fed up with those stupid warnings
[mmotm.git] / arch / powerpc / kernel / perf_callchain.c
blob0a03cf70d24793a9d0295acd4dfaf8abf0b0dd59
1 /*
2 * Performance counter callchain support - powerpc architecture code
4 * Copyright © 2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/mm.h>
17 #include <asm/ptrace.h>
18 #include <asm/pgtable.h>
19 #include <asm/sigcontext.h>
20 #include <asm/ucontext.h>
21 #include <asm/vdso.h>
22 #ifdef CONFIG_PPC64
23 #include "ppc32.h"
24 #endif
27 * Store another value in a callchain_entry.
29 static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
31 unsigned int nr = entry->nr;
33 if (nr < PERF_MAX_STACK_DEPTH) {
34 entry->ip[nr] = ip;
35 entry->nr = nr + 1;
40 * Is sp valid as the address of the next kernel stack frame after prev_sp?
41 * The next frame may be in a different stack area but should not go
42 * back down in the same stack area.
44 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
46 if (sp & 0xf)
47 return 0; /* must be 16-byte aligned */
48 if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
49 return 0;
50 if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
51 return 1;
53 * sp could decrease when we jump off an interrupt stack
54 * back to the regular process stack.
56 if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
57 return 1;
58 return 0;
61 static void perf_callchain_kernel(struct pt_regs *regs,
62 struct perf_callchain_entry *entry)
64 unsigned long sp, next_sp;
65 unsigned long next_ip;
66 unsigned long lr;
67 long level = 0;
68 unsigned long *fp;
70 lr = regs->link;
71 sp = regs->gpr[1];
72 callchain_store(entry, PERF_CONTEXT_KERNEL);
73 callchain_store(entry, regs->nip);
75 if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
76 return;
78 for (;;) {
79 fp = (unsigned long *) sp;
80 next_sp = fp[0];
82 if (next_sp == sp + STACK_INT_FRAME_SIZE &&
83 fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
85 * This looks like an interrupt frame for an
86 * interrupt that occurred in the kernel
88 regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
89 next_ip = regs->nip;
90 lr = regs->link;
91 level = 0;
92 callchain_store(entry, PERF_CONTEXT_KERNEL);
94 } else {
95 if (level == 0)
96 next_ip = lr;
97 else
98 next_ip = fp[STACK_FRAME_LR_SAVE];
101 * We can't tell which of the first two addresses
102 * we get are valid, but we can filter out the
103 * obviously bogus ones here. We replace them
104 * with 0 rather than removing them entirely so
105 * that userspace can tell which is which.
107 if ((level == 1 && next_ip == lr) ||
108 (level <= 1 && !kernel_text_address(next_ip)))
109 next_ip = 0;
111 ++level;
114 callchain_store(entry, next_ip);
115 if (!valid_next_sp(next_sp, sp))
116 return;
117 sp = next_sp;
121 #ifdef CONFIG_PPC64
123 #ifdef CONFIG_HUGETLB_PAGE
124 #define is_huge_psize(pagesize) (HPAGE_SHIFT && mmu_huge_psizes[pagesize])
125 #else
126 #define is_huge_psize(pagesize) 0
127 #endif
130 * On 64-bit we don't want to invoke hash_page on user addresses from
131 * interrupt context, so if the access faults, we read the page tables
132 * to find which page (if any) is mapped and access it directly.
134 static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
136 pgd_t *pgdir;
137 pte_t *ptep, pte;
138 int pagesize;
139 unsigned long addr = (unsigned long) ptr;
140 unsigned long offset;
141 unsigned long pfn;
142 void *kaddr;
144 pgdir = current->mm->pgd;
145 if (!pgdir)
146 return -EFAULT;
148 pagesize = get_slice_psize(current->mm, addr);
150 /* align address to page boundary */
151 offset = addr & ((1ul << mmu_psize_defs[pagesize].shift) - 1);
152 addr -= offset;
154 if (is_huge_psize(pagesize))
155 ptep = huge_pte_offset(current->mm, addr);
156 else
157 ptep = find_linux_pte(pgdir, addr);
159 if (ptep == NULL)
160 return -EFAULT;
161 pte = *ptep;
162 if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
163 return -EFAULT;
164 pfn = pte_pfn(pte);
165 if (!page_is_ram(pfn))
166 return -EFAULT;
168 /* no highmem to worry about here */
169 kaddr = pfn_to_kaddr(pfn);
170 memcpy(ret, kaddr + offset, nb);
171 return 0;
174 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
176 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
177 ((unsigned long)ptr & 7))
178 return -EFAULT;
180 if (!__get_user_inatomic(*ret, ptr))
181 return 0;
183 return read_user_stack_slow(ptr, ret, 8);
186 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
188 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
189 ((unsigned long)ptr & 3))
190 return -EFAULT;
192 if (!__get_user_inatomic(*ret, ptr))
193 return 0;
195 return read_user_stack_slow(ptr, ret, 4);
198 static inline int valid_user_sp(unsigned long sp, int is_64)
200 if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
201 return 0;
202 return 1;
206 * 64-bit user processes use the same stack frame for RT and non-RT signals.
