2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
59 * Array of node states.
61 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
62 [N_POSSIBLE
] = NODE_MASK_ALL
,
63 [N_ONLINE
] = { { [0] = 1UL } },
65 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
67 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
69 [N_CPU
] = { { [0] = 1UL } },
72 EXPORT_SYMBOL(node_states
);
74 unsigned long totalram_pages __read_mostly
;
75 unsigned long totalreserve_pages __read_mostly
;
76 int percpu_pagelist_fraction
;
77 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
79 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
80 int pageblock_order __read_mostly
;
83 static void __free_pages_ok(struct page
*page
, unsigned int order
);
86 * results with 256, 32 in the lowmem_reserve sysctl:
87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
88 * 1G machine -> (16M dma, 784M normal, 224M high)
89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
93 * TBD: should special case ZONE_DMA32 machines here - in those we normally
94 * don't need any ZONE_NORMAL reservation
96 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
97 #ifdef CONFIG_ZONE_DMA
100 #ifdef CONFIG_ZONE_DMA32
103 #ifdef CONFIG_HIGHMEM
109 EXPORT_SYMBOL(totalram_pages
);
111 static char * const zone_names
[MAX_NR_ZONES
] = {
112 #ifdef CONFIG_ZONE_DMA
115 #ifdef CONFIG_ZONE_DMA32
119 #ifdef CONFIG_HIGHMEM
125 int min_free_kbytes
= 1024;
127 static unsigned long __meminitdata nr_kernel_pages
;
128 static unsigned long __meminitdata nr_all_pages
;
129 static unsigned long __meminitdata dma_reserve
;
131 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
152 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
153 static int __meminitdata nr_nodemap_entries
;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
156 static unsigned long __initdata required_kernelcore
;
157 static unsigned long __initdata required_movablecore
;
158 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 EXPORT_SYMBOL(movable_zone
);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
167 int nr_online_nodes __read_mostly
= 1;
168 EXPORT_SYMBOL(nr_node_ids
);
169 EXPORT_SYMBOL(nr_online_nodes
);
172 int page_group_by_mobility_disabled __read_mostly
;
174 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
177 if (unlikely(page_group_by_mobility_disabled
))
178 migratetype
= MIGRATE_UNMOVABLE
;
180 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
181 PB_migrate
, PB_migrate_end
);
184 bool oom_killer_disabled __read_mostly
;
186 #ifdef CONFIG_DEBUG_VM
187 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
191 unsigned long pfn
= page_to_pfn(page
);
194 seq
= zone_span_seqbegin(zone
);
195 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
197 else if (pfn
< zone
->zone_start_pfn
)
199 } while (zone_span_seqretry(zone
, seq
));
204 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
206 if (!pfn_valid_within(page_to_pfn(page
)))
208 if (zone
!= page_zone(page
))
214 * Temporary debugging check for pages not lying within a given zone.
216 static int bad_range(struct zone
*zone
, struct page
*page
)
218 if (page_outside_zone_boundaries(zone
, page
))
220 if (!page_is_consistent(zone
, page
))
226 static inline int bad_range(struct zone
*zone
, struct page
*page
)
232 static void bad_page(struct page
*page
)
234 static unsigned long resume
;
235 static unsigned long nr_shown
;
236 static unsigned long nr_unshown
;
238 /* Don't complain about poisoned pages */
239 if (PageHWPoison(page
)) {
240 __ClearPageBuddy(page
);
245 * Allow a burst of 60 reports, then keep quiet for that minute;
246 * or allow a steady drip of one report per second.
248 if (nr_shown
== 60) {
249 if (time_before(jiffies
, resume
)) {
255 "BUG: Bad page state: %lu messages suppressed\n",
262 resume
= jiffies
+ 60 * HZ
;
264 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
265 current
->comm
, page_to_pfn(page
));
267 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
268 page
, (void *)page
->flags
, page_count(page
),
269 page_mapcount(page
), page
->mapping
, page
->index
);
273 /* Leave bad fields for debug, except PageBuddy could make trouble */
274 __ClearPageBuddy(page
);
275 add_taint(TAINT_BAD_PAGE
);
279 * Higher-order pages are called "compound pages". They are structured thusly:
281 * The first PAGE_SIZE page is called the "head page".
283 * The remaining PAGE_SIZE pages are called "tail pages".
285 * All pages have PG_compound set. All pages have their ->private pointing at
286 * the head page (even the head page has this).
288 * The first tail page's ->lru.next holds the address of the compound page's
289 * put_page() function. Its ->lru.prev holds the order of allocation.
290 * This usage means that zero-order pages may not be compound.
293 static void free_compound_page(struct page
*page
)
295 __free_pages_ok(page
, compound_order(page
));
298 void prep_compound_page(struct page
*page
, unsigned long order
)
301 int nr_pages
= 1 << order
;
303 set_compound_page_dtor(page
, free_compound_page
);
304 set_compound_order(page
, order
);
306 for (i
= 1; i
< nr_pages
; i
++) {
307 struct page
*p
= page
+ i
;
310 p
->first_page
= page
;
314 static int destroy_compound_page(struct page
*page
, unsigned long order
)
317 int nr_pages
= 1 << order
;
320 if (unlikely(compound_order(page
) != order
) ||
321 unlikely(!PageHead(page
))) {
326 __ClearPageHead(page
);
328 for (i
= 1; i
< nr_pages
; i
++) {
329 struct page
*p
= page
+ i
;
331 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
341 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
350 for (i
= 0; i
< (1 << order
); i
++)
351 clear_highpage(page
+ i
);
354 static inline void set_page_order(struct page
*page
, int order
)
356 set_page_private(page
, order
);
357 __SetPageBuddy(page
);
360 static inline void rmv_page_order(struct page
*page
)
362 __ClearPageBuddy(page
);
363 set_page_private(page
, 0);
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
373 * For example, if the starting buddy (buddy2) is #8 its order
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 static inline struct page
*
384 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
386 unsigned long buddy_idx
= page_idx
^ (1 << order
);
388 return page
+ (buddy_idx
- page_idx
);
391 static inline unsigned long
392 __find_combined_index(unsigned long page_idx
, unsigned int order
)
394 return (page_idx
& ~(1 << order
));
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 * For recording page's order, we use page_private(page).
410 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
413 if (!pfn_valid_within(page_to_pfn(buddy
)))
416 if (page_zone_id(page
) != page_zone_id(buddy
))
419 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
420 VM_BUG_ON(page_count(buddy
) != 0);
427 * Freeing function for a buddy system allocator.
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
450 static inline void __free_one_page(struct page
*page
,
451 struct zone
*zone
, unsigned int order
,
454 unsigned long page_idx
;
456 if (unlikely(PageCompound(page
)))
457 if (unlikely(destroy_compound_page(page
, order
)))
460 VM_BUG_ON(migratetype
== -1);
462 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
464 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
465 VM_BUG_ON(bad_range(zone
, page
));
467 while (order
< MAX_ORDER
-1) {
468 unsigned long combined_idx
;
471 buddy
= __page_find_buddy(page
, page_idx
, order
);
472 if (!page_is_buddy(page
, buddy
, order
))
475 /* Our buddy is free, merge with it and move up one order. */
476 list_del(&buddy
->lru
);
477 zone
->free_area
[order
].nr_free
--;
478 rmv_page_order(buddy
);
479 combined_idx
= __find_combined_index(page_idx
, order
);
480 page
= page
+ (combined_idx
- page_idx
);
481 page_idx
= combined_idx
;
484 set_page_order(page
, order
);
486 &zone
->free_area
[order
].free_list
[migratetype
]);
487 zone
->free_area
[order
].nr_free
++;
490 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
492 * free_page_mlock() -- clean up attempts to free and mlocked() page.
493 * Page should not be on lru, so no need to fix that up.
494 * free_pages_check() will verify...
496 static inline void free_page_mlock(struct page
*page
)
498 WARN_ONCE(1, KERN_WARNING
499 "Page flag mlocked set for process %s at pfn:%05lx\n"
500 "page:%p flags:%#lx\n",
501 current
->comm
, page_to_pfn(page
),
502 page
, page
->flags
|__PG_MLOCKED
);
503 __dec_zone_page_state(page
, NR_MLOCK
);
504 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
507 static void free_page_mlock(struct page
*page
) { }
510 static inline int free_pages_check(struct page
*page
)
512 if (unlikely(page_mapcount(page
) |
513 (page
->mapping
!= NULL
) |
514 (atomic_read(&page
->_count
) != 0) |
515 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
519 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
520 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
525 * Frees a number of pages from the PCP lists
526 * Assumes all pages on list are in same zone, and of same order.
527 * count is the number of pages to free.
529 * If the zone was previously in an "all pages pinned" state then look to
530 * see if this freeing clears that state.
532 * And clear the zone's pages_scanned counter, to hold off the "all pages are
533 * pinned" detection logic.
535 static void free_pcppages_bulk(struct zone
*zone
, int count
,
536 struct per_cpu_pages
*pcp
)
541 spin_lock(&zone
->lock
);
542 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
543 zone
->pages_scanned
= 0;
545 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
548 struct list_head
*list
;
551 * Remove pages from lists in a round-robin fashion. A
552 * batch_free count is maintained that is incremented when an
553 * empty list is encountered. This is so more pages are freed
554 * off fuller lists instead of spinning excessively around empty
559 if (++migratetype
== MIGRATE_PCPTYPES
)
561 list
= &pcp
->lists
[migratetype
];
562 } while (list_empty(list
));
565 page
= list_entry(list
->prev
, struct page
, lru
);
566 /* must delete as __free_one_page list manipulates */
567 list_del(&page
->lru
);
568 __free_one_page(page
, zone
, 0, migratetype
);
569 trace_mm_page_pcpu_drain(page
, 0, migratetype
);
570 } while (--count
&& --batch_free
&& !list_empty(list
));
572 spin_unlock(&zone
->lock
);
575 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
578 spin_lock(&zone
->lock
);
579 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
580 zone
->pages_scanned
= 0;
582 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
583 __free_one_page(page
, zone
, order
, migratetype
);
584 spin_unlock(&zone
->lock
);
587 static void __free_pages_ok(struct page
*page
, unsigned int order
)
592 int wasMlocked
= __TestClearPageMlocked(page
);
594 kmemcheck_free_shadow(page
, order
);
596 for (i
= 0 ; i
< (1 << order
) ; ++i
)
597 bad
+= free_pages_check(page
+ i
);
601 if (!PageHighMem(page
)) {
602 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
603 debug_check_no_obj_freed(page_address(page
),
606 arch_free_page(page
, order
);
607 kernel_map_pages(page
, 1 << order
, 0);
609 local_irq_save(flags
);
610 if (unlikely(wasMlocked
))
611 free_page_mlock(page
);
612 __count_vm_events(PGFREE
, 1 << order
);
613 free_one_page(page_zone(page
), page
, order
,
614 get_pageblock_migratetype(page
));
615 local_irq_restore(flags
);
619 * permit the bootmem allocator to evade page validation on high-order frees
621 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
624 __ClearPageReserved(page
);
625 set_page_count(page
, 0);
626 set_page_refcounted(page
);
632 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
633 struct page
*p
= &page
[loop
];
635 if (loop
+ 1 < BITS_PER_LONG
)
637 __ClearPageReserved(p
);
638 set_page_count(p
, 0);
641 set_page_refcounted(page
);
642 __free_pages(page
, order
);
648 * The order of subdivision here is critical for the IO subsystem.
649 * Please do not alter this order without good reasons and regression
650 * testing. Specifically, as large blocks of memory are subdivided,
651 * the order in which smaller blocks are delivered depends on the order
652 * they're subdivided in this function. This is the primary factor
653 * influencing the order in which pages are delivered to the IO
654 * subsystem according to empirical testing, and this is also justified
655 * by considering the behavior of a buddy system containing a single
656 * large block of memory acted on by a series of small allocations.
657 * This behavior is a critical factor in sglist merging's success.
661 static inline void expand(struct zone
*zone
, struct page
*page
,
662 int low
, int high
, struct free_area
*area
,
665 unsigned long size
= 1 << high
;
671 VM_BUG_ON(bad_range(zone
, &page
[size
]));
672 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
674 set_page_order(&page
[size
], high
);
679 * This page is about to be returned from the page allocator
681 static inline int check_new_page(struct page
*page
)
683 if (unlikely(page_mapcount(page
) |
684 (page
->mapping
!= NULL
) |
685 (atomic_read(&page
->_count
) != 0) |
686 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
693 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
697 for (i
= 0; i
< (1 << order
); i
++) {
698 struct page
*p
= page
+ i
;
699 if (unlikely(check_new_page(p
)))
703 set_page_private(page
, 0);
704 set_page_refcounted(page
);
706 arch_alloc_page(page
, order
);
707 kernel_map_pages(page
, 1 << order
, 1);
709 if (gfp_flags
& __GFP_ZERO
)
710 prep_zero_page(page
, order
, gfp_flags
);
712 if (order
&& (gfp_flags
& __GFP_COMP
))
713 prep_compound_page(page
, order
);
719 * Go through the free lists for the given migratetype and remove
720 * the smallest available page from the freelists
723 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
726 unsigned int current_order
;
727 struct free_area
* area
;
730 /* Find a page of the appropriate size in the preferred list */
731 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
732 area
= &(zone
->free_area
[current_order
]);
733 if (list_empty(&area
->free_list
[migratetype
]))
736 page
= list_entry(area
->free_list
[migratetype
].next
,
738 list_del(&page
->lru
);
739 rmv_page_order(page
);
741 expand(zone
, page
, order
, current_order
, area
, migratetype
);
750 * This array describes the order lists are fallen back to when
751 * the free lists for the desirable migrate type are depleted
753 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
754 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
755 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
756 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
757 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
761 * Move the free pages in a range to the free lists of the requested type.
762 * Note that start_page and end_pages are not aligned on a pageblock
763 * boundary. If alignment is required, use move_freepages_block()
765 static int move_freepages(struct zone
*zone
,
766 struct page
*start_page
, struct page
*end_page
,
773 #ifndef CONFIG_HOLES_IN_ZONE
775 * page_zone is not safe to call in this context when
776 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
777 * anyway as we check zone boundaries in move_freepages_block().
