrfs_del_root(trans
, root
->fs_info
->tree_root
,
6660 &reloc_root
->root_key
);
6662 mutex_unlock(&root
->fs_info
->drop_mutex
);
6664 nr
= trans
->blocks_used
;
6665 ret
= btrfs_end_transaction(trans
, root
);
6667 btrfs_btree_balance_dirty(root
, nr
);
6670 prev_root
= reloc_root
;
6673 btrfs_remove_leaf_refs(prev_root
, (u64
)-1, 0);
6679 int btrfs_add_dead_reloc_root(struct btrfs_root
*root
)
6681 list_add(&root
->dead_list
, &root
->fs_info
->dead_reloc_roots
);
6685 int btrfs_cleanup_reloc_trees(struct btrfs_root
*root
)
6687 struct btrfs_root
*reloc_root
;
6688 struct btrfs_trans_handle
*trans
;
6689 struct btrfs_key location
;
6693 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
6694 ret
= btrfs_find_dead_roots(root
, BTRFS_TREE_RELOC_OBJECTID
, NULL
);
6696 found
= !list_empty(&root
->fs_info
->dead_reloc_roots
);
6697 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
6700 trans
= btrfs_start_transaction(root
, 1);
6702 ret
= btrfs_commit_transaction(trans
, root
);
6706 location
.objectid
= BTRFS_DATA_RELOC_TREE_OBJECTID
;
6707 location
.offset
= (u64
)-1;
6708 location
.type
= BTRFS_ROOT_ITEM_KEY
;
6710 reloc_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
6711 BUG_ON(!reloc_root
);
6712 btrfs_orphan_cleanup(reloc_root
);
6716 static noinline
int init_reloc_tree(struct btrfs_trans_handle
*trans
,
6717 struct btrfs_root
*root
)
6719 struct btrfs_root
*reloc_root
;
6720 struct extent_buffer
*eb
;
6721 struct btrfs_root_item
*root_item
;
6722 struct btrfs_key root_key
;
6725 BUG_ON(!root
->ref_cows
);
6726 if (root
->reloc_root
)
6729 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
6732 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
,
6733 &eb
, BTRFS_TREE_RELOC_OBJECTID
);
6736 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
6737 root_key
.offset
= root
->root_key
.objectid
;
6738 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6740 memcpy(root_item
, &root
->root_item
, sizeof(root_item
));
6741 btrfs_set_root_refs(root_item
, 0);
6742 btrfs_set_root_bytenr(root_item
, eb
->start
);
6743 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
6744 btrfs_set_root_generation(root_item
, trans
->transid
);
6746 btrfs_tree_unlock(eb
);
6747 free_extent_buffer(eb
);
6749 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
,
6750 &root_key
, root_item
);
6754 reloc_root
= btrfs_read_fs_root_no_radix(root
->fs_info
->tree_root
,
6756 BUG_ON(!reloc_root
);
6757 reloc_root
->last_trans
= trans
->transid
;
6758 reloc_root
->commit_root
= NULL
;
6759 reloc_root
->ref_tree
= &root
->fs_info
->reloc_ref_tree
;
6761 root
->reloc_root
= reloc_root
;
6766 * Core function of space balance.
6768 * The idea is using reloc trees to relocate tree blocks in reference
6769 * counted roots. There is one reloc tree for each subvol, and all
6770 * reloc trees share same root key objectid. Reloc trees are snapshots
6771 * of the latest committed roots of subvols (root->commit_root).
6773 * To relocate a tree block referenced by a subvol, there are two steps.