208 struct signal_frame_64 {
209 char dummy[__SIGNAL_FRAMESIZE];
210 struct ucontext uc;
211 unsigned long unused[2];
212 unsigned int tramp[6];
213 struct siginfo *pinfo;
214 void *puc;
215 struct siginfo info;
216 char abigap[288];
219 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
221 if (nip == fp + offsetof(struct signal_frame_64, tramp))
222 return 1;
223 if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
224 nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
225 return 1;
226 return 0;
230 * Do some sanity checking on the signal frame pointed to by sp.
231 * We check the pinfo and puc pointers in the frame.
233 static int sane_signal_64_frame(unsigned long sp)
235 struct signal_frame_64 __user *sf;
236 unsigned long pinfo, puc;
238 sf = (struct signal_frame_64 __user *) sp;
239 if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
240 read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
241 return 0;
242 return pinfo == (unsigned long) &sf->info &&
243 puc == (unsigned long) &sf->uc;
246 static void perf_callchain_user_64(struct pt_regs *regs,
247 struct perf_callchain_entry *entry)
249 unsigned long sp, next_sp;
250 unsigned long next_ip;
251 unsigned long lr;
252 long level = 0;
253 struct signal_frame_64 __user *sigframe;
254 unsigned long __user *fp, *uregs;
256 next_ip = regs->nip;
257 lr = regs->link;
258 sp = regs->gpr[1];
259 callchain_store(entry, PERF_CONTEXT_USER);
260 callchain_store(entry, next_ip);
262 for (;;) {
263 fp = (unsigned long __user *) sp;
264 if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
265 return;
266 if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
267 return;
270 * Note: the next_sp - sp >= signal frame size check
271 * is true when next_sp < sp, which can happen when
272 * transitioning from an alternate signal stack to the
273 * normal stack.
275 if (next_sp - sp >= sizeof(struct signal_frame_64) &&
276 (is_sigreturn_64_address(next_ip, sp) ||
277 (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
278 sane_signal_64_frame(sp)) {
280 * This looks like an signal frame
282 sigframe = (struct signal_frame_64 __user *) sp;
283 uregs = sigframe->uc.uc_mcontext.gp_regs;
284 if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
285 read_user_stack_64(&uregs[PT_LNK], &lr) ||
286 read_user_stack_64(&uregs[PT_R1], &sp))
287 return;
288 level = 0;
289 callchain_store(entry, PERF_CONTEXT_USER);
290 callchain_store(entry, next_ip);
291 continue;
294 if (level == 0)
295 next_ip = lr;
296 callchain_store(entry, next_ip);
297 ++level;
298 sp = next_sp;
302 static inline int current_is_64bit(void)
305 * We can't use test_thread_flag() here because we may be on an
306 * interrupt stack, and the thread flags don't get copied over
307 * from the thread_info on the main stack to the interrupt stack.
309 return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
312 #else /* CONFIG_PPC64 */
314 * On 32-bit we just access the address and let hash_page create a
315 * HPTE if necessary, so there is no need to fall back to reading
316 * the page tables. Since this is called at interrupt level,
317 * do_page_fault() won't treat a DSI as a page fault.