778 * Remove at a later date when no bug reports exist related to
779 * grouping pages by mobility
781 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
784 for (page
= start_page
; page
<= end_page
;) {
785 /* Make sure we are not inadvertently changing nodes */
786 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
788 if (!pfn_valid_within(page_to_pfn(page
))) {
793 if (!PageBuddy(page
)) {
798 order
= page_order(page
);
799 list_del(&page
->lru
);
801 &zone
->free_area
[order
].free_list
[migratetype
]);
803 pages_moved
+= 1 << order
;
809 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
812 unsigned long start_pfn
, end_pfn
;
813 struct page
*start_page
, *end_page
;
815 start_pfn
= page_to_pfn(page
);
816 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
817 start_page
= pfn_to_page(start_pfn
);
818 end_page
= start_page
+ pageblock_nr_pages
- 1;
819 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
821 /* Do not cross zone boundaries */
822 if (start_pfn
< zone
->zone_start_pfn
)
824 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
827 return move_freepages(zone
, start_page
, end_page
, migratetype
);
830 static void change_pageblock_range(struct page
*pageblock_page
,
831 int start_order
, int migratetype
)
833 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
835 while (nr_pageblocks
--) {
836 set_pageblock_migratetype(pageblock_page
, migratetype
);
837 pageblock_page
+= pageblock_nr_pages
;
841 /* Remove an element from the buddy allocator from the fallback list */
842 static inline struct page
*
843 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
845 struct free_area
* area
;
850 /* Find the largest possible block of pages in the other list */
851 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
853 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
854 migratetype
= fallbacks
[start_migratetype
][i
];
856 /* MIGRATE_RESERVE handled later if necessary */
857 if (migratetype
== MIGRATE_RESERVE
)
860 area
= &(zone
->free_area
[current_order
]);
861 if (list_empty(&area
->free_list
[migratetype
]))
864 page
= list_entry(area
->free_list
[migratetype
].next
,
869 * If breaking a large block of pages, move all free
870 * pages to the preferred allocation list. If falling
871 * back for a reclaimable kernel allocation, be more
872 * agressive about taking ownership of free pages
874 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
875 start_migratetype
== MIGRATE_RECLAIMABLE
||
876 page_group_by_mobility_disabled
) {
878 pages
= move_freepages_block(zone
, page
,
881 /* Claim the whole block if over half of it is free */
882 if (pages
>= (1 << (pageblock_order
-1)) ||
883 page_group_by_mobility_disabled
)
884 set_pageblock_migratetype(page
,
887 migratetype
= start_migratetype
;
890 /* Remove the page from the freelists */
891 list_del(&page
->lru
);
892 rmv_page_order(page
);
894 /* Take ownership for orders >= pageblock_order */
895 if (current_order
>= pageblock_order
)
896 change_pageblock_range(page
, current_order
,
899 expand(zone
, page
, order
, current_order
, area
, migratetype
);
901 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
902 start_migratetype
, migratetype
);
912 * Do the hard work of removing an element from the buddy allocator.
913 * Call me with the zone->lock already held.
915 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
921 page
= __rmqueue_smallest(zone
, order
, migratetype
);
923 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
924 page
= __rmqueue_fallback(zone
, order
, migratetype
);
927 * Use MIGRATE_RESERVE rather than fail an allocation. goto
928 * is used because __rmqueue_smallest is an inline function
929 * and we want just one call site
932 migratetype
= MIGRATE_RESERVE
;
937 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
942 * Obtain a specified number of elements from the buddy allocator, all under
943 * a single hold of the lock, for efficiency. Add them to the supplied list.
944 * Returns the number of new pages which were placed at *list.
946 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
947 unsigned long count
, struct list_head
*list
,
948 int migratetype
, int cold
)
952 spin_lock(&zone
->lock
);
953 for (i
= 0; i
< count
; ++i
) {
954 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
955 if (unlikely(page
== NULL
))
959 * Split buddy pages returned by expand() are received here
960 * in physical page order. The page is added to the callers and
961 * list and the list head then moves forward. From the callers
962 * perspective, the linked list is ordered by page number in
963 * some conditions. This is useful for IO devices that can
964 * merge IO requests if the physical pages are ordered
967 if (likely(cold
== 0))
968 list_add(&page
->lru
, list
);
970 list_add_tail(&page
->lru
, list
);
971 set_page_private(page
, migratetype
);
974 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
975 spin_unlock(&zone
->lock
);
981 * Called from the vmstat counter updater to drain pagesets of this
982 * currently executing processor on remote nodes after they have
985 * Note that this function must be called with the thread pinned to
986 * a single processor.
988 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
993 local_irq_save(flags
);
994 if (pcp
->count
>= pcp
->batch
)
995 to_drain
= pcp
->batch
;
997 to_drain
= pcp
->count
;
998 free_pcppages_bulk(zone
, to_drain
, pcp
);
999 pcp
->count
-= to_drain
;
1000 local_irq_restore(flags
);
1005 * Drain pages of the indicated processor.
1007 * The processor must either be the current processor and the
1008 * thread pinned to the current processor or a processor that
1011 static void drain_pages(unsigned int cpu
)
1013 unsigned long flags
;
1016 for_each_populated_zone(zone
) {
1017 struct per_cpu_pageset
*pset
;
1018 struct per_cpu_pages
*pcp
;
1020 pset
= zone_pcp(zone
, cpu
);
1023 local_irq_save(flags
);
1024 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1026 local_irq_restore(flags
);
1031 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1033 void drain_local_pages(void *arg
)
1035 drain_pages(smp_processor_id());
1039 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1041 void drain_all_pages(void)
1043 on_each_cpu(drain_local_pages
, NULL
, 1);
1046 #ifdef CONFIG_HIBERNATION
1048 void mark_free_pages(struct zone
*zone
)
1050 unsigned long pfn
, max_zone_pfn
;
1051 unsigned long flags
;
1053 struct list_head
*curr
;
1055 if (!zone
->spanned_pages
)
1058 spin_lock_irqsave(&zone
->lock
, flags
);
1060 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1061 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1062 if (pfn_valid(pfn
)) {
1063 struct page
*page
= pfn_to_page(pfn
);
1065 if (!swsusp_page_is_forbidden(page
))
1066 swsusp_unset_page_free(page
);
1069 for_each_migratetype_order(order
, t
) {
1070 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1073 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1074 for (i
= 0; i
< (1UL << order
); i
++)
1075 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1078 spin_unlock_irqrestore(&zone
->lock
, flags
);
1080 #endif /* CONFIG_PM */
1083 * Free a 0-order page
1085 static void free_hot_cold_page(struct page
*page
, int cold
)
1087 struct zone
*zone
= page_zone(page
);
1088 struct per_cpu_pages
*pcp
;
1089 unsigned long flags
;
1091 int wasMlocked
= __TestClearPageMlocked(page
);
1093 kmemcheck_free_shadow(page
, 0);
1096 page
->mapping
= NULL
;
1097 if (free_pages_check(page
))
1100 if (!PageHighMem(page
)) {
1101 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1102 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1104 arch_free_page(page
, 0);
1105 kernel_map_pages(page
, 1, 0);
1107 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1108 migratetype
= get_pageblock_migratetype(page
);
1109 set_page_private(page
, migratetype
);
1110 local_irq_save(flags
);
1111 if (unlikely(wasMlocked
))
1112 free_page_mlock(page
);
1113 __count_vm_event(PGFREE
);
1116 * We only track unmovable, reclaimable and movable on pcp lists.
1117 * Free ISOLATE pages back to the allocator because they are being
1118 * offlined but treat RESERVE as movable pages so we can get those
1119 * areas back if necessary. Otherwise, we may have to free
1120 * excessively into the page allocator
1122 if (migratetype
>= MIGRATE_PCPTYPES
) {
1123 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1124 free_one_page(zone
, page
, 0, migratetype
);
1127 migratetype
= MIGRATE_MOVABLE
;
1131 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1133 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1135 if (pcp
->count
>= pcp
->high
) {
1136 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1137 pcp
->count
-= pcp
->batch
;
1141 local_irq_restore(flags
);
1145 void free_hot_page(struct page
*page
)
1147 trace_mm_page_free_direct(page
, 0);
1148 free_hot_cold_page(page
, 0);
1152 * split_page takes a non-compound higher-order page, and splits it into
1153 * n (1<<order) sub-pages: page[0..n]
1154 * Each sub-page must be freed individually.
1156 * Note: this is probably too low level an operation for use in drivers.
1157 * Please consult with lkml before using this in your driver.
1159 void split_page(struct page
*page
, unsigned int order
)
1163 VM_BUG_ON(PageCompound(page
));
1164 VM_BUG_ON(!page_count(page
));
1166 #ifdef CONFIG_KMEMCHECK
1168 * Split shadow pages too, because free(page[0]) would
1169 * otherwise free the whole shadow.
1171 if (kmemcheck_page_is_tracked(page
))
1172 split_page(virt_to_page(page
[0].shadow
), order
);
1175 for (i
= 1; i
< (1 << order
); i
++)
1176 set_page_refcounted(page
+ i
);
1180 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1181 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1185 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1186 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1189 unsigned long flags
;
1191 int cold
= !!(gfp_flags
& __GFP_COLD
);
1196 if (likely(order
== 0)) {
1197 struct per_cpu_pages
*pcp
;
1198 struct list_head
*list
;
1200 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1201 list
= &pcp
->lists
[migratetype
];
1202 local_irq_save(flags
);
1203 if (list_empty(list
)) {
1204 pcp
->count
+= rmqueue_bulk(zone
, 0,
1207 if (unlikely(list_empty(list
)))
1212 page
= list_entry(list
->prev
, struct page
, lru
);
1214 page
= list_entry(list
->next
, struct page
, lru
);
1216 list_del(&page
->lru
);
1219 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1221 * __GFP_NOFAIL is not to be used in new code.
1223 * All __GFP_NOFAIL callers should be fixed so that they
1224 * properly detect and handle allocation failures.
1226 * We most definitely don't want callers attempting to
1227 * allocate greater than order-1 page units with
1230 WARN_ON_ONCE(order
> 1);
1232 spin_lock_irqsave(&zone
->lock
, flags
);
1233 page
= __rmqueue(zone
, order
, migratetype
);
1234 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1235 spin_unlock(&zone
->lock
);
1240 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1241 zone_statistics(preferred_zone
, zone
);
1242 local_irq_restore(flags
);
1245 VM_BUG_ON(bad_range(zone
, page
));
1246 if (prep_new_page(page
, order
, gfp_flags
))
1251 local_irq_restore(flags
);
1256 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1257 #define ALLOC_WMARK_MIN WMARK_MIN
1258 #define ALLOC_WMARK_LOW WMARK_LOW
1259 #define ALLOC_WMARK_HIGH WMARK_HIGH
1260 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1262 /* Mask to get the watermark bits */
1263 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1265 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1266 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1267 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1269 #ifdef CONFIG_FAIL_PAGE_ALLOC
1271 static struct fail_page_alloc_attr
{
1272 struct fault_attr attr
;
1274 u32 ignore_gfp_highmem
;
1275 u32 ignore_gfp_wait
;
1278 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1280 struct dentry
*ignore_gfp_highmem_file
;
1281 struct dentry
*ignore_gfp_wait_file
;
1282 struct dentry
*min_order_file
;
1284 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1286 } fail_page_alloc
= {
1287 .attr
= FAULT_ATTR_INITIALIZER
,
1288 .ignore_gfp_wait
= 1,
1289 .ignore_gfp_highmem
= 1,
1293 static int __init
setup_fail_page_alloc(char *str
)
1295 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1297 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1299 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1301 if (order
< fail_page_alloc
.min_order
)
1303 if (gfp_mask
& __GFP_NOFAIL
)
1305 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1307 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1310 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1313 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1315 static int __init
fail_page_alloc_debugfs(void)
1317 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1321 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1325 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1327 fail_page_alloc
.ignore_gfp_wait_file
=
1328 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1329 &fail_page_alloc
.ignore_gfp_wait
);
1331 fail_page_alloc
.ignore_gfp_highmem_file
=
1332 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1333 &fail_page_alloc
.ignore_gfp_highmem
);
1334 fail_page_alloc
.min_order_file
=
1335 debugfs_create_u32("min-order", mode
, dir
,
1336 &fail_page_alloc
.min_order
);
1338 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1339 !fail_page_alloc
.ignore_gfp_highmem_file
||
1340 !fail_page_alloc
.min_order_file
) {
1342 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1343 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1344 debugfs_remove(fail_page_alloc
.min_order_file
);
1345 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1351 late_initcall(fail_page_alloc_debugfs
);
1353 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1355 #else /* CONFIG_FAIL_PAGE_ALLOC */
1357 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1362 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1365 * Return 1 if free pages are above 'mark'. This takes into account the order
1366 * of the allocation.
1368 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1369 int classzone_idx
, int alloc_flags
)
1371 /* free_pages my go negative - that's OK */
1373 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1376 if (alloc_flags
& ALLOC_HIGH
)
1378 if (alloc_flags
& ALLOC_HARDER
)
1381 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1383 for (o
= 0; o
< order
; o
++) {
1384 /* At the next order, this order's pages become unavailable */
1385 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1387 /* Require fewer higher order pages to be free */
1390 if (free_pages
<= min
)
1398 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1399 * skip over zones that are not allowed by the cpuset, or that have
1400 * been recently (in last second) found to be nearly full. See further
1401 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1402 * that have to skip over a lot of full or unallowed zones.
1404 * If the zonelist cache is present in the passed in zonelist, then
1405 * returns a pointer to the allowed node mask (either the current
1406 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1408 * If the zonelist cache is not available for this zonelist, does
1409 * nothing and returns NULL.
1411 * If the fullzones BITMAP in the zonelist cache is stale (more than
1412 * a second since last zap'd) then we zap it out (clear its bits.)
1414 * We hold off even calling zlc_setup, until after we've checked the
1415 * first zone in the zonelist, on the theory that most allocations will
1416 * be satisfied from that first zone, so best to examine that zone as
1417 * quickly as we can.
1419 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1421 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1422 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1424 zlc
= zonelist
->zlcache_ptr
;
1428 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1429 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1430 zlc
->last_full_zap
= jiffies
;
1433 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1434 &cpuset_current_mems_allowed
:
1435 &node_states
[N_HIGH_MEMORY
];
1436 return allowednodes
;
1440 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1441 * if it is worth looking at further for free memory:
1442 * 1) Check that the zone isn't thought to be full (doesn't have its
1443 * bit set in the zonelist_cache fullzones BITMAP).
