2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48 /* A. Checksumming of received packets by device.
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
72 * B. Checksumming on output.
74 * NONE: skb is checksummed by protocol or csum is not required.
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
91 * Any questions? No questions, good. --ANK
96 struct pipe_inode_info
;
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info
{
107 struct net_device
*physindev
;
108 struct net_device
*physoutdev
;
110 unsigned long data
[32 / sizeof(unsigned long)];
114 struct sk_buff_head
{
115 /* These two members must be first. */
116 struct sk_buff
*next
;
117 struct sk_buff
*prev
;
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
128 typedef struct skb_frag_struct skb_frag_t
;
130 struct skb_frag_struct
{
136 #define HAVE_HW_TIME_STAMP
139 * struct skb_shared_hwtstamps - hardware time stamps
140 * @hwtstamp: hardware time stamp transformed into duration
141 * since arbitrary point in time
142 * @syststamp: hwtstamp transformed to system time base
144 * Software time stamps generated by ktime_get_real() are stored in
145 * skb->tstamp. The relation between the different kinds of time
146 * stamps is as follows:
148 * syststamp and tstamp can be compared against each other in
149 * arbitrary combinations. The accuracy of a
150 * syststamp/tstamp/"syststamp from other device" comparison is
151 * limited by the accuracy of the transformation into system time
152 * base. This depends on the device driver and its underlying
155 * hwtstamps can only be compared against other hwtstamps from
158 * This structure is attached to packets as part of the
159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
161 struct skb_shared_hwtstamps
{
167 * struct skb_shared_tx - instructions for time stamping of outgoing packets
168 * @hardware: generate hardware time stamp
169 * @software: generate software time stamp
170 * @in_progress: device driver is going to provide
171 * hardware time stamp
172 * @flags: all shared_tx flags
174 * These flags are attached to packets as part of the
175 * &skb_shared_info. Use skb_tx() to get a pointer.
177 union skb_shared_tx
{
186 /* This data is invariant across clones and lives at
187 * the end of the header data, ie. at skb->end.
189 struct skb_shared_info
{
191 unsigned short nr_frags
;
192 unsigned short gso_size
;
193 #ifdef CONFIG_HAS_DMA
196 /* Warning: this field is not always filled in (UFO)! */
197 unsigned short gso_segs
;
198 unsigned short gso_type
;
200 union skb_shared_tx tx_flags
;
201 struct sk_buff
*frag_list
;
202 struct skb_shared_hwtstamps hwtstamps
;
203 skb_frag_t frags
[MAX_SKB_FRAGS
];
204 #ifdef CONFIG_HAS_DMA
205 dma_addr_t dma_maps
[MAX_SKB_FRAGS
];
207 /* Intermediate layers must ensure that destructor_arg
208 * remains valid until skb destructor */
209 void * destructor_arg
;
212 /* We divide dataref into two halves. The higher 16 bits hold references
213 * to the payload part of skb->data. The lower 16 bits hold references to
214 * the entire skb->data. A clone of a headerless skb holds the length of
215 * the header in skb->hdr_len.
217 * All users must obey the rule that the skb->data reference count must be
218 * greater than or equal to the payload reference count.
220 * Holding a reference to the payload part means that the user does not
221 * care about modifications to the header part of skb->data.
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
228 SKB_FCLONE_UNAVAILABLE
,
234 SKB_GSO_TCPV4
= 1 << 0,
235 SKB_GSO_UDP
= 1 << 1,
237 /* This indicates the skb is from an untrusted source. */
238 SKB_GSO_DODGY
= 1 << 2,
240 /* This indicates the tcp segment has CWR set. */
241 SKB_GSO_TCP_ECN
= 1 << 3,
243 SKB_GSO_TCPV6
= 1 << 4,
245 SKB_GSO_FCOE
= 1 << 5,
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t
;
255 typedef unsigned char *sk_buff_data_t
;
259 * struct sk_buff - socket buffer
260 * @next: Next buffer in list
261 * @prev: Previous buffer in list
262 * @sk: Socket we are owned by
263 * @tstamp: Time we arrived
264 * @dev: Device we arrived on/are leaving by
265 * @transport_header: Transport layer header
266 * @network_header: Network layer header
267 * @mac_header: Link layer header
268 * @_skb_dst: destination entry
269 * @sp: the security path, used for xfrm
270 * @cb: Control buffer. Free for use by every layer. Put private vars here
271 * @len: Length of actual data
272 * @data_len: Data length
273 * @mac_len: Length of link layer header
274 * @hdr_len: writable header length of cloned skb
275 * @csum: Checksum (must include start/offset pair)
276 * @csum_start: Offset from skb->head where checksumming should start
277 * @csum_offset: Offset from csum_start where checksum should be stored
278 * @local_df: allow local fragmentation
279 * @cloned: Head may be cloned (check refcnt to be sure)
280 * @nohdr: Payload reference only, must not modify header
281 * @pkt_type: Packet class
282 * @fclone: skbuff clone status
283 * @ip_summed: Driver fed us an IP checksum
284 * @priority: Packet queueing priority
285 * @users: User count - see {datagram,tcp}.c
286 * @protocol: Packet protocol from driver
287 * @truesize: Buffer size
288 * @head: Head of buffer
289 * @data: Data head pointer
290 * @tail: Tail pointer
292 * @destructor: Destruct function
293 * @mark: Generic packet mark
294 * @nfct: Associated connection, if any
295 * @ipvs_property: skbuff is owned by ipvs
296 * @peeked: this packet has been seen already, so stats have been
297 * done for it, don't do them again
298 * @nf_trace: netfilter packet trace flag
299 * @nfctinfo: Relationship of this skb to the connection
300 * @nfct_reasm: netfilter conntrack re-assembly pointer
301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302 * @iif: ifindex of device we arrived on
303 * @queue_mapping: Queue mapping for multiqueue devices
304 * @tc_index: Traffic control index
305 * @tc_verd: traffic control verdict
306 * @ndisc_nodetype: router type (from link layer)
307 * @dma_cookie: a cookie to one of several possible DMA operations
308 * done by skb DMA functions
309 * @secmark: security marking
310 * @vlan_tci: vlan tag control information
314 /* These two members must be first. */
315 struct sk_buff
*next
;
316 struct sk_buff
*prev
;
320 struct net_device
*dev
;
322 unsigned long _skb_dst
;
327 * This is the control buffer. It is free to use for every
328 * layer. Please put your private variables there. If you
329 * want to keep them across layers you have to do a skb_clone()
330 * first. This is owned by whoever has the skb queued ATM.
