fed up with those stupid warnings
[mmotm.git] / arch / x86 / xen / mmu.c
blob3bf7b1d250ce986d02bc44de0bd2086f6e37b824
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/module.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/fixmap.h>
50 #include <asm/mmu_context.h>
51 #include <asm/setup.h>
52 #include <asm/paravirt.h>
53 #include <asm/linkage.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
58 #include <xen/page.h>
59 #include <xen/interface/xen.h>
60 #include <xen/interface/version.h>
61 #include <xen/hvc-console.h>
63 #include "multicalls.h"
64 #include "mmu.h"
65 #include "debugfs.h"
67 #define MMU_UPDATE_HISTO 30
69 #ifdef CONFIG_XEN_DEBUG_FS
71 static struct {
72 u32 pgd_update;
73 u32 pgd_update_pinned;
74 u32 pgd_update_batched;
76 u32 pud_update;
77 u32 pud_update_pinned;
78 u32 pud_update_batched;
80 u32 pmd_update;
81 u32 pmd_update_pinned;
82 u32 pmd_update_batched;
84 u32 pte_update;
85 u32 pte_update_pinned;
86 u32 pte_update_batched;
88 u32 mmu_update;
89 u32 mmu_update_extended;
90 u32 mmu_update_histo[MMU_UPDATE_HISTO];
92 u32 prot_commit;
93 u32 prot_commit_batched;
95 u32 set_pte_at;
96 u32 set_pte_at_batched;
97 u32 set_pte_at_pinned;
98 u32 set_pte_at_current;
99 u32 set_pte_at_kernel;
100 } mmu_stats;
102 static u8 zero_stats;
104 static inline void check_zero(void)
106 if (unlikely(zero_stats)) {
107 memset(&mmu_stats, 0, sizeof(mmu_stats));
108 zero_stats = 0;
112 #define ADD_STATS(elem, val) \
113 do { check_zero(); mmu_stats.elem += (val); } while(0)
115 #else /* !CONFIG_XEN_DEBUG_FS */
117 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
119 #endif /* CONFIG_XEN_DEBUG_FS */
123 * Identity map, in addition to plain kernel map. This needs to be
124 * large enough to allocate page table pages to allocate the rest.
125 * Each page can map 2MB.
127 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
129 #ifdef CONFIG_X86_64
130 /* l3 pud for userspace vsyscall mapping */
131 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
132 #endif /* CONFIG_X86_64 */
135 * Note about cr3 (pagetable base) values:
137 * xen_cr3 contains the current logical cr3 value; it contains the
138 * last set cr3. This may not be the current effective cr3, because
139 * its update may be being lazily deferred. However, a vcpu looking
140 * at its own cr3 can use this value knowing that it everything will
141 * be self-consistent.
143 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
144 * hypercall to set the vcpu cr3 is complete (so it may be a little
145 * out of date, but it will never be set early). If one vcpu is
146 * looking at another vcpu's cr3 value, it should use this variable.
148 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
149 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
153 * Just beyond the highest usermode address. STACK_TOP_MAX has a
154 * redzone above it, so round it up to a PGD boundary.
156 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
159 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
160 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
162 /* Placeholder for holes in the address space */
163 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
164 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
166 /* Array of pointers to pages containing p2m entries */
167 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
168 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
170 /* Arrays of p2m arrays expressed in mfns used for save/restore */
171 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
173 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
174 __page_aligned_bss;
176 static inline unsigned p2m_top_index(unsigned long pfn)
178 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
179 return pfn / P2M_ENTRIES_PER_PAGE;
182 static inline unsigned p2m_index(unsigned long pfn)
184 return pfn % P2M_ENTRIES_PER_PAGE;
187 /* Build the parallel p2m_top_mfn structures */
188 static void __init xen_build_mfn_list_list(void)
190 unsigned pfn, idx;
192 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
193 unsigned topidx = p2m_top_index(pfn);
195 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
198 for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
199 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
200 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
204 void xen_setup_mfn_list_list(void)
206 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
208 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
209 virt_to_mfn(p2m_top_mfn_list);
210 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
213 /* Set up p2m_top to point to the domain-builder provided p2m pages */
214 void __init xen_build_dynamic_phys_to_machine(void)
216 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
217 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
218 unsigned pfn;
220 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