1444 * 2) Check that the zones node (obtained from the zonelist_cache
1445 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1446 * Return true (non-zero) if zone is worth looking at further, or
1447 * else return false (zero) if it is not.
1449 * This check -ignores- the distinction between various watermarks,
1450 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1451 * found to be full for any variation of these watermarks, it will
1452 * be considered full for up to one second by all requests, unless
1453 * we are so low on memory on all allowed nodes that we are forced
1454 * into the second scan of the zonelist.
1456 * In the second scan we ignore this zonelist cache and exactly
1457 * apply the watermarks to all zones, even it is slower to do so.
1458 * We are low on memory in the second scan, and should leave no stone
1459 * unturned looking for a free page.
1461 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1462 nodemask_t
*allowednodes
)
1464 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1465 int i
; /* index of *z in zonelist zones */
1466 int n
; /* node that zone *z is on */
1468 zlc
= zonelist
->zlcache_ptr
;
1472 i
= z
- zonelist
->_zonerefs
;
1475 /* This zone is worth trying if it is allowed but not full */
1476 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1480 * Given 'z' scanning a zonelist, set the corresponding bit in
1481 * zlc->fullzones, so that subsequent attempts to allocate a page
1482 * from that zone don't waste time re-examining it.
1484 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1486 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1487 int i
; /* index of *z in zonelist zones */
1489 zlc
= zonelist
->zlcache_ptr
;
1493 i
= z
- zonelist
->_zonerefs
;
1495 set_bit(i
, zlc
->fullzones
);
1498 #else /* CONFIG_NUMA */
1500 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1505 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1506 nodemask_t
*allowednodes
)
1511 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1514 #endif /* CONFIG_NUMA */
1517 * get_page_from_freelist goes through the zonelist trying to allocate
1520 static struct page
*
1521 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1522 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1523 struct zone
*preferred_zone
, int migratetype
)
1526 struct page
*page
= NULL
;
1529 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1530 int zlc_active
= 0; /* set if using zonelist_cache */
1531 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1533 classzone_idx
= zone_idx(preferred_zone
);
1536 * Scan zonelist, looking for a zone with enough free.
1537 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1539 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1540 high_zoneidx
, nodemask
) {
1541 if (NUMA_BUILD
&& zlc_active
&&
1542 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1544 if ((alloc_flags
& ALLOC_CPUSET
) &&
1545 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1548 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1549 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1553 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1554 if (zone_watermark_ok(zone
, order
, mark
,
1555 classzone_idx
, alloc_flags
))
1558 if (zone_reclaim_mode
== 0)
1559 goto this_zone_full
;
1561 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1563 case ZONE_RECLAIM_NOSCAN
:
1566 case ZONE_RECLAIM_FULL
:
1567 /* scanned but unreclaimable */
1568 goto this_zone_full
;
1570 /* did we reclaim enough */
1571 if (!zone_watermark_ok(zone
, order
, mark
,
1572 classzone_idx
, alloc_flags
))
1573 goto this_zone_full
;
1578 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1579 gfp_mask
, migratetype
);
1584 zlc_mark_zone_full(zonelist
, z
);
1586 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1588 * we do zlc_setup after the first zone is tried but only
1589 * if there are multiple nodes make it worthwhile
1591 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1597 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1598 /* Disable zlc cache for second zonelist scan */
1606 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1607 unsigned long pages_reclaimed
)
1609 /* Do not loop if specifically requested */
1610 if (gfp_mask
& __GFP_NORETRY
)
1614 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1615 * means __GFP_NOFAIL, but that may not be true in other
1618 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1622 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1623 * specified, then we retry until we no longer reclaim any pages
1624 * (above), or we've reclaimed an order of pages at least as
1625 * large as the allocation's order. In both cases, if the
1626 * allocation still fails, we stop retrying.
1628 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1632 * Don't let big-order allocations loop unless the caller
1633 * explicitly requests that.
1635 if (gfp_mask
& __GFP_NOFAIL
)
1641 static inline struct page
*
1642 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1643 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1644 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1649 /* Acquire the OOM killer lock for the zones in zonelist */
1650 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1651 schedule_timeout_uninterruptible(1);
1656 * Go through the zonelist yet one more time, keep very high watermark
1657 * here, this is only to catch a parallel oom killing, we must fail if
1658 * we're still under heavy pressure.
1660 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1661 order
, zonelist
, high_zoneidx
,
1662 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1663 preferred_zone
, migratetype
);
1667 /* The OOM killer will not help higher order allocs */
1668 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_NOFAIL
))
1671 /* Exhausted what can be done so it's blamo time */
1672 out_of_memory(zonelist
, gfp_mask
, order
);
1675 clear_zonelist_oom(zonelist
, gfp_mask
);
1679 /* The really slow allocator path where we enter direct reclaim */
1680 static inline struct page
*
1681 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1682 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1683 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1684 int migratetype
, unsigned long *did_some_progress
)
1686 struct page
*page
= NULL
;
1687 struct reclaim_state reclaim_state
;
1688 struct task_struct
*p
= current
;
1692 /* We now go into synchronous reclaim */
1693 cpuset_memory_pressure_bump();
1694 p
->flags
|= PF_MEMALLOC
;
1695 lockdep_set_current_reclaim_state(gfp_mask
);
1696 reclaim_state
.reclaimed_slab
= 0;
1697 p
->reclaim_state
= &reclaim_state
;
1699 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1701 p
->reclaim_state
= NULL
;
1702 lockdep_clear_current_reclaim_state();
1703 p
->flags
&= ~PF_MEMALLOC
;
1710 if (likely(*did_some_progress
))
1711 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1712 zonelist
, high_zoneidx
,
1713 alloc_flags
, preferred_zone
,
1719 * This is called in the allocator slow-path if the allocation request is of
1720 * sufficient urgency to ignore watermarks and take other desperate measures
1722 static inline struct page
*
1723 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1724 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1725 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1731 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1732 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1733 preferred_zone
, migratetype
);
1735 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1736 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1737 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1743 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1744 enum zone_type high_zoneidx
)
1749 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1750 wakeup_kswapd(zone
, order
);
1754 gfp_to_alloc_flags(gfp_t gfp_mask
)
1756 struct task_struct
*p
= current
;
1757 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1758 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1760 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1761 BUILD_BUG_ON(__GFP_HIGH
!= ALLOC_HIGH
);
1764 * The caller may dip into page reserves a bit more if the caller
1765 * cannot run direct reclaim, or if the caller has realtime scheduling
1766 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1767 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1769 alloc_flags
|= (gfp_mask
& __GFP_HIGH
);
1772 alloc_flags
|= ALLOC_HARDER
;
1774 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1775 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1777 alloc_flags
&= ~ALLOC_CPUSET
;
1778 } else if (unlikely(rt_task(p
)))
1779 alloc_flags
|= ALLOC_HARDER
;
1781 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1782 if (!in_interrupt() &&
1783 ((p
->flags
& PF_MEMALLOC
) ||
1784 unlikely(test_thread_flag(TIF_MEMDIE
))))
1785 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1791 static inline struct page
*
1792 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1793 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1794 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1797 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1798 struct page
*page
= NULL
;
1800 unsigned long pages_reclaimed
= 0;
1801 unsigned long did_some_progress
;
1802 struct task_struct
*p
= current
;
1805 * In the slowpath, we sanity check order to avoid ever trying to
1806 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1807 * be using allocators in order of preference for an area that is
1810 if (order
>= MAX_ORDER
) {
1811 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1816 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1817 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1818 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1819 * using a larger set of nodes after it has established that the
1820 * allowed per node queues are empty and that nodes are
1823 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1826 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
1830 * OK, we're below the kswapd watermark and have kicked background
1831 * reclaim. Now things get more complex, so set up alloc_flags according
1832 * to how we want to proceed.
1834 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
1836 /* This is the last chance, in general, before the goto nopage. */
1837 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1838 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
1839 preferred_zone
, migratetype
);
1844 /* Allocate without watermarks if the context allows */
1845 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
1846 page
= __alloc_pages_high_priority(gfp_mask
, order
,
1847 zonelist
, high_zoneidx
, nodemask
,
1848 preferred_zone
, migratetype
);
1853 /* Atomic allocations - we can't balance anything */
1857 /* Avoid recursion of direct reclaim */
1858 if (p
->flags
& PF_MEMALLOC
)
1861 /* Avoid allocations with no watermarks from looping endlessly */
1862 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
1865 /* Try direct reclaim and then allocating */
1866 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
1867 zonelist
, high_zoneidx
,
1869 alloc_flags
, preferred_zone
,
1870 migratetype
, &did_some_progress
);
1875 * If we failed to make any progress reclaiming, then we are
1876 * running out of options and have to consider going OOM
1878 if (!did_some_progress
) {
1879 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1880 if (oom_killer_disabled
)
1882 page
= __alloc_pages_may_oom(gfp_mask
, order
,
1883 zonelist
, high_zoneidx
,
1884 nodemask
, preferred_zone
,
1890 * The OOM killer does not trigger for high-order
1891 * ~__GFP_NOFAIL allocations so if no progress is being
1892 * made, there are no other options and retrying is
1895 if (order
> PAGE_ALLOC_COSTLY_ORDER
&&
1896 !(gfp_mask
& __GFP_NOFAIL
))
1903 /* Check if we should retry the allocation */
1904 pages_reclaimed
+= did_some_progress
;
1905 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
1906 /* Wait for some write requests to complete then retry */
1907 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1912 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1913 printk(KERN_WARNING
"%s: page allocation failure."
1914 " order:%d, mode:0x%x\n",
1915 p
->comm
, order
, gfp_mask
);
1921 if (kmemcheck_enabled
)
1922 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
1928 * This is the 'heart' of the zoned buddy allocator.
1931 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1932 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1934 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1935 struct zone
*preferred_zone
;
1937 int migratetype
= allocflags_to_migratetype(gfp_mask
);
1939 gfp_mask
&= gfp_allowed_mask
;
1941 lockdep_trace_alloc(gfp_mask
);
1943 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1945 if (should_fail_alloc_page(gfp_mask
, order
))
1949 * Check the zones suitable for the gfp_mask contain at least one
1950 * valid zone. It's possible to have an empty zonelist as a result
1951 * of GFP_THISNODE and a memoryless node
1953 if (unlikely(!zonelist
->_zonerefs
->zone
))
1956 /* The preferred zone is used for statistics later */
1957 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
1958 if (!preferred_zone
)
1961 /* First allocation attempt */
1962 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1963 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
1964 preferred_zone
, migratetype
);
1965 if (unlikely(!page
))
1966 page
= __alloc_pages_slowpath(gfp_mask
, order
,
1967 zonelist
, high_zoneidx
, nodemask
,
1968 preferred_zone
, migratetype
);
1970 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
1973 EXPORT_SYMBOL(__alloc_pages_nodemask
);
1976 * Common helper functions.
1978 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1983 * __get_free_pages() returns a 32-bit address, which cannot represent
1986 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1988 page
= alloc_pages(gfp_mask
, order
);
1991 return (unsigned long) page_address(page
);
1993 EXPORT_SYMBOL(__get_free_pages
);
1995 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1997 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
1999 EXPORT_SYMBOL(get_zeroed_page
);
2001 void __pagevec_free(struct pagevec
*pvec
)
2003 int i
= pagevec_count(pvec
);
2006 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2007 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2011 void __free_pages(struct page
*page
, unsigned int order
)
2013 if (put_page_testzero(page
)) {
2014 trace_mm_page_free_direct(page
, order
);
2016 free_hot_page(page
);
2018 __free_pages_ok(page
, order
);
2022 EXPORT_SYMBOL(__free_pages
);
2024 void free_pages(unsigned long addr
, unsigned int order
)
2027 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2028 __free_pages(virt_to_page((void *)addr
), order
);
2032 EXPORT_SYMBOL(free_pages
);
2035 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2036 * @size: the number of bytes to allocate
2037 * @gfp_mask: GFP flags for the allocation
2039 * This function is similar to alloc_pages(), except that it allocates the
2040 * minimum number of pages to satisfy the request. alloc_pages() can only
2041 * allocate memory in power-of-two pages.
2043 * This function is also limited by MAX_ORDER.
2045 * Memory allocated by this function must be released by free_pages_exact().
2047 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2049 unsigned int order
= get_order(size
);
2052 addr
= __get_free_pages(gfp_mask
, order
);
2054 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2055 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2057 split_page(virt_to_page((void *)addr
), order
);
2058 while (used
< alloc_end
) {
2064 return (void *)addr
;
2066 EXPORT_SYMBOL(alloc_pages_exact
);
2069 * free_pages_exact - release memory allocated via alloc_pages_exact()
2070 * @virt: the value returned by alloc_pages_exact.
2071 * @size: size of allocation, same value as passed to alloc_pages_exact().
2073 * Release the memory allocated by a previous call to alloc_pages_exact.
2075 void free_pages_exact(void *virt
, size_t size
)
2077 unsigned long addr
= (unsigned long)virt
;
2078 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2080 while (addr
< end
) {
2085 EXPORT_SYMBOL(free_pages_exact
);
2087 static unsigned int nr_free_zone_pages(int offset
)
2092 /* Just pick one node, since fallback list is circular */
2093 unsigned int sum
= 0;
2095 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2097 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2098 unsigned long size
= zone
->present_pages
;
2099 unsigned long high
= high_wmark_pages(zone
);
2108 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2110 unsigned int nr_free_buffer_pages(void)
2112 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2114 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2117 * Amount of free RAM allocatable within all zones
2119 unsigned int nr_free_pagecache_pages(void)
2121 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2124 static inline void show_node(struct zone
*zone
)
2127 printk("Node %d ", zone_to_nid(zone
));
2130 void si_meminfo(struct sysinfo
*val
)
2132 val
->totalram
= totalram_pages
;
2134 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2135 val
->bufferram
= nr_blockdev_pages();
2136 val
->totalhigh
= totalhigh_pages
;
2137 val
->freehigh
= nr_free_highpages();
2138 val
->mem_unit
= PAGE_SIZE
;
2141 EXPORT_SYMBOL(si_meminfo
);
2144 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2146 pg_data_t
*pgdat
= NODE_DATA(nid
);
2148 val
->totalram
= pgdat
->node_present_pages
;
2149 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2150 #ifdef CONFIG_HIGHMEM
2151 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2152 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2158 val
->mem_unit
= PAGE_SIZE
;
2162 #define K(x) ((x) << (PAGE_SHIFT-10))
2165 * Show free area list (used inside shift_scroll-lock stuff)
2166 * We also calculate the percentage fragmentation. We do this by counting the
2167 * memory on each free list with the exception of the first item on the list.
