In massive parallel enviroment, res_counter can be a performance
[mmotm.git] / include / linux / sched.h
bloba13e415f329af0bfeedf984da6a96be7ded97ac6
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
44 #ifdef __KERNEL__
46 struct sched_param {
47 int sched_priority;
50 #include <asm/param.h> /* for HZ */
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
95 #include <asm/processor.h>
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(void);
144 extern unsigned long this_cpu_load(void);
147 extern void calc_global_load(void);
148 extern u64 cpu_nr_migrations(int cpu);
150 extern unsigned long get_parent_ip(unsigned long addr);
152 struct seq_file;
153 struct cfs_rq;
154 struct task_group;
155 #ifdef CONFIG_SCHED_DEBUG
156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
157 extern void proc_sched_set_task(struct task_struct *p);
158 extern void
159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
160 #else
161 static inline void
162 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
165 static inline void proc_sched_set_task(struct task_struct *p)
168 static inline void
169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
172 #endif
174 extern unsigned long long time_sync_thresh;
177 * Task state bitmask. NOTE! These bits are also
178 * encoded in fs/proc/array.c: get_task_state().
180 * We have two separate sets of flags: task->state
181 * is about runnability, while task->exit_state are
182 * about the task exiting. Confusing, but this way
183 * modifying one set can't modify the other one by
184 * mistake.
186 #define TASK_RUNNING 0
187 #define TASK_INTERRUPTIBLE 1
188 #define TASK_UNINTERRUPTIBLE 2
189 #define __TASK_STOPPED 4
190 #define __TASK_TRACED 8
191 /* in tsk->exit_state */
192 #define EXIT_ZOMBIE 16
193 #define EXIT_DEAD 32
194 /* in tsk->state again */
195 #define TASK_DEAD 64
196 #define TASK_WAKEKILL 128
197 #define TASK_WAKING 256
199 /* Convenience macros for the sake of set_task_state */
200 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
201 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
202 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
204 /* Convenience macros for the sake of wake_up */
205 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
206 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
208 /* get_task_state() */
209 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
210 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
211 __TASK_TRACED)
213 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
214 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
215 #define task_is_stopped_or_traced(task) \
216 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
217 #define task_contributes_to_load(task) \
218 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
219 (task->flags & PF_FREEZING) == 0)
221 #define __set_task_state(tsk, state_value) \
222 do { (tsk)->state = (state_value); } while (0)
223 #define set_task_state(tsk, state_value) \
224 set_mb((tsk)->state, (state_value))
227 * set_current_state() includes a barrier so that the write of current->state
228 * is correctly serialised wrt the caller's subsequent test of whether to
229 * actually sleep:
231 * set_current_state(TASK_UNINTERRUPTIBLE);
232 * if (do_i_need_to_sleep())
233 * schedule();
235 * If the caller does not need such serialisation then use __set_current_state()
237 #define __set_current_state(state_value) \
238 do { current->state = (state_value); } while (0)
239 #define set_current_state(state_value) \
240 set_mb(current->state, (state_value))
242 /* Task command name length */
243 #define TASK_COMM_LEN 16
245 #include <linux/spinlock.h>
248 * This serializes "schedule()" and also protects
249 * the run-queue from deletions/modifications (but
250 * _adding_ to the beginning of the run-queue has
251 * a separate lock).
253 extern rwlock_t tasklist_lock;
254 extern spinlock_t mmlist_lock;
256 struct task_struct;
258 extern void sched_init(void);
259 extern void sched_init_smp(void);
260 extern asmlinkage void schedule_tail(struct task_struct *prev);
261 extern void init_idle(struct task_struct *idle, int cpu);
262 extern void init_idle_bootup_task(struct task_struct *idle);
264 extern int runqueue_is_locked(int cpu);
265 extern void task_rq_unlock_wait(struct task_struct *p);
267 extern cpumask_var_t nohz_cpu_mask;
268 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
269 extern int select_nohz_load_balancer(int cpu);
270 extern int get_nohz_load_balancer(void);
271 #else
272 static inline int select_nohz_load_balancer(int cpu)
274 return 0;
276 #endif
279 * Only dump TASK_* tasks. (0 for all tasks)
281 extern void show_state_filter(unsigned long state_filter);
283 static inline void show_state(void)
285 show_state_filter(0);
288 extern void show_regs(struct pt_regs *);
291 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
292 * task), SP is the stack pointer of the first frame that should be shown in the back
293 * trace (or NULL if the entire call-chain of the task should be shown).
295 extern void show_stack(struct task_struct *task, unsigned long *sp);
297 void io_schedule(void);
298 long io_schedule_timeout(long timeout);
300 extern void cpu_init (void);
301 extern void trap_init(void);
302 extern void update_process_times(int user);
303 extern void scheduler_tick(void);
305 extern void sched_show_task(struct task_struct *p);
307 #ifdef CONFIG_DETECT_SOFTLOCKUP
308 extern void softlockup_tick(void);
309 extern void touch_softlockup_watchdog(void);
310 extern void touch_softlockup_watchdog_sync(void);
311 extern void touch_all_softlockup_watchdogs(void);
312 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
313 void __user *buffer,
314 size_t *lenp, loff_t *ppos);
315 extern unsigned int softlockup_panic;
316 extern int softlockup_thresh;
317 #else
318 static inline void softlockup_tick(void)
321 static inline void touch_softlockup_watchdog(void)
324 static inline void touch_softlockup_watchdog_sync(void)
327 static inline void touch_all_softlockup_watchdogs(void)
330 #endif
332 #ifdef CONFIG_DETECT_HUNG_TASK
333 extern unsigned int sysctl_hung_task_panic;
334 extern unsigned long sysctl_hung_task_check_count;
335 extern unsigned long sysctl_hung_task_timeout_secs;
336 extern unsigned long sysctl_hung_task_warnings;
337 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
338 void __user *buffer,
339 size_t *lenp, loff_t *ppos);
340 #endif
342 /* Attach to any functions which should be ignored in wchan output. */
343 #define __sched __attribute__((__section__(".sched.text")))
345 /* Linker adds these: start and end of __sched functions */
346 extern char __sched_text_start[], __sched_text_end[];
348 /* Is this address in the __sched functions? */
349 extern int in_sched_functions(unsigned long addr);
351 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
352 extern signed long schedule_timeout(signed long timeout);
353 extern signed long schedule_timeout_interruptible(signed long timeout);
354 extern signed long schedule_timeout_killable(signed long timeout);
355 extern signed long schedule_timeout_uninterruptible(signed long timeout);
356 asmlinkage void __schedule(void);
357 asmlinkage void schedule(void);
358 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
360 struct nsproxy;
361 struct user_namespace;
364 * Default maximum number of active map areas, this limits the number of vmas
365 * per mm struct. Users can overwrite this number by sysctl but there is a
366 * problem.
368 * When a program's coredump is generated as ELF format, a section is created
369 * per a vma. In ELF, the number of sections is represented in unsigned short.
370 * This means the number of sections should be smaller than 65535 at coredump.
371 * Because the kernel adds some informative sections to a image of program at
372 * generating coredump, we need some margin. The number of extra sections is
373 * 1-3 now and depends on arch. We use "5" as safe margin, here.
375 #define MAPCOUNT_ELF_CORE_MARGIN (5)
376 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
378 extern int sysctl_max_map_count;
380 #include <linux/aio.h>
382 extern unsigned long
383 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
384 unsigned long, unsigned long);
385 extern unsigned long
386 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
387 unsigned long len, unsigned long pgoff,
388 unsigned long flags);
389 extern void arch_unmap_area(struct mm_struct *, unsigned long);
390 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
392 #if USE_SPLIT_PTLOCKS
394 * The mm counters are not protected by its page_table_lock,
395 * so must be incremented atomically.
397 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
398 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
399 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
400 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
401 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
403 #else /* !USE_SPLIT_PTLOCKS */
405 * The mm counters are protected by its page_table_lock,
406 * so can be incremented directly.