221 unsigned topidx = p2m_top_index(pfn);
223 p2m_top[topidx] = &mfn_list[pfn];
226 xen_build_mfn_list_list();
229 unsigned long get_phys_to_machine(unsigned long pfn)
231 unsigned topidx, idx;
233 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
234 return INVALID_P2M_ENTRY;
236 topidx = p2m_top_index(pfn);
237 idx = p2m_index(pfn);
238 return p2m_top[topidx][idx];
240 EXPORT_SYMBOL_GPL(get_phys_to_machine);
242 /* install a new p2m_top page */
243 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
245 unsigned topidx = p2m_top_index(pfn);
246 unsigned long **pfnp, *mfnp;
247 unsigned i;
249 pfnp = &p2m_top[topidx];
250 mfnp = &p2m_top_mfn[topidx];
252 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
253 p[i] = INVALID_P2M_ENTRY;
255 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
256 *mfnp = virt_to_mfn(p);
257 return true;
260 return false;
263 static void alloc_p2m(unsigned long pfn)
265 unsigned long *p;
267 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
268 BUG_ON(p == NULL);
270 if (!install_p2mtop_page(pfn, p))
271 free_page((unsigned long)p);
274 /* Try to install p2m mapping; fail if intermediate bits missing */
275 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
277 unsigned topidx, idx;
279 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
280 BUG_ON(mfn != INVALID_P2M_ENTRY);
281 return true;
284 topidx = p2m_top_index(pfn);
285 if (p2m_top[topidx] == p2m_missing) {
286 if (mfn == INVALID_P2M_ENTRY)
287 return true;
288 return false;
291 idx = p2m_index(pfn);
292 p2m_top[topidx][idx] = mfn;
294 return true;
297 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
299 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
300 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
301 return;
304 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
305 alloc_p2m(pfn);
307 if (!__set_phys_to_machine(pfn, mfn))
308 BUG();
312 unsigned long arbitrary_virt_to_mfn(void *vaddr)
314 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
316 return PFN_DOWN(maddr.maddr);
319 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
321 unsigned long address = (unsigned long)vaddr;
322 unsigned int level;
323 pte_t *pte;
324 unsigned offset;
327 * if the PFN is in the linear mapped vaddr range, we can just use
328 * the (quick) virt_to_machine() p2m lookup
330 if (virt_addr_valid(vaddr))
331 return virt_to_machine(vaddr);
333 /* otherwise we have to do a (slower) full page-table walk */
335 pte = lookup_address(address, &level);
336 BUG_ON(pte == NULL);
337 offset = address & ~PAGE_MASK;
338 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
341 void make_lowmem_page_readonly(void *vaddr)
343 pte_t *pte, ptev;
344 unsigned long address = (unsigned long)vaddr;
345 unsigned int level;
347 pte = lookup_address(address, &level);
348 BUG_ON(pte == NULL);
350 ptev = pte_wrprotect(*pte);
352 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
353 BUG();
356 void make_lowmem_page_readwrite(void *vaddr)
358 pte_t *pte, ptev;
359 unsigned long address = (unsigned long)vaddr;
360 unsigned int level;
362 pte = lookup_address(address, &level);
363 BUG_ON(pte == NULL);
365 ptev = pte_mkwrite(*pte);
367 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
368 BUG();
372 static bool xen_page_pinned(void *ptr)
374 struct page *page = virt_to_page(ptr);
376 return PagePinned(page);
379 static void xen_extend_mmu_update(const struct mmu_update *update)
381 struct multicall_space mcs;
382 struct mmu_update *u;
384 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
386 if (mcs.mc != NULL) {
387 ADD_STATS(mmu_update_extended, 1);
388 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
390 mcs.mc->args[1]++;
392 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
393 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
394 else
395 ADD_STATS(mmu_update_histo[0], 1);
396 } else {
397 ADD_STATS(mmu_update, 1);
398 mcs = __xen_mc_entry(sizeof(*u));
399 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
400 ADD_STATS(mmu_update_histo[1], 1);
403 u = mcs.args;
404 *u = *update;
407 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
409 struct mmu_update u;
411 preempt_disable();
413 xen_mc_batch();
415 /* ptr may be ioremapped for 64-bit pagetable setup */
416 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
417 u.val = pmd_val_ma(val);
418 xen_extend_mmu_update(&u);
420 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
422 xen_mc_issue(PARAVIRT_LAZY_MMU);
424 preempt_enable();
427 void xen_set_pmd(pmd_t *ptr, pmd_t val)
429 ADD_STATS(pmd_update, 1);
431 /* If page is not pinned, we can just update the entry
432 directly */
433 if (!xen_page_pinned(ptr)) {
434 *ptr = val;
435 return;
438 ADD_STATS(pmd_update_pinned, 1);
440 xen_set_pmd_hyper(ptr, val);
444 * Associate a virtual page frame with a given physical page frame
445 * and protection flags for that frame.