346 kmemcheck_bitfield_begin(flags1
);
357 kmemcheck_bitfield_end(flags1
);
360 void (*destructor
)(struct sk_buff
*skb
);
361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
362 struct nf_conntrack
*nfct
;
363 struct sk_buff
*nfct_reasm
;
365 #ifdef CONFIG_BRIDGE_NETFILTER
366 struct nf_bridge_info
*nf_bridge
;
371 #ifdef CONFIG_NET_SCHED
372 __u16 tc_index
; /* traffic control index */
373 #ifdef CONFIG_NET_CLS_ACT
374 __u16 tc_verd
; /* traffic control verdict */
378 kmemcheck_bitfield_begin(flags2
);
379 #ifdef CONFIG_IPV6_NDISC_NODETYPE
380 __u8 ndisc_nodetype
:2;
382 kmemcheck_bitfield_end(flags2
);
386 #ifdef CONFIG_NET_DMA
387 dma_cookie_t dma_cookie
;
389 #ifdef CONFIG_NETWORK_SECMARK
399 sk_buff_data_t transport_header
;
400 sk_buff_data_t network_header
;
401 sk_buff_data_t mac_header
;
402 /* These elements must be at the end, see alloc_skb() for details. */
407 unsigned int truesize
;
413 * Handling routines are only of interest to the kernel
415 #include <linux/slab.h>
417 #include <asm/system.h>
419 #ifdef CONFIG_HAS_DMA
420 #include <linux/dma-mapping.h>
421 extern int skb_dma_map(struct device
*dev
, struct sk_buff
*skb
,
422 enum dma_data_direction dir
);
423 extern void skb_dma_unmap(struct device
*dev
, struct sk_buff
*skb
,
424 enum dma_data_direction dir
);
427 static inline struct dst_entry
*skb_dst(const struct sk_buff
*skb
)
429 return (struct dst_entry
*)skb
->_skb_dst
;
432 static inline void skb_dst_set(struct sk_buff
*skb
, struct dst_entry
*dst
)
434 skb
->_skb_dst
= (unsigned long)dst
;
437 static inline struct rtable
*skb_rtable(const struct sk_buff
*skb
)
439 return (struct rtable
*)skb_dst(skb
);
442 extern void kfree_skb(struct sk_buff
*skb
);
443 extern void consume_skb(struct sk_buff
*skb
);
444 extern void __kfree_skb(struct sk_buff
*skb
);
445 extern struct sk_buff
*__alloc_skb(unsigned int size
,
446 gfp_t priority
, int fclone
, int node
);
447 static inline struct sk_buff
*alloc_skb(unsigned int size
,
450 return __alloc_skb(size
, priority
, 0, -1);
453 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
456 return __alloc_skb(size
, priority
, 1, -1);
459 extern int skb_recycle_check(struct sk_buff
*skb
, int skb_size
);
461 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
462 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
464 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
466 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
468 extern int pskb_expand_head(struct sk_buff
*skb
,
469 int nhead
, int ntail
,
471 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
472 unsigned int headroom
);
473 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
474 int newheadroom
, int newtailroom
,
476 extern int skb_to_sgvec(struct sk_buff
*skb
,
477 struct scatterlist
*sg
, int offset
,
479 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
480 struct sk_buff
**trailer
);
481 extern int skb_pad(struct sk_buff
*skb
, int pad
);
482 #define dev_kfree_skb(a) consume_skb(a)
483 #define dev_consume_skb(a) kfree_skb_clean(a)
484 extern void skb_over_panic(struct sk_buff
*skb
, int len
,
486 extern void skb_under_panic(struct sk_buff
*skb
, int len
,
489 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
490 int getfrag(void *from
, char *to
, int offset
,
491 int len
,int odd
, struct sk_buff
*skb
),
492 void *from
, int length
);
499 __u32 stepped_offset
;
500 struct sk_buff
*root_skb
;
501 struct sk_buff
*cur_skb
;
505 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
506 unsigned int from
, unsigned int to
,
507 struct skb_seq_state
*st
);
508 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
509 struct skb_seq_state
*st
);
510 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
512 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
513 unsigned int to
, struct ts_config
*config
,
514 struct ts_state
*state
);
516 #ifdef NET_SKBUFF_DATA_USES_OFFSET
517 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
519 return skb
->head
+ skb
->end
;
522 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
529 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
531 static inline struct skb_shared_hwtstamps
*skb_hwtstamps(struct sk_buff
*skb
)
533 return &skb_shinfo(skb
)->hwtstamps
;
536 static inline union skb_shared_tx
*skb_tx(struct sk_buff
*skb
)
538 return &skb_shinfo(skb
)->tx_flags
;
542 * skb_queue_empty - check if a queue is empty
545 * Returns true if the queue is empty, false otherwise.