6774 * COW the block through subvol's reloc tree, then update block pointer
6775 * in the subvol to point to the new block. Since all reloc trees share
6776 * same root key objectid, doing special handing for tree blocks owned
6777 * by them is easy. Once a tree block has been COWed in one reloc tree,
6778 * we can use the resulting new block directly when the same block is
6779 * required to COW again through other reloc trees. By this way, relocated
6780 * tree blocks are shared between reloc trees, so they are also shared
6783 static noinline
int relocate_one_path(struct btrfs_trans_handle
*trans
,
6784 struct btrfs_root
*root
,
6785 struct btrfs_path
*path
,
6786 struct btrfs_key
*first_key
,
6787 struct btrfs_ref_path
*ref_path
,
6788 struct btrfs_block_group_cache
*group
,
6789 struct inode
*reloc_inode
)
6791 struct btrfs_root
*reloc_root
;
6792 struct extent_buffer
*eb
= NULL
;
6793 struct btrfs_key
*keys
;
6797 int lowest_level
= 0;
6800 if (ref_path
->owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
)
6801 lowest_level
= ref_path
->owner_objectid
;
6803 if (!root
->ref_cows
) {
6804 path
->lowest_level
= lowest_level
;
6805 ret
= btrfs_search_slot(trans
, root
, first_key
, path
, 0, 1);
6807 path
->lowest_level
= 0;
6808 btrfs_release_path(root
, path
);
6812 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
6813 ret
= init_reloc_tree(trans
, root
);
6815 reloc_root
= root
->reloc_root
;
6817 shared_level
= ref_path
->shared_level
;
6818 ref_path
->shared_level
= BTRFS_MAX_LEVEL
- 1;
6820 keys
= ref_path
->node_keys
;
6821 nodes
= ref_path
->new_nodes
;
6822 memset(&keys
[shared_level
+ 1], 0,
6823 sizeof(*keys
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
6824 memset(&nodes
[shared_level
+ 1], 0,
6825 sizeof(*nodes
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
6827 if (nodes
[lowest_level
] == 0) {
6828 path
->lowest_level
= lowest_level
;
6829 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
6832 for (level
= lowest_level
; level
< BTRFS_MAX_LEVEL
; level
++) {
6833 eb
= path
->nodes
[level
];
6834 if (!eb
|| eb
== reloc_root
->node
)
6836 nodes
[level
] = eb
->start
;
6838 btrfs_item_key_to_cpu(eb
, &keys
[level
], 0);
6840 btrfs_node_key_to_cpu(eb
, &keys
[level
], 0);
6843 ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6844 eb
= path
->nodes
[0];
6845 ret
= replace_extents_in_leaf(trans
, reloc_root
, eb
,
6846 group
, reloc_inode
);
6849 btrfs_release_path(reloc_root
, path
);
6851 ret
= btrfs_merge_path(trans
, reloc_root
, keys
, nodes
,
6857 * replace tree blocks in the fs tree with tree blocks in
6860 ret
= btrfs_merge_path(trans
, root
, keys
, nodes
, lowest_level
);
6863 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6864 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
6867 extent_buffer_get(path
->nodes
[0]);
6868 eb
= path
->nodes
[0];
6869 btrfs_release_path(reloc_root
, path
);
6870 ret
= invalidate_extent_cache(reloc_root
, eb
, group
, root
);
6872 free_extent_buffer(eb
);
6875 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
6876 path
->lowest_level
= 0;
6880 static noinline
int relocate_tree_block(struct btrfs_trans_handle
*trans
,
6881 struct btrfs_root
*root
,
6882 struct btrfs_path
*path
,
6883 struct btrfs_key
*first_key
,
6884 struct btrfs_ref_path
*ref_path
)
6888 ret
= relocate_one_path(trans
, root
, path
, first_key
,
6889 ref_path
, NULL
, NULL
);
6895 static noinline
int del_extent_zero(struct btrfs_trans_handle
*trans
,
6896 struct btrfs_root
*extent_root
,
6897 struct btrfs_path
*path
,
6898 struct btrfs_key
*extent_key
)
6902 ret
= btrfs_search_slot(trans
, extent_root
, extent_key
, path
, -1, 1);
6905 ret
= btrfs_del_item(trans
, extent_root
, path
);
6907 btrfs_release_path(extent_root
, path
);
6911 static noinline
struct btrfs_root
*read_ref_root(struct btrfs_fs_info
*fs_info
,
6912 struct btrfs_ref_path
*ref_path
)
6914 struct btrfs_key root_key
;
6916 root_key
.objectid
= ref_path
->root_objectid
;
6917 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6918 if (is_cowonly_root(ref_path
->root_objectid
))
6919 root_key
.offset
= 0;
6921 root_key
.offset
= (u64
)-1;
6923 return btrfs_read_fs_root_no_name(fs_info
, &root_key
);
6926 static noinline
int relocate_one_extent(struct btrfs_root
*extent_root
,
6927 struct btrfs_path
*path
,
6928 struct btrfs_key
*extent_key
,
6929 struct btrfs_block_group_cache
*group
,
6930 struct inode
*reloc_inode
, int pass
)
6932 struct btrfs_trans_handle
*trans
;
6933 struct btrfs_root
*found_root
;
6934 struct btrfs_ref_path
*ref_path
= NULL
;
6935 struct disk_extent
*new_extents