319 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
321 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
322 ((unsigned long)ptr & 3))
323 return -EFAULT;
325 return __get_user_inatomic(*ret, ptr);
328 static inline void perf_callchain_user_64(struct pt_regs *regs,
329 struct perf_callchain_entry *entry)
333 static inline int current_is_64bit(void)
335 return 0;
338 static inline int valid_user_sp(unsigned long sp, int is_64)
340 if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
341 return 0;
342 return 1;
345 #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
346 #define sigcontext32 sigcontext
347 #define mcontext32 mcontext
348 #define ucontext32 ucontext
349 #define compat_siginfo_t struct siginfo
351 #endif /* CONFIG_PPC64 */
354 * Layout for non-RT signal frames
356 struct signal_frame_32 {
357 char dummy[__SIGNAL_FRAMESIZE32];
358 struct sigcontext32 sctx;
359 struct mcontext32 mctx;
360 int abigap[56];
364 * Layout for RT signal frames
366 struct rt_signal_frame_32 {
367 char dummy[__SIGNAL_FRAMESIZE32 + 16];
368 compat_siginfo_t info;
369 struct ucontext32 uc;
370 int abigap[56];
373 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
375 if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
376 return 1;
377 if (vdso32_sigtramp && current->mm->context.vdso_base &&
378 nip == current->mm->context.vdso_base + vdso32_sigtramp)
379 return 1;
380 return 0;
383 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
385 if (nip == fp + offsetof(struct rt_signal_frame_32,
386 uc.uc_mcontext.mc_pad))
387 return 1;
388 if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
389 nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
390 return 1;
391 return 0;
394 static int sane_signal_32_frame(unsigned int sp)
396 struct signal_frame_32 __user *sf;
397 unsigned int regs;
399 sf = (struct signal_frame_32 __user *) (unsigned long) sp;
400 if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
401 return 0;
402 return regs == (unsigned long) &sf->mctx;
405 static int sane_rt_signal_32_frame(unsigned int sp)
407 struct rt_signal_frame_32 __user *sf;
408 unsigned int regs;
410 sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
411 if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
412 return 0;
413 return regs == (unsigned long) &sf->uc.uc_mcontext;
416 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
417 unsigned int next_sp, unsigned int next_ip)
419 struct mcontext32 __user *mctx = NULL;
420 struct signal_frame_32 __user *sf;
421 struct rt_signal_frame_32 __user *rt_sf;
424 * Note: the next_sp - sp >= signal frame size check
425 * is true when next_sp < sp, for example, when
426 * transitioning from an alternate signal stack to the
427 * normal stack.
429 if (next_sp - sp >= sizeof(struct signal_frame_32) &&
430 is_sigreturn_32_address(next_ip, sp) &&
431 sane_signal_32_frame(sp)) {
432 sf = (struct signal_frame_32 __user *) (unsigned long) sp;
433 mctx = &sf->mctx;
436 if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
437 is_rt_sigreturn_32_address(next_ip, sp) &&
438 sane_rt_signal_32_frame(sp)) {
439 rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
440 mctx = &rt_sf->uc.uc_mcontext;
443 if (!mctx)
444 return NULL;
445 return mctx->mc_gregs;
448 static void perf_callchain_user_32(struct pt_regs *regs,
449 struct perf_callchain_entry *entry)
451 unsigned int sp, next_sp;
452 unsigned int next_ip;
453 unsigned int lr;
454 long level = 0;
455 unsigned int __user *fp, *uregs;
457 next_ip = regs->nip;
458 lr = regs->link;
459 sp = regs->gpr[1];
460 callchain_store(entry, PERF_CONTEXT_USER);
461 callchain_store(entry, next_ip);
463 while (entry->nr < PERF_MAX_STACK_DEPTH) {
464 fp = (unsigned int __user *) (unsigned long) sp;
465 if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
466 return;
467 if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
468 return;
470 uregs = signal_frame_32_regs(sp, next_sp, next_ip);
471 if (!uregs && level <= 1)
472 uregs = signal_frame_32_regs(sp, next_sp, lr);
473 if (uregs) {
475 * This looks like an signal frame, so restart
476 * the stack trace with the values in it.
478 if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
479 read_user_stack_32(&uregs[PT_LNK], &lr) ||
480 read_user_stack_32(&uregs[PT_R1], &sp))
481 return;
482 level = 0;
483 callchain_store(entry, PERF_CONTEXT_USER);
484 callchain_store(entry, next_ip);
485 continue;
488 if (level == 0)
489 next_ip = lr;
490 callchain_store(entry, next_ip);
491 ++level;
492 sp = next_sp;
497 * Since we can't get PMU interrupts inside a PMU interrupt handler,
498 * we don't need separate irq and nmi entries here.
500 static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
502 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
504 struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
506 entry->nr = 0;
508 if (current->pid == 0) /* idle task? */
509 return entry;
511 if (!user_mode(regs)) {
512 perf_callchain_kernel(regs, entry);
513 if (current->mm)
514 regs = task_pt_regs(current);
515 else
516 regs = NULL;
519 if (regs) {
520 if (current_is_64bit())
521 perf_callchain_user_64(regs, entry);
522 else
523 perf_callchain_user_32(regs, entry);
526 return entry;