408 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
409 #define get_mm_counter(mm, member) ((mm)->_##member)
410 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
411 #define inc_mm_counter(mm, member) (mm)->_##member++
412 #define dec_mm_counter(mm, member) (mm)->_##member--
414 #endif /* !USE_SPLIT_PTLOCKS */
416 #define get_mm_rss(mm) \
417 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
418 #define update_hiwater_rss(mm) do { \
419 unsigned long _rss = get_mm_rss(mm); \
420 if ((mm)->hiwater_rss < _rss) \
421 (mm)->hiwater_rss = _rss; \
422 } while (0)
423 #define update_hiwater_vm(mm) do { \
424 if ((mm)->hiwater_vm < (mm)->total_vm) \
425 (mm)->hiwater_vm = (mm)->total_vm; \
426 } while (0)
428 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
430 return max(mm->hiwater_rss, get_mm_rss(mm));
433 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
434 struct mm_struct *mm)
436 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
438 if (*maxrss < hiwater_rss)
439 *maxrss = hiwater_rss;
442 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
444 return max(mm->hiwater_vm, mm->total_vm);
447 extern void set_dumpable(struct mm_struct *mm, int value);
448 extern int get_dumpable(struct mm_struct *mm);
450 /* mm flags */
451 /* dumpable bits */
452 #define MMF_DUMPABLE 0 /* core dump is permitted */
453 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
455 #define MMF_DUMPABLE_BITS 2
456 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
458 /* coredump filter bits */
459 #define MMF_DUMP_ANON_PRIVATE 2
460 #define MMF_DUMP_ANON_SHARED 3
461 #define MMF_DUMP_MAPPED_PRIVATE 4
462 #define MMF_DUMP_MAPPED_SHARED 5
463 #define MMF_DUMP_ELF_HEADERS 6
464 #define MMF_DUMP_HUGETLB_PRIVATE 7
465 #define MMF_DUMP_HUGETLB_SHARED 8
467 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
468 #define MMF_DUMP_FILTER_BITS 7
469 #define MMF_DUMP_FILTER_MASK \
470 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
471 #define MMF_DUMP_FILTER_DEFAULT \
472 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
473 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
475 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
476 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
477 #else
478 # define MMF_DUMP_MASK_DEFAULT_ELF 0
479 #endif
480 /* leave room for more dump flags */
481 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
483 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
485 struct sighand_struct {
486 atomic_t count;
487 struct k_sigaction action[_NSIG];
488 spinlock_t siglock;
489 wait_queue_head_t signalfd_wqh;
492 struct pacct_struct {
493 int ac_flag;
494 long ac_exitcode;
495 unsigned long ac_mem;
496 cputime_t ac_utime, ac_stime;
497 unsigned long ac_minflt, ac_majflt;
500 struct cpu_itimer {
501 cputime_t expires;
502 cputime_t incr;
503 u32 error;
504 u32 incr_error;
508 * struct task_cputime - collected CPU time counts
509 * @utime: time spent in user mode, in &cputime_t units
510 * @stime: time spent in kernel mode, in &cputime_t units
511 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
513 * This structure groups together three kinds of CPU time that are
514 * tracked for threads and thread groups. Most things considering
515 * CPU time want to group these counts together and treat all three
516 * of them in parallel.
518 struct task_cputime {
519 cputime_t utime;
520 cputime_t stime;
521 unsigned long long sum_exec_runtime;
523 /* Alternate field names when used to cache expirations. */
524 #define prof_exp stime
525 #define virt_exp utime
526 #define sched_exp sum_exec_runtime
528 #define INIT_CPUTIME \
529 (struct task_cputime) { \
530 .utime = cputime_zero, \
531 .stime = cputime_zero, \
532 .sum_exec_runtime = 0, \
536 * Disable preemption until the scheduler is running.
537 * Reset by start_kernel()->sched_init()->init_idle().
539 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
540 * before the scheduler is active -- see should_resched().
542 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
545 * struct thread_group_cputimer - thread group interval timer counts
546 * @cputime: thread group interval timers.
547 * @running: non-zero when there are timers running and
548 * @cputime receives updates.
549 * @lock: lock for fields in this struct.
551 * This structure contains the version of task_cputime, above, that is
552 * used for thread group CPU timer calculations.
554 struct thread_group_cputimer {
555 struct task_cputime cputime;
556 int running;
557 spinlock_t lock;
561 * NOTE! "signal_struct" does not have it's own
562 * locking, because a shared signal_struct always
563 * implies a shared sighand_struct, so locking
564 * sighand_struct is always a proper superset of
565 * the locking of signal_struct.
567 struct signal_struct {
568 atomic_t count;
569 atomic_t live;
571 wait_queue_head_t wait_chldexit; /* for wait4() */
573 /* current thread group signal load-balancing target: */
574 struct task_struct *curr_target;
576 /* shared signal handling: */
577 struct sigpending shared_pending;
579 /* thread group exit support */
580 int group_exit_code;
581 /* overloaded:
582 * - notify group_exit_task when ->count is equal to notify_count
583 * - everyone except group_exit_task is stopped during signal delivery
584 * of fatal signals, group_exit_task processes the signal.
586 int notify_count;
587 struct task_struct *group_exit_task;
589 /* thread group stop support, overloads group_exit_code too */
590 int group_stop_count;
591 unsigned int flags; /* see SIGNAL_* flags below */
593 /* POSIX.1b Interval Timers */
594 struct list_head posix_timers;
596 /* ITIMER_REAL timer for the process */
597 struct hrtimer real_timer;
598 struct pid *leader_pid;
599 ktime_t it_real_incr;
602 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
603 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
604 * values are defined to 0 and 1 respectively
606 struct cpu_itimer it[2];
609 * Thread group totals for process CPU timers.
610 * See thread_group_cputimer(), et al, for details.
612 struct thread_group_cputimer cputimer;
614 /* Earliest-expiration cache. */
615 struct task_cputime cputime_expires;
617 struct list_head cpu_timers[3];
619 struct pid *tty_old_pgrp;
621 /* boolean value for session group leader */
622 int leader;
624 struct tty_struct *tty; /* NULL if no tty */
627 * Cumulative resource counters for dead threads in the group,
628 * and for reaped dead child processes forked by this group.
629 * Live threads maintain their own counters and add to these
630 * in __exit_signal, except for the group leader.
632 cputime_t utime, stime, cutime, cstime;
633 cputime_t gtime;
634 cputime_t cgtime;
635 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
636 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
637 unsigned long inblock, oublock, cinblock, coublock;
638 unsigned long maxrss, cmaxrss;
639 struct task_io_accounting ioac;
642 * Cumulative ns of schedule CPU time fo dead threads in the
643 * group, not including a zombie group leader, (This only differs
644 * from jiffies_to_ns(utime + stime) if sched_clock uses something
645 * other than jiffies.)
647 unsigned long long sum_sched_runtime;
650 * We don't bother to synchronize most readers of this at all,
651 * because there is no reader checking a limit that actually needs
652 * to get both rlim_cur and rlim_max atomically, and either one
653 * alone is a single word that can safely be read normally.
654 * getrlimit/setrlimit use task_lock(current->group_leader) to
655 * protect this instead of the siglock, because they really
656 * have no need to disable irqs.
658 struct rlimit rlim[RLIM_NLIMITS];
660 #ifdef CONFIG_BSD_PROCESS_ACCT
661 struct pacct_struct pacct; /* per-process accounting information */
662 #endif
663 #ifdef CONFIG_TASKSTATS
664 struct taskstats *stats;
665 #endif
666 #ifdef CONFIG_AUDIT
667 unsigned audit_tty;
668 struct tty_audit_buf *tty_audit_buf;
669 #endif
671 int oom_adj; /* OOM kill score adjustment (bit shift) */
674 /* Context switch must be unlocked if interrupts are to be enabled */
675 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
676 # define __ARCH_WANT_UNLOCKED_CTXSW
677 #endif
680 * Bits in flags field of signal_struct.
682 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
683 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
684 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
685 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
687 * Pending notifications to parent.
689 #define SIGNAL_CLD_STOPPED 0x00000010
690 #define SIGNAL_CLD_CONTINUED 0x00000020
691 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
693 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
695 /* If true, all threads except ->group_exit_task have pending SIGKILL */
696 static inline int signal_group_exit(const struct signal_struct *sig)
698 return (sig->flags & SIGNAL_GROUP_EXIT) ||
699 (sig->group_exit_task != NULL);
703 * Some day this will be a full-fledged user tracking system..