547 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
549 return list
->next
== (struct sk_buff
*)list
;
553 * skb_queue_is_last - check if skb is the last entry in the queue
557 * Returns true if @skb is the last buffer on the list.
559 static inline bool skb_queue_is_last(const struct sk_buff_head
*list
,
560 const struct sk_buff
*skb
)
562 return (skb
->next
== (struct sk_buff
*) list
);
566 * skb_queue_is_first - check if skb is the first entry in the queue
570 * Returns true if @skb is the first buffer on the list.
572 static inline bool skb_queue_is_first(const struct sk_buff_head
*list
,
573 const struct sk_buff
*skb
)
575 return (skb
->prev
== (struct sk_buff
*) list
);
579 * skb_queue_next - return the next packet in the queue
581 * @skb: current buffer
583 * Return the next packet in @list after @skb. It is only valid to
584 * call this if skb_queue_is_last() evaluates to false.
586 static inline struct sk_buff
*skb_queue_next(const struct sk_buff_head
*list
,
587 const struct sk_buff
*skb
)
589 /* This BUG_ON may seem severe, but if we just return then we
590 * are going to dereference garbage.
592 BUG_ON(skb_queue_is_last(list
, skb
));
597 * skb_queue_prev - return the prev packet in the queue
599 * @skb: current buffer
601 * Return the prev packet in @list before @skb. It is only valid to
602 * call this if skb_queue_is_first() evaluates to false.
604 static inline struct sk_buff
*skb_queue_prev(const struct sk_buff_head
*list
,
605 const struct sk_buff
*skb
)
607 /* This BUG_ON may seem severe, but if we just return then we
608 * are going to dereference garbage.
610 BUG_ON(skb_queue_is_first(list
, skb
));
615 * skb_get - reference buffer
616 * @skb: buffer to reference
618 * Makes another reference to a socket buffer and returns a pointer
621 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
623 atomic_inc(&skb
->users
);
628 * If users == 1, we are the only owner and are can avoid redundant
633 * skb_cloned - is the buffer a clone
634 * @skb: buffer to check
636 * Returns true if the buffer was generated with skb_clone() and is
637 * one of multiple shared copies of the buffer. Cloned buffers are
638 * shared data so must not be written to under normal circumstances.
640 static inline int skb_cloned(const struct sk_buff
*skb
)
642 return skb
->cloned
&&
643 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
647 * skb_header_cloned - is the header a clone
648 * @skb: buffer to check
650 * Returns true if modifying the header part of the buffer requires
651 * the data to be copied.
653 static inline int skb_header_cloned(const struct sk_buff
*skb
)
660 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
661 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
666 * skb_header_release - release reference to header
667 * @skb: buffer to operate on
669 * Drop a reference to the header part of the buffer. This is done
670 * by acquiring a payload reference. You must not read from the header
671 * part of skb->data after this.
673 static inline void skb_header_release(struct sk_buff
*skb
)
677 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
681 * skb_shared - is the buffer shared
682 * @skb: buffer to check
684 * Returns true if more than one person has a reference to this
687 static inline int skb_shared(const struct sk_buff
*skb
)
689 return atomic_read(&skb
->users
) != 1;
693 * skb_share_check - check if buffer is shared and if so clone it
694 * @skb: buffer to check
695 * @pri: priority for memory allocation
697 * If the buffer is shared the buffer is cloned and the old copy
698 * drops a reference. A new clone with a single reference is returned.
699 * If the buffer is not shared the original buffer is returned. When
700 * being called from interrupt status or with spinlocks held pri must
703 * NULL is returned on a memory allocation failure.
705 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
708 might_sleep_if(pri
& __GFP_WAIT
);
709 if (skb_shared(skb
)) {
710 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
718 * Copy shared buffers into a new sk_buff. We effectively do COW on
719 * packets to handle cases where we have a local reader and forward
720 * and a couple of other messy ones. The normal one is tcpdumping
721 * a packet thats being forwarded.
725 * skb_unshare - make a copy of a shared buffer
726 * @skb: buffer to check
727 * @pri: priority for memory allocation
729 * If the socket buffer is a clone then this function creates a new
730 * copy of the data, drops a reference count on the old copy and returns
731 * the new copy with the reference count at 1. If the buffer is not a clone
732 * the original buffer is returned. When called with a spinlock held or
733 * from interrupt state @pri must be %GFP_ATOMIC
735 * %NULL is returned on a memory allocation failure.
737 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
740 might_sleep_if(pri
& __GFP_WAIT
);
741 if (skb_cloned(skb
)) {
742 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
743 kfree_skb(skb
); /* Free our shared copy */
751 * @list_: list to peek at
753 * Peek an &sk_buff. Unlike most other operations you _MUST_
754 * be careful with this one. A peek leaves the buffer on the
755 * list and someone else may run off with it. You must hold
756 * the appropriate locks or have a private queue to do this.
758 * Returns %NULL for an empty list or a pointer to the head element.
759 * The reference count is not incremented and the reference is therefore
760 * volatile. Use with caution.
762 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
764 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
765 if (list
== (struct sk_buff
*)list_
)
772 * @list_: list to peek at
774 * Peek an &sk_buff. Unlike most other operations you _MUST_
775 * be careful with this one. A peek leaves the buffer on the
776 * list and someone else may run off with it. You must hold
777 * the appropriate locks or have a private queue to do this.
779 * Returns %NULL for an empty list or a pointer to the tail element.