2169 void show_free_areas(void)
2174 for_each_populated_zone(zone
) {
2176 printk("%s per-cpu:\n", zone
->name
);
2178 for_each_online_cpu(cpu
) {
2179 struct per_cpu_pageset
*pageset
;
2181 pageset
= zone_pcp(zone
, cpu
);
2183 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2184 cpu
, pageset
->pcp
.high
,
2185 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2189 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2190 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2192 " dirty:%lu writeback:%lu unstable:%lu\n"
2193 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2194 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2195 global_page_state(NR_ACTIVE_ANON
),
2196 global_page_state(NR_INACTIVE_ANON
),
2197 global_page_state(NR_ISOLATED_ANON
),
2198 global_page_state(NR_ACTIVE_FILE
),
2199 global_page_state(NR_INACTIVE_FILE
),
2200 global_page_state(NR_ISOLATED_FILE
),
2201 global_page_state(NR_UNEVICTABLE
),
2202 global_page_state(NR_FILE_DIRTY
),
2203 global_page_state(NR_WRITEBACK
),
2204 global_page_state(NR_UNSTABLE_NFS
),
2205 global_page_state(NR_FREE_PAGES
),
2206 global_page_state(NR_SLAB_RECLAIMABLE
),
2207 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2208 global_page_state(NR_FILE_MAPPED
),
2209 global_page_state(NR_SHMEM
),
2210 global_page_state(NR_PAGETABLE
),
2211 global_page_state(NR_BOUNCE
));
2213 for_each_populated_zone(zone
) {
2222 " active_anon:%lukB"
2223 " inactive_anon:%lukB"
2224 " active_file:%lukB"
2225 " inactive_file:%lukB"
2226 " unevictable:%lukB"
2227 " isolated(anon):%lukB"
2228 " isolated(file):%lukB"
2235 " slab_reclaimable:%lukB"
2236 " slab_unreclaimable:%lukB"
2237 " kernel_stack:%lukB"
2241 " writeback_tmp:%lukB"
2242 " pages_scanned:%lu"
2243 " all_unreclaimable? %s"
2246 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2247 K(min_wmark_pages(zone
)),
2248 K(low_wmark_pages(zone
)),
2249 K(high_wmark_pages(zone
)),
2250 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2251 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2252 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2253 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2254 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2255 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2256 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2257 K(zone
->present_pages
),
2258 K(zone_page_state(zone
, NR_MLOCK
)),
2259 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2260 K(zone_page_state(zone
, NR_WRITEBACK
)),
2261 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2262 K(zone_page_state(zone
, NR_SHMEM
)),
2263 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2264 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2265 zone_page_state(zone
, NR_KERNEL_STACK
) *
2267 K(zone_page_state(zone
, NR_PAGETABLE
)),
2268 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2269 K(zone_page_state(zone
, NR_BOUNCE
)),
2270 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2271 zone
->pages_scanned
,
2272 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
2274 printk("lowmem_reserve[]:");
2275 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2276 printk(" %lu", zone
->lowmem_reserve
[i
]);
2280 for_each_populated_zone(zone
) {
2281 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2284 printk("%s: ", zone
->name
);
2286 spin_lock_irqsave(&zone
->lock
, flags
);
2287 for (order
= 0; order
< MAX_ORDER
; order
++) {
2288 nr
[order
] = zone
->free_area
[order
].nr_free
;
2289 total
+= nr
[order
] << order
;
2291 spin_unlock_irqrestore(&zone
->lock
, flags
);
2292 for (order
= 0; order
< MAX_ORDER
; order
++)
2293 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2294 printk("= %lukB\n", K(total
));
2297 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2299 show_swap_cache_info();
2302 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2304 zoneref
->zone
= zone
;
2305 zoneref
->zone_idx
= zone_idx(zone
);
2309 * Builds allocation fallback zone lists.
2311 * Add all populated zones of a node to the zonelist.
2313 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2314 int nr_zones
, enum zone_type zone_type
)
2318 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2323 zone
= pgdat
->node_zones
+ zone_type
;
2324 if (populated_zone(zone
)) {
2325 zoneref_set_zone(zone
,
2326 &zonelist
->_zonerefs
[nr_zones
++]);
2327 check_highest_zone(zone_type
);
2330 } while (zone_type
);
2337 * 0 = automatic detection of better ordering.
2338 * 1 = order by ([node] distance, -zonetype)
2339 * 2 = order by (-zonetype, [node] distance)
2341 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2342 * the same zonelist. So only NUMA can configure this param.
2344 #define ZONELIST_ORDER_DEFAULT 0
2345 #define ZONELIST_ORDER_NODE 1
2346 #define ZONELIST_ORDER_ZONE 2
2348 /* zonelist order in the kernel.
2349 * set_zonelist_order() will set this to NODE or ZONE.
2351 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2352 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2356 /* The value user specified ....changed by config */
2357 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2358 /* string for sysctl */
2359 #define NUMA_ZONELIST_ORDER_LEN 16
2360 char numa_zonelist_order
[16] = "default";
2363 * interface for configure zonelist ordering.
2364 * command line option "numa_zonelist_order"
2365 * = "[dD]efault - default, automatic configuration.
2366 * = "[nN]ode - order by node locality, then by zone within node
2367 * = "[zZ]one - order by zone, then by locality within zone
2370 static int __parse_numa_zonelist_order(char *s
)
2372 if (*s
== 'd' || *s
== 'D') {
2373 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2374 } else if (*s
== 'n' || *s
== 'N') {
2375 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2376 } else if (*s
== 'z' || *s
== 'Z') {
2377 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2380 "Ignoring invalid numa_zonelist_order value: "
2387 static __init
int setup_numa_zonelist_order(char *s
)
2390 return __parse_numa_zonelist_order(s
);
2393 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2396 * sysctl handler for numa_zonelist_order
2398 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2399 void __user
*buffer
, size_t *length
,
2402 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2406 strncpy(saved_string
, (char*)table
->data
,
2407 NUMA_ZONELIST_ORDER_LEN
);
2408 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2412 int oldval
= user_zonelist_order
;
2413 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2415 * bogus value. restore saved string
2417 strncpy((char*)table
->data
, saved_string
,
2418 NUMA_ZONELIST_ORDER_LEN
);
2419 user_zonelist_order
= oldval
;
2420 } else if (oldval
!= user_zonelist_order
)
2421 build_all_zonelists();
2427 #define MAX_NODE_LOAD (nr_online_nodes)
2428 static int node_load
[MAX_NUMNODES
];
2431 * find_next_best_node - find the next node that should appear in a given node's fallback list
2432 * @node: node whose fallback list we're appending
2433 * @used_node_mask: nodemask_t of already used nodes
2435 * We use a number of factors to determine which is the next node that should
2436 * appear on a given node's fallback list. The node should not have appeared
2437 * already in @node's fallback list, and it should be the next closest node
2438 * according to the distance array (which contains arbitrary distance values
2439 * from each node to each node in the system), and should also prefer nodes
2440 * with no CPUs, since presumably they'll have very little allocation pressure
2441 * on them otherwise.
2442 * It returns -1 if no node is found.
2444 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2447 int min_val
= INT_MAX
;
2449 const struct cpumask
*tmp
= cpumask_of_node(0);
2451 /* Use the local node if we haven't already */
2452 if (!node_isset(node
, *used_node_mask
)) {
2453 node_set(node
, *used_node_mask
);
2457 for_each_node_state(n
, N_HIGH_MEMORY
) {
2459 /* Don't want a node to appear more than once */
2460 if (node_isset(n
, *used_node_mask
))
2463 /* Use the distance array to find the distance */
2464 val
= node_distance(node
, n
);
2466 /* Penalize nodes under us ("prefer the next node") */
2469 /* Give preference to headless and unused nodes */
2470 tmp
= cpumask_of_node(n
);
2471 if (!cpumask_empty(tmp
))
2472 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2474 /* Slight preference for less loaded node */
2475 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2476 val
+= node_load
[n
];
2478 if (val
< min_val
) {
2485 node_set(best_node
, *used_node_mask
);
2492 * Build zonelists ordered by node and zones within node.
2493 * This results in maximum locality--normal zone overflows into local
2494 * DMA zone, if any--but risks exhausting DMA zone.
2496 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2499 struct zonelist
*zonelist
;
2501 zonelist
= &pgdat
->node_zonelists
[0];
2502 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2504 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2506 zonelist
->_zonerefs
[j
].zone
= NULL
;
2507 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2511 * Build gfp_thisnode zonelists
2513 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2516 struct zonelist
*zonelist
;
2518 zonelist
= &pgdat
->node_zonelists
[1];
2519 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2520 zonelist
->_zonerefs
[j
].zone
= NULL
;
2521 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2525 * Build zonelists ordered by zone and nodes within zones.
2526 * This results in conserving DMA zone[s] until all Normal memory is
2527 * exhausted, but results in overflowing to remote node while memory
2528 * may still exist in local DMA zone.
2530 static int node_order
[MAX_NUMNODES
];
2532 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2535 int zone_type
; /* needs to be signed */
2537 struct zonelist
*zonelist
;
2539 zonelist
= &pgdat
->node_zonelists
[0];
2541 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2542 for (j
= 0; j
< nr_nodes
; j
++) {
2543 node
= node_order
[j
];
2544 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2545 if (populated_zone(z
)) {
2547 &zonelist
->_zonerefs
[pos
++]);
2548 check_highest_zone(zone_type
);
2552 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2553 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2556 static int default_zonelist_order(void)
2559 unsigned long low_kmem_size
,total_size
;
2563 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2564 * If they are really small and used heavily, the system can fall
2565 * into OOM very easily.
2566 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2568 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2571 for_each_online_node(nid
) {
2572 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2573 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2574 if (populated_zone(z
)) {
2575 if (zone_type
< ZONE_NORMAL
)
2576 low_kmem_size
+= z
->present_pages
;
2577 total_size
+= z
->present_pages
;
2581 if (!low_kmem_size
|| /* there are no DMA area. */
2582 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2583 return ZONELIST_ORDER_NODE
;
2585 * look into each node's config.
2586 * If there is a node whose DMA/DMA32 memory is very big area on
2587 * local memory, NODE_ORDER may be suitable.
2589 average_size
= total_size
/
2590 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2591 for_each_online_node(nid
) {
2594 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2595 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2596 if (populated_zone(z
)) {
2597 if (zone_type
< ZONE_NORMAL
)
2598 low_kmem_size
+= z
->present_pages
;
2599 total_size
+= z
->present_pages
;
2602 if (low_kmem_size
&&
2603 total_size
> average_size
&& /* ignore small node */
2604 low_kmem_size
> total_size
* 70/100)
2605 return ZONELIST_ORDER_NODE
;
2607 return ZONELIST_ORDER_ZONE
;
2610 static void set_zonelist_order(void)
2612 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2613 current_zonelist_order
= default_zonelist_order();
2615 current_zonelist_order
= user_zonelist_order
;
2618 static void build_zonelists(pg_data_t
*pgdat
)
2622 nodemask_t used_mask
;
2623 int local_node
, prev_node
;
2624 struct zonelist
*zonelist
;
2625 int order
= current_zonelist_order
;
2627 /* initialize zonelists */
2628 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2629 zonelist
= pgdat
->node_zonelists
+ i
;
2630 zonelist
->_zonerefs
[0].zone
= NULL
;
2631 zonelist
->_zonerefs
[0].zone_idx
= 0;
2634 /* NUMA-aware ordering of nodes */
2635 local_node
= pgdat
->node_id
;
2636 load
= nr_online_nodes
;
2637 prev_node
= local_node
;
2638 nodes_clear(used_mask
);
2640 memset(node_order
, 0, sizeof(node_order
));
2643 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2644 int distance
= node_distance(local_node
, node
);
2647 * If another node is sufficiently far away then it is better
2648 * to reclaim pages in a zone before going off node.
2650 if (distance
> RECLAIM_DISTANCE
)
2651 zone_reclaim_mode
= 1;
2654 * We don't want to pressure a particular node.
2655 * So adding penalty to the first node in same
2656 * distance group to make it round-robin.
2658 if (distance
!= node_distance(local_node
, prev_node
))
2659 node_load
[node
] = load
;
2663 if (order
== ZONELIST_ORDER_NODE
)
2664 build_zonelists_in_node_order(pgdat
, node
);
2666 node_order
[j
++] = node
; /* remember order */
2669 if (order
== ZONELIST_ORDER_ZONE
) {
2670 /* calculate node order -- i.e., DMA last! */
2671 build_zonelists_in_zone_order(pgdat
, j
);
2674 build_thisnode_zonelists(pgdat
);
2677 /* Construct the zonelist performance cache - see further mmzone.h */
2678 static void build_zonelist_cache(pg_data_t
*pgdat
)
2680 struct zonelist
*zonelist
;
2681 struct zonelist_cache
*zlc
;
2684 zonelist
= &pgdat
->node_zonelists
[0];
2685 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2686 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2687 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2688 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2692 #else /* CONFIG_NUMA */
2694 static void set_zonelist_order(void)
2696 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2699 static void build_zonelists(pg_data_t
*pgdat
)
2701 int node
, local_node
;
2703 struct zonelist
*zonelist
;
2705 local_node
= pgdat
->node_id
;
2707 zonelist
= &pgdat
->node_zonelists
[0];
2708 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2711 * Now we build the zonelist so that it contains the zones
2712 * of all the other nodes.