705 struct user_struct {
706 atomic_t __count; /* reference count */
707 atomic_t processes; /* How many processes does this user have? */
708 atomic_t files; /* How many open files does this user have? */
709 atomic_t sigpending; /* How many pending signals does this user have? */
710 #ifdef CONFIG_INOTIFY_USER
711 atomic_t inotify_watches; /* How many inotify watches does this user have? */
712 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
713 #endif
714 #ifdef CONFIG_EPOLL
715 atomic_t epoll_watches; /* The number of file descriptors currently watched */
716 #endif
717 #ifdef CONFIG_POSIX_MQUEUE
718 /* protected by mq_lock */
719 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
720 #endif
721 unsigned long locked_shm; /* How many pages of mlocked shm ? */
723 #ifdef CONFIG_KEYS
724 struct key *uid_keyring; /* UID specific keyring */
725 struct key *session_keyring; /* UID's default session keyring */
726 #endif
728 /* Hash table maintenance information */
729 struct hlist_node uidhash_node;
730 uid_t uid;
731 struct user_namespace *user_ns;
733 #ifdef CONFIG_USER_SCHED
734 struct task_group *tg;
735 #ifdef CONFIG_SYSFS
736 struct kobject kobj;
737 struct delayed_work work;
738 #endif
739 #endif
741 #ifdef CONFIG_PERF_EVENTS
742 atomic_long_t locked_vm;
743 #endif
746 extern int uids_sysfs_init(void);
748 extern struct user_struct *find_user(uid_t);
750 extern struct user_struct root_user;
751 #define INIT_USER (&root_user)
754 struct backing_dev_info;
755 struct reclaim_state;
757 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
758 struct sched_info {
759 /* cumulative counters */
760 unsigned long pcount; /* # of times run on this cpu */
761 unsigned long long run_delay; /* time spent waiting on a runqueue */
763 /* timestamps */
764 unsigned long long last_arrival,/* when we last ran on a cpu */
765 last_queued; /* when we were last queued to run */
766 #ifdef CONFIG_SCHEDSTATS
767 /* BKL stats */
768 unsigned int bkl_count;
769 #endif
771 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
773 #ifdef CONFIG_TASK_DELAY_ACCT
774 struct task_delay_info {
775 spinlock_t lock;
776 unsigned int flags; /* Private per-task flags */
778 /* For each stat XXX, add following, aligned appropriately
780 * struct timespec XXX_start, XXX_end;
781 * u64 XXX_delay;
782 * u32 XXX_count;
784 * Atomicity of updates to XXX_delay, XXX_count protected by
785 * single lock above (split into XXX_lock if contention is an issue).
789 * XXX_count is incremented on every XXX operation, the delay
790 * associated with the operation is added to XXX_delay.
791 * XXX_delay contains the accumulated delay time in nanoseconds.
793 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
794 u64 blkio_delay; /* wait for sync block io completion */
795 u64 swapin_delay; /* wait for swapin block io completion */
796 u32 blkio_count; /* total count of the number of sync block */
797 /* io operations performed */
798 u32 swapin_count; /* total count of the number of swapin block */
799 /* io operations performed */
801 struct timespec freepages_start, freepages_end;
802 u64 freepages_delay; /* wait for memory reclaim */
803 u32 freepages_count; /* total count of memory reclaim */
805 #endif /* CONFIG_TASK_DELAY_ACCT */
807 static inline int sched_info_on(void)
809 #ifdef CONFIG_SCHEDSTATS
810 return 1;
811 #elif defined(CONFIG_TASK_DELAY_ACCT)
812 extern int delayacct_on;
813 return delayacct_on;
814 #else
815 return 0;
816 #endif
819 enum cpu_idle_type {
820 CPU_IDLE,
821 CPU_NOT_IDLE,
822 CPU_NEWLY_IDLE,
823 CPU_MAX_IDLE_TYPES
827 * sched-domains (multiprocessor balancing) declarations:
831 * Increase resolution of nice-level calculations:
833 #define SCHED_LOAD_SHIFT 10
834 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
836 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
838 #ifdef CONFIG_SMP
839 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
840 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
841 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
842 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
843 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
844 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
845 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
846 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
847 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
848 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
849 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
851 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
853 enum powersavings_balance_level {
854 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
855 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
856 * first for long running threads
858 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
859 * cpu package for power savings
861 MAX_POWERSAVINGS_BALANCE_LEVELS
864 extern int sched_mc_power_savings, sched_smt_power_savings;
866 static inline int sd_balance_for_mc_power(void)
868 if (sched_smt_power_savings)
869 return SD_POWERSAVINGS_BALANCE;
871 return SD_PREFER_SIBLING;
874 static inline int sd_balance_for_package_power(void)
876 if (sched_mc_power_savings | sched_smt_power_savings)
877 return SD_POWERSAVINGS_BALANCE;
879 return SD_PREFER_SIBLING;
883 * Optimise SD flags for power savings:
884 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
885 * Keep default SD flags if sched_{smt,mc}_power_saving=0
888 static inline int sd_power_saving_flags(void)
890 if (sched_mc_power_savings | sched_smt_power_savings)
891 return SD_BALANCE_NEWIDLE;
893 return 0;
896 struct sched_group {
897 struct sched_group *next; /* Must be a circular list */
900 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
901 * single CPU.
903 unsigned int cpu_power;
906 * The CPUs this group covers.
908 * NOTE: this field is variable length. (Allocated dynamically
909 * by attaching extra space to the end of the structure,
910 * depending on how many CPUs the kernel has booted up with)
912 * It is also be embedded into static data structures at build
913 * time. (See 'struct static_sched_group' in kernel/sched.c)
915 unsigned long cpumask[0];
918 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
920 return to_cpumask(sg->cpumask);
923 enum sched_domain_level {
924 SD_LV_NONE = 0,
925 SD_LV_SIBLING,
926 SD_LV_MC,
927 SD_LV_CPU,
928 SD_LV_NODE,
929 SD_LV_ALLNODES,
930 SD_LV_MAX
933 struct sched_domain_attr {
934 int relax_domain_level;
937 #define SD_ATTR_INIT (struct sched_domain_attr) { \
938 .relax_domain_level = -1, \
941 struct sched_domain {
942 /* These fields must be setup */
943 struct sched_domain *parent; /* top domain must be null terminated */
944 struct sched_domain *child; /* bottom domain must be null terminated */
945 struct sched_group *groups; /* the balancing groups of the domain */
946 unsigned long min_interval; /* Minimum balance interval ms */
947 unsigned long max_interval; /* Maximum balance interval ms */
948 unsigned int busy_factor; /* less balancing by factor if busy */
949 unsigned int imbalance_pct; /* No balance until over watermark */
950 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
951 unsigned int busy_idx;
952 unsigned int idle_idx;
953 unsigned int newidle_idx;
954 unsigned int wake_idx;
955 unsigned int forkexec_idx;
956 unsigned int smt_gain;
957 int flags; /* See SD_* */
958 enum sched_domain_level level;
960 /* Runtime fields. */
961 unsigned long last_balance; /* init to jiffies. units in jiffies */
962 unsigned int balance_interval; /* initialise to 1. units in ms. */
963 unsigned int nr_balance_failed; /* initialise to 0 */
965 u64 last_update;
967 #ifdef CONFIG_SCHEDSTATS
968 /* load_balance() stats */
969 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
970 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
971 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
972 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
973 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
974 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
975 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
976 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
978 /* Active load balancing */
979 unsigned int alb_count;
980 unsigned int alb_failed;
981 unsigned int alb_pushed;
983 /* SD_BALANCE_EXEC stats */
984 unsigned int sbe_count;
985 unsigned int sbe_balanced;
986 unsigned int sbe_pushed;
988 /* SD_BALANCE_FORK stats */
989 unsigned int sbf_count;
990 unsigned int sbf_balanced;
991 unsigned int sbf_pushed;
993 /* try_to_wake_up() stats */
994 unsigned int ttwu_wake_remote;
995 unsigned int ttwu_move_affine;
996 unsigned int ttwu_move_balance;
997 #endif
998 #ifdef CONFIG_SCHED_DEBUG
999 char *name;
1000 #endif
1003 * Span of all CPUs in this domain.
