mm-only debug patch...
[mmotm.git] / fs / dlm / lowcomms.c
blob240cef14fe58b84b95e9c89934e5c322bd896ca6
1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
11 *******************************************************************************
12 ******************************************************************************/
15 * lowcomms.c
17 * This is the "low-level" comms layer.
19 * It is responsible for sending/receiving messages
20 * from other nodes in the cluster.
22 * Cluster nodes are referred to by their nodeids. nodeids are
23 * simply 32 bit numbers to the locking module - if they need to
24 * be expanded for the cluster infrastructure then that is its
25 * responsibility. It is this layer's
26 * responsibility to resolve these into IP address or
27 * whatever it needs for inter-node communication.
29 * The comms level is two kernel threads that deal mainly with
30 * the receiving of messages from other nodes and passing them
31 * up to the mid-level comms layer (which understands the
32 * message format) for execution by the locking core, and
33 * a send thread which does all the setting up of connections
34 * to remote nodes and the sending of data. Threads are not allowed
35 * to send their own data because it may cause them to wait in times
36 * of high load. Also, this way, the sending thread can collect together
37 * messages bound for one node and send them in one block.
39 * lowcomms will choose to use either TCP or SCTP as its transport layer
40 * depending on the configuration variable 'protocol'. This should be set
41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
43 * for the DLM to function.
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 #include <net/ipv6.h>
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
62 #define NEEDED_RMEM (4*1024*1024)
63 #define CONN_HASH_SIZE 32
65 struct cbuf {
66 unsigned int base;
67 unsigned int len;
68 unsigned int mask;
71 static void cbuf_add(struct cbuf *cb, int n)
73 cb->len += n;
76 static int cbuf_data(struct cbuf *cb)
78 return ((cb->base + cb->len) & cb->mask);
81 static void cbuf_init(struct cbuf *cb, int size)
83 cb->base = cb->len = 0;
84 cb->mask = size-1;
87 static void cbuf_eat(struct cbuf *cb, int n)
89 cb->len -= n;
90 cb->base += n;
91 cb->base &= cb->mask;
94 static bool cbuf_empty(struct cbuf *cb)
96 return cb->len == 0;
99 struct connection {
100 struct socket *sock; /* NULL if not connected */
101 uint32_t nodeid; /* So we know who we are in the list */
102 struct mutex sock_mutex;
103 unsigned long flags;
104 #define CF_READ_PENDING 1
105 #define CF_WRITE_PENDING 2
106 #define CF_CONNECT_PENDING 3
107 #define CF_INIT_PENDING 4
108 #define CF_IS_OTHERCON 5
109 #define CF_CLOSE 6
110 struct list_head writequeue; /* List of outgoing writequeue_entries */
111 spinlock_t writequeue_lock;
112 int (*rx_action) (struct connection *); /* What to do when active */
113 void (*connect_action) (struct connection *); /* What to do to connect */
114 struct page *rx_page;
115 struct cbuf cb;
116 int retries;
117 #define MAX_CONNECT_RETRIES 3
118 int sctp_assoc;
119 struct hlist_node list;
120 struct connection *othercon;
121 struct work_struct rwork; /* Receive workqueue */
122 struct work_struct swork; /* Send workqueue */
124 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
126 /* An entry waiting to be sent */
127 struct writequeue_entry {
128 struct list_head list;
129 struct page *page;
130 int offset;
131 int len;
132 int end;
133 int users;
134 struct connection *con;
137 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
138 static int dlm_local_count;
140 /* Work queues */
141 static struct workqueue_struct *recv_workqueue;
142 static struct workqueue_struct *send_workqueue;
144 static struct hlist_head connection_hash[CONN_HASH_SIZE];
145 static DEFINE_MUTEX(connections_lock);
146 static struct kmem_cache *con_cache;
148 static void process_recv_sockets(struct work_struct *work);
149 static void process_send_sockets(struct work_struct *work);
152 /* This is deliberately very simple because most clusters have simple
153 sequential nodeids, so we should be able to go straight to a connection
154 struct in the array */
155 static inline int nodeid_hash(int nodeid)
157 return nodeid & (CONN_HASH_SIZE-1);
160 static struct connection *__find_con(int nodeid)
162 int r;
163 struct hlist_node *h;
164 struct connection *con;
166 r = nodeid_hash(nodeid);
168 hlist_for_each_entry(con, h, &connection_hash[r], list) {
169 if (con->nodeid == nodeid)
170 return con;
172 return NULL;
176 * If 'allocation' is zero then we don't attempt to create a new
177 * connection structure for this node.
