2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
11 #include <asm/fixmap.h>
13 #define _PAGE_PRESENT 0x001
14 #define _PAGE_NEWPAGE 0x002
15 #define _PAGE_NEWPROT 0x004
16 #define _PAGE_RW 0x020
17 #define _PAGE_USER 0x040
18 #define _PAGE_ACCESSED 0x080
19 #define _PAGE_DIRTY 0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
22 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
23 pte_present gives true */
25 #ifdef CONFIG_3_LEVEL_PGTABLES
26 #include "asm/pgtable-3level.h"
28 #include "asm/pgtable-2level.h"
31 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
33 /* zero page used for uninitialized stuff */
34 extern unsigned long *empty_zero_page
;
36 #define pgtable_cache_init() do ; while (0)
38 /* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
46 extern unsigned long end_iomem
;
48 #define VMALLOC_OFFSET (__va_space)
49 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
52 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
54 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
56 #define MODULES_VADDR VMALLOC_START
57 #define MODULES_END VMALLOC_END
58 #define MODULES_LEN (MODULES_VADDR - MODULES_END)
60 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
61 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
62 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
63 #define __PAGE_KERNEL_EXEC \
64 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
66 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
67 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
68 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
69 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
70 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
73 * The i386 can't do page protection for execute, and considers that the same
75 * Also, write permissions imply read permissions. This is the closest we can
78 #define __P000 PAGE_NONE
79 #define __P001 PAGE_READONLY
80 #define __P010 PAGE_COPY
81 #define __P011 PAGE_COPY
82 #define __P100 PAGE_READONLY
83 #define __P101 PAGE_READONLY
84 #define __P110 PAGE_COPY
85 #define __P111 PAGE_COPY
87 #define __S000 PAGE_NONE
88 #define __S001 PAGE_READONLY
89 #define __S010 PAGE_SHARED
90 #define __S011 PAGE_SHARED
91 #define __S100 PAGE_READONLY
92 #define __S101 PAGE_READONLY
93 #define __S110 PAGE_SHARED
94 #define __S111 PAGE_SHARED
97 * ZERO_PAGE is a global shared page that is always zero: used
98 * for zero-mapped memory areas etc..
100 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
102 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
104 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
105 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
107 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
108 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
110 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
111 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
113 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
114 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
116 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
118 #define pte_page(x) pfn_to_page(pte_pfn(x))
120 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
123 * =================================
124 * Flags checking section.
125 * =================================
128 static inline int pte_none(pte_t pte
)
130 return pte_is_zero(pte
);
134 * The following only work if pte_present() is true.
135 * Undefined behaviour if not..
137 static inline int pte_read(pte_t pte
)
139 return((pte_get_bits(pte
, _PAGE_USER
)) &&
140 !(pte_get_bits(pte
, _PAGE_PROTNONE
)));
143 static inline int pte_exec(pte_t pte
){
144 return((pte_get_bits(pte
, _PAGE_USER
)) &&
145 !(pte_get_bits(pte
, _PAGE_PROTNONE
)));
148 static inline int pte_write(pte_t pte
)
150 return((pte_get_bits(pte
, _PAGE_RW
)) &&
151 !(pte_get_bits(pte
, _PAGE_PROTNONE
)));
155 * The following only works if pte_present() is not true.
157 static inline int pte_file(pte_t pte
)
159 return pte_get_bits(pte
, _PAGE_FILE
);
162 static inline int pte_dirty(pte_t pte
)
164 return pte_get_bits(pte
, _PAGE_DIRTY
);
167 static inline int pte_young(pte_t pte
)
169 return pte_get_bits(pte
, _PAGE_ACCESSED
);
172 static inline int pte_newpage(pte_t pte
)
174 return pte_get_bits(pte
, _PAGE_NEWPAGE
);
177 static inline int pte_newprot(pte_t pte
)
179 return(pte_present(pte
) && (pte_get_bits(pte
, _PAGE_NEWPROT
)));
182 static inline int pte_special(pte_t pte
)
188 * =================================
189 * Flags setting section.
