mm-only debug patch...
[mmotm.git] / net / core / dev.c
blob75177571665362a0f482b5d20a9c1a5deb9dad75
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
131 #include "net-sysfs.h"
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
178 * Pure readers hold dev_base_lock for reading.
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
193 DEFINE_RWLOCK(dev_base_lock);
194 EXPORT_SYMBOL(dev_base_lock);
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
213 struct net *net = dev_net(dev);
215 ASSERT_RTNL();
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
228 ASSERT_RTNL();
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
239 * Our notifier list
242 static RAW_NOTIFIER_HEAD(netdev_chain);
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
252 #ifdef CONFIG_LOCKDEP
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
273 ARPHRD_VOID, ARPHRD_NONE};
275 static const char *const netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
291 "_xmit_VOID", "_xmit_NONE"};
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298 int i;
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
310 int i;
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
319 int i;
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
326 #else
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 #endif
336 /*******************************************************************************
338 Protocol management and registration routines
340 *******************************************************************************/
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
371 void dev_add_pack(struct packet_type *pt)
373 int hash;
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
382 spin_unlock_bh(&ptype_lock);
384 EXPORT_SYMBOL(dev_add_pack);
387 * __dev_remove_pack - remove packet handler
388 * @pt: packet type declaration
390 * Remove a protocol handler that was previously added to the kernel
391 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
392 * from the kernel lists and can be freed or reused once this function
393 * returns.
395 * The packet type might still be in use by receivers
396 * and must not be freed until after all the CPU's have gone
397 * through a quiescent state.
399 void __dev_remove_pack(struct packet_type *pt)
401 struct list_head *head;
402 struct packet_type *pt1;
404 spin_lock_bh(&ptype_lock);
406 if (pt->type == htons(ETH_P_ALL))
407 head = &ptype_all;
408 else
409 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
411 list_for_each_entry(pt1, head, list) {
412 if (pt == pt1) {
413 list_del_rcu(&pt->list);
414 goto out;
418 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
419 out:
420 spin_unlock_bh(&ptype_lock);
422 EXPORT_SYMBOL(__dev_remove_pack);
425 * dev_remove_pack - remove packet handler
426 * @pt: packet type declaration
428 * Remove a protocol handler that was previously added to the kernel
429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
430 * from the kernel lists and can be freed or reused once this function
431 * returns.
433 * This call sleeps to guarantee that no CPU is looking at the packet
434 * type after return.
436 void dev_remove_pack(struct packet_type *pt)
438 __dev_remove_pack(pt);
440 synchronize_net();
442 EXPORT_SYMBOL(dev_remove_pack);
444 /******************************************************************************
446 Device Boot-time Settings Routines
448 *******************************************************************************/
450 /* Boot time configuration table */
451 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454 * netdev_boot_setup_add - add new setup entry
455 * @name: name of the device
456 * @map: configured settings for the device
458 * Adds new setup entry to the dev_boot_setup list. The function
459 * returns 0 on error and 1 on success. This is a generic routine to
460 * all netdevices.
462 static int netdev_boot_setup_add(char *name, struct ifmap *map)
464 struct netdev_boot_setup *s;
465 int i;
467 s = dev_boot_setup;
468 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
469 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
470 memset(s[i].name, 0, sizeof(s[i].name));
471 strlcpy(s[i].name, name, IFNAMSIZ);
472 memcpy(&s[i].map, map, sizeof(s[i].map));
473 break;
477 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
481 * netdev_boot_setup_check - check boot time settings
482 * @dev: the netdevice
484 * Check boot time settings for the device.
485 * The found settings are set for the device to be used
486 * later in the device probing.
487 * Returns 0 if no settings found, 1 if they are.
489 int netdev_boot_setup_check(struct net_device *dev)
491 struct netdev_boot_setup *s = dev_boot_setup;
492 int i;
494 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
495 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
496 !strcmp(dev->name, s[i].name)) {
497 dev->irq = s[i].map.irq;
498 dev->base_addr = s[i].map.base_addr;
499 dev->mem_start = s[i].map.mem_start;
500 dev->mem_end = s[i].map.mem_end;
501 return 1;
504 return 0;
506 EXPORT_SYMBOL(netdev_boot_setup_check);
510 * netdev_boot_base - get address from boot time settings
511 * @prefix: prefix for network device
512 * @unit: id for network device
514 * Check boot time settings for the base address of device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found.
519 unsigned long netdev_boot_base(const char *prefix, int unit)
521 const struct netdev_boot_setup *s = dev_boot_setup;
522 char name[IFNAMSIZ];
523 int i;
525 sprintf(name, "%s%d", prefix, unit);
528 * If device already registered then return base of 1
529 * to indicate not to probe for this interface
531 if (__dev_get_by_name(&init_net, name))
532 return 1;
534 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
535 if (!strcmp(name, s[i].name))
536 return s[i].map.base_addr;
537 return 0;
541 * Saves at boot time configured settings for any netdevice.
543 int __init netdev_boot_setup(char *str)
545 int ints[5];
546 struct ifmap map;
548 str = get_options(str, ARRAY_SIZE(ints), ints);
549 if (!str || !*str)
550 return 0;
552 /* Save settings */
553 memset(&map, 0, sizeof(map));
554 if (ints[0] > 0)
555 map.irq = ints[1];
556 if (ints[0] > 1)
557 map.base_addr = ints[2];
558 if (ints[0] > 2)
559 map.mem_start = ints[3];
560 if (ints[0] > 3)
561 map.mem_end = ints[4];
563 /* Add new entry to the list */
564 return netdev_boot_setup_add(str, &map);
567 __setup("netdev=", netdev_boot_setup);
569 /*******************************************************************************
571 Device Interface Subroutines
573 *******************************************************************************/
576 * __dev_get_by_name - find a device by its name
577 * @net: the applicable net namespace
578 * @name: name to find
580 * Find an interface by name. Must be called under RTNL semaphore
581 * or @dev_base_lock. If the name is found a pointer to the device
582 * is returned. If the name is not found then %NULL is returned. The
583 * reference counters are not incremented so the caller must be
584 * careful with locks.
587 struct net_device *__dev_get_by_name(struct net *net, const char *name)
589 struct hlist_node *p;
591 hlist_for_each(p, dev_name_hash(net, name)) {
592 struct net_device *dev
593 = hlist_entry(p, struct net_device, name_hlist);
594 if (!strncmp(dev->name, name, IFNAMSIZ))
595 return dev;
597 return NULL;
599 EXPORT_SYMBOL(__dev_get_by_name);
602 * dev_get_by_name - find a device by its name
603 * @net: the applicable net namespace
604 * @name: name to find
606 * Find an interface by name. This can be called from any
607 * context and does its own locking. The returned handle has
608 * the usage count incremented and the caller must use dev_put() to
609 * release it when it is no longer needed. %NULL is returned if no
610 * matching device is found.
613 struct net_device *dev_get_by_name(struct net *net, const char *name)
615 struct net_device *dev;
617 read_lock(&dev_base_lock);
618 dev = __dev_get_by_name(net, name);
619 if (dev)
620 dev_hold(dev);
621 read_unlock(&dev_base_lock);
622 return dev;
624 EXPORT_SYMBOL(dev_get_by_name);
627 * __dev_get_by_index - find a device by its ifindex
628 * @net: the applicable net namespace
629 * @ifindex: index of device
631 * Search for an interface by index. Returns %NULL if the device
632 * is not found or a pointer to the device. The device has not
633 * had its reference counter increased so the caller must be careful
634 * about locking. The caller must hold either the RTNL semaphore
635 * or @dev_base_lock.
638 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
640 struct hlist_node *p;
642 hlist_for_each(p, dev_index_hash(net, ifindex)) {
643 struct net_device *dev
644 = hlist_entry(p, struct net_device, index_hlist);
645 if (dev->ifindex == ifindex)
646 return dev;
648 return NULL;
650 EXPORT_SYMBOL(__dev_get_by_index);
654 * dev_get_by_index - find a device by its ifindex
655 * @net: the applicable net namespace
656 * @ifindex: index of device
658 * Search for an interface by index. Returns NULL if the device
659 * is not found or a pointer to the device. The device returned has
660 * had a reference added and the pointer is safe until the user calls
661 * dev_put to indicate they have finished with it.
664 struct net_device *dev_get_by_index(struct net *net, int ifindex)
666 struct net_device *dev;
668 read_lock(&dev_base_lock);
669 dev = __dev_get_by_index(net, ifindex);
670 if (dev)
671 dev_hold(dev);
672 read_unlock(&dev_base_lock);
673 return dev;
675 EXPORT_SYMBOL(dev_get_by_index);
678 * dev_getbyhwaddr - find a device by its hardware address
679 * @net: the applicable net namespace
680 * @type: media type of device
681 * @ha: hardware address
683 * Search for an interface by MAC address. Returns NULL if the device
684 * is not found or a pointer to the device. The caller must hold the
685 * rtnl semaphore. The returned device has not had its ref count increased
686 * and the caller must therefore be careful about locking
688 * BUGS:
689 * If the API was consistent this would be __dev_get_by_hwaddr
692 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
694 struct net_device *dev;
696 ASSERT_RTNL();
698 for_each_netdev(net, dev)
699 if (dev->type == type &&
700 !memcmp(dev->dev_addr, ha, dev->addr_len))
701 return dev;
703 return NULL;
705 EXPORT_SYMBOL(dev_getbyhwaddr);
707 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
709 struct net_device *dev;
711 ASSERT_RTNL();
712 for_each_netdev(net, dev)
713 if (dev->type == type)
714 return dev;
716 return NULL;
718 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
720 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
722 struct net_device *dev;
724 rtnl_lock();
725 dev = __dev_getfirstbyhwtype(net, type);
726 if (dev)
727 dev_hold(dev);
728 rtnl_unlock();
729 return dev;
731 EXPORT_SYMBOL(dev_getfirstbyhwtype);
734 * dev_get_by_flags - find any device with given flags
735 * @net: the applicable net namespace
736 * @if_flags: IFF_* values
737 * @mask: bitmask of bits in if_flags to check
739 * Search for any interface with the given flags. Returns NULL if a device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
745 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
746 unsigned short mask)
748 struct net_device *dev, *ret;
750 ret = NULL;
751 read_lock(&dev_base_lock);
752 for_each_netdev(net, dev) {
753 if (((dev->flags ^ if_flags) & mask) == 0) {
754 dev_hold(dev);
755 ret = dev;
756 break;
759 read_unlock(&dev_base_lock);
760 return ret;
762 EXPORT_SYMBOL(dev_get_by_flags);
765 * dev_valid_name - check if name is okay for network device
766 * @name: name string
768 * Network device names need to be valid file names to
769 * to allow sysfs to work. We also disallow any kind of
770 * whitespace.
772 int dev_valid_name(const char *name)
774 if (*name == '\0')
775 return 0;
776 if (strlen(name) >= IFNAMSIZ)
777 return 0;
778 if (!strcmp(name, ".") || !strcmp(name, ".."))
779 return 0;
781 while (*name) {
782 if (*name == '/' || isspace(*name))
783 return 0;
784 name++;
786 return 1;
788 EXPORT_SYMBOL(dev_valid_name);
791 * __dev_alloc_name - allocate a name for a device
792 * @net: network namespace to allocate the device name in
793 * @name: name format string
794 * @buf: scratch buffer and result name string
796 * Passed a format string - eg "lt%d" it will try and find a suitable
797 * id. It scans list of devices to build up a free map, then chooses
798 * the first empty slot. The caller must hold the dev_base or rtnl lock
799 * while allocating the name and adding the device in order to avoid
800 * duplicates.
801 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
802 * Returns the number of the unit assigned or a negative errno code.
805 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
807 int i = 0;
808 const char *p;
809 const int max_netdevices = 8*PAGE_SIZE;
810 unsigned long *inuse;
811 struct net_device *d;
813 p = strnchr(name, IFNAMSIZ-1, '%');
814 if (p) {
816 * Verify the string as this thing may have come from
817 * the user. There must be either one "%d" and no other "%"
818 * characters.
820 if (p[1] != 'd' || strchr(p + 2, '%'))
821 return -EINVAL;
823 /* Use one page as a bit array of possible slots */
824 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
825 if (!inuse)
826 return -ENOMEM;
828 for_each_netdev(net, d) {
829 if (!sscanf(d->name, name, &i))
830 continue;
831 if (i < 0 || i >= max_netdevices)
832 continue;
834 /* avoid cases where sscanf is not exact inverse of printf */
835 snprintf(buf, IFNAMSIZ, name, i);
836 if (!strncmp(buf, d->name, IFNAMSIZ))
837 set_bit(i, inuse);
840 i = find_first_zero_bit(inuse, max_netdevices);
841 free_page((unsigned long) inuse);
844 snprintf(buf, IFNAMSIZ, name, i);
845 if (!__dev_get_by_name(net, buf))
846 return i;
848 /* It is possible to run out of possible slots
849 * when the name is long and there isn't enough space left
850 * for the digits, or if all bits are used.
852 return -ENFILE;
856 * dev_alloc_name - allocate a name for a device
857 * @dev: device
858 * @name: name format string
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
869 int dev_alloc_name(struct net_device *dev, const char *name)
871 char buf[IFNAMSIZ];
872 struct net *net;
873 int ret;
875 BUG_ON(!dev_net(dev));
876 net = dev_net(dev);
877 ret = __dev_alloc_name(net, name, buf);
878 if (ret >= 0)
879 strlcpy(dev->name, buf, IFNAMSIZ);
880 return ret;
882 EXPORT_SYMBOL(dev_alloc_name);
886 * dev_change_name - change name of a device
887 * @dev: device
888 * @newname: name (or format string) must be at least IFNAMSIZ
890 * Change name of a device, can pass format strings "eth%d".
891 * for wildcarding.
893 int dev_change_name(struct net_device *dev, const char *newname)
895 char oldname[IFNAMSIZ];
896 int err = 0;
897 int ret;
898 struct net *net;
900 ASSERT_RTNL();
901 BUG_ON(!dev_net(dev));
903 net = dev_net(dev);
904 if (dev->flags & IFF_UP)
905 return -EBUSY;
907 if (!dev_valid_name(newname))
908 return -EINVAL;
910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 return 0;
913 memcpy(oldname, dev->name, IFNAMSIZ);
915 if (strchr(newname, '%')) {
916 err = dev_alloc_name(dev, newname);
917 if (err < 0)
918 return err;
919 } else if (__dev_get_by_name(net, newname))
920 return -EEXIST;
921 else {
922 if (strncmp(newname, dev->name, IFNAMSIZ))
923 printk(KERN_INFO "%s renamed to %s\n",
924 dev->name, newname);
925 strlcpy(dev->name, newname, IFNAMSIZ);
928 rollback:
929 /* For now only devices in the initial network namespace
930 * are in sysfs.
932 if (net == &init_net) {
933 ret = device_rename(&dev->dev, dev->name);
934 if (ret) {
935 memcpy(dev->name, oldname, IFNAMSIZ);
936 return ret;
940 write_lock_bh(&dev_base_lock);
941 hlist_del(&dev->name_hlist);
942 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
943 write_unlock_bh(&dev_base_lock);
945 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
946 ret = notifier_to_errno(ret);
948 if (ret) {
949 if (err) {
950 printk(KERN_ERR
951 "%s: name change rollback failed: %d.\n",
952 dev->name, ret);
953 } else {
954 err = ret;
955 memcpy(dev->name, oldname, IFNAMSIZ);
956 goto rollback;
960 return err;
964 * dev_set_alias - change ifalias of a device
965 * @dev: device
966 * @alias: name up to IFALIASZ
967 * @len: limit of bytes to copy from info
969 * Set ifalias for a device,
971 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
973 ASSERT_RTNL();
975 if (len >= IFALIASZ)
976 return -EINVAL;
978 if (!len) {
979 if (dev->ifalias) {
980 kfree(dev->ifalias);
981 dev->ifalias = NULL;
983 return 0;
986 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
987 if (!dev->ifalias)
988 return -ENOMEM;
990 strlcpy(dev->ifalias, alias, len+1);
991 return len;
996 * netdev_features_change - device changes features
997 * @dev: device to cause notification
999 * Called to indicate a device has changed features.
1001 void netdev_features_change(struct net_device *dev)
1003 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1005 EXPORT_SYMBOL(netdev_features_change);
1008 * netdev_state_change - device changes state
1009 * @dev: device to cause notification
1011 * Called to indicate a device has changed state. This function calls
1012 * the notifier chains for netdev_chain and sends a NEWLINK message
1013 * to the routing socket.
1015 void netdev_state_change(struct net_device *dev)
1017 if (dev->flags & IFF_UP) {
1018 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1019 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1022 EXPORT_SYMBOL(netdev_state_change);
1024 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1026 call_netdevice_notifiers(event, dev);
1028 EXPORT_SYMBOL(netdev_bonding_change);
1031 * dev_load - load a network module
1032 * @net: the applicable net namespace
1033 * @name: name of interface
1035 * If a network interface is not present and the process has suitable
1036 * privileges this function loads the module. If module loading is not
1037 * available in this kernel then it becomes a nop.
1040 void dev_load(struct net *net, const char *name)
1042 struct net_device *dev;
1044 read_lock(&dev_base_lock);
1045 dev = __dev_get_by_name(net, name);
1046 read_unlock(&dev_base_lock);
1048 if (!dev && capable(CAP_NET_ADMIN))
1049 request_module("%s", name);
1051 EXPORT_SYMBOL(dev_load);
1054 * dev_open - prepare an interface for use.