179 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
181 struct connection *con = NULL;
182 int r;
184 con = __find_con(nodeid);
185 if (con || !alloc)
186 return con;
188 con = kmem_cache_zalloc(con_cache, alloc);
189 if (!con)
190 return NULL;
192 r = nodeid_hash(nodeid);
193 hlist_add_head(&con->list, &connection_hash[r]);
195 con->nodeid = nodeid;
196 mutex_init(&con->sock_mutex);
197 INIT_LIST_HEAD(&con->writequeue);
198 spin_lock_init(&con->writequeue_lock);
199 INIT_WORK(&con->swork, process_send_sockets);
200 INIT_WORK(&con->rwork, process_recv_sockets);
202 /* Setup action pointers for child sockets */
203 if (con->nodeid) {
204 struct connection *zerocon = __find_con(0);
206 con->connect_action = zerocon->connect_action;
207 if (!con->rx_action)
208 con->rx_action = zerocon->rx_action;
211 return con;
214 /* Loop round all connections */
215 static void foreach_conn(void (*conn_func)(struct connection *c))
217 int i;
218 struct hlist_node *h, *n;
219 struct connection *con;
221 for (i = 0; i < CONN_HASH_SIZE; i++) {
222 hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
223 conn_func(con);
228 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
230 struct connection *con;
232 mutex_lock(&connections_lock);
233 con = __nodeid2con(nodeid, allocation);
234 mutex_unlock(&connections_lock);
236 return con;
239 /* This is a bit drastic, but only called when things go wrong */
240 static struct connection *assoc2con(int assoc_id)
242 int i;
243 struct hlist_node *h;
244 struct connection *con;
246 mutex_lock(&connections_lock);
248 for (i = 0 ; i < CONN_HASH_SIZE; i++) {
249 hlist_for_each_entry(con, h, &connection_hash[i], list) {
250 if (con && con->sctp_assoc == assoc_id) {
251 mutex_unlock(&connections_lock);
252 return con;
256 mutex_unlock(&connections_lock);
257 return NULL;
260 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
262 struct sockaddr_storage addr;
263 int error;
265 if (!dlm_local_count)
266 return -1;
268 error = dlm_nodeid_to_addr(nodeid, &addr);
269 if (error)
270 return error;
272 if (dlm_local_addr[0]->ss_family == AF_INET) {
273 struct sockaddr_in *in4 = (struct sockaddr_in *) &addr;
274 struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
275 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
276 } else {
277 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &addr;
278 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
279 ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
282 return 0;
285 /* Data available on socket or listen socket received a connect */
286 static void lowcomms_data_ready(struct sock *sk, int count_unused)
288 struct connection *con = sock2con(sk);
289 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
290 queue_work(recv_workqueue, &con->rwork);
293 static void lowcomms_write_space(struct sock *sk)
295 struct connection *con = sock2con(sk);
297 if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
298 queue_work(send_workqueue, &con->swork);
301 static inline void lowcomms_connect_sock(struct connection *con)
303 if (test_bit(CF_CLOSE, &con->flags))
304 return;
305 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
306 queue_work(send_workqueue, &con->swork);
309 static void lowcomms_state_change(struct sock *sk)
311 if (sk->sk_state == TCP_ESTABLISHED)
312 lowcomms_write_space(sk);
315 int dlm_lowcomms_connect_node(int nodeid)
317 struct connection *con;
319 if (nodeid == dlm_our_nodeid())
320 return 0;
322 con = nodeid2con(nodeid, GFP_NOFS);
323 if (!con)
324 return -ENOMEM;
325 lowcomms_connect_sock(con);
326 return 0;
329 /* Make a socket active */
330 static int add_sock(struct socket *sock, struct connection *con)
332 con->sock = sock;
334 /* Install a data_ready callback */
335 con->sock->sk->sk_data_ready = lowcomms_data_ready;
336 con->sock->sk->sk_write_space = lowcomms_write_space;
337 con->sock->sk->sk_state_change = lowcomms_state_change;
338 con->sock->sk->sk_user_data = con;
339 con->sock->sk->sk_allocation = GFP_NOFS;
340 return 0;
343 /* Add the port number to an IPv6 or 4 sockaddr and return the address
344 length */
345 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
346 int *addr_len)
348 saddr->ss_family = dlm_local_addr[0]->ss_family;
349 if (saddr->ss_family == AF_INET) {
350 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
351 in4_addr->sin_port = cpu_to_be16(port);
352 *addr_len = sizeof(struct sockaddr_in);
353 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
354 } else {
355 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
356 in6_addr->sin6_port = cpu_to_be16(port);
357 *addr_len = sizeof(struct sockaddr_in6);
359 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
362 /* Close a remote connection and tidy up */
363 static void close_connection(struct connection *con, bool and_other)
365 mutex_lock(&con->sock_mutex);
367 if (con->sock) {
368 sock_release(con->sock);
369 con->sock = NULL;
371 if (con->othercon && and_other) {
372 /* Will only re-enter once. */
373 close_connection(con->othercon, false);
375 if (con->rx_page) {
376 __free_page(con->rx_page);
377 con->rx_page = NULL;
380 con->retries = 0;
381 mutex_unlock(&con->sock_mutex);
384 /* We only send shutdown messages to nodes that are not part of the cluster */
385 static void sctp_send_shutdown(sctp_assoc_t associd)
387 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
388 struct msghdr outmessage;
389 struct cmsghdr *cmsg;
390 struct sctp_sndrcvinfo *sinfo;
391 int ret;
392 struct connection *con;
394 con = nodeid2con(0,0);
395 BUG_ON(con == NULL);
397 outmessage.msg_name = NULL;
398 outmessage.msg_namelen = 0;
399 outmessage.msg_control = outcmsg;
400 outmessage.msg_controllen = sizeof(outcmsg);
401 outmessage.msg_flags = MSG_EOR;
403 cmsg = CMSG_FIRSTHDR(&outmessage);
404 cmsg->cmsg_level = IPPROTO_SCTP;
405 cmsg->cmsg_type = SCTP_SNDRCV;
406 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
407 outmessage.msg_controllen = cmsg->cmsg_len;
408 sinfo = CMSG_DATA(cmsg);
409 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
411 sinfo->sinfo_flags |= MSG_EOF;
412 sinfo->sinfo_assoc_id = associd;
414 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
416 if (ret != 0)
417 log_print("send EOF to node failed: %d", ret);
420 static void sctp_init_failed_foreach(struct connection *con)
422 con->sctp_assoc = 0;
423 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
424 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
425 queue_work(send_workqueue, &con->swork);
429 /* INIT failed but we don't know which node...