1005 * NOTE: this field is variable length. (Allocated dynamically
1006 * by attaching extra space to the end of the structure,
1007 * depending on how many CPUs the kernel has booted up with)
1009 * It is also be embedded into static data structures at build
1010 * time. (See 'struct static_sched_domain' in kernel/sched.c)
1012 unsigned long span[0];
1015 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1017 return to_cpumask(sd->span);
1020 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1021 struct sched_domain_attr *dattr_new);
1023 /* Test a flag in parent sched domain */
1024 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1026 if (sd->parent && (sd->parent->flags & flag))
1027 return 1;
1029 return 0;
1032 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1033 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1035 #else /* CONFIG_SMP */
1037 struct sched_domain_attr;
1039 static inline void
1040 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1041 struct sched_domain_attr *dattr_new)
1044 #endif /* !CONFIG_SMP */
1047 struct io_context; /* See blkdev.h */
1050 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1051 extern void prefetch_stack(struct task_struct *t);
1052 #else
1053 static inline void prefetch_stack(struct task_struct *t) { }
1054 #endif
1056 struct audit_context; /* See audit.c */
1057 struct mempolicy;
1058 struct pipe_inode_info;
1059 struct uts_namespace;
1061 struct rq;
1062 struct sched_domain;
1065 * wake flags
1067 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1068 #define WF_FORK 0x02 /* child wakeup after fork */
1070 struct sched_class {
1071 const struct sched_class *next;
1073 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1074 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1075 void (*yield_task) (struct rq *rq);
1077 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1079 struct task_struct * (*pick_next_task) (struct rq *rq);
1080 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1082 #ifdef CONFIG_SMP
1083 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1085 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1086 struct rq *busiest, unsigned long max_load_move,
1087 struct sched_domain *sd, enum cpu_idle_type idle,
1088 int *all_pinned, int *this_best_prio);
1090 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1091 struct rq *busiest, struct sched_domain *sd,
1092 enum cpu_idle_type idle);
1093 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1094 void (*post_schedule) (struct rq *this_rq);
1095 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1097 void (*set_cpus_allowed)(struct task_struct *p,
1098 const struct cpumask *newmask);
1100 void (*rq_online)(struct rq *rq);
1101 void (*rq_offline)(struct rq *rq);
1102 #endif
1104 void (*set_curr_task) (struct rq *rq);
1105 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1106 void (*task_new) (struct rq *rq, struct task_struct *p);
1108 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1109 int running);
1110 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1111 int running);
1112 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1113 int oldprio, int running);
1115 unsigned int (*get_rr_interval) (struct task_struct *task);
1117 #ifdef CONFIG_FAIR_GROUP_SCHED
1118 void (*moved_group) (struct task_struct *p);
1119 #endif
1122 struct load_weight {
1123 unsigned long weight, inv_weight;
1127 * CFS stats for a schedulable entity (task, task-group etc)
1129 * Current field usage histogram:
1131 * 4 se->block_start
1132 * 4 se->run_node
1133 * 4 se->sleep_start
1134 * 6 se->load.weight
1136 struct sched_entity {
1137 struct load_weight load; /* for load-balancing */
1138 struct rb_node run_node;
1139 struct list_head group_node;
1140 unsigned int on_rq;
1142 u64 exec_start;
1143 u64 sum_exec_runtime;
1144 u64 vruntime;
1145 u64 prev_sum_exec_runtime;
1147 u64 last_wakeup;
1148 u64 avg_overlap;
1150 u64 nr_migrations;
1152 u64 start_runtime;
1153 u64 avg_wakeup;
1155 u64 avg_running;
1157 #ifdef CONFIG_SCHEDSTATS
1158 u64 wait_start;
1159 u64 wait_max;
1160 u64 wait_count;
1161 u64 wait_sum;
1162 u64 iowait_count;
1163 u64 iowait_sum;
1165 u64 sleep_start;
1166 u64 sleep_max;
1167 s64 sum_sleep_runtime;
1169 u64 block_start;
1170 u64 block_max;
1171 u64 exec_max;
1172 u64 slice_max;
1174 u64 nr_migrations_cold;
1175 u64 nr_failed_migrations_affine;
1176 u64 nr_failed_migrations_running;
1177 u64 nr_failed_migrations_hot;
1178 u64 nr_forced_migrations;
1179 u64 nr_forced2_migrations;
1181 u64 nr_wakeups;
1182 u64 nr_wakeups_sync;
1183 u64 nr_wakeups_migrate;
1184 u64 nr_wakeups_local;
1185 u64 nr_wakeups_remote;
1186 u64 nr_wakeups_affine;
1187 u64 nr_wakeups_affine_attempts;
1188 u64 nr_wakeups_passive;
1189 u64 nr_wakeups_idle;
1190 #endif
1192 #ifdef CONFIG_FAIR_GROUP_SCHED
1193 struct sched_entity *parent;
1194 /* rq on which this entity is (to be) queued: */
1195 struct cfs_rq *cfs_rq;
1196 /* rq "owned" by this entity/group: */
1197 struct cfs_rq *my_q;
1198 #endif
1201 struct sched_rt_entity {
1202 struct list_head run_list;
1203 unsigned long timeout;
1204 unsigned int time_slice;
1205 int nr_cpus_allowed;
1207 struct sched_rt_entity *back;
1208 #ifdef CONFIG_RT_GROUP_SCHED
1209 struct sched_rt_entity *parent;
1210 /* rq on which this entity is (to be) queued: */
1211 struct rt_rq *rt_rq;
1212 /* rq "owned" by this entity/group: */
1213 struct rt_rq *my_q;
1214 #endif
1217 struct rcu_node;
1219 struct task_struct {
1220 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1221 void *stack;
1222 atomic_t usage;
1223 unsigned int flags; /* per process flags, defined below */
1224 unsigned int ptrace;
1226 int lock_depth; /* BKL lock depth */
1228 #ifdef CONFIG_SMP
1229 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1230 int oncpu;
1231 #endif
1232 #endif
1234 int prio, static_prio, normal_prio;
1235 unsigned int rt_priority;
1236 const struct sched_class *sched_class;
1237 struct sched_entity se;
1238 struct sched_rt_entity rt;
1240 #ifdef CONFIG_PREEMPT_NOTIFIERS
1241 /* list of struct preempt_notifier: */
1242 struct hlist_head preempt_notifiers;
1243 #endif
1246 * fpu_counter contains the number of consecutive context switches
1247 * that the FPU is used. If this is over a threshold, the lazy fpu
1248 * saving becomes unlazy to save the trap. This is an unsigned char
1249 * so that after 256 times the counter wraps and the behavior turns
1250 * lazy again; this to deal with bursty apps that only use FPU for
1251 * a short time
1253 unsigned char fpu_counter;
1254 #ifdef CONFIG_BLK_DEV_IO_TRACE
1255 unsigned int btrace_seq;
1256 #endif
1258 unsigned int policy;
1259 cpumask_t cpus_allowed;
1261 #ifdef CONFIG_TREE_PREEMPT_RCU
1262 int rcu_read_lock_nesting;
1263 char rcu_read_unlock_special;
1264 struct rcu_node *rcu_blocked_node;
1265 struct list_head rcu_node_entry;
1266 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1268 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1269 struct sched_info sched_info;
1270 #endif
1272 struct list_head tasks;
1273 struct plist_node pushable_tasks;
1275 struct mm_struct *mm, *active_mm;
1277 /* task state */
1278 int exit_state;
1279 int exit_code, exit_signal;
1280 int pdeath_signal; /* The signal sent when the parent dies */
1281 /* ??? */
1282 unsigned int personality;
1283 unsigned did_exec:1;
1284 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1285 * execve */
1286 unsigned in_iowait:1;
1289 /* Revert to default priority/policy when forking */
1290 unsigned sched_reset_on_fork:1;
1292 pid_t pid;
1293 pid_t tgid;
1295 #ifdef CONFIG_CC_STACKPROTECTOR
1296 /* Canary value for the -fstack-protector gcc feature */
1297 unsigned long stack_canary;
1298 #endif
1301 * pointers to (original) parent process, youngest child, younger sibling,
1302 * older sibling, respectively. (p->father can be replaced with
1303 * p->real_parent->pid)
1305 struct task_struct *real_parent; /* real parent process */
1306 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1308 * children/sibling forms the list of my natural children
1310 struct list_head children; /* list of my children */
1311 struct list_head sibling; /* linkage in my parent's children list */
1312 struct task_struct *group_leader; /* threadgroup leader */
1315 * ptraced is the list of tasks this task is using ptrace on.
1316 * This includes both natural children and PTRACE_ATTACH targets.
1317 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1319 struct list_head ptraced;
1320 struct list_head ptrace_entry;
1323 * This is the tracer handle for the ptrace BTS extension.
1324 * This field actually belongs to the ptracer task.