780 * The reference count is not incremented and the reference is therefore
781 * volatile. Use with caution.
783 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
785 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
786 if (list
== (struct sk_buff
*)list_
)
792 * skb_queue_len - get queue length
793 * @list_: list to measure
795 * Return the length of an &sk_buff queue.
797 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
803 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
804 * @list: queue to initialize
806 * This initializes only the list and queue length aspects of
807 * an sk_buff_head object. This allows to initialize the list
808 * aspects of an sk_buff_head without reinitializing things like
809 * the spinlock. It can also be used for on-stack sk_buff_head
810 * objects where the spinlock is known to not be used.
812 static inline void __skb_queue_head_init(struct sk_buff_head
*list
)
814 list
->prev
= list
->next
= (struct sk_buff
*)list
;
819 * This function creates a split out lock class for each invocation;
820 * this is needed for now since a whole lot of users of the skb-queue
821 * infrastructure in drivers have different locking usage (in hardirq)
822 * than the networking core (in softirq only). In the long run either the
823 * network layer or drivers should need annotation to consolidate the
824 * main types of usage into 3 classes.
826 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
828 spin_lock_init(&list
->lock
);
829 __skb_queue_head_init(list
);
832 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
833 struct lock_class_key
*class)
835 skb_queue_head_init(list
);
836 lockdep_set_class(&list
->lock
, class);
840 * Insert an sk_buff on a list.
842 * The "__skb_xxxx()" functions are the non-atomic ones that
843 * can only be called with interrupts disabled.
845 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
846 static inline void __skb_insert(struct sk_buff
*newsk
,
847 struct sk_buff
*prev
, struct sk_buff
*next
,
848 struct sk_buff_head
*list
)
852 next
->prev
= prev
->next
= newsk
;
856 static inline void __skb_queue_splice(const struct sk_buff_head
*list
,
857 struct sk_buff
*prev
,
858 struct sk_buff
*next
)
860 struct sk_buff
*first
= list
->next
;
861 struct sk_buff
*last
= list
->prev
;
871 * skb_queue_splice - join two skb lists, this is designed for stacks
872 * @list: the new list to add
873 * @head: the place to add it in the first list
875 static inline void skb_queue_splice(const struct sk_buff_head
*list
,
876 struct sk_buff_head
*head
)
878 if (!skb_queue_empty(list
)) {
879 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
880 head
->qlen
+= list
->qlen
;
885 * skb_queue_splice - join two skb lists and reinitialise the emptied list
886 * @list: the new list to add
887 * @head: the place to add it in the first list
889 * The list at @list is reinitialised
891 static inline void skb_queue_splice_init(struct sk_buff_head
*list
,
892 struct sk_buff_head
*head
)
894 if (!skb_queue_empty(list
)) {
895 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
896 head
->qlen
+= list
->qlen
;
897 __skb_queue_head_init(list
);
902 * skb_queue_splice_tail - join two skb lists, each list being a queue
903 * @list: the new list to add
904 * @head: the place to add it in the first list
906 static inline void skb_queue_splice_tail(const struct sk_buff_head
*list
,
907 struct sk_buff_head
*head
)
909 if (!skb_queue_empty(list
)) {
910 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
911 head
->qlen
+= list
->qlen
;
916 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
917 * @list: the new list to add
918 * @head: the place to add it in the first list
920 * Each of the lists is a queue.
921 * The list at @list is reinitialised
923 static inline void skb_queue_splice_tail_init(struct sk_buff_head
*list
,
924 struct sk_buff_head
*head
)
926 if (!skb_queue_empty(list
)) {
927 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
928 head
->qlen
+= list
->qlen
;
929 __skb_queue_head_init(list
);
934 * __skb_queue_after - queue a buffer at the list head
936 * @prev: place after this buffer
937 * @newsk: buffer to queue
939 * Queue a buffer int the middle of a list. This function takes no locks
940 * and you must therefore hold required locks before calling it.
942 * A buffer cannot be placed on two lists at the same time.
944 static inline void __skb_queue_after(struct sk_buff_head
*list
,
945 struct sk_buff
*prev
,
946 struct sk_buff
*newsk
)
948 __skb_insert(newsk
, prev
, prev
->next
, list
);
951 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
952 struct sk_buff_head
*list
);
954 static inline void __skb_queue_before(struct sk_buff_head
*list
,
955 struct sk_buff
*next
,
956 struct sk_buff
*newsk
)
958 __skb_insert(newsk
, next
->prev
, next
, list
);
962 * __skb_queue_head - queue a buffer at the list head
964 * @newsk: buffer to queue
966 * Queue a buffer at the start of a list. This function takes no locks
967 * and you must therefore hold required locks before calling it.
969 * A buffer cannot be placed on two lists at the same time.
971 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
972 static inline void __skb_queue_head(struct sk_buff_head
*list
,
973 struct sk_buff
*newsk
)
975 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
979 * __skb_queue_tail - queue a buffer at the list tail
981 * @newsk: buffer to queue
983 * Queue a buffer at the end of a list. This function takes no locks
984 * and you must therefore hold required locks before calling it.
986 * A buffer cannot be placed on two lists at the same time.
988 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
989 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
990 struct sk_buff
*newsk
)
992 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
996 * remove sk_buff from list. _Must_ be called atomically, and with
999 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
1000 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1002 struct sk_buff
*next
, *prev
;
1007 skb
->next
= skb
->prev
= NULL
;
1013 * __skb_dequeue - remove from the head of the queue
1014 * @list: list to dequeue from
1016 * Remove the head of the list. This function does not take any locks
1017 * so must be used with appropriate locks held only. The head item is
1018 * returned or %NULL if the list is empty.