430 restart INIT on all pending nodes */
431 static void sctp_init_failed(void)
433 mutex_lock(&connections_lock);
435 foreach_conn(sctp_init_failed_foreach);
437 mutex_unlock(&connections_lock);
440 /* Something happened to an association */
441 static void process_sctp_notification(struct connection *con,
442 struct msghdr *msg, char *buf)
444 union sctp_notification *sn = (union sctp_notification *)buf;
446 if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
447 switch (sn->sn_assoc_change.sac_state) {
449 case SCTP_COMM_UP:
450 case SCTP_RESTART:
452 /* Check that the new node is in the lockspace */
453 struct sctp_prim prim;
454 int nodeid;
455 int prim_len, ret;
456 int addr_len;
457 struct connection *new_con;
458 struct file *file;
459 sctp_peeloff_arg_t parg;
460 int parglen = sizeof(parg);
463 * We get this before any data for an association.
464 * We verify that the node is in the cluster and
465 * then peel off a socket for it.
467 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
468 log_print("COMM_UP for invalid assoc ID %d",
469 (int)sn->sn_assoc_change.sac_assoc_id);
470 sctp_init_failed();
471 return;
473 memset(&prim, 0, sizeof(struct sctp_prim));
474 prim_len = sizeof(struct sctp_prim);
475 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
477 ret = kernel_getsockopt(con->sock,
478 IPPROTO_SCTP,
479 SCTP_PRIMARY_ADDR,
480 (char*)&prim,
481 &prim_len);
482 if (ret < 0) {
483 log_print("getsockopt/sctp_primary_addr on "
484 "new assoc %d failed : %d",
485 (int)sn->sn_assoc_change.sac_assoc_id,
486 ret);
488 /* Retry INIT later */
489 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
490 if (new_con)
491 clear_bit(CF_CONNECT_PENDING, &con->flags);
492 return;
494 make_sockaddr(&prim.ssp_addr, 0, &addr_len);
495 if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
496 int i;
497 unsigned char *b=(unsigned char *)&prim.ssp_addr;
498 log_print("reject connect from unknown addr");
499 for (i=0; i<sizeof(struct sockaddr_storage);i++)
500 printk("%02x ", b[i]);
501 printk("\n");
502 sctp_send_shutdown(prim.ssp_assoc_id);
503 return;
506 new_con = nodeid2con(nodeid, GFP_NOFS);
507 if (!new_con)
508 return;
510 /* Peel off a new sock */
511 parg.associd = sn->sn_assoc_change.sac_assoc_id;
512 ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
513 SCTP_SOCKOPT_PEELOFF,
514 (void *)&parg, &parglen);
515 if (ret) {
516 log_print("Can't peel off a socket for "
517 "connection %d to node %d: err=%d\n",
518 parg.associd, nodeid, ret);
520 file = fget(parg.sd);
521 new_con->sock = SOCKET_I(file->f_dentry->d_inode);
522 add_sock(new_con->sock, new_con);
523 fput(file);
524 put_unused_fd(parg.sd);
526 log_print("got new/restarted association %d nodeid %d",
527 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
529 /* Send any pending writes */
530 clear_bit(CF_CONNECT_PENDING, &new_con->flags);
531 clear_bit(CF_INIT_PENDING, &con->flags);
532 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
533 queue_work(send_workqueue, &new_con->swork);
535 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
536 queue_work(recv_workqueue, &new_con->rwork);
538 break;
540 case SCTP_COMM_LOST:
541 case SCTP_SHUTDOWN_COMP:
543 con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
544 if (con) {
545 con->sctp_assoc = 0;
548 break;
550 /* We don't know which INIT failed, so clear the PENDING flags
551 * on them all. if assoc_id is zero then it will then try
552 * again */
554 case SCTP_CANT_STR_ASSOC:
556 log_print("Can't start SCTP association - retrying");
557 sctp_init_failed();
559 break;
561 default:
562 log_print("unexpected SCTP assoc change id=%d state=%d",
563 (int)sn->sn_assoc_change.sac_assoc_id,
564 sn->sn_assoc_change.sac_state);
569 /* Data received from remote end */
570 static int receive_from_sock(struct connection *con)
572 int ret = 0;
573 struct msghdr msg = {};
574 struct kvec iov[2];
575 unsigned len;
576 int r;
577 int call_again_soon = 0;
578 int nvec;
579 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
581 mutex_lock(&con->sock_mutex);
583 if (con->sock == NULL) {
584 ret = -EAGAIN;
585 goto out_close;
588 if (con->rx_page == NULL) {
590 * This doesn't need to be atomic, but I think it should
591 * improve performance if it is.