1055 * @dev: device to open
1057 * Takes a device from down to up state. The device's private open
1058 * function is invoked and then the multicast lists are loaded. Finally
1059 * the device is moved into the up state and a %NETDEV_UP message is
1060 * sent to the netdev notifier chain.
1062 * Calling this function on an active interface is a nop. On a failure
1063 * a negative errno code is returned.
1065 int dev_open(struct net_device *dev)
1067 const struct net_device_ops *ops = dev->netdev_ops;
1068 int ret;
1070 ASSERT_RTNL();
1073 * Is it already up?
1076 if (dev->flags & IFF_UP)
1077 return 0;
1080 * Is it even present?
1082 if (!netif_device_present(dev))
1083 return -ENODEV;
1085 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1086 ret = notifier_to_errno(ret);
1087 if (ret)
1088 return ret;
1091 * Call device private open method
1093 set_bit(__LINK_STATE_START, &dev->state);
1095 if (ops->ndo_validate_addr)
1096 ret = ops->ndo_validate_addr(dev);
1098 if (!ret && ops->ndo_open)
1099 ret = ops->ndo_open(dev);
1102 * If it went open OK then:
1105 if (ret)
1106 clear_bit(__LINK_STATE_START, &dev->state);
1107 else {
1109 * Set the flags.
1111 dev->flags |= IFF_UP;
1114 * Enable NET_DMA
1116 net_dmaengine_get();
1119 * Initialize multicasting status
1121 dev_set_rx_mode(dev);
1124 * Wakeup transmit queue engine
1126 dev_activate(dev);
1129 * ... and announce new interface.
1131 call_netdevice_notifiers(NETDEV_UP, dev);
1134 return ret;
1136 EXPORT_SYMBOL(dev_open);
1139 * dev_close - shutdown an interface.
1140 * @dev: device to shutdown
1142 * This function moves an active device into down state. A
1143 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1144 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1145 * chain.
1147 int dev_close(struct net_device *dev)
1149 const struct net_device_ops *ops = dev->netdev_ops;
1150 ASSERT_RTNL();
1152 might_sleep();
1154 if (!(dev->flags & IFF_UP))
1155 return 0;
1158 * Tell people we are going down, so that they can
1159 * prepare to death, when device is still operating.
1161 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1163 clear_bit(__LINK_STATE_START, &dev->state);
1165 /* Synchronize to scheduled poll. We cannot touch poll list,
1166 * it can be even on different cpu. So just clear netif_running().
1168 * dev->stop() will invoke napi_disable() on all of it's
1169 * napi_struct instances on this device.
1171 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1173 dev_deactivate(dev);
1176 * Call the device specific close. This cannot fail.
1177 * Only if device is UP
1179 * We allow it to be called even after a DETACH hot-plug
1180 * event.
1182 if (ops->ndo_stop)
1183 ops->ndo_stop(dev);
1186 * Device is now down.
1189 dev->flags &= ~IFF_UP;
1192 * Tell people we are down
1194 call_netdevice_notifiers(NETDEV_DOWN, dev);
1197 * Shutdown NET_DMA
1199 net_dmaengine_put();
1201 return 0;
1203 EXPORT_SYMBOL(dev_close);
1207 * dev_disable_lro - disable Large Receive Offload on a device
1208 * @dev: device
1210 * Disable Large Receive Offload (LRO) on a net device. Must be
1211 * called under RTNL. This is needed if received packets may be
1212 * forwarded to another interface.
1214 void dev_disable_lro(struct net_device *dev)
1216 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1217 dev->ethtool_ops->set_flags) {
1218 u32 flags = dev->ethtool_ops->get_flags(dev);
1219 if (flags & ETH_FLAG_LRO) {
1220 flags &= ~ETH_FLAG_LRO;
1221 dev->ethtool_ops->set_flags(dev, flags);
1224 WARN_ON(dev->features & NETIF_F_LRO);
1226 EXPORT_SYMBOL(dev_disable_lro);
1229 static int dev_boot_phase = 1;
1232 * Device change register/unregister. These are not inline or static
1233 * as we export them to the world.
1237 * register_netdevice_notifier - register a network notifier block
1238 * @nb: notifier
1240 * Register a notifier to be called when network device events occur.
1241 * The notifier passed is linked into the kernel structures and must
1242 * not be reused until it has been unregistered. A negative errno code
1243 * is returned on a failure.
1245 * When registered all registration and up events are replayed
1246 * to the new notifier to allow device to have a race free
1247 * view of the network device list.
1250 int register_netdevice_notifier(struct notifier_block *nb)
1252 struct net_device *dev;
1253 struct net_device *last;
1254 struct net *net;
1255 int err;
1257 rtnl_lock();
1258 err = raw_notifier_chain_register(&netdev_chain, nb);
1259 if (err)
1260 goto unlock;
1261 if (dev_boot_phase)
1262 goto unlock;
1263 for_each_net(net) {
1264 for_each_netdev(net, dev) {
1265 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1266 err = notifier_to_errno(err);
1267 if (err)
1268 goto rollback;
1270 if (!(dev->flags & IFF_UP))
1271 continue;
1273 nb->notifier_call(nb, NETDEV_UP, dev);
1277 unlock:
1278 rtnl_unlock();
1279 return err;
1281 rollback:
1282 last = dev;
1283 for_each_net(net) {
1284 for_each_netdev(net, dev) {
1285 if (dev == last)
1286 break;
1288 if (dev->flags & IFF_UP) {
1289 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1290 nb->notifier_call(nb, NETDEV_DOWN, dev);
1292 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1296 raw_notifier_chain_unregister(&netdev_chain, nb);
1297 goto unlock;
1299 EXPORT_SYMBOL(register_netdevice_notifier);
1302 * unregister_netdevice_notifier - unregister a network notifier block
1303 * @nb: notifier
1305 * Unregister a notifier previously registered by
1306 * register_netdevice_notifier(). The notifier is unlinked into the
1307 * kernel structures and may then be reused. A negative errno code
1308 * is returned on a failure.
1311 int unregister_netdevice_notifier(struct notifier_block *nb)
1313 int err;
1315 rtnl_lock();
1316 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1317 rtnl_unlock();
1318 return err;
1320 EXPORT_SYMBOL(unregister_netdevice_notifier);
1323 * call_netdevice_notifiers - call all network notifier blocks
1324 * @val: value passed unmodified to notifier function
1325 * @dev: net_device pointer passed unmodified to notifier function
1327 * Call all network notifier blocks. Parameters and return value
1328 * are as for raw_notifier_call_chain().
1331 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1333 return raw_notifier_call_chain(&netdev_chain, val, dev);
1336 /* When > 0 there are consumers of rx skb time stamps */
1337 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1339 void net_enable_timestamp(void)
1341 atomic_inc(&netstamp_needed);
1343 EXPORT_SYMBOL(net_enable_timestamp);
1345 void net_disable_timestamp(void)
1347 atomic_dec(&netstamp_needed);
1349 EXPORT_SYMBOL(net_disable_timestamp);
1351 static inline void net_timestamp(struct sk_buff *skb)
1353 if (atomic_read(&netstamp_needed))
1354 __net_timestamp(skb);
1355 else
1356 skb->tstamp.tv64 = 0;
1360 * Support routine. Sends outgoing frames to any network
1361 * taps currently in use.
1364 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1366 struct packet_type *ptype;
1368 #ifdef CONFIG_NET_CLS_ACT
1369 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1370 net_timestamp(skb);
1371 #else
1372 net_timestamp(skb);
1373 #endif
1375 rcu_read_lock();
1376 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1377 /* Never send packets back to the socket
1378 * they originated from - MvS (miquels@drinkel.ow.org)
1380 if ((ptype->dev == dev || !ptype->dev) &&
1381 (ptype->af_packet_priv == NULL ||
1382 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1383 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1384 if (!skb2)
1385 break;
1387 /* skb->nh should be correctly
1388 set by sender, so that the second statement is
1389 just protection against buggy protocols.
1391 skb_reset_mac_header(skb2);
1393 if (skb_network_header(skb2) < skb2->data ||
1394 skb2->network_header > skb2->tail) {
1395 if (net_ratelimit())
1396 printk(KERN_CRIT "protocol %04x is "
1397 "buggy, dev %s\n",
1398 skb2->protocol, dev->name);
1399 skb_reset_network_header(skb2);
1402 skb2->transport_header = skb2->network_header;
1403 skb2->pkt_type = PACKET_OUTGOING;
1404 ptype->func(skb2, skb->dev, ptype, skb->dev);
1407 rcu_read_unlock();
1411 static inline void __netif_reschedule(struct Qdisc *q)
1413 struct softnet_data *sd;
1414 unsigned long flags;
1416 local_irq_save(flags);
1417 sd = &__get_cpu_var(softnet_data);
1418 q->next_sched = sd->output_queue;
1419 sd->output_queue = q;
1420 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1421 local_irq_restore(flags);
1424 void __netif_schedule(struct Qdisc *q)
1426 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1427 __netif_reschedule(q);
1429 EXPORT_SYMBOL(__netif_schedule);
1431 void dev_kfree_skb_irq(struct sk_buff *skb)
1433 if (atomic_dec_and_test(&skb->users)) {
1434 struct softnet_data *sd;
1435 unsigned long flags;
1437 local_irq_save(flags);
1438 sd = &__get_cpu_var(softnet_data);
1439 skb->next = sd->completion_queue;
1440 sd->completion_queue = skb;
1441 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1442 local_irq_restore(flags);
1445 EXPORT_SYMBOL(dev_kfree_skb_irq);
1447 void dev_kfree_skb_any(struct sk_buff *skb)
1449 if (in_irq() || irqs_disabled())
1450 dev_kfree_skb_irq(skb);
1451 else
1452 dev_kfree_skb(skb);
1454 EXPORT_SYMBOL(dev_kfree_skb_any);
1458 * netif_device_detach - mark device as removed
1459 * @dev: network device
1461 * Mark device as removed from system and therefore no longer available.
1463 void netif_device_detach(struct net_device *dev)
1465 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1466 netif_running(dev)) {
1467 netif_tx_stop_all_queues(dev);
1470 EXPORT_SYMBOL(netif_device_detach);
1473 * netif_device_attach - mark device as attached
1474 * @dev: network device
1476 * Mark device as attached from system and restart if needed.
1478 void netif_device_attach(struct net_device *dev)
1480 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1481 netif_running(dev)) {
1482 netif_tx_wake_all_queues(dev);
1483 __netdev_watchdog_up(dev);
1486 EXPORT_SYMBOL(netif_device_attach);
1488 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1490 return ((features & NETIF_F_GEN_CSUM) ||
1491 ((features & NETIF_F_IP_CSUM) &&
1492 protocol == htons(ETH_P_IP)) ||
1493 ((features & NETIF_F_IPV6_CSUM) &&
1494 protocol == htons(ETH_P_IPV6)) ||
1495 ((features & NETIF_F_FCOE_CRC) &&
1496 protocol == htons(ETH_P_FCOE)));
1499 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1501 if (can_checksum_protocol(dev->features, skb->protocol))
1502 return true;
1504 if (skb->protocol == htons(ETH_P_8021Q)) {
1505 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1506 if (can_checksum_protocol(dev->features & dev->vlan_features,
1507 veh->h_vlan_encapsulated_proto))
1508 return true;
1511 return false;
1515 * Invalidate hardware checksum when packet is to be mangled, and
1516 * complete checksum manually on outgoing path.
1518 int skb_checksum_help(struct sk_buff *skb)
1520 __wsum csum;
1521 int ret = 0, offset;
1523 if (skb->ip_summed == CHECKSUM_COMPLETE)
1524 goto out_set_summed;
1526 if (unlikely(skb_shinfo(skb)->gso_size)) {
1527 /* Let GSO fix up the checksum. */
1528 goto out_set_summed;
1531 offset = skb->csum_start - skb_headroom(skb);
1532 BUG_ON(offset >= skb_headlen(skb));
1533 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1535 offset += skb->csum_offset;
1536 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1538 if (skb_cloned(skb) &&
1539 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1540 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1541 if (ret)
1542 goto out;
1545 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1546 out_set_summed:
1547 skb->ip_summed = CHECKSUM_NONE;
1548 out:
1549 return ret;
1551 EXPORT_SYMBOL(skb_checksum_help);
1554 * skb_gso_segment - Perform segmentation on skb.
1555 * @skb: buffer to segment
1556 * @features: features for the output path (see dev->features)
1558 * This function segments the given skb and returns a list of segments.
1560 * It may return NULL if the skb requires no segmentation. This is
1561 * only possible when GSO is used for verifying header integrity.
1563 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1565 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1566 struct packet_type *ptype;
1567 __be16 type = skb->protocol;
1568 int err;
1570 skb_reset_mac_header(skb);
1571 skb->mac_len = skb->network_header - skb->mac_header;
1572 __skb_pull(skb, skb->mac_len);
1574 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1575 struct net_device *dev = skb->dev;
1576 struct ethtool_drvinfo info = {};
1578 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1579 dev->ethtool_ops->get_drvinfo(dev, &info);
1581 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1582 "ip_summed=%d",
1583 info.driver, dev ? dev->features : 0L,
1584 skb->sk ? skb->sk->sk_route_caps : 0L,
1585 skb->len, skb->data_len, skb->ip_summed);
1587 if (skb_header_cloned(skb) &&
1588 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1589 return ERR_PTR(err);
1592 rcu_read_lock();
1593 list_for_each_entry_rcu(ptype,
1594 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1595 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1596 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1597 err = ptype->gso_send_check(skb);
1598 segs = ERR_PTR(err);
1599 if (err || skb_gso_ok(skb, features))
1600 break;
1601 __skb_push(skb, (skb->data -
1602 skb_network_header(skb)));
1604 segs = ptype->gso_segment(skb, features);
1605 break;
1608 rcu_read_unlock();
1610 __skb_push(skb, skb->data - skb_mac_header(skb));
1612 return segs;
1614 EXPORT_SYMBOL(skb_gso_segment);
1616 /* Take action when hardware reception checksum errors are detected. */
1617 #ifdef CONFIG_BUG
1618 void netdev_rx_csum_fault(struct net_device *dev)
1620 if (net_ratelimit()) {
1621 printk(KERN_ERR "%s: hw csum failure.\n",
1622 dev ? dev->name : "<unknown>");
1623 dump_stack();
1626 EXPORT_SYMBOL(netdev_rx_csum_fault);
1627 #endif
1629 /* Actually, we should eliminate this check as soon as we know, that:
1630 * 1. IOMMU is present and allows to map all the memory.
1631 * 2. No high memory really exists on this machine.
1634 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1636 #ifdef CONFIG_HIGHMEM
1637 int i;
1639 if (dev->features & NETIF_F_HIGHDMA)
1640 return 0;
1642 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1643 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1644 return 1;
1646 #endif
1647 return 0;
1650 struct dev_gso_cb {
1651 void (*destructor)(struct sk_buff *skb);
1654 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1656 static void dev_gso_skb_destructor(struct sk_buff *skb)
1658 struct dev_gso_cb *cb;
1660 do {
1661 struct sk_buff *nskb = skb->next;
1663 skb->next = nskb->next;
1664 nskb->next = NULL;
1665 kfree_skb(nskb);
1666 } while (skb->next);
1668 cb = DEV_GSO_CB(skb);
1669 if (cb->destructor)
1670 cb->destructor(skb);
1674 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1675 * @skb: buffer to segment
1677 * This function segments the given skb and stores the list of segments
1678 * in skb->next.
1680 static int dev_gso_segment(struct sk_buff *skb)
1682 struct net_device *dev = skb->dev;
1683 struct sk_buff *segs;
1684 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1685 NETIF_F_SG : 0);
1687 segs = skb_gso_segment(skb, features);
1689 /* Verifying header integrity only. */
1690 if (!segs)
1691 return 0;
1693 if (IS_ERR(segs))
1694 return PTR_ERR(segs);
1696 skb->next = segs;
1697 DEV_GSO_CB(skb)->destructor = skb->destructor;
1698 skb->destructor = dev_gso_skb_destructor;
1700 return 0;
1703 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1704 struct netdev_queue *txq)
1706 const struct net_device_ops *ops = dev->netdev_ops;
1707 int rc;
1709 if (likely(!skb->next)) {
1710 if (!list_empty(&ptype_all))
1711 dev_queue_xmit_nit(skb, dev);
1713 if (netif_needs_gso(dev, skb)) {
1714 if (unlikely(dev_gso_segment(skb)))
1715 goto out_kfree_skb;
1716 if (skb->next)
1717 goto gso;
1721 * If device doesnt need skb->dst, release it right now while
1722 * its hot in this cpu cache
1724 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1725 skb_dst_drop(skb);
1727 rc = ops->ndo_start_xmit(skb, dev);
1728 if (rc == NETDEV_TX_OK)
1729 txq_trans_update(txq);
1731 * TODO: if skb_orphan() was called by
1732 * dev->hard_start_xmit() (for example, the unmodified
1733 * igb driver does that; bnx2 doesn't), then
1734 * skb_tx_software_timestamp() will be unable to send
1735 * back the time stamp.
1737 * How can this be prevented? Always create another
1738 * reference to the socket before calling
1739 * dev->hard_start_xmit()? Prevent that skb_orphan()
1740 * does anything in dev->hard_start_xmit() by clearing
1741 * the skb destructor before the call and restoring it
1742 * afterwards, then doing the skb_orphan() ourselves?