= NULL
;
6940 struct btrfs_key first_key
;
6944 trans
= btrfs_start_transaction(extent_root
, 1);
6947 if (extent_key
->objectid
== 0) {
6948 ret
= del_extent_zero(trans
, extent_root
, path
, extent_key
);
6952 ref_path
= kmalloc(sizeof(*ref_path
), GFP_NOFS
);
6958 for (loops
= 0; ; loops
++) {
6960 ret
= btrfs_first_ref_path(trans
, extent_root
, ref_path
,
6961 extent_key
->objectid
);
6963 ret
= btrfs_next_ref_path(trans
, extent_root
, ref_path
);
6970 if (ref_path
->root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
6971 ref_path
->root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
6974 found_root
= read_ref_root(extent_root
->fs_info
, ref_path
);
6975 BUG_ON(!found_root
);
6977 * for reference counted tree, only process reference paths
6978 * rooted at the latest committed root.
6980 if (found_root
->ref_cows
&&
6981 ref_path
->root_generation
!= found_root
->root_key
.offset
)
6984 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6987 * copy data extents to new locations
6989 u64 group_start
= group
->key
.objectid
;
6990 ret
= relocate_data_extent(reloc_inode
,
6999 level
= ref_path
->owner_objectid
;
7002 if (prev_block
!= ref_path
->nodes
[level
]) {
7003 struct extent_buffer
*eb
;
7004 u64 block_start
= ref_path
->nodes
[level
];
7005 u64 block_size
= btrfs_level_size(found_root
, level
);
7007 eb
= read_tree_block(found_root
, block_start
,
7009 btrfs_tree_lock(eb
);
7010 BUG_ON(level
!= btrfs_header_level(eb
));
7013 btrfs_item_key_to_cpu(eb
, &first_key
, 0);
7015 btrfs_node_key_to_cpu(eb
, &first_key
, 0);
7017 btrfs_tree_unlock(eb
);
7018 free_extent_buffer(eb
);
7019 prev_block
= block_start
;
7022 mutex_lock(&extent_root
->fs_info
->trans_mutex
);
7023 btrfs_record_root_in_trans(found_root
);
7024 mutex_unlock(&extent_root
->fs_info
->trans_mutex
);
7025 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7027 * try to update data extent references while
7028 * keeping metadata shared between snapshots.
7031 ret
= relocate_one_path(trans
, found_root
,
7032 path
, &first_key
, ref_path
,
7033 group
, reloc_inode
);
7039 * use fallback method to process the remaining
7043 u64 group_start
= group
->key
.objectid
;
7044 new_extents
= kmalloc(sizeof(*new_extents
),
7047 ret
= get_new_locations(reloc_inode
,
7055 ret
= replace_one_extent(trans
, found_root
,
7057 &first_key
, ref_path
,
7058 new_extents
, nr_extents
);
7060 ret
= relocate_tree_block(trans
, found_root
, path
,
7061 &first_key
, ref_path
);
7068 btrfs_end_transaction(trans
, extent_root
);
7075 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
7078 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
7079 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
7081 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
7082 if (num_devices
== 1) {
7083 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7084 stripped
= flags
& ~stripped
;
7086 /* turn raid0 into single device chunks */
7087 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7090 /* turn mirroring into duplication */
7091 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7092 BTRFS_BLOCK_GROUP_RAID10
))
7093 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
7096 /* they already had raid on here, just return */
7097 if (flags
& stripped
)
7100 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7101 stripped
= flags
& ~stripped
;
7103 /* switch duplicated blocks with raid1 */
7104 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7105 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
7107 /* turn single device chunks into raid0 */
7108 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
7113 static int __alloc_chunk_for_shrink(struct btrfs_root
*root
,
7114 struct btrfs_block_group_cache
*shrink_block_group
,
7117 struct btrfs_trans_handle
*trans
;
7118 u64 new_alloc_flags
;
7121 spin_lock(&shrink_block_group
->lock
);
7122 if (btrfs_block_group_used(&shrink_block_group
->item
) +
7123 shrink_block_group
->reserved
> 0) {
7124 spin_unlock(&shrink_block_group
->lock
);
7126 trans
= btrfs_start_transaction(root
, 1);
7127 spin_lock(&shrink_block_group
->lock
);
7129 new_alloc_flags
= update_block_group_flags(root
,
7130 shrink_block_group
->flags
);
7131 if (new_alloc_flags
!= shrink_block_group
->flags
) {
7133 btrfs_block_group_used(&shrink_block_group
->item
);
7135 calc
= shrink_block_group
->key
.offset
;
7137 spin_unlock(&shrink_block_group
->lock
);
7139 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
7140 calc
+ 2 * 1024 * 1024, new_alloc_flags
, force
);
7142 btrfs_end_transaction(trans
, root
);