593 con->rx_page = alloc_page(GFP_ATOMIC);
594 if (con->rx_page == NULL)
595 goto out_resched;
596 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
599 /* Only SCTP needs these really */
600 memset(&incmsg, 0, sizeof(incmsg));
601 msg.msg_control = incmsg;
602 msg.msg_controllen = sizeof(incmsg);
605 * iov[0] is the bit of the circular buffer between the current end
606 * point (cb.base + cb.len) and the end of the buffer.
608 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
609 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
610 iov[1].iov_len = 0;
611 nvec = 1;
614 * iov[1] is the bit of the circular buffer between the start of the
615 * buffer and the start of the currently used section (cb.base)
617 if (cbuf_data(&con->cb) >= con->cb.base) {
618 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
619 iov[1].iov_len = con->cb.base;
620 iov[1].iov_base = page_address(con->rx_page);
621 nvec = 2;
623 len = iov[0].iov_len + iov[1].iov_len;
625 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
626 MSG_DONTWAIT | MSG_NOSIGNAL);
627 if (ret <= 0)
628 goto out_close;
630 /* Process SCTP notifications */
631 if (msg.msg_flags & MSG_NOTIFICATION) {
632 msg.msg_control = incmsg;
633 msg.msg_controllen = sizeof(incmsg);
635 process_sctp_notification(con, &msg,
636 page_address(con->rx_page) + con->cb.base);
637 mutex_unlock(&con->sock_mutex);
638 return 0;
640 BUG_ON(con->nodeid == 0);
642 if (ret == len)
643 call_again_soon = 1;
644 cbuf_add(&con->cb, ret);
645 ret = dlm_process_incoming_buffer(con->nodeid,
646 page_address(con->rx_page),
647 con->cb.base, con->cb.len,
648 PAGE_CACHE_SIZE);
649 if (ret == -EBADMSG) {
650 log_print("lowcomms: addr=%p, base=%u, len=%u, "
651 "iov_len=%u, iov_base[0]=%p, read=%d",
652 page_address(con->rx_page), con->cb.base, con->cb.len,
653 len, iov[0].iov_base, r);
655 if (ret < 0)
656 goto out_close;
657 cbuf_eat(&con->cb, ret);
659 if (cbuf_empty(&con->cb) && !call_again_soon) {
660 __free_page(con->rx_page);
661 con->rx_page = NULL;
664 if (call_again_soon)
665 goto out_resched;
666 mutex_unlock(&con->sock_mutex);
667 return 0;
669 out_resched:
670 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
671 queue_work(recv_workqueue, &con->rwork);
672 mutex_unlock(&con->sock_mutex);
673 return -EAGAIN;
675 out_close:
676 mutex_unlock(&con->sock_mutex);
677 if (ret != -EAGAIN) {
678 close_connection(con, false);
679 /* Reconnect when there is something to send */
681 /* Don't return success if we really got EOF */
682 if (ret == 0)
683 ret = -EAGAIN;
685 return ret;
688 /* Listening socket is busy, accept a connection */
689 static int tcp_accept_from_sock(struct connection *con)
691 int result;
692 struct sockaddr_storage peeraddr;
693 struct socket *newsock;
694 int len;
695 int nodeid;
696 struct connection *newcon;
697 struct connection *addcon;
699 memset(&peeraddr, 0, sizeof(peeraddr));
700 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
701 IPPROTO_TCP, &newsock);
702 if (result < 0)
703 return -ENOMEM;
705 mutex_lock_nested(&con->sock_mutex, 0);
707 result = -ENOTCONN;
708 if (con->sock == NULL)
709 goto accept_err;
711 newsock->type = con->sock->type;
712 newsock->ops = con->sock->ops;
714 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
715 if (result < 0)
716 goto accept_err;
718 /* Get the connected socket's peer */
719 memset(&peeraddr, 0, sizeof(peeraddr));
720 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
721 &len, 2)) {
722 result = -ECONNABORTED;
723 goto accept_err;
726 /* Get the new node's NODEID */
727 make_sockaddr(&peeraddr, 0, &len);
728 if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
729 log_print("connect from non cluster node");
730 sock_release(newsock);
731 mutex_unlock(&con->sock_mutex);
732 return -1;
735 log_print("got connection from %d", nodeid);
737 /* Check to see if we already have a connection to this node. This
738 * could happen if the two nodes initiate a connection at roughly
739 * the same time and the connections cross on the wire.