1744 return rc;
1747 gso:
1748 do {
1749 struct sk_buff *nskb = skb->next;
1751 skb->next = nskb->next;
1752 nskb->next = NULL;
1753 rc = ops->ndo_start_xmit(nskb, dev);
1754 if (unlikely(rc != NETDEV_TX_OK)) {
1755 nskb->next = skb->next;
1756 skb->next = nskb;
1757 return rc;
1759 txq_trans_update(txq);
1760 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1761 return NETDEV_TX_BUSY;
1762 } while (skb->next);
1764 skb->destructor = DEV_GSO_CB(skb)->destructor;
1766 out_kfree_skb:
1767 kfree_skb(skb);
1768 return NETDEV_TX_OK;
1771 static u32 skb_tx_hashrnd;
1773 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1775 u32 hash;
1777 if (skb_rx_queue_recorded(skb)) {
1778 hash = skb_get_rx_queue(skb);
1779 while (unlikely(hash >= dev->real_num_tx_queues))
1780 hash -= dev->real_num_tx_queues;
1781 return hash;
1784 if (skb->sk && skb->sk->sk_hash)
1785 hash = skb->sk->sk_hash;
1786 else
1787 hash = skb->protocol;
1789 hash = jhash_1word(hash, skb_tx_hashrnd);
1791 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1793 EXPORT_SYMBOL(skb_tx_hash);
1795 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1796 struct sk_buff *skb)
1798 const struct net_device_ops *ops = dev->netdev_ops;
1799 u16 queue_index = 0;
1801 if (ops->ndo_select_queue)
1802 queue_index = ops->ndo_select_queue(dev, skb);
1803 else if (dev->real_num_tx_queues > 1)
1804 queue_index = skb_tx_hash(dev, skb);
1806 skb_set_queue_mapping(skb, queue_index);
1807 return netdev_get_tx_queue(dev, queue_index);
1810 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1811 struct net_device *dev,
1812 struct netdev_queue *txq)
1814 spinlock_t *root_lock = qdisc_lock(q);
1815 int rc;
1817 spin_lock(root_lock);
1818 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1819 kfree_skb(skb);
1820 rc = NET_XMIT_DROP;
1821 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1822 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1824 * This is a work-conserving queue; there are no old skbs
1825 * waiting to be sent out; and the qdisc is not running -
1826 * xmit the skb directly.
1828 __qdisc_update_bstats(q, skb->len);
1829 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1830 __qdisc_run(q);
1831 else
1832 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1834 rc = NET_XMIT_SUCCESS;
1835 } else {
1836 rc = qdisc_enqueue_root(skb, q);
1837 qdisc_run(q);
1839 spin_unlock(root_lock);
1841 return rc;
1845 * dev_queue_xmit - transmit a buffer
1846 * @skb: buffer to transmit
1848 * Queue a buffer for transmission to a network device. The caller must
1849 * have set the device and priority and built the buffer before calling
1850 * this function. The function can be called from an interrupt.
1852 * A negative errno code is returned on a failure. A success does not
1853 * guarantee the frame will be transmitted as it may be dropped due
1854 * to congestion or traffic shaping.
1856 * -----------------------------------------------------------------------------------
1857 * I notice this method can also return errors from the queue disciplines,
1858 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1859 * be positive.
1861 * Regardless of the return value, the skb is consumed, so it is currently
1862 * difficult to retry a send to this method. (You can bump the ref count
1863 * before sending to hold a reference for retry if you are careful.)
1865 * When calling this method, interrupts MUST be enabled. This is because
1866 * the BH enable code must have IRQs enabled so that it will not deadlock.
1867 * --BLG
1869 int dev_queue_xmit(struct sk_buff *skb)
1871 struct net_device *dev = skb->dev;
1872 struct netdev_queue *txq;
1873 struct Qdisc *q;
1874 int rc = -ENOMEM;
1876 /* GSO will handle the following emulations directly. */
1877 if (netif_needs_gso(dev, skb))
1878 goto gso;
1880 if (skb_has_frags(skb) &&
1881 !(dev->features & NETIF_F_FRAGLIST) &&
1882 __skb_linearize(skb))
1883 goto out_kfree_skb;
1885 /* Fragmented skb is linearized if device does not support SG,
1886 * or if at least one of fragments is in highmem and device
1887 * does not support DMA from it.
1889 if (skb_shinfo(skb)->nr_frags &&
1890 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1891 __skb_linearize(skb))
1892 goto out_kfree_skb;
1894 /* If packet is not checksummed and device does not support
1895 * checksumming for this protocol, complete checksumming here.
1897 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1898 skb_set_transport_header(skb, skb->csum_start -
1899 skb_headroom(skb));
1900 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1901 goto out_kfree_skb;
1904 gso:
1905 /* Disable soft irqs for various locks below. Also
1906 * stops preemption for RCU.
1908 rcu_read_lock_bh();
1910 txq = dev_pick_tx(dev, skb);
1911 q = rcu_dereference(txq->qdisc);
1913 #ifdef CONFIG_NET_CLS_ACT
1914 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1915 #endif
1916 if (q->enqueue) {
1917 rc = __dev_xmit_skb(skb, q, dev, txq);
1918 goto out;
1921 /* The device has no queue. Common case for software devices:
1922 loopback, all the sorts of tunnels...
1924 Really, it is unlikely that netif_tx_lock protection is necessary
1925 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1926 counters.)
1927 However, it is possible, that they rely on protection
1928 made by us here.
1930 Check this and shot the lock. It is not prone from deadlocks.
1931 Either shot noqueue qdisc, it is even simpler 8)
1933 if (dev->flags & IFF_UP) {
1934 int cpu = smp_processor_id(); /* ok because BHs are off */
1936 if (txq->xmit_lock_owner != cpu) {
1938 HARD_TX_LOCK(dev, txq, cpu);
1940 if (!netif_tx_queue_stopped(txq)) {
1941 rc = NET_XMIT_SUCCESS;
1942 if (!dev_hard_start_xmit(skb, dev, txq)) {
1943 HARD_TX_UNLOCK(dev, txq);
1944 goto out;
1947 HARD_TX_UNLOCK(dev, txq);
1948 if (net_ratelimit())
1949 printk(KERN_CRIT "Virtual device %s asks to "
1950 "queue packet!\n", dev->name);
1951 } else {
1952 /* Recursion is detected! It is possible,
1953 * unfortunately */
1954 if (net_ratelimit())
1955 printk(KERN_CRIT "Dead loop on virtual device "
1956 "%s, fix it urgently!\n", dev->name);
1960 rc = -ENETDOWN;
1961 rcu_read_unlock_bh();
1963 out_kfree_skb:
1964 kfree_skb(skb);
1965 return rc;
1966 out:
1967 rcu_read_unlock_bh();
1968 return rc;
1970 EXPORT_SYMBOL(dev_queue_xmit);
1973 /*=======================================================================
1974 Receiver routines
1975 =======================================================================*/
1977 int netdev_max_backlog __read_mostly = 1000;
1978 int netdev_budget __read_mostly = 300;
1979 int weight_p __read_mostly = 64; /* old backlog weight */
1981 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1985 * netif_rx - post buffer to the network code
1986 * @skb: buffer to post
1988 * This function receives a packet from a device driver and queues it for
1989 * the upper (protocol) levels to process. It always succeeds. The buffer
1990 * may be dropped during processing for congestion control or by the
1991 * protocol layers.
1993 * return values:
1994 * NET_RX_SUCCESS (no congestion)
1995 * NET_RX_DROP (packet was dropped)
1999 int netif_rx(struct sk_buff *skb)
2001 struct softnet_data *queue;
2002 unsigned long flags;
2004 /* if netpoll wants it, pretend we never saw it */
2005 if (netpoll_rx(skb))
2006 return NET_RX_DROP;
2008 if (!skb->tstamp.tv64)
2009 net_timestamp(skb);
2012 * The code is rearranged so that the path is the most
2013 * short when CPU is congested, but is still operating.
2015 local_irq_save(flags);
2016 queue = &__get_cpu_var(softnet_data);
2018 __get_cpu_var(netdev_rx_stat).total++;
2019 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2020 if (queue->input_pkt_queue.qlen) {
2021 enqueue:
2022 __skb_queue_tail(&queue->input_pkt_queue, skb);
2023 local_irq_restore(flags);
2024 return NET_RX_SUCCESS;
2027 napi_schedule(&queue->backlog);
2028 goto enqueue;
2031 __get_cpu_var(netdev_rx_stat).dropped++;
2032 local_irq_restore(flags);
2034 kfree_skb(skb);
2035 return NET_RX_DROP;
2037 EXPORT_SYMBOL(netif_rx);
2039 int netif_rx_ni(struct sk_buff *skb)
2041 int err;
2043 preempt_disable();
2044 err = netif_rx(skb);
2045 if (local_softirq_pending())
2046 do_softirq();
2047 preempt_enable();
2049 return err;
2051 EXPORT_SYMBOL(netif_rx_ni);
2053 static void net_tx_action(struct softirq_action *h)
2055 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2057 if (sd->completion_queue) {
2058 struct sk_buff *clist;
2060 local_irq_disable();
2061 clist = sd->completion_queue;
2062 sd->completion_queue = NULL;
2063 local_irq_enable();
2065 while (clist) {
2066 struct sk_buff *skb = clist;
2067 clist = clist->next;
2069 WARN_ON(atomic_read(&skb->users));
2070 __kfree_skb(skb);
2074 if (sd->output_queue) {
2075 struct Qdisc *head;
2077 local_irq_disable();
2078 head = sd->output_queue;
2079 sd->output_queue = NULL;
2080 local_irq_enable();
2082 while (head) {
2083 struct Qdisc *q = head;
2084 spinlock_t *root_lock;
2086 head = head->next_sched;
2088 root_lock = qdisc_lock(q);
2089 if (spin_trylock(root_lock)) {
2090 smp_mb__before_clear_bit();
2091 clear_bit(__QDISC_STATE_SCHED,
2092 &q->state);
2093 qdisc_run(q);
2094 spin_unlock(root_lock);
2095 } else {
2096 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2097 &q->state)) {
2098 __netif_reschedule(q);
2099 } else {
2100 smp_mb__before_clear_bit();
2101 clear_bit(__QDISC_STATE_SCHED,
2102 &q->state);
2109 static inline int deliver_skb(struct sk_buff *skb,
2110 struct packet_type *pt_prev,
2111 struct net_device *orig_dev)
2113 atomic_inc(&skb->users);
2114 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2117 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2119 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2120 /* This hook is defined here for ATM LANE */
2121 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2122 unsigned char *addr) __read_mostly;
2123 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2124 #endif
2127 * If bridge module is loaded call bridging hook.
2128 * returns NULL if packet was consumed.
2130 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2131 struct sk_buff *skb) __read_mostly;
2132 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2134 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2135 struct packet_type **pt_prev, int *ret,
2136 struct net_device *orig_dev)
2138 struct net_bridge_port *port;
2140 if (skb->pkt_type == PACKET_LOOPBACK ||
2141 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2142 return skb;
2144 if (*pt_prev) {
2145 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2146 *pt_prev = NULL;
2149 return br_handle_frame_hook(port, skb);
2151 #else
2152 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2153 #endif
2155 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2156 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2157 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2159 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2160 struct packet_type **pt_prev,
2161 int *ret,
2162 struct net_device *orig_dev)
2164 if (skb->dev->macvlan_port == NULL)
2165 return skb;
2167 if (*pt_prev) {
2168 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2169 *pt_prev = NULL;
2171 return macvlan_handle_frame_hook(skb);
2173 #else
2174 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2175 #endif
2177 #ifdef CONFIG_NET_CLS_ACT
2178 /* TODO: Maybe we should just force sch_ingress to be compiled in
2179 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2180 * a compare and 2 stores extra right now if we dont have it on
2181 * but have CONFIG_NET_CLS_ACT
2182 * NOTE: This doesnt stop any functionality; if you dont have
2183 * the ingress scheduler, you just cant add policies on ingress.
2186 static int ing_filter(struct sk_buff *skb)
2188 struct net_device *dev = skb->dev;
2189 u32 ttl = G_TC_RTTL(skb->tc_verd);
2190 struct netdev_queue *rxq;
2191 int result = TC_ACT_OK;
2192 struct Qdisc *q;
2194 if (MAX_RED_LOOP < ttl++) {
2195 printk(KERN_WARNING
2196 "Redir loop detected Dropping packet (%d->%d)\n",
2197 skb->iif, dev->ifindex);
2198 return TC_ACT_SHOT;
2201 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2202 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2204 rxq = &dev->rx_queue;
2206 q = rxq->qdisc;
2207 if (q != &noop_qdisc) {
2208 spin_lock(qdisc_lock(q));
2209 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2210 result = qdisc_enqueue_root(skb, q);
2211 spin_unlock(qdisc_lock(q));
2214 return result;
2217 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2218 struct packet_type **pt_prev,
2219 int *ret, struct net_device *orig_dev)
2221 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2222 goto out;
2224 if (*pt_prev) {
2225 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2226 *pt_prev = NULL;
2227 } else {
2228 /* Huh? Why does turning on AF_PACKET affect this? */
2229 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2232 switch (ing_filter(skb)) {
2233 case TC_ACT_SHOT:
2234 case TC_ACT_STOLEN:
2235 kfree_skb(skb);
2236 return NULL;
2239 out:
2240 skb->tc_verd = 0;
2241 return skb;
2243 #endif
2246 * netif_nit_deliver - deliver received packets to network taps
2247 * @skb: buffer
2249 * This function is used to deliver incoming packets to network
2250 * taps. It should be used when the normal netif_receive_skb path
2251 * is bypassed, for example because of VLAN acceleration.
2253 void netif_nit_deliver(struct sk_buff *skb)
2255 struct packet_type *ptype;
2257 if (list_empty(&ptype_all))
2258 return;
2260 skb_reset_network_header(skb);
2261 skb_reset_transport_header(skb);
2262 skb->mac_len = skb->network_header - skb->mac_header;
2264 rcu_read_lock();
2265 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2266 if (!ptype->dev || ptype->dev == skb->dev)
2267 deliver_skb(skb, ptype, skb->dev);
2269 rcu_read_unlock();
2273 * netif_receive_skb - process receive buffer from network
2274 * @skb: buffer to process
2276 * netif_receive_skb() is the main receive data processing function.
2277 * It always succeeds. The buffer may be dropped during processing
2278 * for congestion control or by the protocol layers.
2280 * This function may only be called from softirq context and interrupts
2281 * should be enabled.