7144 spin_unlock(&shrink_block_group
->lock
);
7149 int btrfs_prepare_block_group_relocation(struct btrfs_root
*root
,
7150 struct btrfs_block_group_cache
*group
)
7153 __alloc_chunk_for_shrink(root
, group
, 1);
7154 set_block_group_readonly(group
);
7159 * checks to see if its even possible to relocate this block group.
7161 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7162 * ok to go ahead and try.
7164 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
7166 struct btrfs_block_group_cache
*block_group
;
7167 struct btrfs_space_info
*space_info
;
7168 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7169 struct btrfs_device
*device
;
7173 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
7175 /* odd, couldn't find the block group, leave it alone */
7179 /* no bytes used, we're good */
7180 if (!btrfs_block_group_used(&block_group
->item
))
7183 space_info
= block_group
->space_info
;
7184 spin_lock(&space_info
->lock
);
7186 full
= space_info
->full
;
7189 * if this is the last block group we have in this space, we can't
7190 * relocate it unless we're able to allocate a new chunk below.
7192 * Otherwise, we need to make sure we have room in the space to handle
7193 * all of the extents from this block group. If we can, we're good
7195 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
7196 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
7197 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
7198 btrfs_block_group_used(&block_group
->item
) <
7199 space_info
->total_bytes
)) {
7200 spin_unlock(&space_info
->lock
);
7203 spin_unlock(&space_info
->lock
);
7206 * ok we don't have enough space, but maybe we have free space on our
7207 * devices to allocate new chunks for relocation, so loop through our
7208 * alloc devices and guess if we have enough space. However, if we
7209 * were marked as full, then we know there aren't enough chunks, and we
7216 mutex_lock(&root
->fs_info
->chunk_mutex
);
7217 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
7218 u64 min_free
= btrfs_block_group_used(&block_group
->item
);
7219 u64 dev_offset
, max_avail
;
7222 * check to make sure we can actually find a chunk with enough
7223 * space to fit our block group in.
7225 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
7226 ret
= find_free_dev_extent(NULL
, device
, min_free
,
7227 &dev_offset
, &max_avail
);
7233 mutex_unlock(&root
->fs_info
->chunk_mutex
);
7235 btrfs_put_block_group(block_group
);
7239 static int find_first_block_group(struct btrfs_root
*root
,
7240 struct btrfs_path
*path
, struct btrfs_key
*key
)
7243 struct btrfs_key found_key
;
7244 struct extent_buffer
*leaf
;
7247 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
7252 slot
= path
->slots
[0];
7253 leaf
= path
->nodes
[0];
7254 if (slot
>= btrfs_header_nritems(leaf
)) {
7255 ret
= btrfs_next_leaf(root
, path
);
7262 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7264 if (found_key
.objectid
>= key
->objectid
&&
7265 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
7276 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
7278 struct btrfs_block_group_cache
*block_group
;
7279 struct btrfs_space_info
*space_info
;
7280 struct btrfs_caching_control
*caching_ctl
;
7283 down_write(&info
->extent_commit_sem
);
7284 while (!list_empty(&info
->caching_block_groups
)) {
7285 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
7286 struct btrfs_caching_control
, list
);
7287 list_del(&caching_ctl
->list
);
7288 put_caching_control(caching_ctl
);
7290 up_write(&info
->extent_commit_sem
);
7292 spin_lock(&info
->block_group_cache_lock
);
7293 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
7294 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
7296 rb_erase(&block_group
->cache_node
,
7297 &info
->block_group_cache_tree
);
7298 spin_unlock(&info
->block_group_cache_lock
);
7300 down_write(&block_group
->space_info
->groups_sem
);
7301 list_del(&block_group
->list
);
7302 up_write(&block_group
->space_info
->groups_sem
);
7304 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7305 wait_block_group_cache_done(block_group
);
7307 btrfs_remove_free_space_cache(block_group
);
7309 WARN_ON(atomic_read(&block_group
->count
) != 1);
7312 spin_lock(&info
->block_group_cache_lock
);
7314 spin_unlock(&info
->block_group_cache_lock
);
7316 /* now that all the block groups are freed, go through and
7317 * free all the space_info structs. This is only called during
7318 * the final stages of unmount, and so we know nobody is
7319 * using them. We call synchronize_rcu() once before we start,
7320 * just to be on the safe side.