740 * In this case we store the incoming one in "othercon"
742 newcon = nodeid2con(nodeid, GFP_NOFS);
743 if (!newcon) {
744 result = -ENOMEM;
745 goto accept_err;
747 mutex_lock_nested(&newcon->sock_mutex, 1);
748 if (newcon->sock) {
749 struct connection *othercon = newcon->othercon;
751 if (!othercon) {
752 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
753 if (!othercon) {
754 log_print("failed to allocate incoming socket");
755 mutex_unlock(&newcon->sock_mutex);
756 result = -ENOMEM;
757 goto accept_err;
759 othercon->nodeid = nodeid;
760 othercon->rx_action = receive_from_sock;
761 mutex_init(&othercon->sock_mutex);
762 INIT_WORK(&othercon->swork, process_send_sockets);
763 INIT_WORK(&othercon->rwork, process_recv_sockets);
764 set_bit(CF_IS_OTHERCON, &othercon->flags);
766 if (!othercon->sock) {
767 newcon->othercon = othercon;
768 othercon->sock = newsock;
769 newsock->sk->sk_user_data = othercon;
770 add_sock(newsock, othercon);
771 addcon = othercon;
773 else {
774 printk("Extra connection from node %d attempted\n", nodeid);
775 result = -EAGAIN;
776 mutex_unlock(&newcon->sock_mutex);
777 goto accept_err;
780 else {
781 newsock->sk->sk_user_data = newcon;
782 newcon->rx_action = receive_from_sock;
783 add_sock(newsock, newcon);
784 addcon = newcon;
787 mutex_unlock(&newcon->sock_mutex);
790 * Add it to the active queue in case we got data
791 * beween processing the accept adding the socket
792 * to the read_sockets list
794 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
795 queue_work(recv_workqueue, &addcon->rwork);
796 mutex_unlock(&con->sock_mutex);
798 return 0;
800 accept_err:
801 mutex_unlock(&con->sock_mutex);
802 sock_release(newsock);
804 if (result != -EAGAIN)
805 log_print("error accepting connection from node: %d", result);
806 return result;
809 static void free_entry(struct writequeue_entry *e)
811 __free_page(e->page);
812 kfree(e);
815 /* Initiate an SCTP association.
816 This is a special case of send_to_sock() in that we don't yet have a
817 peeled-off socket for this association, so we use the listening socket
818 and add the primary IP address of the remote node.
820 static void sctp_init_assoc(struct connection *con)
822 struct sockaddr_storage rem_addr;
823 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
824 struct msghdr outmessage;
825 struct cmsghdr *cmsg;
826 struct sctp_sndrcvinfo *sinfo;
827 struct connection *base_con;
828 struct writequeue_entry *e;
829 int len, offset;
830 int ret;
831 int addrlen;
832 struct kvec iov[1];
834 if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
835 return;
837 if (con->retries++ > MAX_CONNECT_RETRIES)
838 return;
840 log_print("Initiating association with node %d", con->nodeid);
842 if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
843 log_print("no address for nodeid %d", con->nodeid);
844 return;
846 base_con = nodeid2con(0, 0);
847 BUG_ON(base_con == NULL);
849 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
851 outmessage.msg_name = &rem_addr;
852 outmessage.msg_namelen = addrlen;
853 outmessage.msg_control = outcmsg;
854 outmessage.msg_controllen = sizeof(outcmsg);
855 outmessage.msg_flags = MSG_EOR;
857 spin_lock(&con->writequeue_lock);
858 e = list_entry(con->writequeue.next, struct writequeue_entry,
859 list);
861 BUG_ON((struct list_head *) e == &con->writequeue);
863 len = e->len;
864 offset = e->offset;
865 spin_unlock(&con->writequeue_lock);
867 /* Send the first block off the write queue */
868 iov[0].iov_base = page_address(e->page)+offset;
869 iov[0].iov_len = len;
871 cmsg = CMSG_FIRSTHDR(&outmessage);
872 cmsg->cmsg_level = IPPROTO_SCTP;
873 cmsg->cmsg_type = SCTP_SNDRCV;
874 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
875 sinfo = CMSG_DATA(cmsg);
876 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
877 sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
878 outmessage.msg_controllen = cmsg->cmsg_len;
880 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
881 if (ret < 0) {
882 log_print("Send first packet to node %d failed: %d",
883 con->nodeid, ret);
885 /* Try again later */
886 clear_bit(CF_CONNECT_PENDING, &con->flags);
887 clear_bit(CF_INIT_PENDING, &con->flags);
889 else {
890 spin_lock(&con->writequeue_lock);
891 e->offset += ret;
892 e->len -= ret;
894 if (e->len == 0 && e->users == 0) {
895 list_del(&e->list);
896 free_entry(e);
898 spin_unlock(&con->writequeue_lock);
902 /* Connect a new socket to its peer */
903 static void tcp_connect_to_sock(struct connection *con)
905 int result = -EHOSTUNREACH;
906 struct sockaddr_storage saddr, src_addr;
907 int addr_len;
908 struct socket *sock = NULL;
910 if (con->nodeid == 0) {
911 log_print("attempt to connect sock 0 foiled");
912 return;
915 mutex_lock(&con->sock_mutex);
916 if (con->retries++ > MAX_CONNECT_RETRIES)
917 goto out;
919 /* Some odd races can cause double-connects, ignore them */
920 if (con->sock) {
921 result = 0;
922 goto out;
925 /* Create a socket to communicate with */
926 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
927 IPPROTO_TCP, &sock);
928 if (result < 0)
929 goto out_err;
931 memset(&saddr, 0, sizeof(saddr));
932 if (dlm_nodeid_to_addr(con->nodeid, &saddr))
933 goto out_err;
935 sock->sk->sk_user_data = con;
936 con->rx_action = receive_from_sock;
937 con->connect_action = tcp_connect_to_sock;
938 add_sock(sock, con);
940 /* Bind to our cluster-known address connecting to avoid
941 routing problems */
942 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
943 make_sockaddr(&src_addr, 0, &addr_len);
944 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
945 addr_len);
946 if (result < 0) {
947 log_print("could not bind for connect: %d", result);
948 /* This *may* not indicate a critical error */
951 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
953 log_print("connecting to %d", con->nodeid);
954 result =
955 sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
956 O_NONBLOCK);
957 if (result == -EINPROGRESS)
958 result = 0;
959 if (result == 0)
960 goto out;
962 out_err:
963 if (con->sock) {
964 sock_release(con->sock);
965 con->sock = NULL;
966 } else if (sock) {
967 sock_release(sock);
970 * Some errors are fatal and this list might need adjusting. For other
971 * errors we try again until the max number of retries is reached.