447 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
449 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
452 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
453 pte_t *ptep, pte_t pteval)
455 ADD_STATS(set_pte_at, 1);
456 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
457 ADD_STATS(set_pte_at_current, mm == current->mm);
458 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
460 if (mm == current->mm || mm == &init_mm) {
461 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
462 struct multicall_space mcs;
463 mcs = xen_mc_entry(0);
465 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
466 ADD_STATS(set_pte_at_batched, 1);
467 xen_mc_issue(PARAVIRT_LAZY_MMU);
468 goto out;
469 } else
470 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
471 goto out;
473 xen_set_pte(ptep, pteval);
475 out: return;
478 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
479 unsigned long addr, pte_t *ptep)
481 /* Just return the pte as-is. We preserve the bits on commit */
482 return *ptep;
485 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
486 pte_t *ptep, pte_t pte)
488 struct mmu_update u;
490 xen_mc_batch();
492 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
493 u.val = pte_val_ma(pte);
494 xen_extend_mmu_update(&u);
496 ADD_STATS(prot_commit, 1);
497 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
499 xen_mc_issue(PARAVIRT_LAZY_MMU);
502 /* Assume pteval_t is equivalent to all the other *val_t types. */
503 static pteval_t pte_mfn_to_pfn(pteval_t val)
505 if (val & _PAGE_PRESENT) {
506 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
507 pteval_t flags = val & PTE_FLAGS_MASK;
508 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
511 return val;
514 static pteval_t pte_pfn_to_mfn(pteval_t val)
516 if (val & _PAGE_PRESENT) {
517 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
518 pteval_t flags = val & PTE_FLAGS_MASK;
519 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
522 return val;
525 pteval_t xen_pte_val(pte_t pte)
527 return pte_mfn_to_pfn(pte.pte);
529 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
531 pgdval_t xen_pgd_val(pgd_t pgd)
533 return pte_mfn_to_pfn(pgd.pgd);
535 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
537 pte_t xen_make_pte(pteval_t pte)
539 pte = pte_pfn_to_mfn(pte);
540 return native_make_pte(pte);
542 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
544 pgd_t xen_make_pgd(pgdval_t pgd)
546 pgd = pte_pfn_to_mfn(pgd);
547 return native_make_pgd(pgd);
549 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
551 pmdval_t xen_pmd_val(pmd_t pmd)
553 return pte_mfn_to_pfn(pmd.pmd);
555 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
557 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
559 struct mmu_update u;
561 preempt_disable();
563 xen_mc_batch();
565 /* ptr may be ioremapped for 64-bit pagetable setup */
566 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
567 u.val = pud_val_ma(val);
568 xen_extend_mmu_update(&u);
570 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
572 xen_mc_issue(PARAVIRT_LAZY_MMU);
574 preempt_enable();
577 void xen_set_pud(pud_t *ptr, pud_t val)
579 ADD_STATS(pud_update, 1);
581 /* If page is not pinned, we can just update the entry
582 directly */
583 if (!xen_page_pinned(ptr)) {
584 *ptr = val;
585 return;
588 ADD_STATS(pud_update_pinned, 1);
590 xen_set_pud_hyper(ptr, val);
593 void xen_set_pte(pte_t *ptep, pte_t pte)
595 ADD_STATS(pte_update, 1);
596 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
597 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
599 #ifdef CONFIG_X86_PAE
600 ptep->pte_high = pte.pte_high;
601 smp_wmb();
602 ptep->pte_low = pte.pte_low;
603 #else
604 *ptep = pte;
605 #endif
608 #ifdef CONFIG_X86_PAE
609 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
611 set_64bit((u64 *)ptep, native_pte_val(pte));
614 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
616 ptep->pte_low = 0;
617 smp_wmb(); /* make sure low gets written first */
618 ptep->pte_high = 0;
621 void xen_pmd_clear(pmd_t *pmdp)
623 set_pmd(pmdp, __pmd(0));
625 #endif /* CONFIG_X86_PAE */
627 pmd_t xen_make_pmd(pmdval_t pmd)
629 pmd = pte_pfn_to_mfn(pmd);
630 return native_make_pmd(pmd);
632 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
634 #if PAGETABLE_LEVELS == 4
635 pudval_t xen_pud_val(pud_t pud)
637 return pte_mfn_to_pfn(pud.pud);
639 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
641 pud_t xen_make_pud(pudval_t pud)
643 pud = pte_pfn_to_mfn(pud);
645 return native_make_pud(pud);
647 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
649 pgd_t *xen_get_user_pgd(pgd_t *pgd)
651 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
652 unsigned offset = pgd - pgd_page;
653 pgd_t *user_ptr = NULL;
655 if (offset < pgd_index(USER_LIMIT)) {
656 struct page *page = virt_to_page(pgd_page);
657 user_ptr = (pgd_t *)page->private;
658 if (user_ptr)
659 user_ptr += offset;
662 return user_ptr;
665 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
667 struct mmu_update u;
669 u.ptr = virt_to_machine(ptr).maddr;
670 u.val = pgd_val_ma(val);
671 xen_extend_mmu_update(&u);
675 * Raw hypercall-based set_pgd, intended for in early boot before
676 * there's a page structure. This implies:
677 * 1. The only existing pagetable is the kernel's
678 * 2. It is always pinned
679 * 3. It has no user pagetable attached to it
681 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
683 preempt_disable();
685 xen_mc_batch();
687 __xen_set_pgd_hyper(ptr, val);
689 xen_mc_issue(PARAVIRT_LAZY_MMU);
691 preempt_enable();
694 void xen_set_pgd(pgd_t *ptr, pgd_t val)
696 pgd_t *user_ptr = xen_get_user_pgd(ptr);
698 ADD_STATS(pgd_update, 1);
700 /* If page is not pinned, we can just update the entry
701 directly */
702 if (!xen_page_pinned(ptr)) {
703 *ptr = val;
704 if (user_ptr) {
705 WARN_ON(xen_page_pinned(user_ptr));
706 *user_ptr = val;
708 return;
711 ADD_STATS(pgd_update_pinned, 1);
712 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
714 /* If it's pinned, then we can at least batch the kernel and
715 user updates together. */
716 xen_mc_batch();
718 __xen_set_pgd_hyper(ptr, val);
719 if (user_ptr)
720 __xen_set_pgd_hyper(user_ptr, val);
722 xen_mc_issue(PARAVIRT_LAZY_MMU);
724 #endif /* PAGETABLE_LEVELS == 4 */
727 * (Yet another) pagetable walker. This one is intended for pinning a
728 * pagetable. This means that it walks a pagetable and calls the
729 * callback function on each page it finds making up the page table,
730 * at every level. It walks the entire pagetable, but it only bothers
731 * pinning pte pages which are below limit. In the normal case this
732 * will be STACK_TOP_MAX, but at boot we need to pin up to
733 * FIXADDR_TOP.