7324 while(!list_empty(&info
->space_info
)) {
7325 space_info
= list_entry(info
->space_info
.next
,
7326 struct btrfs_space_info
,
7329 list_del(&space_info
->list
);
7335 int btrfs_read_block_groups(struct btrfs_root
*root
)
7337 struct btrfs_path
*path
;
7339 struct btrfs_block_group_cache
*cache
;
7340 struct btrfs_fs_info
*info
= root
->fs_info
;
7341 struct btrfs_space_info
*space_info
;
7342 struct btrfs_key key
;
7343 struct btrfs_key found_key
;
7344 struct extent_buffer
*leaf
;
7346 root
= info
->extent_root
;
7349 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7350 path
= btrfs_alloc_path();
7355 ret
= find_first_block_group(root
, path
, &key
);
7363 leaf
= path
->nodes
[0];
7364 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7365 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7371 atomic_set(&cache
->count
, 1);
7372 spin_lock_init(&cache
->lock
);
7373 spin_lock_init(&cache
->tree_lock
);
7374 cache
->fs_info
= info
;
7375 INIT_LIST_HEAD(&cache
->list
);
7376 INIT_LIST_HEAD(&cache
->cluster_list
);
7379 * we only want to have 32k of ram per block group for keeping
7380 * track of free space, and if we pass 1/2 of that we want to
7381 * start converting things over to using bitmaps
7383 cache
->extents_thresh
= ((1024 * 32) / 2) /
7384 sizeof(struct btrfs_free_space
);
7386 read_extent_buffer(leaf
, &cache
->item
,
7387 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7388 sizeof(cache
->item
));
7389 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7391 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7392 btrfs_release_path(root
, path
);
7393 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7394 cache
->sectorsize
= root
->sectorsize
;
7397 * check for two cases, either we are full, and therefore
7398 * don't need to bother with the caching work since we won't
7399 * find any space, or we are empty, and we can just add all
7400 * the space in and be done with it. This saves us _alot_ of
7401 * time, particularly in the full case.