973 if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
974 result != -ENETDOWN && result != -EINVAL
975 && result != -EPROTONOSUPPORT) {
976 lowcomms_connect_sock(con);
977 result = 0;
979 out:
980 mutex_unlock(&con->sock_mutex);
981 return;
984 static struct socket *tcp_create_listen_sock(struct connection *con,
985 struct sockaddr_storage *saddr)
987 struct socket *sock = NULL;
988 int result = 0;
989 int one = 1;
990 int addr_len;
992 if (dlm_local_addr[0]->ss_family == AF_INET)
993 addr_len = sizeof(struct sockaddr_in);
994 else
995 addr_len = sizeof(struct sockaddr_in6);
997 /* Create a socket to communicate with */
998 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
999 IPPROTO_TCP, &sock);
1000 if (result < 0) {
1001 log_print("Can't create listening comms socket");
1002 goto create_out;
1005 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1006 (char *)&one, sizeof(one));
1008 if (result < 0) {
1009 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1011 sock->sk->sk_user_data = con;
1012 con->rx_action = tcp_accept_from_sock;
1013 con->connect_action = tcp_connect_to_sock;
1014 con->sock = sock;
1016 /* Bind to our port */
1017 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1018 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1019 if (result < 0) {
1020 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1021 sock_release(sock);
1022 sock = NULL;
1023 con->sock = NULL;
1024 goto create_out;
1026 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1027 (char *)&one, sizeof(one));
1028 if (result < 0) {
1029 log_print("Set keepalive failed: %d", result);
1032 result = sock->ops->listen(sock, 5);
1033 if (result < 0) {
1034 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1035 sock_release(sock);
1036 sock = NULL;
1037 goto create_out;
1040 create_out:
1041 return sock;
1044 /* Get local addresses */
1045 static void init_local(void)
1047 struct sockaddr_storage sas, *addr;
1048 int i;
1050 dlm_local_count = 0;
1051 for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1052 if (dlm_our_addr(&sas, i))
1053 break;
1055 addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1056 if (!addr)
1057 break;
1058 memcpy(addr, &sas, sizeof(*addr));
1059 dlm_local_addr[dlm_local_count++] = addr;
1063 /* Bind to an IP address. SCTP allows multiple address so it can do
1064 multi-homing */
1065 static int add_sctp_bind_addr(struct connection *sctp_con,
1066 struct sockaddr_storage *addr,
1067 int addr_len, int num)
1069 int result = 0;
1071 if (num == 1)
1072 result = kernel_bind(sctp_con->sock,
1073 (struct sockaddr *) addr,
1074 addr_len);
1075 else
1076 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1077 SCTP_SOCKOPT_BINDX_ADD,
1078 (char *)addr, addr_len);
1080 if (result < 0)
1081 log_print("Can't bind to port %d addr number %d",
1082 dlm_config.ci_tcp_port, num);
1084 return result;
1087 /* Initialise SCTP socket and bind to all interfaces */
1088 static int sctp_listen_for_all(void)
1090 struct socket *sock = NULL;
1091 struct sockaddr_storage localaddr;
1092 struct sctp_event_subscribe subscribe;
1093 int result = -EINVAL, num = 1, i, addr_len;
1094 struct connection *con = nodeid2con(0, GFP_KERNEL);
1095 int bufsize = NEEDED_RMEM;
1097 if (!con)
1098 return -ENOMEM;
1100 log_print("Using SCTP for communications");
1102 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1103 IPPROTO_SCTP, &sock);
1104 if (result < 0) {
1105 log_print("Can't create comms socket, check SCTP is loaded");
1106 goto out;
1109 /* Listen for events */
1110 memset(&subscribe, 0, sizeof(subscribe));
1111 subscribe.sctp_data_io_event = 1;
1112 subscribe.sctp_association_event = 1;
1113 subscribe.sctp_send_failure_event = 1;
1114 subscribe.sctp_shutdown_event = 1;
1115 subscribe.sctp_partial_delivery_event = 1;
1117 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1118 (char *)&bufsize, sizeof(bufsize));
1119 if (result)
1120 log_print("Error increasing buffer space on socket %d", result);
1122 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1123 (char *)&subscribe, sizeof(subscribe));
1124 if (result < 0) {
1125 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1126 result);
1127 goto create_delsock;
1130 /* Init con struct */
1131 sock->sk->sk_user_data = con;
1132 con->sock = sock;
1133 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1134 con->rx_action = receive_from_sock;