735 * For 32-bit the important bit is that we don't pin beyond there,
736 * because then we start getting into Xen's ptes.
738 * For 64-bit, we must skip the Xen hole in the middle of the address
739 * space, just after the big x86-64 virtual hole.
741 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
742 int (*func)(struct mm_struct *mm, struct page *,
743 enum pt_level),
744 unsigned long limit)
746 int flush = 0;
747 unsigned hole_low, hole_high;
748 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
749 unsigned pgdidx, pudidx, pmdidx;
751 /* The limit is the last byte to be touched */
752 limit--;
753 BUG_ON(limit >= FIXADDR_TOP);
755 if (xen_feature(XENFEAT_auto_translated_physmap))
756 return 0;
759 * 64-bit has a great big hole in the middle of the address
760 * space, which contains the Xen mappings. On 32-bit these
761 * will end up making a zero-sized hole and so is a no-op.
763 hole_low = pgd_index(USER_LIMIT);
764 hole_high = pgd_index(PAGE_OFFSET);
766 pgdidx_limit = pgd_index(limit);
767 #if PTRS_PER_PUD > 1
768 pudidx_limit = pud_index(limit);
769 #else
770 pudidx_limit = 0;
771 #endif
772 #if PTRS_PER_PMD > 1
773 pmdidx_limit = pmd_index(limit);
774 #else
775 pmdidx_limit = 0;
776 #endif
778 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
779 pud_t *pud;
781 if (pgdidx >= hole_low && pgdidx < hole_high)
782 continue;
784 if (!pgd_val(pgd[pgdidx]))
785 continue;
787 pud = pud_offset(&pgd[pgdidx], 0);
789 if (PTRS_PER_PUD > 1) /* not folded */
790 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
792 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
793 pmd_t *pmd;
795 if (pgdidx == pgdidx_limit &&
796 pudidx > pudidx_limit)
797 goto out;
799 if (pud_none(pud[pudidx]))
800 continue;
802 pmd = pmd_offset(&pud[pudidx], 0);
804 if (PTRS_PER_PMD > 1) /* not folded */
805 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
807 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
808 struct page *pte;
810 if (pgdidx == pgdidx_limit &&
811 pudidx == pudidx_limit &&
812 pmdidx > pmdidx_limit)
813 goto out;
815 if (pmd_none(pmd[pmdidx]))
816 continue;
818 pte = pmd_page(pmd[pmdidx]);
819 flush |= (*func)(mm, pte, PT_PTE);
824 out:
825 /* Do the top level last, so that the callbacks can use it as
826 a cue to do final things like tlb flushes. */
827 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
829 return flush;
832 static int xen_pgd_walk(struct mm_struct *mm,
833 int (*func)(struct mm_struct *mm, struct page *,
834 enum pt_level),
835 unsigned long limit)
837 return __xen_pgd_walk(mm, mm->pgd, func, limit);
840 /* If we're using split pte locks, then take the page's lock and
841 return a pointer to it. Otherwise return NULL. */
842 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
844 spinlock_t *ptl = NULL;
846 #if USE_SPLIT_PTLOCKS
847 ptl = __pte_lockptr(page);
848 spin_lock_nest_lock(ptl, &mm->page_table_lock);
849 #endif
851 return ptl;
854 static void xen_pte_unlock(void *v)
856 spinlock_t *ptl = v;
857 spin_unlock(ptl);
860 static void xen_do_pin(unsigned level, unsigned long pfn)
862 struct mmuext_op *op;
863 struct multicall_space mcs;
865 mcs = __xen_mc_entry(sizeof(*op));
866 op = mcs.args;
867 op->cmd = level;
868 op->arg1.mfn = pfn_to_mfn(pfn);
869 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
872 static int xen_pin_page(struct mm_struct *mm, struct page *page,
873 enum pt_level level)
875 unsigned pgfl = TestSetPagePinned(page);
876 int flush;
878 if (pgfl)
879 flush = 0; /* already pinned */
880 else if (PageHighMem(page))
881 /* kmaps need flushing if we found an unpinned
882 highpage */
883 flush = 1;
884 else {
885 void *pt = lowmem_page_address(page);
886 unsigned long pfn = page_to_pfn(page);
887 struct multicall_space mcs = __xen_mc_entry(0);
888 spinlock_t *ptl;
890 flush = 0;
893 * We need to hold the pagetable lock between the time
894 * we make the pagetable RO and when we actually pin
895 * it. If we don't, then other users may come in and
896 * attempt to update the pagetable by writing it,
897 * which will fail because the memory is RO but not
898 * pinned, so Xen won't do the trap'n'emulate.
900 * If we're using split pte locks, we can't hold the
901 * entire pagetable's worth of locks during the
902 * traverse, because we may wrap the preempt count (8
903 * bits). The solution is to mark RO and pin each PTE
904 * page while holding the lock. This means the number
905 * of locks we end up holding is never more than a
906 * batch size (~32 entries, at present).