1326 struct bts_context *bts;
1328 /* PID/PID hash table linkage. */
1329 struct pid_link pids[PIDTYPE_MAX];
1330 struct list_head thread_group;
1332 struct completion *vfork_done; /* for vfork() */
1333 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1334 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1336 cputime_t utime, stime, utimescaled, stimescaled;
1337 cputime_t gtime;
1338 cputime_t prev_utime, prev_stime;
1339 unsigned long nvcsw, nivcsw; /* context switch counts */
1340 struct timespec start_time; /* monotonic time */
1341 struct timespec real_start_time; /* boot based time */
1342 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1343 unsigned long min_flt, maj_flt;
1345 struct task_cputime cputime_expires;
1346 struct list_head cpu_timers[3];
1348 /* process credentials */
1349 const struct cred *real_cred; /* objective and real subjective task
1350 * credentials (COW) */
1351 const struct cred *cred; /* effective (overridable) subjective task
1352 * credentials (COW) */
1353 struct mutex cred_guard_mutex; /* guard against foreign influences on
1354 * credential calculations
1355 * (notably. ptrace) */
1356 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1358 char comm[TASK_COMM_LEN]; /* executable name excluding path
1359 - access with [gs]et_task_comm (which lock
1360 it with task_lock())
1361 - initialized normally by flush_old_exec */
1362 /* file system info */
1363 int link_count, total_link_count;
1364 #ifdef CONFIG_SYSVIPC
1365 /* ipc stuff */
1366 struct sysv_sem sysvsem;
1367 #endif
1368 #ifdef CONFIG_DETECT_HUNG_TASK
1369 /* hung task detection */
1370 unsigned long last_switch_count;
1371 #endif
1372 /* CPU-specific state of this task */
1373 struct thread_struct thread;
1374 /* filesystem information */
1375 struct fs_struct *fs;
1376 /* open file information */
1377 struct files_struct *files;
1378 /* namespaces */
1379 struct nsproxy *nsproxy;
1380 /* signal handlers */
1381 struct signal_struct *signal;
1382 struct sighand_struct *sighand;
1384 sigset_t blocked, real_blocked;
1385 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1386 struct sigpending pending;
1388 unsigned long sas_ss_sp;
1389 size_t sas_ss_size;
1390 int (*notifier)(void *priv);
1391 void *notifier_data;
1392 sigset_t *notifier_mask;
1393 struct audit_context *audit_context;
1394 #ifdef CONFIG_AUDITSYSCALL
1395 uid_t loginuid;
1396 unsigned int sessionid;
1397 #endif
1398 seccomp_t seccomp;
1400 /* Thread group tracking */
1401 u32 parent_exec_id;
1402 u32 self_exec_id;
1403 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1404 * mempolicy */
1405 spinlock_t alloc_lock;
1407 #ifdef CONFIG_GENERIC_HARDIRQS
1408 /* IRQ handler threads */
1409 struct irqaction *irqaction;
1410 #endif
1412 /* Protection of the PI data structures: */
1413 spinlock_t pi_lock;
1415 #ifdef CONFIG_RT_MUTEXES
1416 /* PI waiters blocked on a rt_mutex held by this task */
1417 struct plist_head pi_waiters;
1418 /* Deadlock detection and priority inheritance handling */
1419 struct rt_mutex_waiter *pi_blocked_on;
1420 #endif
1422 #ifdef CONFIG_DEBUG_MUTEXES
1423 /* mutex deadlock detection */
1424 struct mutex_waiter *blocked_on;
1425 #endif
1426 #ifdef CONFIG_TRACE_IRQFLAGS
1427 unsigned int irq_events;
1428 int hardirqs_enabled;
1429 unsigned long hardirq_enable_ip;
1430 unsigned int hardirq_enable_event;
1431 unsigned long hardirq_disable_ip;
1432 unsigned int hardirq_disable_event;
1433 int softirqs_enabled;
1434 unsigned long softirq_disable_ip;
1435 unsigned int softirq_disable_event;
1436 unsigned long softirq_enable_ip;
1437 unsigned int softirq_enable_event;
1438 int hardirq_context;
1439 int softirq_context;
1440 #endif
1441 #ifdef CONFIG_LOCKDEP
1442 # define MAX_LOCK_DEPTH 48UL
1443 u64 curr_chain_key;
1444 int lockdep_depth;
1445 unsigned int lockdep_recursion;
1446 struct held_lock held_locks[MAX_LOCK_DEPTH];
1447 gfp_t lockdep_reclaim_gfp;
1448 #endif
1450 /* journalling filesystem info */
1451 void *journal_info;
1453 /* stacked block device info */
1454 struct bio *bio_list, **bio_tail;
1456 /* VM state */
1457 struct reclaim_state *reclaim_state;
1459 struct backing_dev_info *backing_dev_info;
1461 struct io_context *io_context;
1463 unsigned long ptrace_message;
1464 siginfo_t *last_siginfo; /* For ptrace use. */
1465 struct task_io_accounting ioac;
1466 #if defined(CONFIG_TASK_XACCT)
1467 u64 acct_rss_mem1; /* accumulated rss usage */
1468 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1469 cputime_t acct_timexpd; /* stime + utime since last update */
1470 #endif
1471 #ifdef CONFIG_CPUSETS
1472 nodemask_t mems_allowed; /* Protected by alloc_lock */
1473 int cpuset_mem_spread_rotor;
1474 #endif
1475 #ifdef CONFIG_CGROUPS
1476 /* Control Group info protected by css_set_lock */
1477 struct css_set *cgroups;
1478 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1479 struct list_head cg_list;
1480 #endif
1481 #ifdef CONFIG_FUTEX
1482 struct robust_list_head __user *robust_list;
1483 #ifdef CONFIG_COMPAT
1484 struct compat_robust_list_head __user *compat_robust_list;
1485 #endif
1486 struct list_head pi_state_list;
1487 struct futex_pi_state *pi_state_cache;
1488 #endif
1489 #ifdef CONFIG_PERF_EVENTS
1490 struct perf_event_context *perf_event_ctxp;
1491 struct mutex perf_event_mutex;
1492 struct list_head perf_event_list;
1493 #endif
1494 #ifdef CONFIG_NUMA
1495 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1496 short il_next;
1497 #endif
1498 atomic_t fs_excl; /* holding fs exclusive resources */
1499 struct rcu_head rcu;
1502 * cache last used pipe for splice
1504 struct pipe_inode_info *splice_pipe;
1505 #ifdef CONFIG_TASK_DELAY_ACCT
1506 struct task_delay_info *delays;
1507 #endif
1508 #ifdef CONFIG_FAULT_INJECTION
1509 int make_it_fail;
1510 #endif
1511 struct prop_local_single dirties;
1512 #ifdef CONFIG_LATENCYTOP
1513 int latency_record_count;
1514 struct latency_record latency_record[LT_SAVECOUNT];
1515 #endif
1517 * time slack values; these are used to round up poll() and
1518 * select() etc timeout values. These are in nanoseconds.
1520 unsigned long timer_slack_ns;
1521 unsigned long default_timer_slack_ns;
1523 struct list_head *scm_work_list;
1524 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1525 /* Index of current stored adress in ret_stack */
1526 int curr_ret_stack;
1527 /* Stack of return addresses for return function tracing */
1528 struct ftrace_ret_stack *ret_stack;
1529 /* time stamp for last schedule */
1530 unsigned long long ftrace_timestamp;
1532 * Number of functions that haven't been traced
1533 * because of depth overrun.
1535 atomic_t trace_overrun;
1536 /* Pause for the tracing */
1537 atomic_t tracing_graph_pause;
1538 #endif
1539 #ifdef CONFIG_TRACING
1540 /* state flags for use by tracers */
1541 unsigned long trace;
1542 /* bitmask of trace recursion */
1543 unsigned long trace_recursion;
1544 #endif /* CONFIG_TRACING */
1545 unsigned long stack_start;
1546 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1547 struct memcg_batch_info {
1548 int do_batch; /* incremented when batch uncharge started */
1549 struct mem_cgroup *memcg; /* target memcg of uncharge */
1550 unsigned long bytes; /* uncharged usage */
1551 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1552 } memcg_batch;
1553 #endif
1556 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1557 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1560 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1561 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1562 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1563 * values are inverted: lower p->prio value means higher priority.