1020 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
1021 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
1023 struct sk_buff
*skb
= skb_peek(list
);
1025 __skb_unlink(skb
, list
);
1030 * __skb_dequeue_tail - remove from the tail of the queue
1031 * @list: list to dequeue from
1033 * Remove the tail of the list. This function does not take any locks
1034 * so must be used with appropriate locks held only. The tail item is
1035 * returned or %NULL if the list is empty.
1037 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
1038 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
1040 struct sk_buff
*skb
= skb_peek_tail(list
);
1042 __skb_unlink(skb
, list
);
1047 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
1049 return skb
->data_len
;
1052 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
1054 return skb
->len
- skb
->data_len
;
1057 static inline int skb_pagelen(const struct sk_buff
*skb
)
1061 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
1062 len
+= skb_shinfo(skb
)->frags
[i
].size
;
1063 return len
+ skb_headlen(skb
);
1066 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1067 struct page
*page
, int off
, int size
)
1069 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1072 frag
->page_offset
= off
;
1074 skb_shinfo(skb
)->nr_frags
= i
+ 1;
1077 extern void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
,
1080 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1081 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb))
1082 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1084 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1085 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1087 return skb
->head
+ skb
->tail
;
1090 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1092 skb
->tail
= skb
->data
- skb
->head
;
1095 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1097 skb_reset_tail_pointer(skb
);
1098 skb
->tail
+= offset
;
1100 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1101 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1106 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1108 skb
->tail
= skb
->data
;
1111 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1113 skb
->tail
= skb
->data
+ offset
;
1116 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1119 * Add data to an sk_buff
1121 extern unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
);
1122 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
1124 unsigned char *tmp
= skb_tail_pointer(skb
);
1125 SKB_LINEAR_ASSERT(skb
);
1131 extern unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
);
1132 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
1139 extern unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
);
1140 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
1143 BUG_ON(skb
->len
< skb
->data_len
);
1144 return skb
->data
+= len
;
1147 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
1149 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1151 if (len
> skb_headlen(skb
) &&
1152 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
1155 return skb
->data
+= len
;
1158 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1160 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
1163 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
1165 if (likely(len
<= skb_headlen(skb
)))
1167 if (unlikely(len
> skb
->len
))
1169 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
1173 * skb_headroom - bytes at buffer head
1174 * @skb: buffer to check
1176 * Return the number of bytes of free space at the head of an &sk_buff.
1178 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
1180 return skb
->data
- skb
->head
;
1184 * skb_tailroom - bytes at buffer end
1185 * @skb: buffer to check
1187 * Return the number of bytes of free space at the tail of an sk_buff
1189 static inline int skb_tailroom(const struct sk_buff
*skb
)
1191 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1195 * skb_reserve - adjust headroom
1196 * @skb: buffer to alter
1197 * @len: bytes to move
1199 * Increase the headroom of an empty &sk_buff by reducing the tail
1200 * room. This is only allowed for an empty buffer.
1202 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1208 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1209 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1211 return skb
->head
+ skb
->transport_header
;
1214 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1216 skb
->transport_header
= skb
->data
- skb
->head
;
1219 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1222 skb_reset_transport_header(skb
);
1223 skb
->transport_header
+= offset
;
1226 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1228 return skb
->head
+ skb
->network_header
;
1231 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1233 skb
->network_header
= skb
->data
- skb
->head
;
1236 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1238 skb_reset_network_header(skb
);
1239 skb
->network_header
+= offset
;
1242 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1244 return skb
->head
+ skb
->mac_header
;
1247 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1249 return skb
->mac_header
!= ~0U;
1252 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1254 skb
->mac_header
= skb
->data
- skb
->head
;
1257 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1259 skb_reset_mac_header(skb
);
1260 skb
->mac_header
+= offset
;
1263 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1265 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1267 return skb
->transport_header
;
1270 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1272 skb
->transport_header
= skb
->data
;
1275 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1278 skb
->transport_header
= skb
->data
+ offset
;
1281 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1283 return skb
->network_header
;
1286 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1288 skb
->network_header
= skb
->data
;
1291 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1293 skb
->network_header
= skb
->data
+ offset
;
1296 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1298 return skb
->mac_header
;
1301 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1303 return skb
->mac_header
!= NULL
;
1306 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1308 skb
->mac_header
= skb
->data
;
1311 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1313 skb
->mac_header
= skb
->data
+ offset
;
1315 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1317 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1319 return skb_transport_header(skb
) - skb
->data
;
1322 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1324 return skb
->transport_header
- skb
->network_header
;
1327 static inline int skb_network_offset(const struct sk_buff
*skb
)
1329 return skb_network_header(skb
) - skb
->data
;
1333 * CPUs often take a performance hit when accessing unaligned memory
1334 * locations. The actual performance hit varies, it can be small if the
1335 * hardware handles it or large if we have to take an exception and fix it
1338 * Since an ethernet header is 14 bytes network drivers often end up with
1339 * the IP header at an unaligned offset. The IP header can be aligned by
1340 * shifting the start of the packet by 2 bytes. Drivers should do this
1343 * skb_reserve(skb, NET_IP_ALIGN);
1345 * The downside to this alignment of the IP header is that the DMA is now
1346 * unaligned. On some architectures the cost of an unaligned DMA is high
1347 * and this cost outweighs the gains made by aligning the IP header.
1349 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1352 #ifndef NET_IP_ALIGN
1353 #define NET_IP_ALIGN 2
1357 * The networking layer reserves some headroom in skb data (via
1358 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1359 * the header has to grow. In the default case, if the header has to grow
1360 * 32 bytes or less we avoid the reallocation.