2283 * Return values (usually ignored):
2284 * NET_RX_SUCCESS: no congestion
2285 * NET_RX_DROP: packet was dropped
2287 int netif_receive_skb(struct sk_buff *skb)
2289 struct packet_type *ptype, *pt_prev;
2290 struct net_device *orig_dev;
2291 struct net_device *null_or_orig;
2292 int ret = NET_RX_DROP;
2293 __be16 type;
2295 if (!skb->tstamp.tv64)
2296 net_timestamp(skb);
2298 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2299 return NET_RX_SUCCESS;
2301 /* if we've gotten here through NAPI, check netpoll */
2302 if (netpoll_receive_skb(skb))
2303 return NET_RX_DROP;
2305 if (!skb->iif)
2306 skb->iif = skb->dev->ifindex;
2308 null_or_orig = NULL;
2309 orig_dev = skb->dev;
2310 if (orig_dev->master) {
2311 if (skb_bond_should_drop(skb))
2312 null_or_orig = orig_dev; /* deliver only exact match */
2313 else
2314 skb->dev = orig_dev->master;
2317 __get_cpu_var(netdev_rx_stat).total++;
2319 skb_reset_network_header(skb);
2320 skb_reset_transport_header(skb);
2321 skb->mac_len = skb->network_header - skb->mac_header;
2323 pt_prev = NULL;
2325 rcu_read_lock();
2327 #ifdef CONFIG_NET_CLS_ACT
2328 if (skb->tc_verd & TC_NCLS) {
2329 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2330 goto ncls;
2332 #endif
2334 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2335 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2336 ptype->dev == orig_dev) {
2337 if (pt_prev)
2338 ret = deliver_skb(skb, pt_prev, orig_dev);
2339 pt_prev = ptype;
2343 #ifdef CONFIG_NET_CLS_ACT
2344 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2345 if (!skb)
2346 goto out;
2347 ncls:
2348 #endif
2350 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2351 if (!skb)
2352 goto out;
2353 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2354 if (!skb)
2355 goto out;
2357 type = skb->protocol;
2358 list_for_each_entry_rcu(ptype,
2359 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2360 if (ptype->type == type &&
2361 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2362 ptype->dev == orig_dev)) {
2363 if (pt_prev)
2364 ret = deliver_skb(skb, pt_prev, orig_dev);
2365 pt_prev = ptype;
2369 if (pt_prev) {
2370 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2371 } else {
2372 kfree_skb(skb);
2373 /* Jamal, now you will not able to escape explaining
2374 * me how you were going to use this. :-)
2376 ret = NET_RX_DROP;
2379 out:
2380 rcu_read_unlock();
2381 return ret;
2383 EXPORT_SYMBOL(netif_receive_skb);
2385 /* Network device is going away, flush any packets still pending */
2386 static void flush_backlog(void *arg)
2388 struct net_device *dev = arg;
2389 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2390 struct sk_buff *skb, *tmp;
2392 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2393 if (skb->dev == dev) {
2394 __skb_unlink(skb, &queue->input_pkt_queue);
2395 kfree_skb(skb);
2399 static int napi_gro_complete(struct sk_buff *skb)
2401 struct packet_type *ptype;
2402 __be16 type = skb->protocol;
2403 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2404 int err = -ENOENT;
2406 if (NAPI_GRO_CB(skb)->count == 1) {
2407 skb_shinfo(skb)->gso_size = 0;
2408 goto out;
2411 rcu_read_lock();
2412 list_for_each_entry_rcu(ptype, head, list) {
2413 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2414 continue;
2416 err = ptype->gro_complete(skb);
2417 break;
2419 rcu_read_unlock();
2421 if (err) {
2422 WARN_ON(&ptype->list == head);
2423 kfree_skb(skb);
2424 return NET_RX_SUCCESS;
2427 out:
2428 return netif_receive_skb(skb);
2431 void napi_gro_flush(struct napi_struct *napi)
2433 struct sk_buff *skb, *next;
2435 for (skb = napi->gro_list; skb; skb = next) {
2436 next = skb->next;
2437 skb->next = NULL;
2438 napi_gro_complete(skb);
2441 napi->gro_count = 0;
2442 napi->gro_list = NULL;
2444 EXPORT_SYMBOL(napi_gro_flush);
2446 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2448 struct sk_buff **pp = NULL;
2449 struct packet_type *ptype;
2450 __be16 type = skb->protocol;
2451 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2452 int same_flow;
2453 int mac_len;
2454 int ret;
2456 if (!(skb->dev->features & NETIF_F_GRO))
2457 goto normal;
2459 if (skb_is_gso(skb) || skb_has_frags(skb))
2460 goto normal;
2462 rcu_read_lock();
2463 list_for_each_entry_rcu(ptype, head, list) {
2464 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2465 continue;
2467 skb_set_network_header(skb, skb_gro_offset(skb));
2468 mac_len = skb->network_header - skb->mac_header;
2469 skb->mac_len = mac_len;
2470 NAPI_GRO_CB(skb)->same_flow = 0;
2471 NAPI_GRO_CB(skb)->flush = 0;
2472 NAPI_GRO_CB(skb)->free = 0;
2474 pp = ptype->gro_receive(&napi->gro_list, skb);
2475 break;
2477 rcu_read_unlock();
2479 if (&ptype->list == head)
2480 goto normal;
2482 same_flow = NAPI_GRO_CB(skb)->same_flow;
2483 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2485 if (pp) {
2486 struct sk_buff *nskb = *pp;
2488 *pp = nskb->next;
2489 nskb->next = NULL;
2490 napi_gro_complete(nskb);
2491 napi->gro_count--;
2494 if (same_flow)
2495 goto ok;
2497 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2498 goto normal;
2500 napi->gro_count++;
2501 NAPI_GRO_CB(skb)->count = 1;
2502 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2503 skb->next = napi->gro_list;
2504 napi->gro_list = skb;
2505 ret = GRO_HELD;
2507 pull:
2508 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2509 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2511 BUG_ON(skb->end - skb->tail < grow);
2513 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2515 skb->tail += grow;
2516 skb->data_len -= grow;
2518 skb_shinfo(skb)->frags[0].page_offset += grow;
2519 skb_shinfo(skb)->frags[0].size -= grow;
2521 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2522 put_page(skb_shinfo(skb)->frags[0].page);
2523 memmove(skb_shinfo(skb)->frags,
2524 skb_shinfo(skb)->frags + 1,
2525 --skb_shinfo(skb)->nr_frags);
2530 return ret;
2532 normal:
2533 ret = GRO_NORMAL;
2534 goto pull;
2536 EXPORT_SYMBOL(dev_gro_receive);
2538 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2540 struct sk_buff *p;
2542 if (netpoll_rx_on(skb))
2543 return GRO_NORMAL;
2545 for (p = napi->gro_list; p; p = p->next) {
2546 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2547 && !compare_ether_header(skb_mac_header(p),
2548 skb_gro_mac_header(skb));
2549 NAPI_GRO_CB(p)->flush = 0;
2552 return dev_gro_receive(napi, skb);
2555 int napi_skb_finish(int ret, struct sk_buff *skb)
2557 int err = NET_RX_SUCCESS;
2559 switch (ret) {
2560 case GRO_NORMAL:
2561 return netif_receive_skb(skb);
2563 case GRO_DROP:
2564 err = NET_RX_DROP;
2565 /* fall through */
2567 case GRO_MERGED_FREE:
2568 kfree_skb(skb);
2569 break;
2572 return err;
2574 EXPORT_SYMBOL(napi_skb_finish);
2576 void skb_gro_reset_offset(struct sk_buff *skb)
2578 NAPI_GRO_CB(skb)->data_offset = 0;
2579 NAPI_GRO_CB(skb)->frag0 = NULL;
2580 NAPI_GRO_CB(skb)->frag0_len = 0;
2582 if (skb->mac_header == skb->tail &&
2583 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2584 NAPI_GRO_CB(skb)->frag0 =
2585 page_address(skb_shinfo(skb)->frags[0].page) +
2586 skb_shinfo(skb)->frags[0].page_offset;
2587 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2590 EXPORT_SYMBOL(skb_gro_reset_offset);
2592 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2594 skb_gro_reset_offset(skb);
2596 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2598 EXPORT_SYMBOL(napi_gro_receive);
2600 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2602 __skb_pull(skb, skb_headlen(skb));
2603 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2605 napi->skb = skb;
2607 EXPORT_SYMBOL(napi_reuse_skb);
2609 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2611 struct net_device *dev = napi->dev;
2612 struct sk_buff *skb = napi->skb;
2614 if (!skb) {
2615 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2616 if (!skb)
2617 goto out;
2619 skb_reserve(skb, NET_IP_ALIGN);
2621 napi->skb = skb;
2624 out:
2625 return skb;
2627 EXPORT_SYMBOL(napi_get_frags);
2629 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2631 int err = NET_RX_SUCCESS;
2633 switch (ret) {
2634 case GRO_NORMAL:
2635 case GRO_HELD:
2636 skb->protocol = eth_type_trans(skb, napi->dev);
2638 if (ret == GRO_NORMAL)
2639 return netif_receive_skb(skb);
2641 skb_gro_pull(skb, -ETH_HLEN);
2642 break;
2644 case GRO_DROP:
2645 err = NET_RX_DROP;
2646 /* fall through */
2648 case GRO_MERGED_FREE:
2649 napi_reuse_skb(napi, skb);
2650 break;
2653 return err;
2655 EXPORT_SYMBOL(napi_frags_finish);
2657 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2659 struct sk_buff *skb = napi->skb;
2660 struct ethhdr *eth;
2661 unsigned int hlen;
2662 unsigned int off;
2664 napi->skb = NULL;
2666 skb_reset_mac_header(skb);
2667 skb_gro_reset_offset(skb);
2669 off = skb_gro_offset(skb);
2670 hlen = off + sizeof(*eth);
2671 eth = skb_gro_header_fast(skb, off);
2672 if (skb_gro_header_hard(skb, hlen)) {
2673 eth = skb_gro_header_slow(skb, hlen, off);
2674 if (unlikely(!eth)) {
2675 napi_reuse_skb(napi, skb);
2676 skb = NULL;
2677 goto out;
2681 skb_gro_pull(skb, sizeof(*eth));
2684 * This works because the only protocols we care about don't require
2685 * special handling. We'll fix it up properly at the end.
2687 skb->protocol = eth->h_proto;
2689 out:
2690 return skb;
2692 EXPORT_SYMBOL(napi_frags_skb);
2694 int napi_gro_frags(struct napi_struct *napi)
2696 struct sk_buff *skb = napi_frags_skb(napi);
2698 if (!skb)
2699 return NET_RX_DROP;
2701 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2703 EXPORT_SYMBOL(napi_gro_frags);
2705 static int process_backlog(struct napi_struct *napi, int quota)
2707 int work = 0;
2708 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2709 unsigned long start_time = jiffies;
2711 napi->weight = weight_p;
2712 do {
2713 struct sk_buff *skb;
2715 local_irq_disable();
2716 skb = __skb_dequeue(&queue->input_pkt_queue);
2717 if (!skb) {
2718 __napi_complete(napi);
2719 local_irq_enable();
2720 break;
2722 local_irq_enable();
2724 netif_receive_skb(skb);
2725 } while (++work < quota && jiffies == start_time);
2727 return work;
2731 * __napi_schedule - schedule for receive
2732 * @n: entry to schedule
2734 * The entry's receive function will be scheduled to run
2736 void __napi_schedule(struct napi_struct *n)
2738 unsigned long flags;
2740 local_irq_save(flags);
2741 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2742 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2743 local_irq_restore(flags);
2745 EXPORT_SYMBOL(__napi_schedule);
2747 void __napi_complete(struct napi_struct *n)
2749 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2750 BUG_ON(n->gro_list);
2752 list_del(&n->poll_list);
2753 smp_mb__before_clear_bit();
2754 clear_bit(NAPI_STATE_SCHED, &n->state);
2756 EXPORT_SYMBOL(__napi_complete);
2758 void napi_complete(struct napi_struct *n)
2760 unsigned long flags;
2763 * don't let napi dequeue from the cpu poll list
2764 * just in case its running on a different cpu
2766 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2767 return;
2769 napi_gro_flush(n);
2770 local_irq_save(flags);
2771 __napi_complete(n);
2772 local_irq_restore(flags);
2774 EXPORT_SYMBOL(napi_complete);
2776 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2777 int (*poll)(struct napi_struct *, int), int weight)
2779 INIT_LIST_HEAD(&napi->poll_list);
2780 napi->gro_count = 0;
2781 napi->gro_list = NULL;
2782 napi->skb = NULL;
2783 napi->poll = poll;
2784 napi->weight = weight;
2785 list_add(&napi->dev_list, &dev->napi_list);
2786 napi->dev = dev;
2787 #ifdef CONFIG_NETPOLL
2788 spin_lock_init(&napi->poll_lock);
2789 napi->poll_owner = -1;
2790 #endif
2791 set_bit(NAPI_STATE_SCHED, &napi->state);
2793 EXPORT_SYMBOL(netif_napi_add);
2795 void netif_napi_del(struct napi_struct *napi)
2797 struct sk_buff *skb, *next;
2799 list_del_init(&napi->dev_list);
2800 napi_free_frags(napi);
2802 for (skb = napi->gro_list; skb; skb = next) {
2803 next = skb->next;
2804 skb->next = NULL;
2805 kfree_skb(skb);
2808 napi->gro_list = NULL;
2809 napi->gro_count = 0;
2811 EXPORT_SYMBOL(netif_napi_del);
2814 static void net_rx_action(struct softirq_action *h)
2816 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2817 unsigned long time_limit = jiffies + 2;
2818 int budget = netdev_budget;
2819 void *have;
2821 local_irq_disable();
2823 while (!list_empty(list)) {
2824 struct napi_struct *n;
2825 int work, weight;
2827 /* If softirq window is exhuasted then punt.
2828 * Allow this to run for 2 jiffies since which will allow
2829 * an average latency of 1.5/HZ.
2831 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2832 goto softnet_break;
2834 local_irq_enable();
2836 /* Even though interrupts have been re-enabled, this
2837 * access is safe because interrupts can only add new
2838 * entries to the tail of this list, and only ->poll()
2839 * calls can remove this head entry from the list.
2841 n = list_entry(list->next, struct napi_struct, poll_list);
2843 have = netpoll_poll_lock(n);
2845 weight = n->weight;
2847 /* This NAPI_STATE_SCHED test is for avoiding a race
2848 * with netpoll's poll_napi(). Only the entity which
2849 * obtains the lock and sees NAPI_STATE_SCHED set will
2850 * actually make the ->poll() call. Therefore we avoid
2851 * accidently calling ->poll() when NAPI is not scheduled.
2853 work = 0;
2854 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2855 work = n->poll(n, weight);
2856 trace_napi_poll(n);
2859 WARN_ON_ONCE(work > weight);
2861 budget -= work;
2863 local_irq_disable();
2865 /* Drivers must not modify the NAPI state if they
2866 * consume the entire weight. In such cases this code
2867 * still "owns" the NAPI instance and therefore can
2868 * move the instance around on the list at-will.
2870 if (unlikely(work == weight)) {
2871 if (unlikely(napi_disable_pending(n))) {
2872 local_irq_enable();
2873 napi_complete(n);
2874 local_irq_disable();
2875 } else
2876 list_move_tail(&n->poll_list, list);
2879 netpoll_poll_unlock(have);
2881 out:
2882 local_irq_enable();
2884 #ifdef CONFIG_NET_DMA
2886 * There may not be any more sk_buffs coming right now, so push
2887 * any pending DMA copies to hardware
2889 dma_issue_pending_all();
2890 #endif
2892 return;
2894 softnet_break:
2895 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2896 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2897 goto out;
2900 static gifconf_func_t *gifconf_list[NPROTO];
2903 * register_gifconf - register a SIOCGIF handler
2904 * @family: Address family
2905 * @gifconf: Function handler
2907 * Register protocol dependent address dumping routines. The handler
2908 * that is passed must not be freed or reused until it has been replaced
2909 * by another handler.
2911 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
2913 if (family >= NPROTO)
2914 return -EINVAL;
2915 gifconf_list[family] = gifconf;
2916 return 0;
2918 EXPORT_SYMBOL(register_gifconf);
2922 * Map an interface index to its name (SIOCGIFNAME)
2926 * We need this ioctl for efficient implementation of the
2927 * if_indextoname() function required by the IPv6 API. Without
2928 * it, we would have to search all the interfaces to find a
2929 * match. --pb
2932 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2934 struct net_device *dev;
2935 struct ifreq ifr;
2938 * Fetch the caller's info block.
2941 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2942 return -EFAULT;
2944 read_lock(&dev_base_lock);
2945 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2946 if (!dev) {
2947 read_unlock(&dev_base_lock);
2948 return -ENODEV;
2951 strcpy(ifr.ifr_name, dev->name);
2952 read_unlock(&dev_base_lock);
2954 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2955 return -EFAULT;
2956 return 0;
2960 * Perform a SIOCGIFCONF call. This structure will change
2961 * size eventually, and there is nothing I can do about it.
2962 * Thus we will need a 'compatibility mode'.
2965 static int dev_ifconf(struct net *net, char __user *arg)
2967 struct ifconf ifc;
2968 struct net_device *dev;
2969 char __user *pos;
2970 int len;
2971 int total;
2972 int i;
2975 * Fetch the caller's info block.
2978 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2979 return -EFAULT;
2981 pos = ifc.ifc_buf;
2982 len = ifc.ifc_len;
2985 * Loop over the interfaces, and write an info block for each.
2988 total = 0;
2989 for_each_netdev(net, dev) {
2990 for (i = 0; i < NPROTO; i++) {
2991 if (gifconf_list[i]) {
2992 int done;
2993 if (!pos)
2994 done = gifconf_list[i](dev, NULL, 0);
2995 else
2996 done = gifconf_list[i](dev, pos + total,
2997 len - total);
2998 if (done < 0)
2999 return -EFAULT;
3000 total += done;
3006 * All done. Write the updated control block back to the caller.
3008 ifc.ifc_len = total;
3011 * Both BSD and Solaris return 0 here, so we do too.
3013 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3016 #ifdef CONFIG_PROC_FS
3018 * This is invoked by the /proc filesystem handler to display a device
3019 * in detail.
3021 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3022 __acquires(dev_base_lock)
3024 struct net *net = seq_file_net(seq);
3025 loff_t off;
3026 struct net_device *dev;
3028 read_lock(&dev_base_lock);
3029 if (!*pos)
3030 return SEQ_START_TOKEN;
3032 off = 1;
3033 for_each_netdev(net, dev)
3034 if (off++ == *pos)
3035 return dev;
3037 return NULL;
3040 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3042 struct net *net = seq_file_net(seq);
3043 ++*pos;
3044 return v == SEQ_START_TOKEN ?