908 * If we're not using split pte locks, we needn't pin
909 * the PTE pages independently, because we're
910 * protected by the overall pagetable lock.
912 ptl = NULL;
913 if (level == PT_PTE)
914 ptl = xen_pte_lock(page, mm);
916 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
917 pfn_pte(pfn, PAGE_KERNEL_RO),
918 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
920 if (ptl) {
921 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
923 /* Queue a deferred unlock for when this batch
924 is completed. */
925 xen_mc_callback(xen_pte_unlock, ptl);
929 return flush;
932 /* This is called just after a mm has been created, but it has not
933 been used yet. We need to make sure that its pagetable is all
934 read-only, and can be pinned. */
935 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
937 vm_unmap_aliases();
939 xen_mc_batch();
941 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
942 /* re-enable interrupts for flushing */
943 xen_mc_issue(0);
945 kmap_flush_unused();
947 xen_mc_batch();
950 #ifdef CONFIG_X86_64
952 pgd_t *user_pgd = xen_get_user_pgd(pgd);
954 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
956 if (user_pgd) {
957 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
958 xen_do_pin(MMUEXT_PIN_L4_TABLE,
959 PFN_DOWN(__pa(user_pgd)));
962 #else /* CONFIG_X86_32 */
963 #ifdef CONFIG_X86_PAE
964 /* Need to make sure unshared kernel PMD is pinnable */
965 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
966 PT_PMD);
967 #endif
968 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
969 #endif /* CONFIG_X86_64 */
970 xen_mc_issue(0);
973 static void xen_pgd_pin(struct mm_struct *mm)
975 __xen_pgd_pin(mm, mm->pgd);
979 * On save, we need to pin all pagetables to make sure they get their
980 * mfns turned into pfns. Search the list for any unpinned pgds and pin
981 * them (unpinned pgds are not currently in use, probably because the
982 * process is under construction or destruction).
984 * Expected to be called in stop_machine() ("equivalent to taking
985 * every spinlock in the system"), so the locking doesn't really
986 * matter all that much.
988 void xen_mm_pin_all(void)
990 unsigned long flags;
991 struct page *page;
993 spin_lock_irqsave(&pgd_lock, flags);
995 list_for_each_entry(page, &pgd_list, lru) {
996 if (!PagePinned(page)) {
997 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
998 SetPageSavePinned(page);
1002 spin_unlock_irqrestore(&pgd_lock, flags);
1006 * The init_mm pagetable is really pinned as soon as its created, but
1007 * that's before we have page structures to store the bits. So do all
1008 * the book-keeping now.
1010 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1011 enum pt_level level)
1013 SetPagePinned(page);
1014 return 0;
1017 static void __init xen_mark_init_mm_pinned(void)
1019 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1022 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1023 enum pt_level level)
1025 unsigned pgfl = TestClearPagePinned(page);
1027 if (pgfl && !PageHighMem(page)) {
1028 void *pt = lowmem_page_address(page);
1029 unsigned long pfn = page_to_pfn(page);
1030 spinlock_t *ptl = NULL;
1031 struct multicall_space mcs;
1034 * Do the converse to pin_page. If we're using split
1035 * pte locks, we must be holding the lock for while
1036 * the pte page is unpinned but still RO to prevent
1037 * concurrent updates from seeing it in this
1038 * partially-pinned state.
1040 if (level == PT_PTE) {
1041 ptl = xen_pte_lock(page, mm);
1043 if (ptl)
1044 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1047 mcs = __xen_mc_entry(0);
1049 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1050 pfn_pte(pfn, PAGE_KERNEL),
1051 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1053 if (ptl) {
1054 /* unlock when batch completed */
1055 xen_mc_callback(xen_pte_unlock, ptl);
1059 return 0; /* never need to flush on unpin */
1062 /* Release a pagetables pages back as normal RW */
1063 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1065 xen_mc_batch();
1067 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1069 #ifdef CONFIG_X86_64
1071 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1073 if (user_pgd) {
1074 xen_do_pin(MMUEXT_UNPIN_TABLE,
1075 PFN_DOWN(__pa(user_pgd)));
1076 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1079 #endif
1081 #ifdef CONFIG_X86_PAE
1082 /* Need to make sure unshared kernel PMD is unpinned */
1083 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1084 PT_PMD);
1085 #endif
1087 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1089 xen_mc_issue(0);
1092 static void xen_pgd_unpin(struct mm_struct *mm)
1094 __xen_pgd_unpin(mm, mm->pgd);
1098 * On resume, undo any pinning done at save, so that the rest of the
1099 * kernel doesn't see any unexpected pinned pagetables.