1135 con->connect_action = sctp_init_assoc;
1137 /* Bind to all interfaces. */
1138 for (i = 0; i < dlm_local_count; i++) {
1139 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1140 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1142 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1143 if (result)
1144 goto create_delsock;
1145 ++num;
1148 result = sock->ops->listen(sock, 5);
1149 if (result < 0) {
1150 log_print("Can't set socket listening");
1151 goto create_delsock;
1154 return 0;
1156 create_delsock:
1157 sock_release(sock);
1158 con->sock = NULL;
1159 out:
1160 return result;
1163 static int tcp_listen_for_all(void)
1165 struct socket *sock = NULL;
1166 struct connection *con = nodeid2con(0, GFP_KERNEL);
1167 int result = -EINVAL;
1169 if (!con)
1170 return -ENOMEM;
1172 /* We don't support multi-homed hosts */
1173 if (dlm_local_addr[1] != NULL) {
1174 log_print("TCP protocol can't handle multi-homed hosts, "
1175 "try SCTP");
1176 return -EINVAL;
1179 log_print("Using TCP for communications");
1181 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1182 if (sock) {
1183 add_sock(sock, con);
1184 result = 0;
1186 else {
1187 result = -EADDRINUSE;
1190 return result;
1195 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1196 gfp_t allocation)
1198 struct writequeue_entry *entry;
1200 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1201 if (!entry)
1202 return NULL;
1204 entry->page = alloc_page(allocation);
1205 if (!entry->page) {
1206 kfree(entry);
1207 return NULL;
1210 entry->offset = 0;
1211 entry->len = 0;
1212 entry->end = 0;
1213 entry->users = 0;
1214 entry->con = con;
1216 return entry;
1219 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1221 struct connection *con;
1222 struct writequeue_entry *e;
1223 int offset = 0;
1224 int users = 0;
1226 con = nodeid2con(nodeid, allocation);
1227 if (!con)
1228 return NULL;
1230 spin_lock(&con->writequeue_lock);
1231 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1232 if ((&e->list == &con->writequeue) ||
1233 (PAGE_CACHE_SIZE - e->end < len)) {
1234 e = NULL;
1235 } else {
1236 offset = e->end;
1237 e->end += len;
1238 users = e->users++;
1240 spin_unlock(&con->writequeue_lock);
1242 if (e) {
1243 got_one:
1244 *ppc = page_address(e->page) + offset;
1245 return e;
1248 e = new_writequeue_entry(con, allocation);
1249 if (e) {
1250 spin_lock(&con->writequeue_lock);
1251 offset = e->end;
1252 e->end += len;
1253 users = e->users++;
1254 list_add_tail(&e->list, &con->writequeue);
1255 spin_unlock(&con->writequeue_lock);
1256 goto got_one;
1258 return NULL;
1261 void dlm_lowcomms_commit_buffer(void *mh)
1263 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1264 struct connection *con = e->con;
1265 int users;
1267 spin_lock(&con->writequeue_lock);
1268 users = --e->users;
1269 if (users)
1270 goto out;
1271 e->len = e->end - e->offset;
1272 spin_unlock(&con->writequeue_lock);
1274 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1275 queue_work(send_workqueue, &con->swork);
1277 return;
1279 out:
1280 spin_unlock(&con->writequeue_lock);
1281 return;
1284 /* Send a message */
1285 static void send_to_sock(struct connection *con)
1287 int ret = 0;
1288 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1289 struct writequeue_entry *e;
1290 int len, offset;
1292 mutex_lock(&con->sock_mutex);
1293 if (con->sock == NULL)
1294 goto out_connect;
1296 spin_lock(&con->writequeue_lock);
1297 for (;;) {
1298 e = list_entry(con->writequeue.next, struct writequeue_entry,
1299 list);
1300 if ((struct list_head *) e == &con->writequeue)
1301 break;
1303 len = e->len;
1304 offset = e->offset;
1305 BUG_ON(len == 0 && e->users == 0);
1306 spin_unlock(&con->writequeue_lock);
1308 ret = 0;
1309 if (len) {
1310 ret = kernel_sendpage(con->sock, e->page, offset, len,
1311 msg_flags);
1312 if (ret == -EAGAIN || ret == 0) {
1313 cond_resched();
1314 goto out;
1316 if (ret <= 0)
1317 goto send_error;
1319 /* Don't starve people filling buffers */
1320 cond_resched();
1322 spin_lock(&con->writequeue_lock);
1323 e->offset += ret;
1324 e->len -= ret;
1326 if (e->len == 0 && e->users == 0) {
1327 list_del(&e->list);
1328 free_entry(e);
1329 continue;
1332 spin_unlock(&con->writequeue_lock);
1333 out:
1334 mutex_unlock(&con->sock_mutex);
1335 return;
1337 send_error:
1338 mutex_unlock(&con->sock_mutex);
1339 close_connection(con, false);
1340 lowcomms_connect_sock(con);
1341 return;
1343 out_connect:
1344 mutex_unlock(&con->sock_mutex);
1345 if (!test_bit(CF_INIT_PENDING, &con->flags))
1346 lowcomms_connect_sock(con);
1347 return;
1350 static void clean_one_writequeue(struct connection *con)
1352 struct writequeue_entry *e, *safe;
1354 spin_lock(&con->writequeue_lock);
1355 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1356 list_del(&e->list);
1357 free_entry(e);
1359 spin_unlock(&con->writequeue_lock);
1362 /* Called from recovery when it knows that a node has
1363 left the cluster */
1364 int dlm_lowcomms_close(int nodeid)
1366 struct connection *con;
1368 log_print("closing connection to node %d", nodeid);
1369 con = nodeid2con(nodeid, 0);
1370 if (con) {
1371 clear_bit(CF_CONNECT_PENDING, &con->flags);
1372 clear_bit(CF_WRITE_PENDING, &con->flags);
1373 set_bit(CF_CLOSE, &con->flags);
1374 if (cancel_work_sync(&con->swork))
1375 log_print("canceled swork for node %d", nodeid);
1376 if (cancel_work_sync(&con->rwork))
1377 log_print("canceled rwork for node %d", nodeid);
1378 clean_one_writequeue(con);
1379 close_connection(con, true);
1381 return 0;
1384 /* Receive workqueue function */
1385 static void process_recv_sockets(struct work_struct *work)
1387 struct connection *con = container_of(work, struct connection, rwork);
1388 int err;
1390 clear_bit(CF_READ_PENDING, &con->flags);
1391 do {
1392 err = con->rx_action(con);
1393 } while (!err);
1396 /* Send workqueue function */
1397 static void process_send_sockets(struct work_struct *work)
1399 struct connection *con = container_of(work, struct connection, swork);
1401 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1402 con->connect_action(con);
1403 set_bit(CF_WRITE_PENDING, &con->flags);
1405 if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1406 send_to_sock(con);
1410 /* Discard all entries on the write queues */
1411 static void clean_writequeues(void)
1413 foreach_conn(clean_one_writequeue);
1416 static void work_stop(void)
1418 destroy_workqueue(recv_workqueue);
1419 destroy_workqueue(send_workqueue);
1422 static int work_start(void)
1424 int error;
1425 recv_workqueue = create_workqueue("dlm_recv");
1426 error = IS_ERR(recv_workqueue);
1427 if (error) {
1428 log_print("can't start dlm_recv %d", error);
1429 return error;
1432 send_workqueue = create_singlethread_workqueue("dlm_send");
1433 error = IS_ERR(send_workqueue);
1434 if (error) {
1435 log_print("can't start dlm_send %d", error);
1436 destroy_workqueue(recv_workqueue);
1437 return error;
1440 return 0;
1443 static void stop_conn(struct connection *con)
1445 con->flags |= 0x0F;
1446 if (con->sock && con->sock->sk)
1447 con->sock->sk->sk_user_data = NULL;
1450 static void free_conn(struct connection *con)
1452 close_connection(con, true);
1453 if (con->othercon)
1454 kmem_cache_free(con_cache, con->othercon);
1455 hlist_del(&con->list);
1456 kmem_cache_free(con_cache, con);
1459 void dlm_lowcomms_stop(void)
1461 /* Set all the flags to prevent any
1462 socket activity.
1464 mutex_lock(&connections_lock);
1465 foreach_conn(stop_conn);
1466 mutex_unlock(&connections_lock);
1468 work_stop();
1470 mutex_lock(&connections_lock);
1471 clean_writequeues();
1473 foreach_conn(free_conn);
1475 mutex_unlock(&connections_lock);
1476 kmem_cache_destroy(con_cache);
1479 int dlm_lowcomms_start(void)
1481 int error = -EINVAL;
1482 struct connection *con;
1483 int i;
1485 for (i = 0; i < CONN_HASH_SIZE; i++)
1486 INIT_HLIST_HEAD(&connection_hash[i]);
1488 init_local();
1489 if (!dlm_local_count) {
1490 error = -ENOTCONN;
1491 log_print("no local IP address has been set");
1492 goto out;
1495 error = -ENOMEM;
1496 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1497 __alignof__(struct connection), 0,
1498 NULL);
1499 if (!con_cache)
1500 goto out;
1502 /* Start listening */
1503 if (dlm_config.ci_protocol == 0)
1504 error = tcp_listen_for_all();
1505 else
1506 error = sctp_listen_for_all();
1507 if (error)
1508 goto fail_unlisten;
1510 error = work_start();
1511 if (error)
1512 goto fail_unlisten;
1514 return 0;
1516 fail_unlisten:
1517 con = nodeid2con(0,0);
1518 if (con) {
1519 close_connection(con, false);
1520 kmem_cache_free(con_cache, con);
1522 kmem_cache_destroy(con_cache);
1524 out:
1525 return error;