1565 * The MAX_USER_RT_PRIO value allows the actual maximum
1566 * RT priority to be separate from the value exported to
1567 * user-space. This allows kernel threads to set their
1568 * priority to a value higher than any user task. Note:
1569 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1572 #define MAX_USER_RT_PRIO 100
1573 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1575 #define MAX_PRIO (MAX_RT_PRIO + 40)
1576 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1578 static inline int rt_prio(int prio)
1580 if (unlikely(prio < MAX_RT_PRIO))
1581 return 1;
1582 return 0;
1585 static inline int rt_task(struct task_struct *p)
1587 return rt_prio(p->prio);
1590 static inline struct pid *task_pid(struct task_struct *task)
1592 return task->pids[PIDTYPE_PID].pid;
1595 static inline struct pid *task_tgid(struct task_struct *task)
1597 return task->group_leader->pids[PIDTYPE_PID].pid;
1601 * Without tasklist or rcu lock it is not safe to dereference
1602 * the result of task_pgrp/task_session even if task == current,
1603 * we can race with another thread doing sys_setsid/sys_setpgid.
1605 static inline struct pid *task_pgrp(struct task_struct *task)
1607 return task->group_leader->pids[PIDTYPE_PGID].pid;
1610 static inline struct pid *task_session(struct task_struct *task)
1612 return task->group_leader->pids[PIDTYPE_SID].pid;
1615 struct pid_namespace;
1618 * the helpers to get the task's different pids as they are seen
1619 * from various namespaces
1621 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1622 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1623 * current.
1624 * task_xid_nr_ns() : id seen from the ns specified;
1626 * set_task_vxid() : assigns a virtual id to a task;
1628 * see also pid_nr() etc in include/linux/pid.h
1630 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1631 struct pid_namespace *ns);
1633 static inline pid_t task_pid_nr(struct task_struct *tsk)
1635 return tsk->pid;
1638 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1639 struct pid_namespace *ns)
1641 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1644 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1646 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1650 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1652 return tsk->tgid;
1655 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1657 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1659 return pid_vnr(task_tgid(tsk));
1663 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1664 struct pid_namespace *ns)
1666 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1669 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1671 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1675 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1676 struct pid_namespace *ns)
1678 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1681 static inline pid_t task_session_vnr(struct task_struct *tsk)
1683 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1686 /* obsolete, do not use */
1687 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1689 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1693 * pid_alive - check that a task structure is not stale
1694 * @p: Task structure to be checked.
1696 * Test if a process is not yet dead (at most zombie state)
1697 * If pid_alive fails, then pointers within the task structure
1698 * can be stale and must not be dereferenced.
1700 static inline int pid_alive(struct task_struct *p)
1702 return p->pids[PIDTYPE_PID].pid != NULL;
1706 * is_global_init - check if a task structure is init
1707 * @tsk: Task structure to be checked.
1709 * Check if a task structure is the first user space task the kernel created.
1711 static inline int is_global_init(struct task_struct *tsk)
1713 return tsk->pid == 1;
1717 * is_container_init:
1718 * check whether in the task is init in its own pid namespace.
1720 extern int is_container_init(struct task_struct *tsk);
1722 extern struct pid *cad_pid;
1724 extern void free_task(struct task_struct *tsk);
1725 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1727 extern void __put_task_struct(struct task_struct *t);
1729 static inline void put_task_struct(struct task_struct *t)
1731 if (atomic_dec_and_test(&t->usage))
1732 __put_task_struct(t);
1735 extern cputime_t task_utime(struct task_struct *p);
1736 extern cputime_t task_stime(struct task_struct *p);
1737 extern cputime_t task_gtime(struct task_struct *p);
1740 * Per process flags
1742 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1743 /* Not implemented yet, only for 486*/
1744 #define PF_STARTING 0x00000002 /* being created */
1745 #define PF_EXITING 0x00000004 /* getting shut down */
1746 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1747 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1748 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1749 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1750 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1751 #define PF_DUMPCORE 0x00000200 /* dumped core */
1752 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1753 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1754 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1755 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1756 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1757 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1758 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1759 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1760 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1761 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1762 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1763 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1764 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1765 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1766 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1767 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1768 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1769 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1770 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1771 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1772 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1773 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1776 * Only the _current_ task can read/write to tsk->flags, but other
1777 * tasks can access tsk->flags in readonly mode for example
1778 * with tsk_used_math (like during threaded core dumping).
1779 * There is however an exception to this rule during ptrace
1780 * or during fork: the ptracer task is allowed to write to the
1781 * child->flags of its traced child (same goes for fork, the parent
1782 * can write to the child->flags), because we're guaranteed the
1783 * child is not running and in turn not changing child->flags
1784 * at the same time the parent does it.
1786 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1787 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1788 #define clear_used_math() clear_stopped_child_used_math(current)
1789 #define set_used_math() set_stopped_child_used_math(current)
1790 #define conditional_stopped_child_used_math(condition, child) \
1791 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1792 #define conditional_used_math(condition) \
1793 conditional_stopped_child_used_math(condition, current)
1794 #define copy_to_stopped_child_used_math(child) \
1795 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1796 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1797 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1798 #define used_math() tsk_used_math(current)
1800 #ifdef CONFIG_TREE_PREEMPT_RCU
1802 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1803 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1805 static inline void rcu_copy_process(struct task_struct *p)
1807 p->rcu_read_lock_nesting = 0;
1808 p->rcu_read_unlock_special = 0;
1809 p->rcu_blocked_node = NULL;
1810 INIT_LIST_HEAD(&p->rcu_node_entry);
1813 #else
1815 static inline void rcu_copy_process(struct task_struct *p)
1819 #endif
1821 #ifdef CONFIG_SMP
1822 extern int set_cpus_allowed_ptr(struct task_struct *p,
1823 const struct cpumask *new_mask);
1824 #else
1825 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1826 const struct cpumask *new_mask)
1828 if (!cpumask_test_cpu(0, new_mask))
1829 return -EINVAL;
1830 return 0;
1832 #endif
1834 #ifndef CONFIG_CPUMASK_OFFSTACK
1835 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1837 return set_cpus_allowed_ptr(p, &new_mask);
1839 #endif
1842 * Architectures can set this to 1 if they have specified
1843 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1844 * but then during bootup it turns out that sched_clock()
1845 * is reliable after all:
1847 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1848 extern int sched_clock_stable;
1849 #endif
1851 extern unsigned long long sched_clock(void);
1853 extern void sched_clock_init(void);
1854 extern u64 sched_clock_cpu(int cpu);
1856 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1857 static inline void sched_clock_tick(void)
1861 static inline void sched_clock_idle_sleep_event(void)
1865 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1868 #else
1869 extern void sched_clock_tick(void);
1870 extern void sched_clock_idle_sleep_event(void);
1871 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1872 #endif
1875 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1876 * clock constructed from sched_clock():
1878 extern unsigned long long cpu_clock(int cpu);
1880 extern unsigned long long
1881 task_sched_runtime(struct task_struct *task);
1882 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1884 /* sched_exec is called by processes performing an exec */
1885 #ifdef CONFIG_SMP
1886 extern void sched_exec(void);
1887 #else
1888 #define sched_exec() {}
1889 #endif
1891 extern void sched_clock_idle_sleep_event(void);
1892 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1894 #ifdef CONFIG_HOTPLUG_CPU
1895 extern void idle_task_exit(void);
1896 #else
1897 static inline void idle_task_exit(void) {}
1898 #endif
1900 extern void sched_idle_next(void);
1902 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1903 extern void wake_up_idle_cpu(int cpu);
1904 #else
1905 static inline void wake_up_idle_cpu(int cpu) { }
1906 #endif
1908 extern unsigned int sysctl_sched_latency;
1909 extern unsigned int sysctl_sched_min_granularity;
1910 extern unsigned int sysctl_sched_wakeup_granularity;
1911 extern unsigned int sysctl_sched_shares_ratelimit;
1912 extern unsigned int sysctl_sched_shares_thresh;
1913 extern unsigned int sysctl_sched_child_runs_first;
1914 #ifdef CONFIG_SCHED_DEBUG
1915 extern unsigned int sysctl_sched_features;
1916 extern unsigned int sysctl_sched_migration_cost;
1917 extern unsigned int sysctl_sched_nr_migrate;
1918 extern unsigned int sysctl_sched_time_avg;
1919 extern unsigned int sysctl_timer_migration;
1921 int sched_nr_latency_handler(struct ctl_table *table, int write,
1922 void __user *buffer, size_t *length,
1923 loff_t *ppos);
1924 #endif
1925 #ifdef CONFIG_SCHED_DEBUG
1926 static inline unsigned int get_sysctl_timer_migration(void)
1928 return sysctl_timer_migration;
1930 #else
1931 static inline unsigned int get_sysctl_timer_migration(void)
1933 return 1;
1935 #endif
1936 extern unsigned int sysctl_sched_rt_period;
1937 extern int sysctl_sched_rt_runtime;
1939 int sched_rt_handler(struct ctl_table *table, int write,
1940 void __user *buffer, size_t *lenp,
1941 loff_t *ppos);
1943 extern unsigned int sysctl_sched_compat_yield;
1945 #ifdef CONFIG_RT_MUTEXES
1946 extern int rt_mutex_getprio(struct task_struct *p);
1947 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1948 extern void rt_mutex_adjust_pi(struct task_struct *p);
1949 #else
1950 static inline int rt_mutex_getprio(struct task_struct *p)
1952 return p->normal_prio;
1954 # define rt_mutex_adjust_pi(p) do { } while (0)
1955 #endif
1957 extern void set_user_nice(struct task_struct *p, long nice);
1958 extern int task_prio(const struct task_struct *p);
1959 extern int task_nice(const struct task_struct *p);
1960 extern int can_nice(const struct task_struct *p, const int nice);
1961 extern int task_curr(const struct task_struct *p);
1962 extern int idle_cpu(int cpu);
1963 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1964 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1965 struct sched_param *);
1966 extern struct task_struct *idle_task(int cpu);
1967 extern struct task_struct *curr_task(int cpu);
1968 extern void set_curr_task(int cpu, struct task_struct *p);
1970 void yield(void);
1973 * The default (Linux) execution domain.