1101 void xen_mm_unpin_all(void)
1103 unsigned long flags;
1104 struct page *page;
1106 spin_lock_irqsave(&pgd_lock, flags);
1108 list_for_each_entry(page, &pgd_list, lru) {
1109 if (PageSavePinned(page)) {
1110 BUG_ON(!PagePinned(page));
1111 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1112 ClearPageSavePinned(page);
1116 spin_unlock_irqrestore(&pgd_lock, flags);
1119 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1121 spin_lock(&next->page_table_lock);
1122 xen_pgd_pin(next);
1123 spin_unlock(&next->page_table_lock);
1126 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1128 spin_lock(&mm->page_table_lock);
1129 xen_pgd_pin(mm);
1130 spin_unlock(&mm->page_table_lock);
1134 #ifdef CONFIG_SMP
1135 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1136 we need to repoint it somewhere else before we can unpin it. */
1137 static void drop_other_mm_ref(void *info)
1139 struct mm_struct *mm = info;
1140 struct mm_struct *active_mm;
1142 active_mm = percpu_read(cpu_tlbstate.active_mm);
1144 if (active_mm == mm)
1145 leave_mm(smp_processor_id());
1147 /* If this cpu still has a stale cr3 reference, then make sure
1148 it has been flushed. */
1149 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1150 load_cr3(swapper_pg_dir);
1153 static void xen_drop_mm_ref(struct mm_struct *mm)
1155 cpumask_var_t mask;
1156 unsigned cpu;
1158 if (current->active_mm == mm) {
1159 if (current->mm == mm)
1160 load_cr3(swapper_pg_dir);
1161 else
1162 leave_mm(smp_processor_id());
1165 /* Get the "official" set of cpus referring to our pagetable. */
1166 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1167 for_each_online_cpu(cpu) {
1168 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1169 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1170 continue;
1171 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1173 return;
1175 cpumask_copy(mask, mm_cpumask(mm));
1177 /* It's possible that a vcpu may have a stale reference to our
1178 cr3, because its in lazy mode, and it hasn't yet flushed
1179 its set of pending hypercalls yet. In this case, we can
1180 look at its actual current cr3 value, and force it to flush
1181 if needed. */
1182 for_each_online_cpu(cpu) {
1183 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1184 cpumask_set_cpu(cpu, mask);
1187 if (!cpumask_empty(mask))
1188 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1189 free_cpumask_var(mask);
1191 #else
1192 static void xen_drop_mm_ref(struct mm_struct *mm)
1194 if (current->active_mm == mm)
1195 load_cr3(swapper_pg_dir);
1197 #endif
1200 * While a process runs, Xen pins its pagetables, which means that the
1201 * hypervisor forces it to be read-only, and it controls all updates
1202 * to it. This means that all pagetable updates have to go via the
1203 * hypervisor, which is moderately expensive.
1205 * Since we're pulling the pagetable down, we switch to use init_mm,
1206 * unpin old process pagetable and mark it all read-write, which
1207 * allows further operations on it to be simple memory accesses.
1209 * The only subtle point is that another CPU may be still using the
1210 * pagetable because of lazy tlb flushing. This means we need need to
1211 * switch all CPUs off this pagetable before we can unpin it.
1213 void xen_exit_mmap(struct mm_struct *mm)
1215 get_cpu(); /* make sure we don't move around */
1216 xen_drop_mm_ref(mm);
1217 put_cpu();
1219 spin_lock(&mm->page_table_lock);
1221 /* pgd may not be pinned in the error exit path of execve */
1222 if (xen_page_pinned(mm->pgd))
1223 xen_pgd_unpin(mm);
1225 spin_unlock(&mm->page_table_lock);
1228 static __init void xen_pagetable_setup_start(pgd_t *base)
1232 static void xen_post_allocator_init(void);
1234 static __init void xen_pagetable_setup_done(pgd_t *base)
1236 xen_setup_shared_info();
1237 xen_post_allocator_init();
1240 static void xen_write_cr2(unsigned long cr2)
1242 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1245 static unsigned long xen_read_cr2(void)
1247 return percpu_read(xen_vcpu)->arch.cr2;
1250 unsigned long xen_read_cr2_direct(void)
1252 return percpu_read(xen_vcpu_info.arch.cr2);
1255 static void xen_flush_tlb(void)
1257 struct mmuext_op *op;
1258 struct multicall_space mcs;
1260 preempt_disable();
1262 mcs = xen_mc_entry(sizeof(*op));
1264 op = mcs.args;
1265 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1266 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1268 xen_mc_issue(PARAVIRT_LAZY_MMU);
1270 preempt_enable();
1273 static void xen_flush_tlb_single(unsigned long addr)
1275 struct mmuext_op *op;
1276 struct multicall_space mcs;
1278 preempt_disable();
1280 mcs = xen_mc_entry(sizeof(*op));
1281 op = mcs.args;
1282 op->cmd = MMUEXT_INVLPG_LOCAL;
1283 op->arg1.linear_addr = addr & PAGE_MASK;
1284 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1286 xen_mc_issue(PARAVIRT_LAZY_MMU);
1288 preempt_enable();
1291 static void xen_flush_tlb_others(const struct cpumask *cpus,
1292 struct mm_struct *mm, unsigned long va)
1294 struct {
1295 struct mmuext_op op;
1296 DECLARE_BITMAP(mask, NR_CPUS);
1297 } *args;
1298 struct multicall_space mcs;
1300 if (cpumask_empty(cpus))
1301 return; /* nothing to do */
1303 mcs = xen_mc_entry(sizeof(*args));
1304 args = mcs.args;
1305 args->op.arg2.vcpumask = to_cpumask(args->mask);
1307 /* Remove us, and any offline CPUS. */
1308 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1309 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1311 if (va == TLB_FLUSH_ALL) {
1312 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1313 } else {
1314 args->op.cmd = MMUEXT_INVLPG_MULTI;
1315 args->op.arg1.linear_addr = va;
1318 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1320 xen_mc_issue(PARAVIRT_LAZY_MMU);
1323 static unsigned long xen_read_cr3(void)
1325 return percpu_read(xen_cr3);
1328 static void set_current_cr3(void *v)
1330 percpu_write(xen_current_cr3, (unsigned long)v);
1333 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1335 struct mmuext_op *op;
1336 struct multicall_space mcs;
1337 unsigned long mfn;
1339 if (cr3)
1340 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1341 else