1362 * Unfortunately this headroom changes the DMA alignment of the resulting
1363 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1364 * on some architectures. An architecture can override this value,
1365 * perhaps setting it to a cacheline in size (since that will maintain
1366 * cacheline alignment of the DMA). It must be a power of 2.
1368 * Various parts of the networking layer expect at least 32 bytes of
1369 * headroom, you should not reduce this.
1372 #define NET_SKB_PAD 32
1375 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1377 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1379 if (unlikely(skb
->data_len
)) {
1384 skb_set_tail_pointer(skb
, len
);
1387 extern void skb_trim(struct sk_buff
*skb
, unsigned int len
);
1389 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1392 return ___pskb_trim(skb
, len
);
1393 __skb_trim(skb
, len
);
1397 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1399 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1403 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1404 * @skb: buffer to alter
1407 * This is identical to pskb_trim except that the caller knows that
1408 * the skb is not cloned so we should never get an error due to out-
1411 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1413 int err
= pskb_trim(skb
, len
);
1418 * skb_orphan - orphan a buffer
1419 * @skb: buffer to orphan
1421 * If a buffer currently has an owner then we call the owner's
1422 * destructor function and make the @skb unowned. The buffer continues
1423 * to exist but is no longer charged to its former owner.
1425 static inline void skb_orphan(struct sk_buff
*skb
)
1427 if (skb
->destructor
)
1428 skb
->destructor(skb
);
1429 skb
->destructor
= NULL
;
1434 * __skb_queue_purge - empty a list
1435 * @list: list to empty
1437 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1438 * the list and one reference dropped. This function does not take the
1439 * list lock and the caller must hold the relevant locks to use it.
1441 extern void skb_queue_purge(struct sk_buff_head
*list
);
1442 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1444 struct sk_buff
*skb
;
1445 while ((skb
= __skb_dequeue(list
)) != NULL
)
1450 * __dev_alloc_skb - allocate an skbuff for receiving
1451 * @length: length to allocate
1452 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1454 * Allocate a new &sk_buff and assign it a usage count of one. The
1455 * buffer has unspecified headroom built in. Users should allocate
1456 * the headroom they think they need without accounting for the
1457 * built in space. The built in space is used for optimisations.
1459 * %NULL is returned if there is no free memory.
1461 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1464 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1466 skb_reserve(skb
, NET_SKB_PAD
);
1470 extern struct sk_buff
*dev_alloc_skb(unsigned int length
);
1472 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1473 unsigned int length
, gfp_t gfp_mask
);
1476 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1477 * @dev: network device to receive on
1478 * @length: length to allocate
1480 * Allocate a new &sk_buff and assign it a usage count of one. The
1481 * buffer has unspecified headroom built in. Users should allocate
1482 * the headroom they think they need without accounting for the
1483 * built in space. The built in space is used for optimisations.
1485 * %NULL is returned if there is no free memory. Although this function
1486 * allocates memory it can be called from an interrupt.
1488 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1489 unsigned int length
)
1491 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1494 extern struct page
*__netdev_alloc_page(struct net_device
*dev
, gfp_t gfp_mask
);
1497 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1498 * @dev: network device to receive on
1500 * Allocate a new page node local to the specified device.
1502 * %NULL is returned if there is no free memory.
1504 static inline struct page
*netdev_alloc_page(struct net_device
*dev
)
1506 return __netdev_alloc_page(dev
, GFP_ATOMIC
);
1509 static inline void netdev_free_page(struct net_device
*dev
, struct page
*page
)
1515 * skb_clone_writable - is the header of a clone writable
1516 * @skb: buffer to check
1517 * @len: length up to which to write
1519 * Returns true if modifying the header part of the cloned buffer
1520 * does not requires the data to be copied.
1522 static inline int skb_clone_writable(struct sk_buff
*skb
, unsigned int len
)
1524 return !skb_header_cloned(skb
) &&
1525 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1528 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1533 if (headroom
< NET_SKB_PAD
)
1534 headroom
= NET_SKB_PAD
;
1535 if (headroom
> skb_headroom(skb
))
1536 delta
= headroom
- skb_headroom(skb
);
1538 if (delta
|| cloned
)
1539 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1545 * skb_cow - copy header of skb when it is required
1546 * @skb: buffer to cow
1547 * @headroom: needed headroom
1549 * If the skb passed lacks sufficient headroom or its data part
1550 * is shared, data is reallocated. If reallocation fails, an error
1551 * is returned and original skb is not changed.
1553 * The result is skb with writable area skb->head...skb->tail
1554 * and at least @headroom of space at head.
1556 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1558 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1562 * skb_cow_head - skb_cow but only making the head writable
1563 * @skb: buffer to cow
1564 * @headroom: needed headroom
1566 * This function is identical to skb_cow except that we replace the
1567 * skb_cloned check by skb_header_cloned. It should be used when
1568 * you only need to push on some header and do not need to modify
1571 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1573 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1577 * skb_padto - pad an skbuff up to a minimal size
1578 * @skb: buffer to pad
1579 * @len: minimal length
1581 * Pads up a buffer to ensure the trailing bytes exist and are
1582 * blanked. If the buffer already contains sufficient data it
1583 * is untouched. Otherwise it is extended. Returns zero on
1584 * success. The skb is freed on error.