3045 first_net_device(net) : next_net_device((struct net_device *)v);
3048 void dev_seq_stop(struct seq_file *seq, void *v)
3049 __releases(dev_base_lock)
3051 read_unlock(&dev_base_lock);
3054 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3056 const struct net_device_stats *stats = dev_get_stats(dev);
3058 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3059 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3060 dev->name, stats->rx_bytes, stats->rx_packets,
3061 stats->rx_errors,
3062 stats->rx_dropped + stats->rx_missed_errors,
3063 stats->rx_fifo_errors,
3064 stats->rx_length_errors + stats->rx_over_errors +
3065 stats->rx_crc_errors + stats->rx_frame_errors,
3066 stats->rx_compressed, stats->multicast,
3067 stats->tx_bytes, stats->tx_packets,
3068 stats->tx_errors, stats->tx_dropped,
3069 stats->tx_fifo_errors, stats->collisions,
3070 stats->tx_carrier_errors +
3071 stats->tx_aborted_errors +
3072 stats->tx_window_errors +
3073 stats->tx_heartbeat_errors,
3074 stats->tx_compressed);
3078 * Called from the PROCfs module. This now uses the new arbitrary sized
3079 * /proc/net interface to create /proc/net/dev
3081 static int dev_seq_show(struct seq_file *seq, void *v)
3083 if (v == SEQ_START_TOKEN)
3084 seq_puts(seq, "Inter-| Receive "
3085 " | Transmit\n"
3086 " face |bytes packets errs drop fifo frame "
3087 "compressed multicast|bytes packets errs "
3088 "drop fifo colls carrier compressed\n");
3089 else
3090 dev_seq_printf_stats(seq, v);
3091 return 0;
3094 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3096 struct netif_rx_stats *rc = NULL;
3098 while (*pos < nr_cpu_ids)
3099 if (cpu_online(*pos)) {
3100 rc = &per_cpu(netdev_rx_stat, *pos);
3101 break;
3102 } else
3103 ++*pos;
3104 return rc;
3107 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3109 return softnet_get_online(pos);
3112 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3114 ++*pos;
3115 return softnet_get_online(pos);
3118 static void softnet_seq_stop(struct seq_file *seq, void *v)
3122 static int softnet_seq_show(struct seq_file *seq, void *v)
3124 struct netif_rx_stats *s = v;
3126 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3127 s->total, s->dropped, s->time_squeeze, 0,
3128 0, 0, 0, 0, /* was fastroute */
3129 s->cpu_collision);
3130 return 0;
3133 static const struct seq_operations dev_seq_ops = {
3134 .start = dev_seq_start,
3135 .next = dev_seq_next,
3136 .stop = dev_seq_stop,
3137 .show = dev_seq_show,
3140 static int dev_seq_open(struct inode *inode, struct file *file)
3142 return seq_open_net(inode, file, &dev_seq_ops,
3143 sizeof(struct seq_net_private));
3146 static const struct file_operations dev_seq_fops = {
3147 .owner = THIS_MODULE,
3148 .open = dev_seq_open,
3149 .read = seq_read,
3150 .llseek = seq_lseek,
3151 .release = seq_release_net,
3154 static const struct seq_operations softnet_seq_ops = {
3155 .start = softnet_seq_start,
3156 .next = softnet_seq_next,
3157 .stop = softnet_seq_stop,
3158 .show = softnet_seq_show,
3161 static int softnet_seq_open(struct inode *inode, struct file *file)
3163 return seq_open(file, &softnet_seq_ops);
3166 static const struct file_operations softnet_seq_fops = {
3167 .owner = THIS_MODULE,
3168 .open = softnet_seq_open,
3169 .read = seq_read,
3170 .llseek = seq_lseek,
3171 .release = seq_release,
3174 static void *ptype_get_idx(loff_t pos)
3176 struct packet_type *pt = NULL;
3177 loff_t i = 0;
3178 int t;
3180 list_for_each_entry_rcu(pt, &ptype_all, list) {
3181 if (i == pos)
3182 return pt;
3183 ++i;
3186 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3187 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3188 if (i == pos)
3189 return pt;
3190 ++i;
3193 return NULL;
3196 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3197 __acquires(RCU)
3199 rcu_read_lock();
3200 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3203 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3205 struct packet_type *pt;
3206 struct list_head *nxt;
3207 int hash;
3209 ++*pos;
3210 if (v == SEQ_START_TOKEN)
3211 return ptype_get_idx(0);
3213 pt = v;
3214 nxt = pt->list.next;
3215 if (pt->type == htons(ETH_P_ALL)) {
3216 if (nxt != &ptype_all)
3217 goto found;
3218 hash = 0;
3219 nxt = ptype_base[0].next;
3220 } else
3221 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3223 while (nxt == &ptype_base[hash]) {
3224 if (++hash >= PTYPE_HASH_SIZE)
3225 return NULL;
3226 nxt = ptype_base[hash].next;
3228 found:
3229 return list_entry(nxt, struct packet_type, list);
3232 static void ptype_seq_stop(struct seq_file *seq, void *v)
3233 __releases(RCU)
3235 rcu_read_unlock();
3238 static int ptype_seq_show(struct seq_file *seq, void *v)
3240 struct packet_type *pt = v;
3242 if (v == SEQ_START_TOKEN)
3243 seq_puts(seq, "Type Device Function\n");
3244 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3245 if (pt->type == htons(ETH_P_ALL))
3246 seq_puts(seq, "ALL ");
3247 else
3248 seq_printf(seq, "%04x", ntohs(pt->type));
3250 seq_printf(seq, " %-8s %pF\n",
3251 pt->dev ? pt->dev->name : "", pt->func);
3254 return 0;
3257 static const struct seq_operations ptype_seq_ops = {
3258 .start = ptype_seq_start,
3259 .next = ptype_seq_next,
3260 .stop = ptype_seq_stop,
3261 .show = ptype_seq_show,
3264 static int ptype_seq_open(struct inode *inode, struct file *file)
3266 return seq_open_net(inode, file, &ptype_seq_ops,
3267 sizeof(struct seq_net_private));
3270 static const struct file_operations ptype_seq_fops = {
3271 .owner = THIS_MODULE,
3272 .open = ptype_seq_open,
3273 .read = seq_read,
3274 .llseek = seq_lseek,
3275 .release = seq_release_net,
3279 static int __net_init dev_proc_net_init(struct net *net)
3281 int rc = -ENOMEM;
3283 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3284 goto out;
3285 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3286 goto out_dev;
3287 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3288 goto out_softnet;
3290 if (wext_proc_init(net))
3291 goto out_ptype;
3292 rc = 0;
3293 out:
3294 return rc;
3295 out_ptype:
3296 proc_net_remove(net, "ptype");
3297 out_softnet:
3298 proc_net_remove(net, "softnet_stat");
3299 out_dev:
3300 proc_net_remove(net, "dev");
3301 goto out;
3304 static void __net_exit dev_proc_net_exit(struct net *net)
3306 wext_proc_exit(net);
3308 proc_net_remove(net, "ptype");
3309 proc_net_remove(net, "softnet_stat");
3310 proc_net_remove(net, "dev");
3313 static struct pernet_operations __net_initdata dev_proc_ops = {
3314 .init = dev_proc_net_init,
3315 .exit = dev_proc_net_exit,
3318 static int __init dev_proc_init(void)
3320 return register_pernet_subsys(&dev_proc_ops);
3322 #else
3323 #define dev_proc_init() 0
3324 #endif /* CONFIG_PROC_FS */
3328 * netdev_set_master - set up master/slave pair
3329 * @slave: slave device
3330 * @master: new master device
3332 * Changes the master device of the slave. Pass %NULL to break the
3333 * bonding. The caller must hold the RTNL semaphore. On a failure
3334 * a negative errno code is returned. On success the reference counts
3335 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3336 * function returns zero.
3338 int netdev_set_master(struct net_device *slave, struct net_device *master)
3340 struct net_device *old = slave->master;
3342 ASSERT_RTNL();
3344 if (master) {
3345 if (old)
3346 return -EBUSY;
3347 dev_hold(master);
3350 slave->master = master;
3352 synchronize_net();
3354 if (old)
3355 dev_put(old);
3357 if (master)
3358 slave->flags |= IFF_SLAVE;
3359 else
3360 slave->flags &= ~IFF_SLAVE;
3362 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3363 return 0;
3365 EXPORT_SYMBOL(netdev_set_master);
3367 static void dev_change_rx_flags(struct net_device *dev, int flags)
3369 const struct net_device_ops *ops = dev->netdev_ops;
3371 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3372 ops->ndo_change_rx_flags(dev, flags);
3375 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3377 unsigned short old_flags = dev->flags;
3378 uid_t uid;
3379 gid_t gid;
3381 ASSERT_RTNL();
3383 dev->flags |= IFF_PROMISC;
3384 dev->promiscuity += inc;
3385 if (dev->promiscuity == 0) {
3387 * Avoid overflow.
3388 * If inc causes overflow, untouch promisc and return error.
3390 if (inc < 0)
3391 dev->flags &= ~IFF_PROMISC;
3392 else {
3393 dev->promiscuity -= inc;
3394 printk(KERN_WARNING "%s: promiscuity touches roof, "
3395 "set promiscuity failed, promiscuity feature "
3396 "of device might be broken.\n", dev->name);
3397 return -EOVERFLOW;
3400 if (dev->flags != old_flags) {
3401 printk(KERN_INFO "device %s %s promiscuous mode\n",
3402 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3403 "left");
3404 if (audit_enabled) {
3405 current_uid_gid(&uid, &gid);
3406 audit_log(current->audit_context, GFP_ATOMIC,
3407 AUDIT_ANOM_PROMISCUOUS,
3408 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3409 dev->name, (dev->flags & IFF_PROMISC),
3410 (old_flags & IFF_PROMISC),
3411 audit_get_loginuid(current),
3412 uid, gid,
3413 audit_get_sessionid(current));
3416 dev_change_rx_flags(dev, IFF_PROMISC);
3418 return 0;
3422 * dev_set_promiscuity - update promiscuity count on a device
3423 * @dev: device
3424 * @inc: modifier
3426 * Add or remove promiscuity from a device. While the count in the device
3427 * remains above zero the interface remains promiscuous. Once it hits zero
3428 * the device reverts back to normal filtering operation. A negative inc
3429 * value is used to drop promiscuity on the device.
3430 * Return 0 if successful or a negative errno code on error.
3432 int dev_set_promiscuity(struct net_device *dev, int inc)
3434 unsigned short old_flags = dev->flags;
3435 int err;
3437 err = __dev_set_promiscuity(dev, inc);
3438 if (err < 0)
3439 return err;
3440 if (dev->flags != old_flags)
3441 dev_set_rx_mode(dev);
3442 return err;
3444 EXPORT_SYMBOL(dev_set_promiscuity);
3447 * dev_set_allmulti - update allmulti count on a device
3448 * @dev: device
3449 * @inc: modifier
3451 * Add or remove reception of all multicast frames to a device. While the
3452 * count in the device remains above zero the interface remains listening
3453 * to all interfaces. Once it hits zero the device reverts back to normal
3454 * filtering operation. A negative @inc value is used to drop the counter
3455 * when releasing a resource needing all multicasts.
3456 * Return 0 if successful or a negative errno code on error.
3459 int dev_set_allmulti(struct net_device *dev, int inc)
3461 unsigned short old_flags = dev->flags;
3463 ASSERT_RTNL();
3465 dev->flags |= IFF_ALLMULTI;
3466 dev->allmulti += inc;
3467 if (dev->allmulti == 0) {
3469 * Avoid overflow.
3470 * If inc causes overflow, untouch allmulti and return error.
3472 if (inc < 0)
3473 dev->flags &= ~IFF_ALLMULTI;
3474 else {
3475 dev->allmulti -= inc;
3476 printk(KERN_WARNING "%s: allmulti touches roof, "
3477 "set allmulti failed, allmulti feature of "
3478 "device might be broken.\n", dev->name);
3479 return -EOVERFLOW;
3482 if (dev->flags ^ old_flags) {
3483 dev_change_rx_flags(dev, IFF_ALLMULTI);
3484 dev_set_rx_mode(dev);
3486 return 0;
3488 EXPORT_SYMBOL(dev_set_allmulti);
3491 * Upload unicast and multicast address lists to device and
3492 * configure RX filtering. When the device doesn't support unicast
3493 * filtering it is put in promiscuous mode while unicast addresses
3494 * are present.
3496 void __dev_set_rx_mode(struct net_device *dev)
3498 const struct net_device_ops *ops = dev->netdev_ops;
3500 /* dev_open will call this function so the list will stay sane. */
3501 if (!(dev->flags&IFF_UP))
3502 return;
3504 if (!netif_device_present(dev))
3505 return;
3507 if (ops->ndo_set_rx_mode)
3508 ops->ndo_set_rx_mode(dev);
3509 else {
3510 /* Unicast addresses changes may only happen under the rtnl,
3511 * therefore calling __dev_set_promiscuity here is safe.
3513 if (dev->uc.count > 0 && !dev->uc_promisc) {
3514 __dev_set_promiscuity(dev, 1);
3515 dev->uc_promisc = 1;
3516 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3517 __dev_set_promiscuity(dev, -1);
3518 dev->uc_promisc = 0;
3521 if (ops->ndo_set_multicast_list)
3522 ops->ndo_set_multicast_list(dev);
3526 void dev_set_rx_mode(struct net_device *dev)
3528 netif_addr_lock_bh(dev);
3529 __dev_set_rx_mode(dev);
3530 netif_addr_unlock_bh(dev);
3533 /* hw addresses list handling functions */
3535 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3536 int addr_len, unsigned char addr_type)
3538 struct netdev_hw_addr *ha;
3539 int alloc_size;
3541 if (addr_len > MAX_ADDR_LEN)
3542 return -EINVAL;
3544 list_for_each_entry(ha, &list->list, list) {
3545 if (!memcmp(ha->addr, addr, addr_len) &&
3546 ha->type == addr_type) {
3547 ha->refcount++;
3548 return 0;
3553 alloc_size = sizeof(*ha);
3554 if (alloc_size < L1_CACHE_BYTES)
3555 alloc_size = L1_CACHE_BYTES;
3556 ha = kmalloc(alloc_size, GFP_ATOMIC);
3557 if (!ha)
3558 return -ENOMEM;
3559 memcpy(ha->addr, addr, addr_len);
3560 ha->type = addr_type;
3561 ha->refcount = 1;
3562 ha->synced = false;
3563 list_add_tail_rcu(&ha->list, &list->list);
3564 list->count++;
3565 return 0;
3568 static void ha_rcu_free(struct rcu_head *head)
3570 struct netdev_hw_addr *ha;
3572 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3573 kfree(ha);
3576 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3577 int addr_len, unsigned char addr_type)
3579 struct netdev_hw_addr *ha;
3581 list_for_each_entry(ha, &list->list, list) {
3582 if (!memcmp(ha->addr, addr, addr_len) &&
3583 (ha->type == addr_type || !addr_type)) {
3584 if (--ha->refcount)
3585 return 0;
3586 list_del_rcu(&ha->list);
3587 call_rcu(&ha->rcu_head, ha_rcu_free);
3588 list->count--;
3589 return 0;
3592 return -ENOENT;
3595 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3596 struct netdev_hw_addr_list *from_list,
3597 int addr_len,
3598 unsigned char addr_type)
3600 int err;
3601 struct netdev_hw_addr *ha, *ha2;
3602 unsigned char type;
3604 list_for_each_entry(ha, &from_list->list, list) {
3605 type = addr_type ? addr_type : ha->type;
3606 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3607 if (err)
3608 goto unroll;
3610 return 0;
3612 unroll:
3613 list_for_each_entry(ha2, &from_list->list, list) {
3614 if (ha2 == ha)
3615 break;
3616 type = addr_type ? addr_type : ha2->type;
3617 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3619 return err;
3622 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3623 struct netdev_hw_addr_list *from_list,
3624 int addr_len,
3625 unsigned char addr_type)
3627 struct netdev_hw_addr *ha;
3628 unsigned char type;
3630 list_for_each_entry(ha, &from_list->list, list) {
3631 type = addr_type ? addr_type : ha->type;
3632 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3636 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3637 struct netdev_hw_addr_list *from_list,
3638 int addr_len)
3640 int err = 0;
3641 struct netdev_hw_addr *ha, *tmp;
3643 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3644 if (!ha->synced) {
3645 err = __hw_addr_add(to_list, ha->addr,
3646 addr_len, ha->type);
3647 if (err)
3648 break;
3649 ha->synced = true;
3650 ha->refcount++;
3651 } else if (ha->refcount == 1) {
3652 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3653 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3656 return err;
3659 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3660 struct netdev_hw_addr_list *from_list,
3661 int addr_len)
3663 struct netdev_hw_addr *ha, *tmp;
3665 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3666 if (ha->synced) {
3667 __hw_addr_del(to_list, ha->addr,
3668 addr_len, ha->type);
3669 ha->synced = false;
3670 __hw_addr_del(from_list, ha->addr,
3671 addr_len, ha->type);
3676 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3678 struct netdev_hw_addr *ha, *tmp;
3680 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3681 list_del_rcu(&ha->list);
3682 call_rcu(&ha->rcu_head, ha_rcu_free);
3684 list->count = 0;
3687 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3689 INIT_LIST_HEAD(&list->list);
3690 list->count = 0;
3693 /* Device addresses handling functions */
3695 static void dev_addr_flush(struct net_device *dev)
3697 /* rtnl_mutex must be held here */
3699 __hw_addr_flush(&dev->dev_addrs);
3700 dev->dev_addr = NULL;
3703 static int dev_addr_init(struct net_device *dev)
3705 unsigned char addr[MAX_ADDR_LEN];
3706 struct netdev_hw_addr *ha;
3707 int err;
3709 /* rtnl_mutex must be held here */
3711 __hw_addr_init(&dev->dev_addrs);
3712 memset(addr, 0, sizeof(addr));
3713 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3714 NETDEV_HW_ADDR_T_LAN);
3715 if (!err) {
3717 * Get the first (previously created) address from the list
3718 * and set dev_addr pointer to this location.
3720 ha = list_first_entry(&dev->dev_addrs.list,
3721 struct netdev_hw_addr, list);
3722 dev->dev_addr = ha->addr;
3724 return err;
3728 * dev_addr_add - Add a device address
3729 * @dev: device
3730 * @addr: address to add
3731 * @addr_type: address type
3733 * Add a device address to the device or increase the reference count if
3734 * it already exists.
3736 * The caller must hold the rtnl_mutex.