190 * =================================
193 static inline pte_t
pte_mknewprot(pte_t pte
)
195 pte_set_bits(pte
, _PAGE_NEWPROT
);
199 static inline pte_t
pte_mkclean(pte_t pte
)
201 pte_clear_bits(pte
, _PAGE_DIRTY
);
205 static inline pte_t
pte_mkold(pte_t pte
)
207 pte_clear_bits(pte
, _PAGE_ACCESSED
);
211 static inline pte_t
pte_wrprotect(pte_t pte
)
213 pte_clear_bits(pte
, _PAGE_RW
);
214 return(pte_mknewprot(pte
));
217 static inline pte_t
pte_mkread(pte_t pte
)
219 pte_set_bits(pte
, _PAGE_USER
);
220 return(pte_mknewprot(pte
));
223 static inline pte_t
pte_mkdirty(pte_t pte
)
225 pte_set_bits(pte
, _PAGE_DIRTY
);
229 static inline pte_t
pte_mkyoung(pte_t pte
)
231 pte_set_bits(pte
, _PAGE_ACCESSED
);
235 static inline pte_t
pte_mkwrite(pte_t pte
)
237 pte_set_bits(pte
, _PAGE_RW
);
238 return(pte_mknewprot(pte
));
241 static inline pte_t
pte_mkuptodate(pte_t pte
)
243 pte_clear_bits(pte
, _PAGE_NEWPAGE
);
245 pte_clear_bits(pte
, _PAGE_NEWPROT
);
249 static inline pte_t
pte_mknewpage(pte_t pte
)
251 pte_set_bits(pte
, _PAGE_NEWPAGE
);
255 static inline pte_t
pte_mkspecial(pte_t pte
)
260 static inline void set_pte(pte_t
*pteptr
, pte_t pteval
)
262 pte_copy(*pteptr
, pteval
);
264 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
265 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
269 *pteptr
= pte_mknewpage(*pteptr
);
270 if(pte_present(*pteptr
)) *pteptr
= pte_mknewprot(*pteptr
);
272 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
275 * Conversion functions: convert a page and protection to a page entry,
276 * and a page entry and page directory to the page they refer to.
279 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
280 #define __virt_to_page(virt) phys_to_page(__pa(virt))
281 #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
282 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
284 #define mk_pte(page, pgprot) \
287 pte_set_val(pte, page_to_phys(page), (pgprot)); \
288 if (pte_present(pte)) \
289 pte_mknewprot(pte_mknewpage(pte)); \
292 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
294 pte_set_val(pte
, (pte_val(pte
) & _PAGE_CHG_MASK
), newprot
);
299 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
301 * this macro returns the index of the entry in the pgd page which would
302 * control the given virtual address
304 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
307 * pgd_offset() returns a (pgd_t *)
308 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
310 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
313 * a shortcut which implies the use of the kernel's pgd, instead
316 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
319 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
321 * this macro returns the index of the entry in the pmd page which would
322 * control the given virtual address
324 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
325 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
327 #define pmd_page_vaddr(pmd) \
328 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
331 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
333 * this macro returns the index of the entry in the pte page which would
334 * control the given virtual address
336 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
337 #define pte_offset_kernel(dir, address) \
338 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
339 #define pte_offset_map(dir, address) \
340 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
341 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
342 #define pte_unmap(pte) do { } while (0)
343 #define pte_unmap_nested(pte) do { } while (0)
346 extern pte_t
*virt_to_pte(struct mm_struct
*mm
, unsigned long addr
);
348 #define update_mmu_cache(vma,address,pte) do ; while (0)
350 /* Encode and de-code a swap entry */
351 #define __swp_type(x) (((x).val >> 4) & 0x3f)
352 #define __swp_offset(x) ((x).val >> 11)
354 #define __swp_entry(type, offset) \
355 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
356 #define __pte_to_swp_entry(pte) \
357 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
358 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
360 #define kern_addr_valid(addr) (1)
362 #include <asm-generic/pgtable.h>
364 /* Clear a kernel PTE and flush it from the TLB */
365 #define kpte_clear_flush(ptep, vaddr) \
367 pte_clear(&init_mm, (vaddr), (ptep)); \
368 __flush_tlb_one((vaddr)); \