1342 mfn = 0;
1344 WARN_ON(mfn == 0 && kernel);
1346 mcs = __xen_mc_entry(sizeof(*op));
1348 op = mcs.args;
1349 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1350 op->arg1.mfn = mfn;
1352 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1354 if (kernel) {
1355 percpu_write(xen_cr3, cr3);
1357 /* Update xen_current_cr3 once the batch has actually
1358 been submitted. */
1359 xen_mc_callback(set_current_cr3, (void *)cr3);
1363 static void xen_write_cr3(unsigned long cr3)
1365 BUG_ON(preemptible());
1367 xen_mc_batch(); /* disables interrupts */
1369 /* Update while interrupts are disabled, so its atomic with
1370 respect to ipis */
1371 percpu_write(xen_cr3, cr3);
1373 __xen_write_cr3(true, cr3);
1375 #ifdef CONFIG_X86_64
1377 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1378 if (user_pgd)
1379 __xen_write_cr3(false, __pa(user_pgd));
1380 else
1381 __xen_write_cr3(false, 0);
1383 #endif
1385 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1388 static int xen_pgd_alloc(struct mm_struct *mm)
1390 pgd_t *pgd = mm->pgd;
1391 int ret = 0;
1393 BUG_ON(PagePinned(virt_to_page(pgd)));
1395 #ifdef CONFIG_X86_64
1397 struct page *page = virt_to_page(pgd);
1398 pgd_t *user_pgd;
1400 BUG_ON(page->private != 0);
1402 ret = -ENOMEM;
1404 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1405 page->private = (unsigned long)user_pgd;
1407 if (user_pgd != NULL) {
1408 user_pgd[pgd_index(VSYSCALL_START)] =
1409 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1410 ret = 0;
1413 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1415 #endif
1417 return ret;
1420 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1422 #ifdef CONFIG_X86_64
1423 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1425 if (user_pgd)
1426 free_page((unsigned long)user_pgd);
1427 #endif
1430 #ifdef CONFIG_HIGHPTE
1431 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
1433 pgprot_t prot = PAGE_KERNEL;
1435 if (PagePinned(page))
1436 prot = PAGE_KERNEL_RO;
1438 if (0 && PageHighMem(page))
1439 printk("mapping highpte %lx type %d prot %s\n",
1440 page_to_pfn(page), type,
1441 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
1443 return kmap_atomic_prot(page, type, prot);
1445 #endif
1447 #ifdef CONFIG_X86_32
1448 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1450 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1451 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1452 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1453 pte_val_ma(pte));
1455 return pte;
1458 /* Init-time set_pte while constructing initial pagetables, which
1459 doesn't allow RO pagetable pages to be remapped RW */
1460 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1462 pte = mask_rw_pte(ptep, pte);
1464 xen_set_pte(ptep, pte);
1466 #endif
1468 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1470 struct mmuext_op op;
1471 op.cmd = cmd;
1472 op.arg1.mfn = pfn_to_mfn(pfn);
1473 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1474 BUG();
1477 /* Early in boot, while setting up the initial pagetable, assume
1478 everything is pinned. */
1479 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1481 #ifdef CONFIG_FLATMEM
1482 BUG_ON(mem_map); /* should only be used early */
1483 #endif
1484 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1485 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1488 /* Used for pmd and pud */
1489 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1491 #ifdef CONFIG_FLATMEM
1492 BUG_ON(mem_map); /* should only be used early */
1493 #endif
1494 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1497 /* Early release_pte assumes that all pts are pinned, since there's
1498 only init_mm and anything attached to that is pinned. */
1499 static __init void xen_release_pte_init(unsigned long pfn)
1501 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1502 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1505 static __init void xen_release_pmd_init(unsigned long pfn)
1507 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1510 /* This needs to make sure the new pte page is pinned iff its being
1511 attached to a pinned pagetable. */
1512 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1514 struct page *page = pfn_to_page(pfn);
1516 if (PagePinned(virt_to_page(mm->pgd))) {
1517 SetPagePinned(page);
1519 vm_unmap_aliases();
1520 if (!PageHighMem(page)) {
1521 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1522 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1523 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1524 } else {
1525 /* make sure there are no stray mappings of
1526 this page */
1527 kmap_flush_unused();
1532 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1534 xen_alloc_ptpage(mm, pfn, PT_PTE);
1537 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1539 xen_alloc_ptpage(mm, pfn, PT_PMD);
1542 /* This should never happen until we're OK to use struct page */
1543 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1545 struct page *page = pfn_to_page(pfn);
1547 if (PagePinned(page)) {
1548 if (!PageHighMem(page)) {
1549 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1550 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1551 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1553 ClearPagePinned(page);
1557 static void xen_release_pte(unsigned long pfn)
1559 xen_release_ptpage(pfn, PT_PTE);
1562 static void xen_release_pmd(unsigned long pfn)
1564 xen_release_ptpage(pfn, PT_PMD);
1567 #if PAGETABLE_LEVELS == 4
1568 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1570 xen_alloc_ptpage(mm, pfn, PT_PUD);
1573 static void xen_release_pud(unsigned long pfn)
1575 xen_release_ptpage(pfn, PT_PUD);
1577 #endif
1579 void __init xen_reserve_top(void)
1581 #ifdef CONFIG_X86_32
1582 unsigned long top = HYPERVISOR_VIRT_START;
1583 struct xen_platform_parameters pp;
1585 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1586 top = pp.virt_start;
1588 reserve_top_address(-top);
1589 #endif /* CONFIG_X86_32 */
1593 * Like __va(), but returns address in the kernel mapping (which is
1594 * all we have until the physical memory mapping has been set up.