3738 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3739 unsigned char addr_type)
3741 int err;
3743 ASSERT_RTNL();
3745 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3746 if (!err)
3747 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3748 return err;
3750 EXPORT_SYMBOL(dev_addr_add);
3753 * dev_addr_del - Release a device address.
3754 * @dev: device
3755 * @addr: address to delete
3756 * @addr_type: address type
3758 * Release reference to a device address and remove it from the device
3759 * if the reference count drops to zero.
3761 * The caller must hold the rtnl_mutex.
3763 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3764 unsigned char addr_type)
3766 int err;
3767 struct netdev_hw_addr *ha;
3769 ASSERT_RTNL();
3772 * We can not remove the first address from the list because
3773 * dev->dev_addr points to that.
3775 ha = list_first_entry(&dev->dev_addrs.list,
3776 struct netdev_hw_addr, list);
3777 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3778 return -ENOENT;
3780 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3781 addr_type);
3782 if (!err)
3783 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3784 return err;
3786 EXPORT_SYMBOL(dev_addr_del);
3789 * dev_addr_add_multiple - Add device addresses from another device
3790 * @to_dev: device to which addresses will be added
3791 * @from_dev: device from which addresses will be added
3792 * @addr_type: address type - 0 means type will be used from from_dev
3794 * Add device addresses of the one device to another.
3796 * The caller must hold the rtnl_mutex.
3798 int dev_addr_add_multiple(struct net_device *to_dev,
3799 struct net_device *from_dev,
3800 unsigned char addr_type)
3802 int err;
3804 ASSERT_RTNL();
3806 if (from_dev->addr_len != to_dev->addr_len)
3807 return -EINVAL;
3808 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3809 to_dev->addr_len, addr_type);
3810 if (!err)
3811 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3812 return err;
3814 EXPORT_SYMBOL(dev_addr_add_multiple);
3817 * dev_addr_del_multiple - Delete device addresses by another device
3818 * @to_dev: device where the addresses will be deleted
3819 * @from_dev: device by which addresses the addresses will be deleted
3820 * @addr_type: address type - 0 means type will used from from_dev
3822 * Deletes addresses in to device by the list of addresses in from device.
3824 * The caller must hold the rtnl_mutex.
3826 int dev_addr_del_multiple(struct net_device *to_dev,
3827 struct net_device *from_dev,
3828 unsigned char addr_type)
3830 ASSERT_RTNL();
3832 if (from_dev->addr_len != to_dev->addr_len)
3833 return -EINVAL;
3834 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3835 to_dev->addr_len, addr_type);
3836 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3837 return 0;
3839 EXPORT_SYMBOL(dev_addr_del_multiple);
3841 /* multicast addresses handling functions */
3843 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3844 void *addr, int alen, int glbl)
3846 struct dev_addr_list *da;
3848 for (; (da = *list) != NULL; list = &da->next) {
3849 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3850 alen == da->da_addrlen) {
3851 if (glbl) {
3852 int old_glbl = da->da_gusers;
3853 da->da_gusers = 0;
3854 if (old_glbl == 0)
3855 break;
3857 if (--da->da_users)
3858 return 0;
3860 *list = da->next;
3861 kfree(da);
3862 (*count)--;
3863 return 0;
3866 return -ENOENT;
3869 int __dev_addr_add(struct dev_addr_list **list, int *count,
3870 void *addr, int alen, int glbl)
3872 struct dev_addr_list *da;
3874 for (da = *list; da != NULL; da = da->next) {
3875 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3876 da->da_addrlen == alen) {
3877 if (glbl) {
3878 int old_glbl = da->da_gusers;
3879 da->da_gusers = 1;
3880 if (old_glbl)
3881 return 0;
3883 da->da_users++;
3884 return 0;
3888 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3889 if (da == NULL)
3890 return -ENOMEM;
3891 memcpy(da->da_addr, addr, alen);
3892 da->da_addrlen = alen;
3893 da->da_users = 1;
3894 da->da_gusers = glbl ? 1 : 0;
3895 da->next = *list;
3896 *list = da;
3897 (*count)++;
3898 return 0;
3902 * dev_unicast_delete - Release secondary unicast address.
3903 * @dev: device
3904 * @addr: address to delete
3906 * Release reference to a secondary unicast address and remove it
3907 * from the device if the reference count drops to zero.
3909 * The caller must hold the rtnl_mutex.
3911 int dev_unicast_delete(struct net_device *dev, void *addr)
3913 int err;
3915 ASSERT_RTNL();
3917 netif_addr_lock_bh(dev);
3918 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
3919 NETDEV_HW_ADDR_T_UNICAST);
3920 if (!err)
3921 __dev_set_rx_mode(dev);
3922 netif_addr_unlock_bh(dev);
3923 return err;
3925 EXPORT_SYMBOL(dev_unicast_delete);
3928 * dev_unicast_add - add a secondary unicast address
3929 * @dev: device
3930 * @addr: address to add
3932 * Add a secondary unicast address to the device or increase
3933 * the reference count if it already exists.
3935 * The caller must hold the rtnl_mutex.
3937 int dev_unicast_add(struct net_device *dev, void *addr)
3939 int err;
3941 ASSERT_RTNL();
3943 netif_addr_lock_bh(dev);
3944 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
3945 NETDEV_HW_ADDR_T_UNICAST);
3946 if (!err)
3947 __dev_set_rx_mode(dev);
3948 netif_addr_unlock_bh(dev);
3949 return err;
3951 EXPORT_SYMBOL(dev_unicast_add);
3953 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3954 struct dev_addr_list **from, int *from_count)
3956 struct dev_addr_list *da, *next;
3957 int err = 0;
3959 da = *from;
3960 while (da != NULL) {
3961 next = da->next;
3962 if (!da->da_synced) {
3963 err = __dev_addr_add(to, to_count,
3964 da->da_addr, da->da_addrlen, 0);
3965 if (err < 0)
3966 break;
3967 da->da_synced = 1;
3968 da->da_users++;
3969 } else if (da->da_users == 1) {
3970 __dev_addr_delete(to, to_count,
3971 da->da_addr, da->da_addrlen, 0);
3972 __dev_addr_delete(from, from_count,
3973 da->da_addr, da->da_addrlen, 0);
3975 da = next;
3977 return err;
3979 EXPORT_SYMBOL_GPL(__dev_addr_sync);
3981 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3982 struct dev_addr_list **from, int *from_count)
3984 struct dev_addr_list *da, *next;
3986 da = *from;
3987 while (da != NULL) {
3988 next = da->next;
3989 if (da->da_synced) {
3990 __dev_addr_delete(to, to_count,
3991 da->da_addr, da->da_addrlen, 0);
3992 da->da_synced = 0;
3993 __dev_addr_delete(from, from_count,
3994 da->da_addr, da->da_addrlen, 0);
3996 da = next;
3999 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4002 * dev_unicast_sync - Synchronize device's unicast list to another device
4003 * @to: destination device
4004 * @from: source device
4006 * Add newly added addresses to the destination device and release
4007 * addresses that have no users left. The source device must be
4008 * locked by netif_tx_lock_bh.
4010 * This function is intended to be called from the dev->set_rx_mode
4011 * function of layered software devices.
4013 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4015 int err = 0;
4017 if (to->addr_len != from->addr_len)
4018 return -EINVAL;
4020 netif_addr_lock_bh(to);
4021 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4022 if (!err)
4023 __dev_set_rx_mode(to);
4024 netif_addr_unlock_bh(to);
4025 return err;
4027 EXPORT_SYMBOL(dev_unicast_sync);
4030 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4031 * @to: destination device
4032 * @from: source device
4034 * Remove all addresses that were added to the destination device by
4035 * dev_unicast_sync(). This function is intended to be called from the
4036 * dev->stop function of layered software devices.
4038 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4040 if (to->addr_len != from->addr_len)
4041 return;
4043 netif_addr_lock_bh(from);
4044 netif_addr_lock(to);
4045 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4046 __dev_set_rx_mode(to);
4047 netif_addr_unlock(to);
4048 netif_addr_unlock_bh(from);
4050 EXPORT_SYMBOL(dev_unicast_unsync);
4052 static void dev_unicast_flush(struct net_device *dev)
4054 netif_addr_lock_bh(dev);
4055 __hw_addr_flush(&dev->uc);
4056 netif_addr_unlock_bh(dev);
4059 static void dev_unicast_init(struct net_device *dev)
4061 __hw_addr_init(&dev->uc);
4065 static void __dev_addr_discard(struct dev_addr_list **list)
4067 struct dev_addr_list *tmp;
4069 while (*list != NULL) {
4070 tmp = *list;
4071 *list = tmp->next;
4072 if (tmp->da_users > tmp->da_gusers)
4073 printk("__dev_addr_discard: address leakage! "
4074 "da_users=%d\n", tmp->da_users);
4075 kfree(tmp);
4079 static void dev_addr_discard(struct net_device *dev)
4081 netif_addr_lock_bh(dev);
4083 __dev_addr_discard(&dev->mc_list);
4084 dev->mc_count = 0;
4086 netif_addr_unlock_bh(dev);
4090 * dev_get_flags - get flags reported to userspace
4091 * @dev: device
4093 * Get the combination of flag bits exported through APIs to userspace.
4095 unsigned dev_get_flags(const struct net_device *dev)
4097 unsigned flags;
4099 flags = (dev->flags & ~(IFF_PROMISC |
4100 IFF_ALLMULTI |
4101 IFF_RUNNING |
4102 IFF_LOWER_UP |
4103 IFF_DORMANT)) |
4104 (dev->gflags & (IFF_PROMISC |
4105 IFF_ALLMULTI));
4107 if (netif_running(dev)) {
4108 if (netif_oper_up(dev))
4109 flags |= IFF_RUNNING;
4110 if (netif_carrier_ok(dev))
4111 flags |= IFF_LOWER_UP;
4112 if (netif_dormant(dev))
4113 flags |= IFF_DORMANT;
4116 return flags;
4118 EXPORT_SYMBOL(dev_get_flags);
4121 * dev_change_flags - change device settings
4122 * @dev: device
4123 * @flags: device state flags
4125 * Change settings on device based state flags. The flags are
4126 * in the userspace exported format.
4128 int dev_change_flags(struct net_device *dev, unsigned flags)
4130 int ret, changes;
4131 int old_flags = dev->flags;
4133 ASSERT_RTNL();
4136 * Set the flags on our device.
4139 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4140 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4141 IFF_AUTOMEDIA)) |
4142 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4143 IFF_ALLMULTI));
4146 * Load in the correct multicast list now the flags have changed.
4149 if ((old_flags ^ flags) & IFF_MULTICAST)
4150 dev_change_rx_flags(dev, IFF_MULTICAST);
4152 dev_set_rx_mode(dev);
4155 * Have we downed the interface. We handle IFF_UP ourselves
4156 * according to user attempts to set it, rather than blindly
4157 * setting it.
4160 ret = 0;
4161 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4162 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4164 if (!ret)
4165 dev_set_rx_mode(dev);
4168 if (dev->flags & IFF_UP &&
4169 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4170 IFF_VOLATILE)))
4171 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4173 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4174 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4176 dev->gflags ^= IFF_PROMISC;
4177 dev_set_promiscuity(dev, inc);
4180 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4181 is important. Some (broken) drivers set IFF_PROMISC, when
4182 IFF_ALLMULTI is requested not asking us and not reporting.
4184 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4185 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4187 dev->gflags ^= IFF_ALLMULTI;
4188 dev_set_allmulti(dev, inc);
4191 /* Exclude state transition flags, already notified */
4192 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4193 if (changes)
4194 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4196 return ret;
4198 EXPORT_SYMBOL(dev_change_flags);
4201 * dev_set_mtu - Change maximum transfer unit
4202 * @dev: device
4203 * @new_mtu: new transfer unit
4205 * Change the maximum transfer size of the network device.
4207 int dev_set_mtu(struct net_device *dev, int new_mtu)
4209 const struct net_device_ops *ops = dev->netdev_ops;
4210 int err;
4212 if (new_mtu == dev->mtu)
4213 return 0;
4215 /* MTU must be positive. */
4216 if (new_mtu < 0)
4217 return -EINVAL;
4219 if (!netif_device_present(dev))
4220 return -ENODEV;
4222 err = 0;
4223 if (ops->ndo_change_mtu)
4224 err = ops->ndo_change_mtu(dev, new_mtu);
4225 else
4226 dev->mtu = new_mtu;
4228 if (!err && dev->flags & IFF_UP)
4229 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4230 return err;
4232 EXPORT_SYMBOL(dev_set_mtu);
4235 * dev_set_mac_address - Change Media Access Control Address
4236 * @dev: device
4237 * @sa: new address
4239 * Change the hardware (MAC) address of the device
4241 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4243 const struct net_device_ops *ops = dev->netdev_ops;
4244 int err;
4246 if (!ops->ndo_set_mac_address)
4247 return -EOPNOTSUPP;
4248 if (sa->sa_family != dev->type)
4249 return -EINVAL;
4250 if (!netif_device_present(dev))
4251 return -ENODEV;
4252 err = ops->ndo_set_mac_address(dev, sa);
4253 if (!err)
4254 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4255 return err;
4257 EXPORT_SYMBOL(dev_set_mac_address);
4260 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4262 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4264 int err;
4265 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4267 if (!dev)
4268 return -ENODEV;
4270 switch (cmd) {
4271 case SIOCGIFFLAGS: /* Get interface flags */
4272 ifr->ifr_flags = (short) dev_get_flags(dev);
4273 return 0;
4275 case SIOCGIFMETRIC: /* Get the metric on the interface
4276 (currently unused) */
4277 ifr->ifr_metric = 0;
4278 return 0;
4280 case SIOCGIFMTU: /* Get the MTU of a device */
4281 ifr->ifr_mtu = dev->mtu;
4282 return 0;
4284 case SIOCGIFHWADDR:
4285 if (!dev->addr_len)
4286 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4287 else
4288 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4289 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4290 ifr->ifr_hwaddr.sa_family = dev->type;
4291 return 0;
4293 case SIOCGIFSLAVE:
4294 err = -EINVAL;
4295 break;
4297 case SIOCGIFMAP:
4298 ifr->ifr_map.mem_start = dev->mem_start;
4299 ifr->ifr_map.mem_end = dev->mem_end;
4300 ifr->ifr_map.base_addr = dev->base_addr;
4301 ifr->ifr_map.irq = dev->irq;
4302 ifr->ifr_map.dma = dev->dma;
4303 ifr->ifr_map.port = dev->if_port;
4304 return 0;
4306 case SIOCGIFINDEX:
4307 ifr->ifr_ifindex = dev->ifindex;
4308 return 0;
4310 case SIOCGIFTXQLEN:
4311 ifr->ifr_qlen = dev->tx_queue_len;
4312 return 0;
4314 default:
4315 /* dev_ioctl() should ensure this case
4316 * is never reached
4318 WARN_ON(1);
4319 err = -EINVAL;
4320 break;
4323 return err;
4327 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4329 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4331 int err;
4332 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4333 const struct net_device_ops *ops;
4335 if (!dev)
4336 return -ENODEV;
4338 ops = dev->netdev_ops;
4340 switch (cmd) {
4341 case SIOCSIFFLAGS: /* Set interface flags */
4342 return dev_change_flags(dev, ifr->ifr_flags);
4344 case SIOCSIFMETRIC: /* Set the metric on the interface
4345 (currently unused) */
4346 return -EOPNOTSUPP;
4348 case SIOCSIFMTU: /* Set the MTU of a device */
4349 return dev_set_mtu(dev, ifr->ifr_mtu);
4351 case SIOCSIFHWADDR:
4352 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4354 case SIOCSIFHWBROADCAST:
4355 if (ifr->ifr_hwaddr.sa_family != dev->type)
4356 return -EINVAL;
4357 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4358 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4359 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4360 return 0;
4362 case SIOCSIFMAP:
4363 if (ops->ndo_set_config) {
4364 if (!netif_device_present(dev))
4365 return -ENODEV;
4366 return ops->ndo_set_config(dev, &ifr->ifr_map);
4368 return -EOPNOTSUPP;
4370 case SIOCADDMULTI:
4371 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4372 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4373 return -EINVAL;
4374 if (!netif_device_present(dev))
4375 return -ENODEV;
4376 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4377 dev->addr_len, 1);
4379 case SIOCDELMULTI:
4380 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4381 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4382 return -EINVAL;
4383 if (!netif_device_present(dev))
4384 return -ENODEV;
4385 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4386 dev->addr_len, 1);
4388 case SIOCSIFTXQLEN:
4389 if (ifr->ifr_qlen < 0)
4390 return -EINVAL;
4391 dev->tx_queue_len = ifr->ifr_qlen;
4392 return 0;
4394 case SIOCSIFNAME:
4395 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4396 return dev_change_name(dev, ifr->ifr_newname);
4399 * Unknown or private ioctl
4401 default:
4402 if ((cmd >= SIOCDEVPRIVATE &&
4403 cmd <= SIOCDEVPRIVATE + 15) ||
4404 cmd == SIOCBONDENSLAVE ||
4405 cmd == SIOCBONDRELEASE ||
4406 cmd == SIOCBONDSETHWADDR ||
4407 cmd == SIOCBONDSLAVEINFOQUERY ||
4408 cmd == SIOCBONDINFOQUERY ||
4409 cmd == SIOCBONDCHANGEACTIVE ||
4410 cmd == SIOCGMIIPHY ||
4411 cmd == SIOCGMIIREG ||
4412 cmd == SIOCSMIIREG ||
4413 cmd == SIOCBRADDIF ||
4414 cmd == SIOCBRDELIF ||
4415 cmd == SIOCSHWTSTAMP ||
4416 cmd == SIOCWANDEV) {
4417 err = -EOPNOTSUPP;
4418 if (ops->ndo_do_ioctl) {
4419 if (netif_device_present(dev))
4420 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4421 else
4422 err = -ENODEV;
4424 } else
4425 err = -EINVAL;
4428 return err;
4432 * This function handles all "interface"-type I/O control requests. The actual
4433 * 'doing' part of this is dev_ifsioc above.