1587 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1589 unsigned int size
= skb
->len
;
1590 if (likely(size
>= len
))
1592 return skb_pad(skb
, len
- size
);
1595 static inline int skb_add_data(struct sk_buff
*skb
,
1596 char __user
*from
, int copy
)
1598 const int off
= skb
->len
;
1600 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1602 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1605 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1608 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1611 __skb_trim(skb
, off
);
1615 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1616 struct page
*page
, int off
)
1619 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1621 return page
== frag
->page
&&
1622 off
== frag
->page_offset
+ frag
->size
;
1627 static inline int __skb_linearize(struct sk_buff
*skb
)
1629 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1633 * skb_linearize - convert paged skb to linear one
1634 * @skb: buffer to linarize
1636 * If there is no free memory -ENOMEM is returned, otherwise zero
1637 * is returned and the old skb data released.
1639 static inline int skb_linearize(struct sk_buff
*skb
)
1641 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1645 * skb_linearize_cow - make sure skb is linear and writable
1646 * @skb: buffer to process
1648 * If there is no free memory -ENOMEM is returned, otherwise zero
1649 * is returned and the old skb data released.
1651 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1653 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1654 __skb_linearize(skb
) : 0;
1658 * skb_postpull_rcsum - update checksum for received skb after pull
1659 * @skb: buffer to update
1660 * @start: start of data before pull
1661 * @len: length of data pulled
1663 * After doing a pull on a received packet, you need to call this to
1664 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1665 * CHECKSUM_NONE so that it can be recomputed from scratch.
1668 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1669 const void *start
, unsigned int len
)
1671 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1672 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1675 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1678 * pskb_trim_rcsum - trim received skb and update checksum
1679 * @skb: buffer to trim
1682 * This is exactly the same as pskb_trim except that it ensures the
1683 * checksum of received packets are still valid after the operation.
1686 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1688 if (likely(len
>= skb
->len
))
1690 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1691 skb
->ip_summed
= CHECKSUM_NONE
;
1692 return __pskb_trim(skb
, len
);
1695 #define skb_queue_walk(queue, skb) \
1696 for (skb = (queue)->next; \
1697 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1700 #define skb_queue_walk_safe(queue, skb, tmp) \
1701 for (skb = (queue)->next, tmp = skb->next; \
1702 skb != (struct sk_buff *)(queue); \
1703 skb = tmp, tmp = skb->next)
1705 #define skb_queue_walk_from(queue, skb) \
1706 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1709 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1710 for (tmp = skb->next; \
1711 skb != (struct sk_buff *)(queue); \
1712 skb = tmp, tmp = skb->next)
1714 #define skb_queue_reverse_walk(queue, skb) \
1715 for (skb = (queue)->prev; \
1716 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1720 static inline bool skb_has_frags(const struct sk_buff
*skb
)
1722 return skb_shinfo(skb
)->frag_list
!= NULL
;
1725 static inline void skb_frag_list_init(struct sk_buff
*skb
)
1727 skb_shinfo(skb
)->frag_list
= NULL
;
1730 static inline void skb_frag_add_head(struct sk_buff
*skb
, struct sk_buff
*frag
)
1732 frag
->next
= skb_shinfo(skb
)->frag_list
;
1733 skb_shinfo(skb
)->frag_list
= frag
;
1736 #define skb_walk_frags(skb, iter) \
1737 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1739 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1740 int *peeked
, int *err
);
1741 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1742 int noblock
, int *err
);
1743 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
1744 struct poll_table_struct
*wait
);
1745 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
1746 int offset
, struct iovec
*to
,
1748 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
1751 extern int skb_copy_datagram_from_iovec(struct sk_buff
*skb
,
1753 const struct iovec
*from
,
1756 extern int skb_copy_datagram_const_iovec(const struct sk_buff
*from
,
1758 const struct iovec
*to
,
1761 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
1762 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
1763 unsigned int flags
);
1764 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1765 int len
, __wsum csum
);
1766 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
1768 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
1769 const void *from
, int len
);
1770 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
1771 int offset
, u8
*to
, int len
,
1773 extern int skb_splice_bits(struct sk_buff
*skb
,
1774 unsigned int offset
,
1775 struct pipe_inode_info
*pipe
,
1777 unsigned int flags
);
1778 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
1779 extern void skb_split(struct sk_buff
*skb
,
1780 struct sk_buff
*skb1
, const u32 len
);
1781 extern int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
,
1784 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
);
1786 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
1787 int len
, void *buffer
)
1789 int hlen
= skb_headlen(skb
);
1791 if (hlen
- offset
>= len
)
1792 return skb
->data
+ offset
;
1794 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
1800 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
1802 const unsigned int len
)
1804 memcpy(to
, skb
->data
, len
);
1807 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
1808 const int offset
, void *to
,
1809 const unsigned int len
)
1811 memcpy(to
, skb
->data
+ offset
, len
);
1814 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
1816 const unsigned int len
)
1818 memcpy(skb
->data
, from
, len
);
1821 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
1824 const unsigned int len
)
1826 memcpy(skb
->data
+ offset
, from
, len
);
1829 extern void skb_init(void);
1831 static inline ktime_t
skb_get_ktime(const struct sk_buff
*skb
)
1837 * skb_get_timestamp - get timestamp from a skb
1838 * @skb: skb to get stamp from
1839 * @stamp: pointer to struct timeval to store stamp in
1841 * Timestamps are stored in the skb as offsets to a base timestamp.