2713 * We don't want to pressure a particular node, so when
2714 * building the zones for node N, we make sure that the
2715 * zones coming right after the local ones are those from
2716 * node N+1 (modulo N)
2718 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2719 if (!node_online(node
))
2721 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2724 for (node
= 0; node
< local_node
; node
++) {
2725 if (!node_online(node
))
2727 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2731 zonelist
->_zonerefs
[j
].zone
= NULL
;
2732 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2735 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2736 static void build_zonelist_cache(pg_data_t
*pgdat
)
2738 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2741 #endif /* CONFIG_NUMA */
2743 /* return values int ....just for stop_machine() */
2744 static int __build_all_zonelists(void *dummy
)
2749 memset(node_load
, 0, sizeof(node_load
));
2751 for_each_online_node(nid
) {
2752 pg_data_t
*pgdat
= NODE_DATA(nid
);
2754 build_zonelists(pgdat
);
2755 build_zonelist_cache(pgdat
);
2760 void build_all_zonelists(void)
2762 set_zonelist_order();
2764 if (system_state
== SYSTEM_BOOTING
) {
2765 __build_all_zonelists(NULL
);
2766 mminit_verify_zonelist();
2767 cpuset_init_current_mems_allowed();
2769 /* we have to stop all cpus to guarantee there is no user
2771 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2772 /* cpuset refresh routine should be here */
2774 vm_total_pages
= nr_free_pagecache_pages();
2776 * Disable grouping by mobility if the number of pages in the
2777 * system is too low to allow the mechanism to work. It would be
2778 * more accurate, but expensive to check per-zone. This check is
2779 * made on memory-hotadd so a system can start with mobility
2780 * disabled and enable it later
2782 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2783 page_group_by_mobility_disabled
= 1;
2785 page_group_by_mobility_disabled
= 0;
2787 printk("Built %i zonelists in %s order, mobility grouping %s. "
2788 "Total pages: %ld\n",
2790 zonelist_order_name
[current_zonelist_order
],
2791 page_group_by_mobility_disabled
? "off" : "on",
2794 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2799 * Helper functions to size the waitqueue hash table.
2800 * Essentially these want to choose hash table sizes sufficiently
2801 * large so that collisions trying to wait on pages are rare.
2802 * But in fact, the number of active page waitqueues on typical
2803 * systems is ridiculously low, less than 200. So this is even
2804 * conservative, even though it seems large.
2806 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2807 * waitqueues, i.e. the size of the waitq table given the number of pages.
2809 #define PAGES_PER_WAITQUEUE 256
2811 #ifndef CONFIG_MEMORY_HOTPLUG
2812 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2814 unsigned long size
= 1;
2816 pages
/= PAGES_PER_WAITQUEUE
;
2818 while (size
< pages
)
2822 * Once we have dozens or even hundreds of threads sleeping
2823 * on IO we've got bigger problems than wait queue collision.
2824 * Limit the size of the wait table to a reasonable size.
2826 size
= min(size
, 4096UL);
2828 return max(size
, 4UL);
2832 * A zone's size might be changed by hot-add, so it is not possible to determine
2833 * a suitable size for its wait_table. So we use the maximum size now.
2835 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2837 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2838 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2839 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2841 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2842 * or more by the traditional way. (See above). It equals:
2844 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2845 * ia64(16K page size) : = ( 8G + 4M)byte.
2846 * powerpc (64K page size) : = (32G +16M)byte.
2848 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2855 * This is an integer logarithm so that shifts can be used later
2856 * to extract the more random high bits from the multiplicative
2857 * hash function before the remainder is taken.
2859 static inline unsigned long wait_table_bits(unsigned long size
)
2864 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2867 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2868 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2869 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2870 * higher will lead to a bigger reserve which will get freed as contiguous
2871 * blocks as reclaim kicks in
2873 static void setup_zone_migrate_reserve(struct zone
*zone
)
2875 unsigned long start_pfn
, pfn
, end_pfn
;
2877 unsigned long block_migratetype
;
2880 /* Get the start pfn, end pfn and the number of blocks to reserve */
2881 start_pfn
= zone
->zone_start_pfn
;
2882 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2883 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
2887 * Reserve blocks are generally in place to help high-order atomic
2888 * allocations that are short-lived. A min_free_kbytes value that
2889 * would result in more than 2 reserve blocks for atomic allocations
2890 * is assumed to be in place to help anti-fragmentation for the
2891 * future allocation of hugepages at runtime.
2893 reserve
= min(2, reserve
);
2895 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2896 if (!pfn_valid(pfn
))
2898 page
= pfn_to_page(pfn
);
2900 /* Watch out for overlapping nodes */
2901 if (page_to_nid(page
) != zone_to_nid(zone
))
2904 /* Blocks with reserved pages will never free, skip them. */
2905 if (PageReserved(page
))
2908 block_migratetype
= get_pageblock_migratetype(page
);
2910 /* If this block is reserved, account for it */
2911 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2916 /* Suitable for reserving if this block is movable */
2917 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2918 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2919 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2925 * If the reserve is met and this is a previous reserved block,
2928 if (block_migratetype
== MIGRATE_RESERVE
) {
2929 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2930 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2936 * Initially all pages are reserved - free ones are freed
2937 * up by free_all_bootmem() once the early boot process is
2938 * done. Non-atomic initialization, single-pass.
2940 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2941 unsigned long start_pfn
, enum memmap_context context
)
2944 unsigned long end_pfn
= start_pfn
+ size
;
2948 if (highest_memmap_pfn
< end_pfn
- 1)
2949 highest_memmap_pfn
= end_pfn
- 1;
2951 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2952 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2954 * There can be holes in boot-time mem_map[]s
2955 * handed to this function. They do not
2956 * exist on hotplugged memory.
2958 if (context
== MEMMAP_EARLY
) {
2959 if (!early_pfn_valid(pfn
))
2961 if (!early_pfn_in_nid(pfn
, nid
))
2964 page
= pfn_to_page(pfn
);
2965 set_page_links(page
, zone
, nid
, pfn
);
2966 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2967 init_page_count(page
);
2968 reset_page_mapcount(page
);
2969 SetPageReserved(page
);
2971 * Mark the block movable so that blocks are reserved for
2972 * movable at startup. This will force kernel allocations
2973 * to reserve their blocks rather than leaking throughout
2974 * the address space during boot when many long-lived
2975 * kernel allocations are made. Later some blocks near
2976 * the start are marked MIGRATE_RESERVE by
2977 * setup_zone_migrate_reserve()
2979 * bitmap is created for zone's valid pfn range. but memmap
2980 * can be created for invalid pages (for alignment)
2981 * check here not to call set_pageblock_migratetype() against
2984 if ((z
->zone_start_pfn
<= pfn
)
2985 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2986 && !(pfn
& (pageblock_nr_pages
- 1)))
2987 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2989 INIT_LIST_HEAD(&page
->lru
);
2990 #ifdef WANT_PAGE_VIRTUAL
2991 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2992 if (!is_highmem_idx(zone
))
2993 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2998 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3001 for_each_migratetype_order(order
, t
) {
3002 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3003 zone
->free_area
[order
].nr_free
= 0;
3007 #ifndef __HAVE_ARCH_MEMMAP_INIT
3008 #define memmap_init(size, nid, zone, start_pfn) \
3009 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3012 static int zone_batchsize(struct zone
*zone
)
3018 * The per-cpu-pages pools are set to around 1000th of the
3019 * size of the zone. But no more than 1/2 of a meg.
3021 * OK, so we don't know how big the cache is. So guess.
3023 batch
= zone
->present_pages
/ 1024;
3024 if (batch
* PAGE_SIZE
> 512 * 1024)
3025 batch
= (512 * 1024) / PAGE_SIZE
;
3026 batch
/= 4; /* We effectively *= 4 below */
3031 * Clamp the batch to a 2^n - 1 value. Having a power
3032 * of 2 value was found to be more likely to have
3033 * suboptimal cache aliasing properties in some cases.
3035 * For example if 2 tasks are alternately allocating
3036 * batches of pages, one task can end up with a lot
3037 * of pages of one half of the possible page colors
3038 * and the other with pages of the other colors.
3040 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3045 /* The deferral and batching of frees should be suppressed under NOMMU
3048 * The problem is that NOMMU needs to be able to allocate large chunks
3049 * of contiguous memory as there's no hardware page translation to
3050 * assemble apparent contiguous memory from discontiguous pages.
3052 * Queueing large contiguous runs of pages for batching, however,
3053 * causes the pages to actually be freed in smaller chunks. As there
3054 * can be a significant delay between the individual batches being
3055 * recycled, this leads to the once large chunks of space being
3056 * fragmented and becoming unavailable for high-order allocations.
3062 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3064 struct per_cpu_pages
*pcp
;
3067 memset(p
, 0, sizeof(*p
));
3071 pcp
->high
= 6 * batch
;
3072 pcp
->batch
= max(1UL, 1 * batch
);
3073 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3074 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3078 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3079 * to the value high for the pageset p.
3082 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3085 struct per_cpu_pages
*pcp
;
3089 pcp
->batch
= max(1UL, high
/4);
3090 if ((high
/4) > (PAGE_SHIFT
* 8))
3091 pcp
->batch
= PAGE_SHIFT
* 8;
3097 * Boot pageset table. One per cpu which is going to be used for all
3098 * zones and all nodes. The parameters will be set in such a way
3099 * that an item put on a list will immediately be handed over to
3100 * the buddy list. This is safe since pageset manipulation is done
3101 * with interrupts disabled.
3103 * Some NUMA counter updates may also be caught by the boot pagesets.
3105 * The boot_pagesets must be kept even after bootup is complete for
3106 * unused processors and/or zones. They do play a role for bootstrapping
3107 * hotplugged processors.
3109 * zoneinfo_show() and maybe other functions do
3110 * not check if the processor is online before following the pageset pointer.
3111 * Other parts of the kernel may not check if the zone is available.
3113 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
3116 * Dynamically allocate memory for the
3117 * per cpu pageset array in struct zone.
3119 static int __cpuinit
process_zones(int cpu
)
3121 struct zone
*zone
, *dzone
;
3122 int node
= cpu_to_node(cpu
);
3124 node_set_state(node
, N_CPU
); /* this node has a cpu */
3126 for_each_populated_zone(zone
) {
3127 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
3129 if (!zone_pcp(zone
, cpu
))
3132 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
3134 if (percpu_pagelist_fraction
)
3135 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
3136 (zone
->present_pages
/ percpu_pagelist_fraction
));
3141 for_each_zone(dzone
) {
3142 if (!populated_zone(dzone
))
3146 kfree(zone_pcp(dzone
, cpu
));
3147 zone_pcp(dzone
, cpu
) = &boot_pageset
[cpu
];
3152 static inline void free_zone_pagesets(int cpu
)
3156 for_each_zone(zone
) {
3157 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
3159 /* Free per_cpu_pageset if it is slab allocated */
3160 if (pset
!= &boot_pageset
[cpu
])
3162 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3166 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
3167 unsigned long action
,
3170 int cpu
= (long)hcpu
;
3171 int ret
= NOTIFY_OK
;
3174 case CPU_UP_PREPARE
:
3175 case CPU_UP_PREPARE_FROZEN
:
3176 if (process_zones(cpu
))
3179 case CPU_UP_CANCELED
:
3180 case CPU_UP_CANCELED_FROZEN
:
3182 case CPU_DEAD_FROZEN
:
3183 free_zone_pagesets(cpu
);
3191 static struct notifier_block __cpuinitdata pageset_notifier
=
3192 { &pageset_cpuup_callback
, NULL
, 0 };
3194 void __init
setup_per_cpu_pageset(void)
3198 /* Initialize per_cpu_pageset for cpu 0.
3199 * A cpuup callback will do this for every cpu
3200 * as it comes online
3202 err
= process_zones(smp_processor_id());
3204 register_cpu_notifier(&pageset_notifier
);
3209 static noinline __init_refok
3210 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3213 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3217 * The per-page waitqueue mechanism uses hashed waitqueues
3220 zone
->wait_table_hash_nr_entries
=
3221 wait_table_hash_nr_entries(zone_size_pages
);
3222 zone
->wait_table_bits
=
3223 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3224 alloc_size
= zone
->wait_table_hash_nr_entries
3225 * sizeof(wait_queue_head_t
);
3227 if (!slab_is_available()) {
3228 zone
->wait_table
= (wait_queue_head_t
*)
3229 alloc_bootmem_node(pgdat
, alloc_size
);
3232 * This case means that a zone whose size was 0 gets new memory
3233 * via memory hot-add.
3234 * But it may be the case that a new node was hot-added. In
3235 * this case vmalloc() will not be able to use this new node's
3236 * memory - this wait_table must be initialized to use this new
3237 * node itself as well.
3238 * To use this new node's memory, further consideration will be
3241 zone
->wait_table
= vmalloc(alloc_size
);
3243 if (!zone
->wait_table
)
3246 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3247 init_waitqueue_head(zone
->wait_table
+ i
);
3252 static int __zone_pcp_update(void *data
)
3254 struct zone
*zone
= data
;
3256 unsigned long batch
= zone_batchsize(zone
), flags
;
3258 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3259 struct per_cpu_pageset
*pset
;
3260 struct per_cpu_pages
*pcp
;
3262 pset
= zone_pcp(zone
, cpu
);
3265 local_irq_save(flags
);
3266 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3267 setup_pageset(pset
, batch
);
3268 local_irq_restore(flags
);
3273 void zone_pcp_update(struct zone
*zone
)
3275 stop_machine(__zone_pcp_update
, zone
, NULL
);
3278 static __meminit
void zone_pcp_init(struct zone
*zone
)
3281 unsigned long batch
= zone_batchsize(zone
);
3283 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3285 /* Early boot. Slab allocator not functional yet */
3286 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3287 setup_pageset(&boot_pageset
[cpu
],0);
3289 setup_pageset(zone_pcp(zone
,cpu
), batch
);
3292 if (zone
->present_pages
)
3293 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
3294 zone
->name
, zone
->present_pages
, batch
);
3297 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3298 unsigned long zone_start_pfn
,
3300 enum memmap_context context
)
3302 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3304 ret
= zone_wait_table_init(zone
, size
);
3307 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3309 zone
->zone_start_pfn
= zone_start_pfn
;
3311 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3312 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3314 (unsigned long)zone_idx(zone
),
3315 zone_start_pfn
, (zone_start_pfn
+ size
));
3317 zone_init_free_lists(zone
);
3322 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3324 * Basic iterator support. Return the first range of PFNs for a node
3325 * Note: nid == MAX_NUMNODES returns first region regardless of node
3327 static int __meminit
first_active_region_index_in_nid(int nid
)
3331 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3332 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3339 * Basic iterator support. Return the next active range of PFNs for a node
3340 * Note: nid == MAX_NUMNODES returns next region regardless of node
3342 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3344 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3345 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3351 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3353 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3354 * Architectures may implement their own version but if add_active_range()
3355 * was used and there are no special requirements, this is a convenient
3358 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3362 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3363 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3364 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3366 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3367 return early_node_map
[i
].nid
;
3369 /* This is a memory hole */
3372 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3374 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3378 nid
= __early_pfn_to_nid(pfn
);
3381 /* just returns 0 */
3385 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3386 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3390 nid
= __early_pfn_to_nid(pfn
);
3391 if (nid
>= 0 && nid
!= node
)
3397 /* Basic iterator support to walk early_node_map[] */
3398 #define for_each_active_range_index_in_nid(i, nid) \
3399 for (i = first_active_region_index_in_nid(nid); i != -1; \
3400 i = next_active_region_index_in_nid(i, nid))
3403 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3404 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3405 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3407 * If an architecture guarantees that all ranges registered with
3408 * add_active_ranges() contain no holes and may be freed, this
3409 * this function may be used instead of calling free_bootmem() manually.