1975 extern struct exec_domain default_exec_domain;
1977 union thread_union {
1978 struct thread_info thread_info;
1979 unsigned long stack[THREAD_SIZE/sizeof(long)];
1982 #ifndef __HAVE_ARCH_KSTACK_END
1983 static inline int kstack_end(void *addr)
1985 /* Reliable end of stack detection:
1986 * Some APM bios versions misalign the stack
1988 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1990 #endif
1992 extern union thread_union init_thread_union;
1993 extern struct task_struct init_task;
1995 extern struct mm_struct init_mm;
1997 extern struct pid_namespace init_pid_ns;
2000 * find a task by one of its numerical ids
2002 * find_task_by_pid_ns():
2003 * finds a task by its pid in the specified namespace
2004 * find_task_by_vpid():
2005 * finds a task by its virtual pid
2007 * see also find_vpid() etc in include/linux/pid.h
2010 extern struct task_struct *find_task_by_vpid(pid_t nr);
2011 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2012 struct pid_namespace *ns);
2014 extern void __set_special_pids(struct pid *pid);
2016 /* per-UID process charging. */
2017 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2018 static inline struct user_struct *get_uid(struct user_struct *u)
2020 atomic_inc(&u->__count);
2021 return u;
2023 extern void free_uid(struct user_struct *);
2024 extern void release_uids(struct user_namespace *ns);
2026 #include <asm/current.h>
2028 extern void do_timer(unsigned long ticks);
2030 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2031 extern int wake_up_process(struct task_struct *tsk);
2032 extern void wake_up_new_task(struct task_struct *tsk,
2033 unsigned long clone_flags);
2034 #ifdef CONFIG_SMP
2035 extern void kick_process(struct task_struct *tsk);
2036 #else
2037 static inline void kick_process(struct task_struct *tsk) { }
2038 #endif
2039 extern void sched_fork(struct task_struct *p, int clone_flags);
2040 extern void sched_dead(struct task_struct *p);
2042 extern void proc_caches_init(void);
2043 extern void flush_signals(struct task_struct *);
2044 extern void __flush_signals(struct task_struct *);
2045 extern void ignore_signals(struct task_struct *);
2046 extern void flush_signal_handlers(struct task_struct *, int force_default);
2047 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2049 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2051 unsigned long flags;
2052 int ret;
2054 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2055 ret = dequeue_signal(tsk, mask, info);
2056 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2058 return ret;
2061 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2062 sigset_t *mask);
2063 extern void unblock_all_signals(void);
2064 extern void release_task(struct task_struct * p);
2065 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2066 extern int force_sigsegv(int, struct task_struct *);
2067 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2068 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2069 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2070 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2071 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2072 extern int kill_pid(struct pid *pid, int sig, int priv);
2073 extern int kill_proc_info(int, struct siginfo *, pid_t);
2074 extern int do_notify_parent(struct task_struct *, int);
2075 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2076 extern void force_sig(int, struct task_struct *);
2077 extern void force_sig_specific(int, struct task_struct *);
2078 extern int send_sig(int, struct task_struct *, int);
2079 extern void zap_other_threads(struct task_struct *p);
2080 extern struct sigqueue *sigqueue_alloc(void);
2081 extern void sigqueue_free(struct sigqueue *);
2082 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2083 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2084 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2086 static inline int kill_cad_pid(int sig, int priv)
2088 return kill_pid(cad_pid, sig, priv);
2091 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2092 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2093 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2094 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2096 static inline int is_si_special(const struct siginfo *info)
2098 return info <= SEND_SIG_FORCED;
2101 /* True if we are on the alternate signal stack. */
2103 static inline int on_sig_stack(unsigned long sp)
2105 return (sp - current->sas_ss_sp < current->sas_ss_size);
2108 static inline int sas_ss_flags(unsigned long sp)
2110 return (current->sas_ss_size == 0 ? SS_DISABLE
2111 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2115 * Routines for handling mm_structs
2117 extern struct mm_struct * mm_alloc(void);
2119 /* mmdrop drops the mm and the page tables */
2120 extern void __mmdrop(struct mm_struct *);
2121 static inline void mmdrop(struct mm_struct * mm)
2123 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2124 __mmdrop(mm);
2127 /* mmput gets rid of the mappings and all user-space */
2128 extern void mmput(struct mm_struct *);
2129 /* Grab a reference to a task's mm, if it is not already going away */
2130 extern struct mm_struct *get_task_mm(struct task_struct *task);
2131 /* Remove the current tasks stale references to the old mm_struct */
2132 extern void mm_release(struct task_struct *, struct mm_struct *);
2133 /* Allocate a new mm structure and copy contents from tsk->mm */
2134 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2136 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2137 struct task_struct *, struct pt_regs *);
2138 extern void flush_thread(void);
2139 extern void exit_thread(void);
2141 extern void exit_files(struct task_struct *);
2142 extern void __cleanup_signal(struct signal_struct *);
2143 extern void __cleanup_sighand(struct sighand_struct *);
2145 extern void exit_itimers(struct signal_struct *);
2146 extern void flush_itimer_signals(void);
2148 extern NORET_TYPE void do_group_exit(int);
2150 extern void daemonize(const char *, ...);
2151 extern int allow_signal(int);
2152 extern int disallow_signal(int);
2154 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2155 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2156 struct task_struct *fork_idle(int);
2158 extern void set_task_comm(struct task_struct *tsk, char *from);
2159 extern char *get_task_comm(char *to, struct task_struct *tsk);
2161 #ifdef CONFIG_SMP
2162 extern void wait_task_context_switch(struct task_struct *p);
2163 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2164 #else
2165 static inline void wait_task_context_switch(struct task_struct *p) {}
2166 static inline unsigned long wait_task_inactive(struct task_struct *p,
2167 long match_state)
2169 return 1;
2171 #endif
2173 #define next_task(p) \
2174 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2176 #define for_each_process(p) \
2177 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2179 extern bool current_is_single_threaded(void);
2182 * Careful: do_each_thread/while_each_thread is a double loop so
2183 * 'break' will not work as expected - use goto instead.
2185 #define do_each_thread(g, t) \
2186 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2188 #define while_each_thread(g, t) \
2189 while ((t = next_thread(t)) != g)
2191 /* de_thread depends on thread_group_leader not being a pid based check */
2192 #define thread_group_leader(p) (p == p->group_leader)
2194 /* Do to the insanities of de_thread it is possible for a process
2195 * to have the pid of the thread group leader without actually being
2196 * the thread group leader. For iteration through the pids in proc
2197 * all we care about is that we have a task with the appropriate
2198 * pid, we don't actually care if we have the right task.