4437 * dev_ioctl - network device ioctl
4438 * @net: the applicable net namespace
4439 * @cmd: command to issue
4440 * @arg: pointer to a struct ifreq in user space
4442 * Issue ioctl functions to devices. This is normally called by the
4443 * user space syscall interfaces but can sometimes be useful for
4444 * other purposes. The return value is the return from the syscall if
4445 * positive or a negative errno code on error.
4448 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4450 struct ifreq ifr;
4451 int ret;
4452 char *colon;
4454 /* One special case: SIOCGIFCONF takes ifconf argument
4455 and requires shared lock, because it sleeps writing
4456 to user space.
4459 if (cmd == SIOCGIFCONF) {
4460 rtnl_lock();
4461 ret = dev_ifconf(net, (char __user *) arg);
4462 rtnl_unlock();
4463 return ret;
4465 if (cmd == SIOCGIFNAME)
4466 return dev_ifname(net, (struct ifreq __user *)arg);
4468 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4469 return -EFAULT;
4471 ifr.ifr_name[IFNAMSIZ-1] = 0;
4473 colon = strchr(ifr.ifr_name, ':');
4474 if (colon)
4475 *colon = 0;
4478 * See which interface the caller is talking about.
4481 switch (cmd) {
4483 * These ioctl calls:
4484 * - can be done by all.
4485 * - atomic and do not require locking.
4486 * - return a value
4488 case SIOCGIFFLAGS:
4489 case SIOCGIFMETRIC:
4490 case SIOCGIFMTU:
4491 case SIOCGIFHWADDR:
4492 case SIOCGIFSLAVE:
4493 case SIOCGIFMAP:
4494 case SIOCGIFINDEX:
4495 case SIOCGIFTXQLEN:
4496 dev_load(net, ifr.ifr_name);
4497 read_lock(&dev_base_lock);
4498 ret = dev_ifsioc_locked(net, &ifr, cmd);
4499 read_unlock(&dev_base_lock);
4500 if (!ret) {
4501 if (colon)
4502 *colon = ':';
4503 if (copy_to_user(arg, &ifr,
4504 sizeof(struct ifreq)))
4505 ret = -EFAULT;
4507 return ret;
4509 case SIOCETHTOOL:
4510 dev_load(net, ifr.ifr_name);
4511 rtnl_lock();
4512 ret = dev_ethtool(net, &ifr);
4513 rtnl_unlock();
4514 if (!ret) {
4515 if (colon)
4516 *colon = ':';
4517 if (copy_to_user(arg, &ifr,
4518 sizeof(struct ifreq)))
4519 ret = -EFAULT;
4521 return ret;
4524 * These ioctl calls:
4525 * - require superuser power.
4526 * - require strict serialization.
4527 * - return a value
4529 case SIOCGMIIPHY:
4530 case SIOCGMIIREG:
4531 case SIOCSIFNAME:
4532 if (!capable(CAP_NET_ADMIN))
4533 return -EPERM;
4534 dev_load(net, ifr.ifr_name);
4535 rtnl_lock();
4536 ret = dev_ifsioc(net, &ifr, cmd);
4537 rtnl_unlock();
4538 if (!ret) {
4539 if (colon)
4540 *colon = ':';
4541 if (copy_to_user(arg, &ifr,
4542 sizeof(struct ifreq)))
4543 ret = -EFAULT;
4545 return ret;
4548 * These ioctl calls:
4549 * - require superuser power.
4550 * - require strict serialization.
4551 * - do not return a value
4553 case SIOCSIFFLAGS:
4554 case SIOCSIFMETRIC:
4555 case SIOCSIFMTU:
4556 case SIOCSIFMAP:
4557 case SIOCSIFHWADDR:
4558 case SIOCSIFSLAVE:
4559 case SIOCADDMULTI:
4560 case SIOCDELMULTI:
4561 case SIOCSIFHWBROADCAST:
4562 case SIOCSIFTXQLEN:
4563 case SIOCSMIIREG:
4564 case SIOCBONDENSLAVE:
4565 case SIOCBONDRELEASE:
4566 case SIOCBONDSETHWADDR:
4567 case SIOCBONDCHANGEACTIVE:
4568 case SIOCBRADDIF:
4569 case SIOCBRDELIF:
4570 case SIOCSHWTSTAMP:
4571 if (!capable(CAP_NET_ADMIN))
4572 return -EPERM;
4573 /* fall through */
4574 case SIOCBONDSLAVEINFOQUERY:
4575 case SIOCBONDINFOQUERY:
4576 dev_load(net, ifr.ifr_name);
4577 rtnl_lock();
4578 ret = dev_ifsioc(net, &ifr, cmd);
4579 rtnl_unlock();
4580 return ret;
4582 case SIOCGIFMEM:
4583 /* Get the per device memory space. We can add this but
4584 * currently do not support it */
4585 case SIOCSIFMEM:
4586 /* Set the per device memory buffer space.
4587 * Not applicable in our case */
4588 case SIOCSIFLINK:
4589 return -EINVAL;
4592 * Unknown or private ioctl.
4594 default:
4595 if (cmd == SIOCWANDEV ||
4596 (cmd >= SIOCDEVPRIVATE &&
4597 cmd <= SIOCDEVPRIVATE + 15)) {
4598 dev_load(net, ifr.ifr_name);
4599 rtnl_lock();
4600 ret = dev_ifsioc(net, &ifr, cmd);
4601 rtnl_unlock();
4602 if (!ret && copy_to_user(arg, &ifr,
4603 sizeof(struct ifreq)))
4604 ret = -EFAULT;
4605 return ret;
4607 /* Take care of Wireless Extensions */
4608 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4609 return wext_handle_ioctl(net, &ifr, cmd, arg);
4610 return -EINVAL;
4616 * dev_new_index - allocate an ifindex
4617 * @net: the applicable net namespace
4619 * Returns a suitable unique value for a new device interface
4620 * number. The caller must hold the rtnl semaphore or the
4621 * dev_base_lock to be sure it remains unique.
4623 static int dev_new_index(struct net *net)
4625 static int ifindex;
4626 for (;;) {
4627 if (++ifindex <= 0)
4628 ifindex = 1;
4629 if (!__dev_get_by_index(net, ifindex))
4630 return ifindex;
4634 /* Delayed registration/unregisteration */
4635 static LIST_HEAD(net_todo_list);
4637 static void net_set_todo(struct net_device *dev)
4639 list_add_tail(&dev->todo_list, &net_todo_list);
4642 static void rollback_registered(struct net_device *dev)
4644 BUG_ON(dev_boot_phase);
4645 ASSERT_RTNL();
4647 /* Some devices call without registering for initialization unwind. */
4648 if (dev->reg_state == NETREG_UNINITIALIZED) {
4649 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4650 "was registered\n", dev->name, dev);
4652 WARN_ON(1);
4653 return;
4656 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4658 /* If device is running, close it first. */
4659 dev_close(dev);
4661 /* And unlink it from device chain. */
4662 unlist_netdevice(dev);
4664 dev->reg_state = NETREG_UNREGISTERING;
4666 synchronize_net();
4668 /* Shutdown queueing discipline. */
4669 dev_shutdown(dev);
4672 /* Notify protocols, that we are about to destroy
4673 this device. They should clean all the things.
4675 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4678 * Flush the unicast and multicast chains
4680 dev_unicast_flush(dev);
4681 dev_addr_discard(dev);
4683 if (dev->netdev_ops->ndo_uninit)
4684 dev->netdev_ops->ndo_uninit(dev);
4686 /* Notifier chain MUST detach us from master device. */
4687 WARN_ON(dev->master);
4689 /* Remove entries from kobject tree */
4690 netdev_unregister_kobject(dev);
4692 synchronize_net();
4694 dev_put(dev);
4697 static void __netdev_init_queue_locks_one(struct net_device *dev,
4698 struct netdev_queue *dev_queue,
4699 void *_unused)
4701 spin_lock_init(&dev_queue->_xmit_lock);
4702 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4703 dev_queue->xmit_lock_owner = -1;
4706 static void netdev_init_queue_locks(struct net_device *dev)
4708 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4709 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4712 unsigned long netdev_fix_features(unsigned long features, const char *name)
4714 /* Fix illegal SG+CSUM combinations. */
4715 if ((features & NETIF_F_SG) &&
4716 !(features & NETIF_F_ALL_CSUM)) {
4717 if (name)
4718 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4719 "checksum feature.\n", name);
4720 features &= ~NETIF_F_SG;
4723 /* TSO requires that SG is present as well. */
4724 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4725 if (name)
4726 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4727 "SG feature.\n", name);
4728 features &= ~NETIF_F_TSO;
4731 if (features & NETIF_F_UFO) {
4732 if (!(features & NETIF_F_GEN_CSUM)) {
4733 if (name)
4734 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4735 "since no NETIF_F_HW_CSUM feature.\n",
4736 name);
4737 features &= ~NETIF_F_UFO;
4740 if (!(features & NETIF_F_SG)) {
4741 if (name)
4742 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4743 "since no NETIF_F_SG feature.\n", name);
4744 features &= ~NETIF_F_UFO;
4748 return features;
4750 EXPORT_SYMBOL(netdev_fix_features);
4753 * register_netdevice - register a network device
4754 * @dev: device to register
4756 * Take a completed network device structure and add it to the kernel
4757 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4758 * chain. 0 is returned on success. A negative errno code is returned
4759 * on a failure to set up the device, or if the name is a duplicate.
4761 * Callers must hold the rtnl semaphore. You may want
4762 * register_netdev() instead of this.
4764 * BUGS:
4765 * The locking appears insufficient to guarantee two parallel registers
4766 * will not get the same name.
4769 int register_netdevice(struct net_device *dev)
4771 struct hlist_head *head;
4772 struct hlist_node *p;
4773 int ret;
4774 struct net *net = dev_net(dev);
4776 BUG_ON(dev_boot_phase);
4777 ASSERT_RTNL();
4779 might_sleep();
4781 /* When net_device's are persistent, this will be fatal. */
4782 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4783 BUG_ON(!net);
4785 spin_lock_init(&dev->addr_list_lock);
4786 netdev_set_addr_lockdep_class(dev);
4787 netdev_init_queue_locks(dev);
4789 dev->iflink = -1;
4791 /* Init, if this function is available */
4792 if (dev->netdev_ops->ndo_init) {
4793 ret = dev->netdev_ops->ndo_init(dev);
4794 if (ret) {
4795 if (ret > 0)
4796 ret = -EIO;
4797 goto out;
4801 if (!dev_valid_name(dev->name)) {
4802 ret = -EINVAL;
4803 goto err_uninit;
4806 dev->ifindex = dev_new_index(net);
4807 if (dev->iflink == -1)
4808 dev->iflink = dev->ifindex;
4810 /* Check for existence of name */
4811 head = dev_name_hash(net, dev->name);
4812 hlist_for_each(p, head) {
4813 struct net_device *d
4814 = hlist_entry(p, struct net_device, name_hlist);
4815 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4816 ret = -EEXIST;
4817 goto err_uninit;
4821 /* Fix illegal checksum combinations */
4822 if ((dev->features & NETIF_F_HW_CSUM) &&
4823 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4824 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4825 dev->name);
4826 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4829 if ((dev->features & NETIF_F_NO_CSUM) &&
4830 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4831 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4832 dev->name);
4833 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4836 dev->features = netdev_fix_features(dev->features, dev->name);
4838 /* Enable software GSO if SG is supported. */
4839 if (dev->features & NETIF_F_SG)
4840 dev->features |= NETIF_F_GSO;
4842 netdev_initialize_kobject(dev);
4844 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4845 ret = notifier_to_errno(ret);
4846 if (ret)
4847 goto err_uninit;
4849 ret = netdev_register_kobject(dev);
4850 if (ret)
4851 goto err_uninit;
4852 dev->reg_state = NETREG_REGISTERED;
4855 * Default initial state at registry is that the
4856 * device is present.
4859 set_bit(__LINK_STATE_PRESENT, &dev->state);
4861 dev_init_scheduler(dev);
4862 dev_hold(dev);
4863 list_netdevice(dev);
4865 /* Notify protocols, that a new device appeared. */
4866 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4867 ret = notifier_to_errno(ret);
4868 if (ret) {
4869 rollback_registered(dev);
4870 dev->reg_state = NETREG_UNREGISTERED;
4873 out:
4874 return ret;
4876 err_uninit:
4877 if (dev->netdev_ops->ndo_uninit)
4878 dev->netdev_ops->ndo_uninit(dev);
4879 goto out;
4881 EXPORT_SYMBOL(register_netdevice);
4884 * init_dummy_netdev - init a dummy network device for NAPI
4885 * @dev: device to init
4887 * This takes a network device structure and initialize the minimum
4888 * amount of fields so it can be used to schedule NAPI polls without
4889 * registering a full blown interface. This is to be used by drivers
4890 * that need to tie several hardware interfaces to a single NAPI
4891 * poll scheduler due to HW limitations.
4893 int init_dummy_netdev(struct net_device *dev)
4895 /* Clear everything. Note we don't initialize spinlocks
4896 * are they aren't supposed to be taken by any of the
4897 * NAPI code and this dummy netdev is supposed to be
4898 * only ever used for NAPI polls
4900 memset(dev, 0, sizeof(struct net_device));
4902 /* make sure we BUG if trying to hit standard
4903 * register/unregister code path
4905 dev->reg_state = NETREG_DUMMY;
4907 /* initialize the ref count */
4908 atomic_set(&dev->refcnt, 1);
4910 /* NAPI wants this */
4911 INIT_LIST_HEAD(&dev->napi_list);
4913 /* a dummy interface is started by default */
4914 set_bit(__LINK_STATE_PRESENT, &dev->state);
4915 set_bit(__LINK_STATE_START, &dev->state);
4917 return 0;
4919 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4923 * register_netdev - register a network device
4924 * @dev: device to register
4926 * Take a completed network device structure and add it to the kernel
4927 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4928 * chain. 0 is returned on success. A negative errno code is returned
4929 * on a failure to set up the device, or if the name is a duplicate.
4931 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4932 * and expands the device name if you passed a format string to
4933 * alloc_netdev.
4935 int register_netdev(struct net_device *dev)
4937 int err;
4939 rtnl_lock();
4942 * If the name is a format string the caller wants us to do a
4943 * name allocation.
4945 if (strchr(dev->name, '%')) {
4946 err = dev_alloc_name(dev, dev->name);
4947 if (err < 0)
4948 goto out;
4951 err = register_netdevice(dev);
4952 out:
4953 rtnl_unlock();
4954 return err;
4956 EXPORT_SYMBOL(register_netdev);
4959 * netdev_wait_allrefs - wait until all references are gone.
4961 * This is called when unregistering network devices.
4963 * Any protocol or device that holds a reference should register
4964 * for netdevice notification, and cleanup and put back the
4965 * reference if they receive an UNREGISTER event.
4966 * We can get stuck here if buggy protocols don't correctly
4967 * call dev_put.
4969 static void netdev_wait_allrefs(struct net_device *dev)
4971 unsigned long rebroadcast_time, warning_time;
4973 rebroadcast_time = warning_time = jiffies;
4974 while (atomic_read(&dev->refcnt) != 0) {
4975 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4976 rtnl_lock();
4978 /* Rebroadcast unregister notification */
4979 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4981 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4982 &dev->state)) {
4983 /* We must not have linkwatch events
4984 * pending on unregister. If this
4985 * happens, we simply run the queue
4986 * unscheduled, resulting in a noop
4987 * for this device.
4989 linkwatch_run_queue();
4992 __rtnl_unlock();
4994 rebroadcast_time = jiffies;
4997 msleep(250);
4999 if (time_after(jiffies, warning_time + 10 * HZ)) {
5000 printk(KERN_EMERG "unregister_netdevice: "
5001 "waiting for %s to become free. Usage "
5002 "count = %d\n",
5003 dev->name, atomic_read(&dev->refcnt));
5004 warning_time = jiffies;
5009 /* The sequence is:
5011 * rtnl_lock();
5012 * ...
5013 * register_netdevice(x1);
5014 * register_netdevice(x2);
5015 * ...
5016 * unregister_netdevice(y1);
5017 * unregister_netdevice(y2);
5018 * ...
5019 * rtnl_unlock();
5020 * free_netdev(y1);
5021 * free_netdev(y2);
5023 * We are invoked by rtnl_unlock().
5024 * This allows us to deal with problems:
5025 * 1) We can delete sysfs objects which invoke hotplug
5026 * without deadlocking with linkwatch via keventd.
5027 * 2) Since we run with the RTNL semaphore not held, we can sleep
5028 * safely in order to wait for the netdev refcnt to drop to zero.
5030 * We must not return until all unregister events added during
5031 * the interval the lock was held have been completed.