3411 void __init
free_bootmem_with_active_regions(int nid
,
3412 unsigned long max_low_pfn
)
3416 for_each_active_range_index_in_nid(i
, nid
) {
3417 unsigned long size_pages
= 0;
3418 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3420 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3423 if (end_pfn
> max_low_pfn
)
3424 end_pfn
= max_low_pfn
;
3426 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3427 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3428 PFN_PHYS(early_node_map
[i
].start_pfn
),
3429 size_pages
<< PAGE_SHIFT
);
3433 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3438 for_each_active_range_index_in_nid(i
, nid
) {
3439 ret
= work_fn(early_node_map
[i
].start_pfn
,
3440 early_node_map
[i
].end_pfn
, data
);
3446 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3447 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3449 * If an architecture guarantees that all ranges registered with
3450 * add_active_ranges() contain no holes and may be freed, this
3451 * function may be used instead of calling memory_present() manually.
3453 void __init
sparse_memory_present_with_active_regions(int nid
)
3457 for_each_active_range_index_in_nid(i
, nid
)
3458 memory_present(early_node_map
[i
].nid
,
3459 early_node_map
[i
].start_pfn
,
3460 early_node_map
[i
].end_pfn
);
3464 * get_pfn_range_for_nid - Return the start and end page frames for a node
3465 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3466 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3467 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3469 * It returns the start and end page frame of a node based on information
3470 * provided by an arch calling add_active_range(). If called for a node
3471 * with no available memory, a warning is printed and the start and end
3474 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3475 unsigned long *start_pfn
, unsigned long *end_pfn
)
3481 for_each_active_range_index_in_nid(i
, nid
) {
3482 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3483 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3486 if (*start_pfn
== -1UL)
3491 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3492 * assumption is made that zones within a node are ordered in monotonic
3493 * increasing memory addresses so that the "highest" populated zone is used
3495 static void __init
find_usable_zone_for_movable(void)
3498 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3499 if (zone_index
== ZONE_MOVABLE
)
3502 if (arch_zone_highest_possible_pfn
[zone_index
] >
3503 arch_zone_lowest_possible_pfn
[zone_index
])
3507 VM_BUG_ON(zone_index
== -1);
3508 movable_zone
= zone_index
;
3512 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3513 * because it is sized independant of architecture. Unlike the other zones,
3514 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3515 * in each node depending on the size of each node and how evenly kernelcore
3516 * is distributed. This helper function adjusts the zone ranges
3517 * provided by the architecture for a given node by using the end of the
3518 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3519 * zones within a node are in order of monotonic increases memory addresses
3521 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3522 unsigned long zone_type
,
3523 unsigned long node_start_pfn
,
3524 unsigned long node_end_pfn
,
3525 unsigned long *zone_start_pfn
,
3526 unsigned long *zone_end_pfn
)
3528 /* Only adjust if ZONE_MOVABLE is on this node */
3529 if (zone_movable_pfn
[nid
]) {
3530 /* Size ZONE_MOVABLE */
3531 if (zone_type
== ZONE_MOVABLE
) {
3532 *zone_start_pfn
= zone_movable_pfn
[nid
];
3533 *zone_end_pfn
= min(node_end_pfn
,
3534 arch_zone_highest_possible_pfn
[movable_zone
]);
3536 /* Adjust for ZONE_MOVABLE starting within this range */
3537 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3538 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3539 *zone_end_pfn
= zone_movable_pfn
[nid
];
3541 /* Check if this whole range is within ZONE_MOVABLE */
3542 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3543 *zone_start_pfn
= *zone_end_pfn
;
3548 * Return the number of pages a zone spans in a node, including holes
3549 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3551 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3552 unsigned long zone_type
,
3553 unsigned long *ignored
)
3555 unsigned long node_start_pfn
, node_end_pfn
;
3556 unsigned long zone_start_pfn
, zone_end_pfn
;
3558 /* Get the start and end of the node and zone */
3559 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3560 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3561 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3562 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3563 node_start_pfn
, node_end_pfn
,
3564 &zone_start_pfn
, &zone_end_pfn
);
3566 /* Check that this node has pages within the zone's required range */
3567 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3570 /* Move the zone boundaries inside the node if necessary */
3571 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3572 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3574 /* Return the spanned pages */
3575 return zone_end_pfn
- zone_start_pfn
;
3579 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3580 * then all holes in the requested range will be accounted for.
3582 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3583 unsigned long range_start_pfn
,
3584 unsigned long range_end_pfn
)
3587 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3588 unsigned long start_pfn
;
3590 /* Find the end_pfn of the first active range of pfns in the node */
3591 i
= first_active_region_index_in_nid(nid
);
3595 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3597 /* Account for ranges before physical memory on this node */
3598 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3599 hole_pages
= prev_end_pfn
- range_start_pfn
;
3601 /* Find all holes for the zone within the node */
3602 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3604 /* No need to continue if prev_end_pfn is outside the zone */
3605 if (prev_end_pfn
>= range_end_pfn
)
3608 /* Make sure the end of the zone is not within the hole */
3609 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3610 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3612 /* Update the hole size cound and move on */
3613 if (start_pfn
> range_start_pfn
) {
3614 BUG_ON(prev_end_pfn
> start_pfn
);
3615 hole_pages
+= start_pfn
- prev_end_pfn
;
3617 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3620 /* Account for ranges past physical memory on this node */
3621 if (range_end_pfn
> prev_end_pfn
)
3622 hole_pages
+= range_end_pfn
-
3623 max(range_start_pfn
, prev_end_pfn
);
3629 * absent_pages_in_range - Return number of page frames in holes within a range
3630 * @start_pfn: The start PFN to start searching for holes
3631 * @end_pfn: The end PFN to stop searching for holes
3633 * It returns the number of pages frames in memory holes within a range.
3635 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3636 unsigned long end_pfn
)
3638 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3641 /* Return the number of page frames in holes in a zone on a node */
3642 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3643 unsigned long zone_type
,
3644 unsigned long *ignored
)
3646 unsigned long node_start_pfn
, node_end_pfn
;
3647 unsigned long zone_start_pfn
, zone_end_pfn
;
3649 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3650 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3652 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3655 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3656 node_start_pfn
, node_end_pfn
,
3657 &zone_start_pfn
, &zone_end_pfn
);
3658 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3662 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3663 unsigned long zone_type
,
3664 unsigned long *zones_size
)
3666 return zones_size
[zone_type
];
3669 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3670 unsigned long zone_type
,
3671 unsigned long *zholes_size
)
3676 return zholes_size
[zone_type
];
3681 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3682 unsigned long *zones_size
, unsigned long *zholes_size
)
3684 unsigned long realtotalpages
, totalpages
= 0;
3687 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3688 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3690 pgdat
->node_spanned_pages
= totalpages
;
3692 realtotalpages
= totalpages
;
3693 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3695 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3697 pgdat
->node_present_pages
= realtotalpages
;
3698 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3702 #ifndef CONFIG_SPARSEMEM
3704 * Calculate the size of the zone->blockflags rounded to an unsigned long
3705 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3706 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3707 * round what is now in bits to nearest long in bits, then return it in
3710 static unsigned long __init
usemap_size(unsigned long zonesize
)
3712 unsigned long usemapsize
;
3714 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3715 usemapsize
= usemapsize
>> pageblock_order
;
3716 usemapsize
*= NR_PAGEBLOCK_BITS
;
3717 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3719 return usemapsize
/ 8;
3722 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3723 struct zone
*zone
, unsigned long zonesize
)
3725 unsigned long usemapsize
= usemap_size(zonesize
);
3726 zone
->pageblock_flags
= NULL
;
3728 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3731 static void inline setup_usemap(struct pglist_data
*pgdat
,
3732 struct zone
*zone
, unsigned long zonesize
) {}
3733 #endif /* CONFIG_SPARSEMEM */
3735 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3737 /* Return a sensible default order for the pageblock size. */
3738 static inline int pageblock_default_order(void)
3740 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3741 return HUGETLB_PAGE_ORDER
;
3746 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3747 static inline void __init
set_pageblock_order(unsigned int order
)
3749 /* Check that pageblock_nr_pages has not already been setup */
3750 if (pageblock_order
)
3754 * Assume the largest contiguous order of interest is a huge page.
3755 * This value may be variable depending on boot parameters on IA64
3757 pageblock_order
= order
;
3759 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3762 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3763 * and pageblock_default_order() are unused as pageblock_order is set
3764 * at compile-time. See include/linux/pageblock-flags.h for the values of
3765 * pageblock_order based on the kernel config
3767 static inline int pageblock_default_order(unsigned int order
)
3771 #define set_pageblock_order(x) do {} while (0)
3773 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3776 * Set up the zone data structures:
3777 * - mark all pages reserved
3778 * - mark all memory queues empty
3779 * - clear the memory bitmaps
3781 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3782 unsigned long *zones_size
, unsigned long *zholes_size
)
3785 int nid
= pgdat
->node_id
;
3786 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3789 pgdat_resize_init(pgdat
);
3790 pgdat
->nr_zones
= 0;
3791 init_waitqueue_head(&pgdat
->kswapd_wait
);
3792 pgdat
->kswapd_max_order
= 0;
3793 pgdat_page_cgroup_init(pgdat
);
3795 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3796 struct zone
*zone
= pgdat
->node_zones
+ j
;
3797 unsigned long size
, realsize
, memmap_pages
;
3800 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3801 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3805 * Adjust realsize so that it accounts for how much memory
3806 * is used by this zone for memmap. This affects the watermark
3807 * and per-cpu initialisations
3810 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3811 if (realsize
>= memmap_pages
) {
3812 realsize
-= memmap_pages
;
3815 " %s zone: %lu pages used for memmap\n",
3816 zone_names
[j
], memmap_pages
);
3819 " %s zone: %lu pages exceeds realsize %lu\n",
3820 zone_names
[j
], memmap_pages
, realsize
);
3822 /* Account for reserved pages */
3823 if (j
== 0 && realsize
> dma_reserve
) {
3824 realsize
-= dma_reserve
;
3825 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3826 zone_names
[0], dma_reserve
);
3829 if (!is_highmem_idx(j
))
3830 nr_kernel_pages
+= realsize
;
3831 nr_all_pages
+= realsize
;
3833 zone
->spanned_pages
= size
;
3834 zone
->present_pages
= realsize
;
3837 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3839 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3841 zone
->name
= zone_names
[j
];
3842 spin_lock_init(&zone
->lock
);
3843 spin_lock_init(&zone
->lru_lock
);
3844 zone_seqlock_init(zone
);
3845 zone
->zone_pgdat
= pgdat
;
3847 zone
->prev_priority
= DEF_PRIORITY
;
3849 zone_pcp_init(zone
);
3851 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
3852 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
3854 zone
->reclaim_stat
.recent_rotated
[0] = 0;
3855 zone
->reclaim_stat
.recent_rotated
[1] = 0;
3856 zone
->reclaim_stat
.recent_scanned
[0] = 0;
3857 zone
->reclaim_stat
.recent_scanned
[1] = 0;
3858 zap_zone_vm_stats(zone
);
3863 set_pageblock_order(pageblock_default_order());
3864 setup_usemap(pgdat
, zone
, size
);
3865 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3866 size
, MEMMAP_EARLY
);
3868 memmap_init(size
, nid
, j
, zone_start_pfn
);
3869 zone_start_pfn
+= size
;
3873 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3875 /* Skip empty nodes */
3876 if (!pgdat
->node_spanned_pages
)
3879 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3880 /* ia64 gets its own node_mem_map, before this, without bootmem */
3881 if (!pgdat
->node_mem_map
) {
3882 unsigned long size
, start
, end
;
3886 * The zone's endpoints aren't required to be MAX_ORDER
3887 * aligned but the node_mem_map endpoints must be in order
3888 * for the buddy allocator to function correctly.
3890 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3891 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3892 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3893 size
= (end
- start
) * sizeof(struct page
);
3894 map
= alloc_remap(pgdat
->node_id
, size
);
3896 map
= alloc_bootmem_node(pgdat
, size
);
3897 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3899 "Node %d memmap at 0x%p size %lu first pfn 0x%p\n",
3900 pgdat
->node_id
, map
, size
, pgdat
->node_mem_map
);
3902 #ifndef CONFIG_NEED_MULTIPLE_NODES
3904 * With no DISCONTIG, the global mem_map is just set as node 0's
3906 if (pgdat
== NODE_DATA(0)) {
3907 mem_map
= NODE_DATA(0)->node_mem_map
;
3908 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3909 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3910 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3911 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3914 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3917 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3918 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3920 pg_data_t
*pgdat
= NODE_DATA(nid
);
3922 pgdat
->node_id
= nid
;
3923 pgdat
->node_start_pfn
= node_start_pfn
;
3924 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3926 alloc_node_mem_map(pgdat
);
3927 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3928 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3929 nid
, (unsigned long)pgdat
,
3930 (unsigned long)pgdat
->node_mem_map
);
3933 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3936 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3938 #if MAX_NUMNODES > 1
3940 * Figure out the number of possible node ids.