2200 static inline int has_group_leader_pid(struct task_struct *p)
2202 return p->pid == p->tgid;
2205 static inline
2206 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2208 return p1->tgid == p2->tgid;
2211 static inline struct task_struct *next_thread(const struct task_struct *p)
2213 return list_entry_rcu(p->thread_group.next,
2214 struct task_struct, thread_group);
2217 static inline int thread_group_empty(struct task_struct *p)
2219 return list_empty(&p->thread_group);
2222 #define delay_group_leader(p) \
2223 (thread_group_leader(p) && !thread_group_empty(p))
2225 static inline int task_detached(struct task_struct *p)
2227 return p->exit_signal == -1;
2231 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2232 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2233 * pins the final release of task.io_context. Also protects ->cpuset and
2234 * ->cgroup.subsys[].
2236 * Nests both inside and outside of read_lock(&tasklist_lock).
2237 * It must not be nested with write_lock_irq(&tasklist_lock),
2238 * neither inside nor outside.
2240 static inline void task_lock(struct task_struct *p)
2242 spin_lock(&p->alloc_lock);
2245 static inline void task_unlock(struct task_struct *p)
2247 spin_unlock(&p->alloc_lock);
2250 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2251 unsigned long *flags);
2253 static inline void unlock_task_sighand(struct task_struct *tsk,
2254 unsigned long *flags)
2256 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2259 #ifndef __HAVE_THREAD_FUNCTIONS
2261 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2262 #define task_stack_page(task) ((task)->stack)
2264 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2266 *task_thread_info(p) = *task_thread_info(org);
2267 task_thread_info(p)->task = p;
2270 static inline unsigned long *end_of_stack(struct task_struct *p)
2272 return (unsigned long *)(task_thread_info(p) + 1);
2275 #endif
2277 static inline int object_is_on_stack(void *obj)
2279 void *stack = task_stack_page(current);
2281 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2284 extern void thread_info_cache_init(void);
2286 #ifdef CONFIG_DEBUG_STACK_USAGE
2287 static inline unsigned long stack_not_used(struct task_struct *p)
2289 unsigned long *n = end_of_stack(p);
2291 do { /* Skip over canary */
2292 n++;
2293 } while (!*n);
2295 return (unsigned long)n - (unsigned long)end_of_stack(p);
2297 #endif
2299 /* set thread flags in other task's structures
2300 * - see asm/thread_info.h for TIF_xxxx flags available
2302 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2304 set_ti_thread_flag(task_thread_info(tsk), flag);
2307 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2309 clear_ti_thread_flag(task_thread_info(tsk), flag);
2312 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2314 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2317 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2319 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2322 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2324 return test_ti_thread_flag(task_thread_info(tsk), flag);
2327 static inline void set_tsk_need_resched(struct task_struct *tsk)
2329 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2332 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2334 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2337 static inline int test_tsk_need_resched(struct task_struct *tsk)
2339 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2342 static inline int restart_syscall(void)
2344 set_tsk_thread_flag(current, TIF_SIGPENDING);
2345 return -ERESTARTNOINTR;
2348 static inline int signal_pending(struct task_struct *p)
2350 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2353 static inline int __fatal_signal_pending(struct task_struct *p)
2355 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2358 static inline int fatal_signal_pending(struct task_struct *p)
2360 return signal_pending(p) && __fatal_signal_pending(p);
2363 static inline int signal_pending_state(long state, struct task_struct *p)
2365 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2366 return 0;
2367 if (!signal_pending(p))
2368 return 0;
2370 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2373 static inline int need_resched(void)
2375 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2379 * cond_resched() and cond_resched_lock(): latency reduction via
2380 * explicit rescheduling in places that are safe. The return
2381 * value indicates whether a reschedule was done in fact.
2382 * cond_resched_lock() will drop the spinlock before scheduling,
2383 * cond_resched_softirq() will enable bhs before scheduling.
2385 extern int _cond_resched(void);
2387 #define cond_resched() ({ \
2388 __might_sleep(__FILE__, __LINE__, 0); \
2389 _cond_resched(); \
2392 extern int __cond_resched_lock(spinlock_t *lock);
2394 #ifdef CONFIG_PREEMPT
2395 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2396 #else
2397 #define PREEMPT_LOCK_OFFSET 0
2398 #endif
2400 #define cond_resched_lock(lock) ({ \
2401 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2402 __cond_resched_lock(lock); \
2405 extern int __cond_resched_softirq(void);
2407 #define cond_resched_softirq() ({ \
2408 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2409 __cond_resched_softirq(); \
2413 * Does a critical section need to be broken due to another
2414 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2415 * but a general need for low latency)
2417 static inline int spin_needbreak(spinlock_t *lock)
2419 #ifdef CONFIG_PREEMPT
2420 return spin_is_contended(lock);
2421 #else
2422 return 0;
2423 #endif
2427 * Thread group CPU time accounting.
2429 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2430 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2432 static inline void thread_group_cputime_init(struct signal_struct *sig)
2434 sig->cputimer.cputime = INIT_CPUTIME;
2435 spin_lock_init(&sig->cputimer.lock);
2436 sig->cputimer.running = 0;
2439 static inline void thread_group_cputime_free(struct signal_struct *sig)
2444 * Reevaluate whether the task has signals pending delivery.
2445 * Wake the task if so.
2446 * This is required every time the blocked sigset_t changes.
2447 * callers must hold sighand->siglock.
2449 extern void recalc_sigpending_and_wake(struct task_struct *t);
2450 extern void recalc_sigpending(void);
2452 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2455 * Wrappers for p->thread_info->cpu access. No-op on UP.
2457 #ifdef CONFIG_SMP
2459 static inline unsigned int task_cpu(const struct task_struct *p)
2461 return task_thread_info(p)->cpu;
2464 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2466 #else
2468 static inline unsigned int task_cpu(const struct task_struct *p)
2470 return 0;
2473 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2477 #endif /* CONFIG_SMP */
2479 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2481 #ifdef CONFIG_TRACING
2482 extern void
2483 __trace_special(void *__tr, void *__data,
2484 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2485 #else
2486 static inline void
2487 __trace_special(void *__tr, void *__data,
2488 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2491 #endif
2493 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2494 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2496 extern void normalize_rt_tasks(void);
2498 #ifdef CONFIG_GROUP_SCHED
2500 extern struct task_group init_task_group;
2501 #ifdef CONFIG_USER_SCHED
2502 extern struct task_group root_task_group;
2503 extern void set_tg_uid(struct user_struct *user);
2504 #endif
2506 extern struct task_group *sched_create_group(struct task_group *parent);
2507 extern void sched_destroy_group(struct task_group *tg);
2508 extern void sched_move_task(struct task_struct *tsk);
2509 #ifdef CONFIG_FAIR_GROUP_SCHED
2510 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2511 extern unsigned long sched_group_shares(struct task_group *tg);
2512 #endif
2513 #ifdef CONFIG_RT_GROUP_SCHED
2514 extern int sched_group_set_rt_runtime(struct task_group *tg,
2515 long rt_runtime_us);
2516 extern long sched_group_rt_runtime(struct task_group *tg);
2517 extern int sched_group_set_rt_period(struct task_group *tg,
2518 long rt_period_us);
2519 extern long sched_group_rt_period(struct task_group *tg);
2520 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2521 #endif
2522 #endif
2524 extern int task_can_switch_user(struct user_struct *up,
2525 struct task_struct *tsk);
2527 #ifdef CONFIG_TASK_XACCT
2528 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2530 tsk->ioac.rchar += amt;
2533 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2535 tsk->ioac.wchar += amt;
2538 static inline void inc_syscr(struct task_struct *tsk)
2540 tsk->ioac.syscr++;
2543 static inline void inc_syscw(struct task_struct *tsk)
2545 tsk->ioac.syscw++;
2547 #else
2548 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2552 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2556 static inline void inc_syscr(struct task_struct *tsk)
2560 static inline void inc_syscw(struct task_struct *tsk)
2563 #endif
2565 #ifndef TASK_SIZE_OF
2566 #define TASK_SIZE_OF(tsk) TASK_SIZE
2567 #endif
2570 * Call the function if the target task is executing on a CPU right now:
2572 extern void task_oncpu_function_call(struct task_struct *p,
2573 void (*func) (void *info), void *info);
2576 #ifdef CONFIG_MM_OWNER
2577 extern void mm_update_next_owner(struct mm_struct *mm);
2578 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2579 #else
2580 static inline void mm_update_next_owner(struct mm_struct *mm)
2584 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2587 #endif /* CONFIG_MM_OWNER */
2589 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2591 #endif /* __KERNEL__ */
2593 #endif