5033 void netdev_run_todo(void)
5035 struct list_head list;
5037 /* Snapshot list, allow later requests */
5038 list_replace_init(&net_todo_list, &list);
5040 __rtnl_unlock();
5042 while (!list_empty(&list)) {
5043 struct net_device *dev
5044 = list_entry(list.next, struct net_device, todo_list);
5045 list_del(&dev->todo_list);
5047 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5048 printk(KERN_ERR "network todo '%s' but state %d\n",
5049 dev->name, dev->reg_state);
5050 dump_stack();
5051 continue;
5054 dev->reg_state = NETREG_UNREGISTERED;
5056 on_each_cpu(flush_backlog, dev, 1);
5058 netdev_wait_allrefs(dev);
5060 /* paranoia */
5061 BUG_ON(atomic_read(&dev->refcnt));
5062 WARN_ON(dev->ip_ptr);
5063 WARN_ON(dev->ip6_ptr);
5064 WARN_ON(dev->dn_ptr);
5066 if (dev->destructor)
5067 dev->destructor(dev);
5069 /* Free network device */
5070 kobject_put(&dev->dev.kobj);
5075 * dev_get_stats - get network device statistics
5076 * @dev: device to get statistics from
5078 * Get network statistics from device. The device driver may provide
5079 * its own method by setting dev->netdev_ops->get_stats; otherwise
5080 * the internal statistics structure is used.
5082 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5084 const struct net_device_ops *ops = dev->netdev_ops;
5086 if (ops->ndo_get_stats)
5087 return ops->ndo_get_stats(dev);
5088 else {
5089 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5090 struct net_device_stats *stats = &dev->stats;
5091 unsigned int i;
5092 struct netdev_queue *txq;
5094 for (i = 0; i < dev->num_tx_queues; i++) {
5095 txq = netdev_get_tx_queue(dev, i);
5096 tx_bytes += txq->tx_bytes;
5097 tx_packets += txq->tx_packets;
5098 tx_dropped += txq->tx_dropped;
5100 if (tx_bytes || tx_packets || tx_dropped) {
5101 stats->tx_bytes = tx_bytes;
5102 stats->tx_packets = tx_packets;
5103 stats->tx_dropped = tx_dropped;
5105 return stats;
5108 EXPORT_SYMBOL(dev_get_stats);
5110 static void netdev_init_one_queue(struct net_device *dev,
5111 struct netdev_queue *queue,
5112 void *_unused)
5114 queue->dev = dev;
5117 static void netdev_init_queues(struct net_device *dev)
5119 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5120 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5121 spin_lock_init(&dev->tx_global_lock);
5125 * alloc_netdev_mq - allocate network device
5126 * @sizeof_priv: size of private data to allocate space for
5127 * @name: device name format string
5128 * @setup: callback to initialize device
5129 * @queue_count: the number of subqueues to allocate
5131 * Allocates a struct net_device with private data area for driver use
5132 * and performs basic initialization. Also allocates subquue structs
5133 * for each queue on the device at the end of the netdevice.
5135 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5136 void (*setup)(struct net_device *), unsigned int queue_count)
5138 struct netdev_queue *tx;
5139 struct net_device *dev;
5140 size_t alloc_size;
5141 struct net_device *p;
5143 BUG_ON(strlen(name) >= sizeof(dev->name));
5145 alloc_size = sizeof(struct net_device);
5146 if (sizeof_priv) {
5147 /* ensure 32-byte alignment of private area */
5148 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5149 alloc_size += sizeof_priv;
5151 /* ensure 32-byte alignment of whole construct */
5152 alloc_size += NETDEV_ALIGN - 1;
5154 p = kzalloc(alloc_size, GFP_KERNEL);
5155 if (!p) {
5156 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5157 return NULL;
5160 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5161 if (!tx) {
5162 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5163 "tx qdiscs.\n");
5164 goto free_p;
5167 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5168 dev->padded = (char *)dev - (char *)p;
5170 if (dev_addr_init(dev))
5171 goto free_tx;
5173 dev_unicast_init(dev);
5175 dev_net_set(dev, &init_net);
5177 dev->_tx = tx;
5178 dev->num_tx_queues = queue_count;
5179 dev->real_num_tx_queues = queue_count;
5181 dev->gso_max_size = GSO_MAX_SIZE;
5183 netdev_init_queues(dev);
5185 INIT_LIST_HEAD(&dev->napi_list);
5186 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5187 setup(dev);
5188 strcpy(dev->name, name);
5189 return dev;
5191 free_tx:
5192 kfree(tx);
5194 free_p:
5195 kfree(p);
5196 return NULL;
5198 EXPORT_SYMBOL(alloc_netdev_mq);
5201 * free_netdev - free network device
5202 * @dev: device
5204 * This function does the last stage of destroying an allocated device
5205 * interface. The reference to the device object is released.
5206 * If this is the last reference then it will be freed.
5208 void free_netdev(struct net_device *dev)
5210 struct napi_struct *p, *n;
5212 release_net(dev_net(dev));
5214 kfree(dev->_tx);
5216 /* Flush device addresses */
5217 dev_addr_flush(dev);
5219 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5220 netif_napi_del(p);
5222 /* Compatibility with error handling in drivers */
5223 if (dev->reg_state == NETREG_UNINITIALIZED) {
5224 kfree((char *)dev - dev->padded);
5225 return;
5228 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5229 dev->reg_state = NETREG_RELEASED;
5231 /* will free via device release */
5232 put_device(&dev->dev);
5234 EXPORT_SYMBOL(free_netdev);
5237 * synchronize_net - Synchronize with packet receive processing
5239 * Wait for packets currently being received to be done.
5240 * Does not block later packets from starting.
5242 void synchronize_net(void)
5244 might_sleep();
5245 synchronize_rcu();
5247 EXPORT_SYMBOL(synchronize_net);
5250 * unregister_netdevice - remove device from the kernel
5251 * @dev: device
5253 * This function shuts down a device interface and removes it
5254 * from the kernel tables.
5256 * Callers must hold the rtnl semaphore. You may want
5257 * unregister_netdev() instead of this.
5260 void unregister_netdevice(struct net_device *dev)
5262 ASSERT_RTNL();
5264 rollback_registered(dev);
5265 /* Finish processing unregister after unlock */
5266 net_set_todo(dev);
5268 EXPORT_SYMBOL(unregister_netdevice);
5271 * unregister_netdev - remove device from the kernel
5272 * @dev: device
5274 * This function shuts down a device interface and removes it
5275 * from the kernel tables.
5277 * This is just a wrapper for unregister_netdevice that takes
5278 * the rtnl semaphore. In general you want to use this and not
5279 * unregister_netdevice.
5281 void unregister_netdev(struct net_device *dev)
5283 rtnl_lock();
5284 unregister_netdevice(dev);
5285 rtnl_unlock();
5287 EXPORT_SYMBOL(unregister_netdev);
5290 * dev_change_net_namespace - move device to different nethost namespace
5291 * @dev: device
5292 * @net: network namespace
5293 * @pat: If not NULL name pattern to try if the current device name
5294 * is already taken in the destination network namespace.
5296 * This function shuts down a device interface and moves it
5297 * to a new network namespace. On success 0 is returned, on
5298 * a failure a netagive errno code is returned.
5300 * Callers must hold the rtnl semaphore.
5303 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5305 char buf[IFNAMSIZ];
5306 const char *destname;
5307 int err;
5309 ASSERT_RTNL();
5311 /* Don't allow namespace local devices to be moved. */
5312 err = -EINVAL;
5313 if (dev->features & NETIF_F_NETNS_LOCAL)
5314 goto out;
5316 #ifdef CONFIG_SYSFS
5317 /* Don't allow real devices to be moved when sysfs
5318 * is enabled.
5320 err = -EINVAL;
5321 if (dev->dev.parent)
5322 goto out;
5323 #endif
5325 /* Ensure the device has been registrered */
5326 err = -EINVAL;
5327 if (dev->reg_state != NETREG_REGISTERED)
5328 goto out;
5330 /* Get out if there is nothing todo */
5331 err = 0;
5332 if (net_eq(dev_net(dev), net))
5333 goto out;
5335 /* Pick the destination device name, and ensure
5336 * we can use it in the destination network namespace.
5338 err = -EEXIST;
5339 destname = dev->name;
5340 if (__dev_get_by_name(net, destname)) {
5341 /* We get here if we can't use the current device name */
5342 if (!pat)
5343 goto out;
5344 if (!dev_valid_name(pat))
5345 goto out;
5346 if (strchr(pat, '%')) {
5347 if (__dev_alloc_name(net, pat, buf) < 0)
5348 goto out;
5349 destname = buf;
5350 } else
5351 destname = pat;
5352 if (__dev_get_by_name(net, destname))
5353 goto out;
5357 * And now a mini version of register_netdevice unregister_netdevice.
5360 /* If device is running close it first. */
5361 dev_close(dev);
5363 /* And unlink it from device chain */
5364 err = -ENODEV;
5365 unlist_netdevice(dev);
5367 synchronize_net();
5369 /* Shutdown queueing discipline. */
5370 dev_shutdown(dev);
5372 /* Notify protocols, that we are about to destroy
5373 this device. They should clean all the things.
5375 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5378 * Flush the unicast and multicast chains
5380 dev_unicast_flush(dev);
5381 dev_addr_discard(dev);
5383 netdev_unregister_kobject(dev);
5385 /* Actually switch the network namespace */
5386 dev_net_set(dev, net);
5388 /* Assign the new device name */
5389 if (destname != dev->name)
5390 strcpy(dev->name, destname);
5392 /* If there is an ifindex conflict assign a new one */
5393 if (__dev_get_by_index(net, dev->ifindex)) {
5394 int iflink = (dev->iflink == dev->ifindex);
5395 dev->ifindex = dev_new_index(net);
5396 if (iflink)
5397 dev->iflink = dev->ifindex;
5400 /* Fixup kobjects */
5401 err = netdev_register_kobject(dev);
5402 WARN_ON(err);
5404 /* Add the device back in the hashes */
5405 list_netdevice(dev);
5407 /* Notify protocols, that a new device appeared. */
5408 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5410 synchronize_net();
5411 err = 0;
5412 out:
5413 return err;
5415 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5417 static int dev_cpu_callback(struct notifier_block *nfb,
5418 unsigned long action,
5419 void *ocpu)
5421 struct sk_buff **list_skb;
5422 struct Qdisc **list_net;
5423 struct sk_buff *skb;
5424 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5425 struct softnet_data *sd, *oldsd;
5427 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5428 return NOTIFY_OK;
5430 local_irq_disable();
5431 cpu = smp_processor_id();
5432 sd = &per_cpu(softnet_data, cpu);
5433 oldsd = &per_cpu(softnet_data, oldcpu);
5435 /* Find end of our completion_queue. */
5436 list_skb = &sd->completion_queue;
5437 while (*list_skb)
5438 list_skb = &(*list_skb)->next;
5439 /* Append completion queue from offline CPU. */
5440 *list_skb = oldsd->completion_queue;
5441 oldsd->completion_queue = NULL;
5443 /* Find end of our output_queue. */
5444 list_net = &sd->output_queue;
5445 while (*list_net)
5446 list_net = &(*list_net)->next_sched;
5447 /* Append output queue from offline CPU. */
5448 *list_net = oldsd->output_queue;
5449 oldsd->output_queue = NULL;
5451 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5452 local_irq_enable();
5454 /* Process offline CPU's input_pkt_queue */
5455 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5456 netif_rx(skb);
5458 return NOTIFY_OK;
5463 * netdev_increment_features - increment feature set by one
5464 * @all: current feature set
5465 * @one: new feature set
5466 * @mask: mask feature set
5468 * Computes a new feature set after adding a device with feature set
5469 * @one to the master device with current feature set @all. Will not
5470 * enable anything that is off in @mask. Returns the new feature set.
5472 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5473 unsigned long mask)
5475 /* If device needs checksumming, downgrade to it. */
5476 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5477 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5478 else if (mask & NETIF_F_ALL_CSUM) {
5479 /* If one device supports v4/v6 checksumming, set for all. */
5480 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5481 !(all & NETIF_F_GEN_CSUM)) {
5482 all &= ~NETIF_F_ALL_CSUM;
5483 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5486 /* If one device supports hw checksumming, set for all. */
5487 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5488 all &= ~NETIF_F_ALL_CSUM;
5489 all |= NETIF_F_HW_CSUM;
5493 one |= NETIF_F_ALL_CSUM;
5495 one |= all & NETIF_F_ONE_FOR_ALL;
5496 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5497 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5499 return all;
5501 EXPORT_SYMBOL(netdev_increment_features);
5503 static struct hlist_head *netdev_create_hash(void)
5505 int i;
5506 struct hlist_head *hash;
5508 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5509 if (hash != NULL)
5510 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5511 INIT_HLIST_HEAD(&hash[i]);
5513 return hash;
5516 /* Initialize per network namespace state */
5517 static int __net_init netdev_init(struct net *net)
5519 INIT_LIST_HEAD(&net->dev_base_head);
5521 net->dev_name_head = netdev_create_hash();
5522 if (net->dev_name_head == NULL)
5523 goto err_name;
5525 net->dev_index_head = netdev_create_hash();
5526 if (net->dev_index_head == NULL)
5527 goto err_idx;
5529 return 0;
5531 err_idx:
5532 kfree(net->dev_name_head);
5533 err_name:
5534 return -ENOMEM;
5538 * netdev_drivername - network driver for the device
5539 * @dev: network device
5540 * @buffer: buffer for resulting name
5541 * @len: size of buffer
5543 * Determine network driver for device.
5545 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5547 const struct device_driver *driver;
5548 const struct device *parent;
5550 if (len <= 0 || !buffer)
5551 return buffer;
5552 buffer[0] = 0;
5554 parent = dev->dev.parent;
5556 if (!parent)
5557 return buffer;
5559 driver = parent->driver;
5560 if (driver && driver->name)
5561 strlcpy(buffer, driver->name, len);
5562 return buffer;
5565 static void __net_exit netdev_exit(struct net *net)
5567 kfree(net->dev_name_head);
5568 kfree(net->dev_index_head);
5571 static struct pernet_operations __net_initdata netdev_net_ops = {
5572 .init = netdev_init,
5573 .exit = netdev_exit,
5576 static void __net_exit default_device_exit(struct net *net)
5578 struct net_device *dev;
5580 * Push all migratable of the network devices back to the
5581 * initial network namespace
5583 rtnl_lock();
5584 restart:
5585 for_each_netdev(net, dev) {
5586 int err;
5587 char fb_name[IFNAMSIZ];
5589 /* Ignore unmoveable devices (i.e. loopback) */
5590 if (dev->features & NETIF_F_NETNS_LOCAL)
5591 continue;
5593 /* Delete virtual devices */
5594 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5595 dev->rtnl_link_ops->dellink(dev);
5596 goto restart;
5599 /* Push remaing network devices to init_net */
5600 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5601 err = dev_change_net_namespace(dev, &init_net, fb_name);
5602 if (err) {
5603 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5604 __func__, dev->name, err);
5605 BUG();
5607 goto restart;
5609 rtnl_unlock();
5612 static struct pernet_operations __net_initdata default_device_ops = {
5613 .exit = default_device_exit,
5617 * Initialize the DEV module. At boot time this walks the device list and
5618 * unhooks any devices that fail to initialise (normally hardware not
5619 * present) and leaves us with a valid list of present and active devices.
5624 * This is called single threaded during boot, so no need
5625 * to take the rtnl semaphore.
5627 static int __init net_dev_init(void)
5629 int i, rc = -ENOMEM;
5631 BUG_ON(!dev_boot_phase);
5633 if (dev_proc_init())
5634 goto out;
5636 if (netdev_kobject_init())
5637 goto out;
5639 INIT_LIST_HEAD(&ptype_all);
5640 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5641 INIT_LIST_HEAD(&ptype_base[i]);
5643 if (register_pernet_subsys(&netdev_net_ops))
5644 goto out;
5647 * Initialise the packet receive queues.
5650 for_each_possible_cpu(i) {
5651 struct softnet_data *queue;
5653 queue = &per_cpu(softnet_data, i);
5654 skb_queue_head_init(&queue->input_pkt_queue);
5655 queue->completion_queue = NULL;
5656 INIT_LIST_HEAD(&queue->poll_list);
5658 queue->backlog.poll = process_backlog;
5659 queue->backlog.weight = weight_p;
5660 queue->backlog.gro_list = NULL;
5661 queue->backlog.gro_count = 0;
5664 dev_boot_phase = 0;
5666 /* The loopback device is special if any other network devices
5667 * is present in a network namespace the loopback device must
5668 * be present. Since we now dynamically allocate and free the
5669 * loopback device ensure this invariant is maintained by
5670 * keeping the loopback device as the first device on the
5671 * list of network devices. Ensuring the loopback devices
5672 * is the first device that appears and the last network device
5673 * that disappears.
5675 if (register_pernet_device(&loopback_net_ops))
5676 goto out;
5678 if (register_pernet_device(&default_device_ops))
5679 goto out;
5681 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5682 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5684 hotcpu_notifier(dev_cpu_callback, 0);
5685 dst_init();
5686 dev_mcast_init();
5687 rc = 0;
5688 out:
5689 return rc;
5692 subsys_initcall(net_dev_init);
5694 static int __init initialize_hashrnd(void)
5696 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5697 return 0;
5700 late_initcall_sync(initialize_hashrnd);