3942 static void __init
setup_nr_node_ids(void)
3945 unsigned int highest
= 0;
3947 for_each_node_mask(node
, node_possible_map
)
3949 nr_node_ids
= highest
+ 1;
3952 static inline void setup_nr_node_ids(void)
3958 * add_active_range - Register a range of PFNs backed by physical memory
3959 * @nid: The node ID the range resides on
3960 * @start_pfn: The start PFN of the available physical memory
3961 * @end_pfn: The end PFN of the available physical memory
3963 * These ranges are stored in an early_node_map[] and later used by
3964 * free_area_init_nodes() to calculate zone sizes and holes. If the
3965 * range spans a memory hole, it is up to the architecture to ensure
3966 * the memory is not freed by the bootmem allocator. If possible
3967 * the range being registered will be merged with existing ranges.
3969 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3970 unsigned long end_pfn
)
3974 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3975 "Entering add_active_range(%d, %#lx, %#lx) "
3976 "%d entries of %d used\n",
3977 nid
, start_pfn
, end_pfn
,
3978 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3980 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3982 /* Merge with existing active regions if possible */
3983 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3984 if (early_node_map
[i
].nid
!= nid
)
3987 /* Skip if an existing region covers this new one */
3988 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3989 end_pfn
<= early_node_map
[i
].end_pfn
)
3992 /* Merge forward if suitable */
3993 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3994 end_pfn
> early_node_map
[i
].end_pfn
) {
3995 early_node_map
[i
].end_pfn
= end_pfn
;
3999 /* Merge backward if suitable */
4000 if (start_pfn
< early_node_map
[i
].end_pfn
&&
4001 end_pfn
>= early_node_map
[i
].start_pfn
) {
4002 early_node_map
[i
].start_pfn
= start_pfn
;
4007 /* Check that early_node_map is large enough */
4008 if (i
>= MAX_ACTIVE_REGIONS
) {
4009 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4010 MAX_ACTIVE_REGIONS
);
4014 early_node_map
[i
].nid
= nid
;
4015 early_node_map
[i
].start_pfn
= start_pfn
;
4016 early_node_map
[i
].end_pfn
= end_pfn
;
4017 nr_nodemap_entries
= i
+ 1;
4021 * remove_active_range - Shrink an existing registered range of PFNs
4022 * @nid: The node id the range is on that should be shrunk
4023 * @start_pfn: The new PFN of the range
4024 * @end_pfn: The new PFN of the range
4026 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4027 * The map is kept near the end physical page range that has already been
4028 * registered. This function allows an arch to shrink an existing registered
4031 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4032 unsigned long end_pfn
)
4037 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4038 nid
, start_pfn
, end_pfn
);
4040 /* Find the old active region end and shrink */
4041 for_each_active_range_index_in_nid(i
, nid
) {
4042 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4043 early_node_map
[i
].end_pfn
<= end_pfn
) {
4045 early_node_map
[i
].start_pfn
= 0;
4046 early_node_map
[i
].end_pfn
= 0;
4050 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4051 early_node_map
[i
].end_pfn
> start_pfn
) {
4052 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4053 early_node_map
[i
].end_pfn
= start_pfn
;
4054 if (temp_end_pfn
> end_pfn
)
4055 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4058 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4059 early_node_map
[i
].end_pfn
> end_pfn
&&
4060 early_node_map
[i
].start_pfn
< end_pfn
) {
4061 early_node_map
[i
].start_pfn
= end_pfn
;
4069 /* remove the blank ones */
4070 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4071 if (early_node_map
[i
].nid
!= nid
)
4073 if (early_node_map
[i
].end_pfn
)
4075 /* we found it, get rid of it */
4076 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4077 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4078 sizeof(early_node_map
[j
]));
4079 j
= nr_nodemap_entries
- 1;
4080 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4081 nr_nodemap_entries
--;
4086 * remove_all_active_ranges - Remove all currently registered regions
4088 * During discovery, it may be found that a table like SRAT is invalid
4089 * and an alternative discovery method must be used. This function removes
4090 * all currently registered regions.
4092 void __init
remove_all_active_ranges(void)
4094 memset(early_node_map
, 0, sizeof(early_node_map
));
4095 nr_nodemap_entries
= 0;
4098 /* Compare two active node_active_regions */
4099 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4101 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4102 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4104 /* Done this way to avoid overflows */
4105 if (arange
->start_pfn
> brange
->start_pfn
)
4107 if (arange
->start_pfn
< brange
->start_pfn
)
4113 /* sort the node_map by start_pfn */
4114 static void __init
sort_node_map(void)
4116 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4117 sizeof(struct node_active_region
),
4118 cmp_node_active_region
, NULL
);
4121 /* Find the lowest pfn for a node */
4122 static unsigned long __init
find_min_pfn_for_node(int nid
)
4125 unsigned long min_pfn
= ULONG_MAX
;
4127 /* Assuming a sorted map, the first range found has the starting pfn */
4128 for_each_active_range_index_in_nid(i
, nid
)
4129 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4131 if (min_pfn
== ULONG_MAX
) {
4133 "Could not find start_pfn for node %d\n", nid
);
4141 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4143 * It returns the minimum PFN based on information provided via
4144 * add_active_range().
4146 unsigned long __init
find_min_pfn_with_active_regions(void)
4148 return find_min_pfn_for_node(MAX_NUMNODES
);
4152 * early_calculate_totalpages()
4153 * Sum pages in active regions for movable zone.
4154 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4156 static unsigned long __init
early_calculate_totalpages(void)
4159 unsigned long totalpages
= 0;
4161 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4162 unsigned long pages
= early_node_map
[i
].end_pfn
-
4163 early_node_map
[i
].start_pfn
;
4164 totalpages
+= pages
;
4166 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4172 * Find the PFN the Movable zone begins in each node. Kernel memory
4173 * is spread evenly between nodes as long as the nodes have enough
4174 * memory. When they don't, some nodes will have more kernelcore than
4177 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4180 unsigned long usable_startpfn
;
4181 unsigned long kernelcore_node
, kernelcore_remaining
;
4182 /* save the state before borrow the nodemask */
4183 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4184 unsigned long totalpages
= early_calculate_totalpages();
4185 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4188 * If movablecore was specified, calculate what size of
4189 * kernelcore that corresponds so that memory usable for
4190 * any allocation type is evenly spread. If both kernelcore
4191 * and movablecore are specified, then the value of kernelcore
4192 * will be used for required_kernelcore if it's greater than
4193 * what movablecore would have allowed.
4195 if (required_movablecore
) {
4196 unsigned long corepages
;
4199 * Round-up so that ZONE_MOVABLE is at least as large as what
4200 * was requested by the user
4202 required_movablecore
=
4203 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4204 corepages
= totalpages
- required_movablecore
;
4206 required_kernelcore
= max(required_kernelcore
, corepages
);
4209 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4210 if (!required_kernelcore
)
4213 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4214 find_usable_zone_for_movable();
4215 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4218 /* Spread kernelcore memory as evenly as possible throughout nodes */
4219 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4220 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4222 * Recalculate kernelcore_node if the division per node
4223 * now exceeds what is necessary to satisfy the requested
4224 * amount of memory for the kernel
4226 if (required_kernelcore
< kernelcore_node
)
4227 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4230 * As the map is walked, we track how much memory is usable
4231 * by the kernel using kernelcore_remaining. When it is
4232 * 0, the rest of the node is usable by ZONE_MOVABLE
4234 kernelcore_remaining
= kernelcore_node
;
4236 /* Go through each range of PFNs within this node */
4237 for_each_active_range_index_in_nid(i
, nid
) {
4238 unsigned long start_pfn
, end_pfn
;
4239 unsigned long size_pages
;
4241 start_pfn
= max(early_node_map
[i
].start_pfn
,
4242 zone_movable_pfn
[nid
]);
4243 end_pfn
= early_node_map
[i
].end_pfn
;
4244 if (start_pfn
>= end_pfn
)
4247 /* Account for what is only usable for kernelcore */
4248 if (start_pfn
< usable_startpfn
) {
4249 unsigned long kernel_pages
;
4250 kernel_pages
= min(end_pfn
, usable_startpfn
)
4253 kernelcore_remaining
-= min(kernel_pages
,
4254 kernelcore_remaining
);
4255 required_kernelcore
-= min(kernel_pages
,
4256 required_kernelcore
);
4258 /* Continue if range is now fully accounted */
4259 if (end_pfn
<= usable_startpfn
) {
4262 * Push zone_movable_pfn to the end so
4263 * that if we have to rebalance
4264 * kernelcore across nodes, we will
4265 * not double account here
4267 zone_movable_pfn
[nid
] = end_pfn
;
4270 start_pfn
= usable_startpfn
;
4274 * The usable PFN range for ZONE_MOVABLE is from
4275 * start_pfn->end_pfn. Calculate size_pages as the
4276 * number of pages used as kernelcore
4278 size_pages
= end_pfn
- start_pfn
;
4279 if (size_pages
> kernelcore_remaining
)
4280 size_pages
= kernelcore_remaining
;
4281 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4284 * Some kernelcore has been met, update counts and
4285 * break if the kernelcore for this node has been
4288 required_kernelcore
-= min(required_kernelcore
,
4290 kernelcore_remaining
-= size_pages
;
4291 if (!kernelcore_remaining
)
4297 * If there is still required_kernelcore, we do another pass with one
4298 * less node in the count. This will push zone_movable_pfn[nid] further
4299 * along on the nodes that still have memory until kernelcore is
4303 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4306 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4307 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4308 zone_movable_pfn
[nid
] =
4309 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4312 /* restore the node_state */
4313 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4316 /* Any regular memory on that node ? */
4317 static void check_for_regular_memory(pg_data_t
*pgdat
)
4319 #ifdef CONFIG_HIGHMEM
4320 enum zone_type zone_type
;
4322 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4323 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4324 if (zone
->present_pages
)
4325 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4331 * free_area_init_nodes - Initialise all pg_data_t and zone data
4332 * @max_zone_pfn: an array of max PFNs for each zone
4334 * This will call free_area_init_node() for each active node in the system.
4335 * Using the page ranges provided by add_active_range(), the size of each
4336 * zone in each node and their holes is calculated. If the maximum PFN
4337 * between two adjacent zones match, it is assumed that the zone is empty.
4338 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4339 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4340 * starts where the previous one ended. For example, ZONE_DMA32 starts
4341 * at arch_max_dma_pfn.
4343 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4348 /* Sort early_node_map as initialisation assumes it is sorted */
4351 /* Record where the zone boundaries are */
4352 memset(arch_zone_lowest_possible_pfn
, 0,
4353 sizeof(arch_zone_lowest_possible_pfn
));
4354 memset(arch_zone_highest_possible_pfn
, 0,
4355 sizeof(arch_zone_highest_possible_pfn
));
4356 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4357 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4358 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4359 if (i
== ZONE_MOVABLE
)
4361 arch_zone_lowest_possible_pfn
[i
] =
4362 arch_zone_highest_possible_pfn
[i
-1];
4363 arch_zone_highest_possible_pfn
[i
] =
4364 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4366 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4367 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4369 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4370 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4371 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4373 /* Print out the page size for debugging meminit problems */
4374 printk(KERN_DEBUG
"sizeof(struct page) = %zd\n", sizeof(struct page
));
4376 /* Print out the zone ranges */
4377 printk("Zone PFN ranges:\n");
4378 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4379 if (i
== ZONE_MOVABLE
)
4381 printk(" %-8s %0#10lx -> %0#10lx\n",
4383 arch_zone_lowest_possible_pfn
[i
],
4384 arch_zone_highest_possible_pfn
[i
]);
4387 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4388 printk("Movable zone start PFN for each node\n");
4389 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4390 if (zone_movable_pfn
[i
])
4391 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4394 /* Print out the early_node_map[] */
4395 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4396 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4397 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4398 early_node_map
[i
].start_pfn
,
4399 early_node_map
[i
].end_pfn
);
4401 /* Initialise every node */
4402 mminit_verify_pageflags_layout();
4403 setup_nr_node_ids();
4404 for_each_online_node(nid
) {
4405 pg_data_t
*pgdat
= NODE_DATA(nid
);
4406 free_area_init_node(nid
, NULL
,
4407 find_min_pfn_for_node(nid
), NULL
);
4409 /* Any memory on that node */
4410 if (pgdat
->node_present_pages
)
4411 node_set_state(nid
, N_HIGH_MEMORY
);
4412 check_for_regular_memory(pgdat
);
4416 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4418 unsigned long long coremem
;
4422 coremem
= memparse(p
, &p
);
4423 *core
= coremem
>> PAGE_SHIFT
;
4425 /* Paranoid check that UL is enough for the coremem value */
4426 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4432 * kernelcore=size sets the amount of memory for use for allocations that
4433 * cannot be reclaimed or migrated.
4435 static int __init
cmdline_parse_kernelcore(char *p
)
4437 return cmdline_parse_core(p
, &required_kernelcore
);
4441 * movablecore=size sets the amount of memory for use for allocations that
4442 * can be reclaimed or migrated.
4444 static int __init
cmdline_parse_movablecore(char *p
)
4446 return cmdline_parse_core(p
, &required_movablecore
);
4449 early_param("kernelcore", cmdline_parse_kernelcore
);
4450 early_param("movablecore", cmdline_parse_movablecore
);
4452 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4455 * set_dma_reserve - set the specified number of pages reserved in the first zone
4456 * @new_dma_reserve: The number of pages to mark reserved
4458 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4459 * In the DMA zone, a significant percentage may be consumed by kernel image
4460 * and other unfreeable allocations which can skew the watermarks badly. This
4461 * function may optionally be used to account for unfreeable pages in the
4462 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4463 * smaller per-cpu batchsize.
4465 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4467 dma_reserve
= new_dma_reserve
;
4470 #ifndef CONFIG_NEED_MULTIPLE_NODES
4471 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4472 EXPORT_SYMBOL(contig_page_data
);
4475 void __init
free_area_init(unsigned long *zones_size
)
4477 free_area_init_node(0, zones_size
,
4478 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4481 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4482 unsigned long action
, void *hcpu
)
4484 int cpu
= (unsigned long)hcpu
;
4486 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4490 * Spill the event counters of the dead processor
4491 * into the current processors event counters.
4492 * This artificially elevates the count of the current
4495 vm_events_fold_cpu(cpu
);
4498 * Zero the differential counters of the dead processor
4499 * so that the vm statistics are consistent.