1842 * This function converts the offset back to a struct timeval and stores
1845 static inline void skb_get_timestamp(const struct sk_buff
*skb
,
1846 struct timeval
*stamp
)
1848 *stamp
= ktime_to_timeval(skb
->tstamp
);
1851 static inline void skb_get_timestampns(const struct sk_buff
*skb
,
1852 struct timespec
*stamp
)
1854 *stamp
= ktime_to_timespec(skb
->tstamp
);
1857 static inline void __net_timestamp(struct sk_buff
*skb
)
1859 skb
->tstamp
= ktime_get_real();
1862 static inline ktime_t
net_timedelta(ktime_t t
)
1864 return ktime_sub(ktime_get_real(), t
);
1867 static inline ktime_t
net_invalid_timestamp(void)
1869 return ktime_set(0, 0);
1873 * skb_tstamp_tx - queue clone of skb with send time stamps
1874 * @orig_skb: the original outgoing packet
1875 * @hwtstamps: hardware time stamps, may be NULL if not available
1877 * If the skb has a socket associated, then this function clones the
1878 * skb (thus sharing the actual data and optional structures), stores
1879 * the optional hardware time stamping information (if non NULL) or
1880 * generates a software time stamp (otherwise), then queues the clone
1881 * to the error queue of the socket. Errors are silently ignored.
1883 extern void skb_tstamp_tx(struct sk_buff
*orig_skb
,
1884 struct skb_shared_hwtstamps
*hwtstamps
);
1886 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
1887 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
1889 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
1891 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
1895 * skb_checksum_complete - Calculate checksum of an entire packet
1896 * @skb: packet to process
1898 * This function calculates the checksum over the entire packet plus
1899 * the value of skb->csum. The latter can be used to supply the
1900 * checksum of a pseudo header as used by TCP/UDP. It returns the
1903 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1904 * this function can be used to verify that checksum on received
1905 * packets. In that case the function should return zero if the
1906 * checksum is correct. In particular, this function will return zero
1907 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1908 * hardware has already verified the correctness of the checksum.
1910 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
1912 return skb_csum_unnecessary(skb
) ?
1913 0 : __skb_checksum_complete(skb
);
1916 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1917 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
1918 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
1920 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
1921 nf_conntrack_destroy(nfct
);
1923 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
1926 atomic_inc(&nfct
->use
);
1928 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
1931 atomic_inc(&skb
->users
);
1933 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
1939 #ifdef CONFIG_BRIDGE_NETFILTER
1940 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
1942 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
1945 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
1948 atomic_inc(&nf_bridge
->use
);
1950 #endif /* CONFIG_BRIDGE_NETFILTER */
1951 static inline void nf_reset(struct sk_buff
*skb
)
1953 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1954 nf_conntrack_put(skb
->nfct
);
1956 nf_conntrack_put_reasm(skb
->nfct_reasm
);
1957 skb
->nfct_reasm
= NULL
;
1959 #ifdef CONFIG_BRIDGE_NETFILTER
1960 nf_bridge_put(skb
->nf_bridge
);
1961 skb
->nf_bridge
= NULL
;
1965 /* Note: This doesn't put any conntrack and bridge info in dst. */
1966 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1968 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1969 dst
->nfct
= src
->nfct
;
1970 nf_conntrack_get(src
->nfct
);
1971 dst
->nfctinfo
= src
->nfctinfo
;
1972 dst
->nfct_reasm
= src
->nfct_reasm
;
1973 nf_conntrack_get_reasm(src
->nfct_reasm
);
1975 #ifdef CONFIG_BRIDGE_NETFILTER
1976 dst
->nf_bridge
= src
->nf_bridge
;
1977 nf_bridge_get(src
->nf_bridge
);
1981 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1983 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1984 nf_conntrack_put(dst
->nfct
);
1985 nf_conntrack_put_reasm(dst
->nfct_reasm
);
1987 #ifdef CONFIG_BRIDGE_NETFILTER
1988 nf_bridge_put(dst
->nf_bridge
);
1990 __nf_copy(dst
, src
);
1993 #ifdef CONFIG_NETWORK_SECMARK
1994 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1996 to
->secmark
= from
->secmark
;
1999 static inline void skb_init_secmark(struct sk_buff
*skb
)
2004 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
2007 static inline void skb_init_secmark(struct sk_buff
*skb
)
2011 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
2013 skb
->queue_mapping
= queue_mapping
;
2016 static inline u16
skb_get_queue_mapping(const struct sk_buff
*skb
)
2018 return skb
->queue_mapping
;
2021 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
2023 to
->queue_mapping
= from
->queue_mapping
;
2026 static inline void skb_record_rx_queue(struct sk_buff
*skb
, u16 rx_queue
)
2028 skb
->queue_mapping
= rx_queue
+ 1;
2031 static inline u16
skb_get_rx_queue(const struct sk_buff
*skb
)
2033 return skb
->queue_mapping
- 1;
2036 static inline bool skb_rx_queue_recorded(const struct sk_buff
*skb
)
2038 return (skb
->queue_mapping
!= 0);
2041 extern u16
skb_tx_hash(const struct net_device
*dev
,
2042 const struct sk_buff
*skb
);
2045 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2050 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2056 static inline int skb_is_gso(const struct sk_buff
*skb
)
2058 return skb_shinfo(skb
)->gso_size
;
2061 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
2063 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
2066 extern void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
2068 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
2070 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2071 * wanted then gso_type will be set. */
2072 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2073 if (shinfo
->gso_size
!= 0 && unlikely(shinfo
->gso_type
== 0)) {
2074 __skb_warn_lro_forwarding(skb
);
2080 static inline void skb_forward_csum(struct sk_buff
*skb
)
2082 /* Unfortunately we don't support this one. Any brave souls? */
2083 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2084 skb
->ip_summed
= CHECKSUM_NONE
;
2087 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
2088 #endif /* __KERNEL__ */
2089 #endif /* _LINUX_SKBUFF_H */