7403 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7404 exclude_super_stripes(root
, cache
);
7405 cache
->last_byte_to_unpin
= (u64
)-1;
7406 cache
->cached
= BTRFS_CACHE_FINISHED
;
7407 free_excluded_extents(root
, cache
);
7408 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7409 exclude_super_stripes(root
, cache
);
7410 cache
->last_byte_to_unpin
= (u64
)-1;
7411 cache
->cached
= BTRFS_CACHE_FINISHED
;
7412 add_new_free_space(cache
, root
->fs_info
,
7414 found_key
.objectid
+
7416 free_excluded_extents(root
, cache
);
7419 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7420 btrfs_block_group_used(&cache
->item
),
7423 cache
->space_info
= space_info
;
7424 spin_lock(&cache
->space_info
->lock
);
7425 cache
->space_info
->bytes_super
+= cache
->bytes_super
;
7426 spin_unlock(&cache
->space_info
->lock
);
7428 down_write(&space_info
->groups_sem
);
7429 list_add_tail(&cache
->list
, &space_info
->block_groups
);
7430 up_write(&space_info
->groups_sem
);
7432 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7435 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7436 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7437 set_block_group_readonly(cache
);
7441 btrfs_free_path(path
);
7445 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7446 struct btrfs_root
*root
, u64 bytes_used
,
7447 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7451 struct btrfs_root
*extent_root
;
7452 struct btrfs_block_group_cache
*cache
;
7454 extent_root
= root
->fs_info
->extent_root
;
7456 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7458 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7462 cache
->key
.objectid
= chunk_offset
;
7463 cache
->key
.offset
= size
;
7464 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7465 cache
->sectorsize
= root
->sectorsize
;
7468 * we only want to have 32k of ram per block group for keeping track
7469 * of free space, and if we pass 1/2 of that we want to start
7470 * converting things over to using bitmaps
7472 cache
->extents_thresh
= ((1024 * 32) / 2) /
7473 sizeof(struct btrfs_free_space
);
7474 atomic_set(&cache
->count
, 1);
7475 spin_lock_init(&cache
->lock
);
7476 spin_lock_init(&cache
->tree_lock
);
7477 INIT_LIST_HEAD(&cache
->list
);
7478 INIT_LIST_HEAD(&cache
->cluster_list
);
7480 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7481 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7482 cache
->flags
= type
;
7483 btrfs_set_block_group_flags(&cache
->item
, type
);
7485 cache
->last_byte_to_unpin
= (u64
)-1;
7486 cache
->cached
= BTRFS_CACHE_FINISHED
;
7487 exclude_super_stripes(root
, cache
);
7489 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7490 chunk_offset
+ size
);
7492 free_excluded_extents(root
, cache
);
7494 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7495 &cache
->space_info
);
7498 spin_lock(&cache
->space_info
->lock
);
7499 cache
->space_info
->bytes_super
+= cache
->bytes_super
;
7500 spin_unlock(&cache
->space_info
->lock
);
7502 down_write(&cache
->space_info
->groups_sem
);
7503 list_add_tail(&cache
->list
, &cache
->space_info
->block_groups
);
7504 up_write(&cache
->space_info
->groups_sem
);
7506 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7509 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
7510 sizeof(cache
->item
));
7513 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7518 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7519 struct btrfs_root
*root
, u64 group_start
)
7521 struct btrfs_path
*path
;
7522 struct btrfs_block_group_cache
*block_group
;
7523 struct btrfs_free_cluster
*cluster
;
7524 struct btrfs_key key
;
7527 root
= root
->fs_info
->extent_root
;
7529 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7530 BUG_ON(!block_group
);
7531 BUG_ON(!block_group
->ro
);
7533 memcpy(&key
, &block_group
->key
, sizeof(key
));
7535 /* make sure this block group isn't part of an allocation cluster */
7536 cluster
= &root
->fs_info
->data_alloc_cluster
;
7537 spin_lock(&cluster
->refill_lock
);
7538 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7539 spin_unlock(&cluster
->refill_lock
);
7542 * make sure this block group isn't part of a metadata
7543 * allocation cluster
7545 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7546 spin_lock(&cluster
->refill_lock
);
7547 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7548 spin_unlock(&cluster
->refill_lock
);
7550 path
= btrfs_alloc_path();
7553 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7554 rb_erase(&block_group
->cache_node
,
7555 &root
->fs_info
->block_group_cache_tree
);
7556 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7558 down_write(&block_group
->space_info
->groups_sem
);
7560 * we must use list_del_init so people can check to see if they
7561 * are still on the list after taking the semaphore
7563 list_del_init(&block_group
->list
);
7564 up_write(&block_group
->space_info
->groups_sem
);
7566 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7567 wait_block_group_cache_done(block_group
);
7569 btrfs_remove_free_space_cache(block_group
);
7571 spin_lock(&block_group
->space_info
->lock
);
7572 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
7573 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
7574 spin_unlock(&block_group
->space_info
->lock
);
7576 btrfs_clear_space_info_full(root
->fs_info
);
7578 btrfs_put_block_group(block_group
);
7579 btrfs_put_block_group(block_group
);
7581 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
7587 ret
= btrfs_del_item(trans
, root
, path
);
7589 btrfs_free_path(path
);