4501 * This is only okay since the processor is dead and cannot
4502 * race with what we are doing.
4504 refresh_cpu_vm_stats(cpu
);
4509 void __init
page_alloc_init(void)
4511 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4515 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4516 * or min_free_kbytes changes.
4518 static void calculate_totalreserve_pages(void)
4520 struct pglist_data
*pgdat
;
4521 unsigned long reserve_pages
= 0;
4522 enum zone_type i
, j
;
4524 for_each_online_pgdat(pgdat
) {
4525 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4526 struct zone
*zone
= pgdat
->node_zones
+ i
;
4527 unsigned long max
= 0;
4529 /* Find valid and maximum lowmem_reserve in the zone */
4530 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4531 if (zone
->lowmem_reserve
[j
] > max
)
4532 max
= zone
->lowmem_reserve
[j
];
4535 /* we treat the high watermark as reserved pages. */
4536 max
+= high_wmark_pages(zone
);
4538 if (max
> zone
->present_pages
)
4539 max
= zone
->present_pages
;
4540 reserve_pages
+= max
;
4543 totalreserve_pages
= reserve_pages
;
4547 * setup_per_zone_lowmem_reserve - called whenever
4548 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4549 * has a correct pages reserved value, so an adequate number of
4550 * pages are left in the zone after a successful __alloc_pages().
4552 static void setup_per_zone_lowmem_reserve(void)
4554 struct pglist_data
*pgdat
;
4555 enum zone_type j
, idx
;
4557 for_each_online_pgdat(pgdat
) {
4558 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4559 struct zone
*zone
= pgdat
->node_zones
+ j
;
4560 unsigned long present_pages
= zone
->present_pages
;
4562 zone
->lowmem_reserve
[j
] = 0;
4566 struct zone
*lower_zone
;
4570 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4571 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4573 lower_zone
= pgdat
->node_zones
+ idx
;
4574 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4575 sysctl_lowmem_reserve_ratio
[idx
];
4576 present_pages
+= lower_zone
->present_pages
;
4581 /* update totalreserve_pages */
4582 calculate_totalreserve_pages();
4586 * setup_per_zone_wmarks - called when min_free_kbytes changes
4587 * or when memory is hot-{added|removed}
4589 * Ensures that the watermark[min,low,high] values for each zone are set
4590 * correctly with respect to min_free_kbytes.
4592 void setup_per_zone_wmarks(void)
4594 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4595 unsigned long lowmem_pages
= 0;
4597 unsigned long flags
;
4599 /* Calculate total number of !ZONE_HIGHMEM pages */
4600 for_each_zone(zone
) {
4601 if (!is_highmem(zone
))
4602 lowmem_pages
+= zone
->present_pages
;
4605 for_each_zone(zone
) {
4608 spin_lock_irqsave(&zone
->lock
, flags
);
4609 tmp
= (u64
)pages_min
* zone
->present_pages
;
4610 do_div(tmp
, lowmem_pages
);
4611 if (is_highmem(zone
)) {
4613 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4614 * need highmem pages, so cap pages_min to a small
4617 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4618 * deltas controls asynch page reclaim, and so should
4619 * not be capped for highmem.
4623 min_pages
= zone
->present_pages
/ 1024;
4624 if (min_pages
< SWAP_CLUSTER_MAX
)
4625 min_pages
= SWAP_CLUSTER_MAX
;
4626 if (min_pages
> 128)
4628 zone
->watermark
[WMARK_MIN
] = min_pages
;
4631 * If it's a lowmem zone, reserve a number of pages
4632 * proportionate to the zone's size.
4634 zone
->watermark
[WMARK_MIN
] = tmp
;
4637 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4638 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4639 setup_zone_migrate_reserve(zone
);
4640 spin_unlock_irqrestore(&zone
->lock
, flags
);
4643 /* update totalreserve_pages */
4644 calculate_totalreserve_pages();
4648 * The inactive anon list should be small enough that the VM never has to
4649 * do too much work, but large enough that each inactive page has a chance
4650 * to be referenced again before it is swapped out.
4652 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4653 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4654 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4655 * the anonymous pages are kept on the inactive list.
4658 * memory ratio inactive anon
4659 * -------------------------------------
4668 void calculate_zone_inactive_ratio(struct zone
*zone
)
4670 unsigned int gb
, ratio
;
4672 /* Zone size in gigabytes */
4673 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4675 ratio
= int_sqrt(10 * gb
);
4679 zone
->inactive_ratio
= ratio
;
4682 static void __init
setup_per_zone_inactive_ratio(void)
4687 calculate_zone_inactive_ratio(zone
);
4691 * Initialise min_free_kbytes.
4693 * For small machines we want it small (128k min). For large machines
4694 * we want it large (64MB max). But it is not linear, because network
4695 * bandwidth does not increase linearly with machine size. We use
4697 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4698 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4714 static int __init
init_per_zone_wmark_min(void)
4716 unsigned long lowmem_kbytes
;
4718 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4720 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4721 if (min_free_kbytes
< 128)
4722 min_free_kbytes
= 128;
4723 if (min_free_kbytes
> 65536)
4724 min_free_kbytes
= 65536;
4725 setup_per_zone_wmarks();
4726 setup_per_zone_lowmem_reserve();
4727 setup_per_zone_inactive_ratio();
4730 module_init(init_per_zone_wmark_min
)
4733 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4734 * that we can call two helper functions whenever min_free_kbytes
4737 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4738 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4740 proc_dointvec(table
, write
, buffer
, length
, ppos
);
4742 setup_per_zone_wmarks();
4747 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4748 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4753 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4758 zone
->min_unmapped_pages
= (zone
->present_pages
*
4759 sysctl_min_unmapped_ratio
) / 100;
4763 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4764 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4769 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4774 zone
->min_slab_pages
= (zone
->present_pages
*
4775 sysctl_min_slab_ratio
) / 100;
4781 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4782 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4783 * whenever sysctl_lowmem_reserve_ratio changes.
4785 * The reserve ratio obviously has absolutely no relation with the
4786 * minimum watermarks. The lowmem reserve ratio can only make sense
4787 * if in function of the boot time zone sizes.
4789 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4790 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4792 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4793 setup_per_zone_lowmem_reserve();
4798 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4799 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4800 * can have before it gets flushed back to buddy allocator.
4803 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4804 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4810 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4811 if (!write
|| (ret
== -EINVAL
))
4813 for_each_populated_zone(zone
) {
4814 for_each_online_cpu(cpu
) {
4816 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4817 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4823 int hashdist
= HASHDIST_DEFAULT
;
4826 static int __init
set_hashdist(char *str
)
4830 hashdist
= simple_strtoul(str
, &str
, 0);
4833 __setup("hashdist=", set_hashdist
);
4837 * allocate a large system hash table from bootmem
4838 * - it is assumed that the hash table must contain an exact power-of-2
4839 * quantity of entries
4840 * - limit is the number of hash buckets, not the total allocation size
4842 void *__init
alloc_large_system_hash(const char *tablename
,
4843 unsigned long bucketsize
,
4844 unsigned long numentries
,
4847 unsigned int *_hash_shift
,
4848 unsigned int *_hash_mask
,
4849 unsigned long limit
)
4851 unsigned long long max
= limit
;
4852 unsigned long log2qty
, size
;
4855 /* allow the kernel cmdline to have a say */
4857 /* round applicable memory size up to nearest megabyte */
4858 numentries
= nr_kernel_pages
;
4859 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4860 numentries
>>= 20 - PAGE_SHIFT
;
4861 numentries
<<= 20 - PAGE_SHIFT
;
4863 /* limit to 1 bucket per 2^scale bytes of low memory */
4864 if (scale
> PAGE_SHIFT
)
4865 numentries
>>= (scale
- PAGE_SHIFT
);
4867 numentries
<<= (PAGE_SHIFT
- scale
);
4869 /* Make sure we've got at least a 0-order allocation.. */
4870 if (unlikely(flags
& HASH_SMALL
)) {
4871 /* Makes no sense without HASH_EARLY */
4872 WARN_ON(!(flags
& HASH_EARLY
));
4873 if (!(numentries
>> *_hash_shift
)) {
4874 numentries
= 1UL << *_hash_shift
;
4875 BUG_ON(!numentries
);
4877 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4878 numentries
= PAGE_SIZE
/ bucketsize
;
4880 numentries
= roundup_pow_of_two(numentries
);
4882 /* limit allocation size to 1/16 total memory by default */
4884 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4885 do_div(max
, bucketsize
);
4888 if (numentries
> max
)
4891 log2qty
= ilog2(numentries
);
4894 size
= bucketsize
<< log2qty
;
4895 if (flags
& HASH_EARLY
)
4896 table
= alloc_bootmem_nopanic(size
);
4898 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4901 * If bucketsize is not a power-of-two, we may free
4902 * some pages at the end of hash table which
4903 * alloc_pages_exact() automatically does
4905 if (get_order(size
) < MAX_ORDER
) {
4906 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
4907 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
4910 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4913 panic("Failed to allocate %s hash table\n", tablename
);
4915 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4918 ilog2(size
) - PAGE_SHIFT
,
4922 *_hash_shift
= log2qty
;
4924 *_hash_mask
= (1 << log2qty
) - 1;
4929 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4930 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4933 #ifdef CONFIG_SPARSEMEM
4934 return __pfn_to_section(pfn
)->pageblock_flags
;
4936 return zone
->pageblock_flags
;
4937 #endif /* CONFIG_SPARSEMEM */
4940 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4942 #ifdef CONFIG_SPARSEMEM
4943 pfn
&= (PAGES_PER_SECTION
-1);
4944 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4946 pfn
= pfn
- zone
->zone_start_pfn
;
4947 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4948 #endif /* CONFIG_SPARSEMEM */
4952 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4953 * @page: The page within the block of interest
4954 * @start_bitidx: The first bit of interest to retrieve
4955 * @end_bitidx: The last bit of interest
4956 * returns pageblock_bits flags
4958 unsigned long get_pageblock_flags_group(struct page
*page
,
4959 int start_bitidx
, int end_bitidx
)
4962 unsigned long *bitmap
;
4963 unsigned long pfn
, bitidx
;
4964 unsigned long flags
= 0;
4965 unsigned long value
= 1;
4967 zone
= page_zone(page
);
4968 pfn
= page_to_pfn(page
);
4969 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4970 bitidx
= pfn_to_bitidx(zone
, pfn
);
4972 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4973 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4980 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4981 * @page: The page within the block of interest
4982 * @start_bitidx: The first bit of interest
4983 * @end_bitidx: The last bit of interest
4984 * @flags: The flags to set
4986 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4987 int start_bitidx
, int end_bitidx
)
4990 unsigned long *bitmap
;
4991 unsigned long pfn
, bitidx
;
4992 unsigned long value
= 1;
4994 zone
= page_zone(page
);
4995 pfn
= page_to_pfn(page
);
4996 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4997 bitidx
= pfn_to_bitidx(zone
, pfn
);
4998 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4999 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5001 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5003 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5005 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5009 * This is designed as sub function...plz see page_isolation.c also.
5010 * set/clear page block's type to be ISOLATE.
5011 * page allocater never alloc memory from ISOLATE block.
5014 int set_migratetype_isolate(struct page
*page
)
5017 struct page
*curr_page
;
5018 unsigned long flags
, pfn
, iter
;
5019 unsigned long immobile
= 0;
5020 struct memory_isolate_notify arg
;
5025 zone
= page_zone(page
);
5026 zone_idx
= zone_idx(zone
);
5028 spin_lock_irqsave(&zone
->lock
, flags
);
5029 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
||
5030 zone_idx
== ZONE_MOVABLE
) {
5035 pfn
= page_to_pfn(page
);
5036 arg
.start_pfn
= pfn
;
5037 arg
.nr_pages
= pageblock_nr_pages
;
5038 arg
.pages_found
= 0;
5041 * It may be possible to isolate a pageblock even if the
5042 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5043 * notifier chain is used by balloon drivers to return the
5044 * number of pages in a range that are held by the balloon
5045 * driver to shrink memory. If all the pages are accounted for
5046 * by balloons, are free, or on the LRU, isolation can continue.
5047 * Later, for example, when memory hotplug notifier runs, these
5048 * pages reported as "can be isolated" should be isolated(freed)
5049 * by the balloon driver through the memory notifier chain.
5051 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5052 notifier_ret
= notifier_to_errno(notifier_ret
);
5053 if (notifier_ret
|| !arg
.pages_found
)
5056 for (iter
= pfn
; iter
< (pfn
+ pageblock_nr_pages
); iter
++) {
5057 if (!pfn_valid_within(pfn
))
5060 curr_page
= pfn_to_page(iter
);
5061 if (!page_count(curr_page
) || PageLRU(curr_page
))
5067 if (arg
.pages_found
== immobile
)
5072 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5073 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5076 spin_unlock_irqrestore(&zone
->lock
, flags
);
5082 void unset_migratetype_isolate(struct page
*page
)
5085 unsigned long flags
;
5086 zone
= page_zone(page
);
5087 spin_lock_irqsave(&zone
->lock
, flags
);
5088 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5090 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5091 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5093 spin_unlock_irqrestore(&zone
->lock
, flags
);
5096 #ifdef CONFIG_MEMORY_HOTREMOVE
5098 * All pages in the range must be isolated before calling this.
5101 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5107 unsigned long flags
;
5108 /* find the first valid pfn */
5109 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5114 zone
= page_zone(pfn_to_page(pfn
));
5115 spin_lock_irqsave(&zone
->lock
, flags
);
5117 while (pfn
< end_pfn
) {
5118 if (!pfn_valid(pfn
)) {
5122 page
= pfn_to_page(pfn
);
5123 BUG_ON(page_count(page
));
5124 BUG_ON(!PageBuddy(page
));
5125 order
= page_order(page
);
5126 #ifdef CONFIG_DEBUG_VM
5127 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5128 pfn
, 1 << order
, end_pfn
);
5130 list_del(&page
->lru
);
5131 rmv_page_order(page
);
5132 zone
->free_area
[order
].nr_free
--;
5133 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5135 for (i
= 0; i
< (1 << order
); i
++)
5136 SetPageReserved((page
+i
));
5137 pfn
+= (1 << order
);
5139 spin_unlock_irqrestore(&zone
->lock
, flags
);