1596 static void *__ka(phys_addr_t paddr)
1598 #ifdef CONFIG_X86_64
1599 return (void *)(paddr + __START_KERNEL_map);
1600 #else
1601 return __va(paddr);
1602 #endif
1605 /* Convert a machine address to physical address */
1606 static unsigned long m2p(phys_addr_t maddr)
1608 phys_addr_t paddr;
1610 maddr &= PTE_PFN_MASK;
1611 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1613 return paddr;
1616 /* Convert a machine address to kernel virtual */
1617 static void *m2v(phys_addr_t maddr)
1619 return __ka(m2p(maddr));
1622 static void set_page_prot(void *addr, pgprot_t prot)
1624 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1625 pte_t pte = pfn_pte(pfn, prot);
1627 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1628 BUG();
1631 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1633 unsigned pmdidx, pteidx;
1634 unsigned ident_pte;
1635 unsigned long pfn;
1637 ident_pte = 0;
1638 pfn = 0;
1639 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1640 pte_t *pte_page;
1642 /* Reuse or allocate a page of ptes */
1643 if (pmd_present(pmd[pmdidx]))
1644 pte_page = m2v(pmd[pmdidx].pmd);
1645 else {
1646 /* Check for free pte pages */
1647 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1648 break;
1650 pte_page = &level1_ident_pgt[ident_pte];
1651 ident_pte += PTRS_PER_PTE;
1653 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1656 /* Install mappings */
1657 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1658 pte_t pte;
1660 if (pfn > max_pfn_mapped)
1661 max_pfn_mapped = pfn;
1663 if (!pte_none(pte_page[pteidx]))
1664 continue;
1666 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1667 pte_page[pteidx] = pte;
1671 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1672 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1674 set_page_prot(pmd, PAGE_KERNEL_RO);
1677 #ifdef CONFIG_X86_64
1678 static void convert_pfn_mfn(void *v)
1680 pte_t *pte = v;
1681 int i;
1683 /* All levels are converted the same way, so just treat them
1684 as ptes. */
1685 for (i = 0; i < PTRS_PER_PTE; i++)
1686 pte[i] = xen_make_pte(pte[i].pte);
1690 * Set up the inital kernel pagetable.
1692 * We can construct this by grafting the Xen provided pagetable into
1693 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1694 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1695 * means that only the kernel has a physical mapping to start with -
1696 * but that's enough to get __va working. We need to fill in the rest
1697 * of the physical mapping once some sort of allocator has been set
1698 * up.
1700 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1701 unsigned long max_pfn)
1703 pud_t *l3;
1704 pmd_t *l2;
1706 /* Zap identity mapping */
1707 init_level4_pgt[0] = __pgd(0);
1709 /* Pre-constructed entries are in pfn, so convert to mfn */
1710 convert_pfn_mfn(init_level4_pgt);
1711 convert_pfn_mfn(level3_ident_pgt);
1712 convert_pfn_mfn(level3_kernel_pgt);
1714 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1715 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1717 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1718 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1720 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1721 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1722 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1724 /* Set up identity map */
1725 xen_map_identity_early(level2_ident_pgt, max_pfn);
1727 /* Make pagetable pieces RO */
1728 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1729 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1730 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1731 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1732 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1733 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1735 /* Pin down new L4 */
1736 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1737 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1739 /* Unpin Xen-provided one */
1740 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1742 /* Switch over */
1743 pgd = init_level4_pgt;
1746 * At this stage there can be no user pgd, and no page
1747 * structure to attach it to, so make sure we just set kernel
1748 * pgd.
1750 xen_mc_batch();
1751 __xen_write_cr3(true, __pa(pgd));
1752 xen_mc_issue(PARAVIRT_LAZY_CPU);
1754 reserve_early(__pa(xen_start_info->pt_base),
1755 __pa(xen_start_info->pt_base +
1756 xen_start_info->nr_pt_frames * PAGE_SIZE),
1757 "XEN PAGETABLES");
1759 return pgd;
1761 #else /* !CONFIG_X86_64 */
1762 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1764 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1765 unsigned long max_pfn)
1767 pmd_t *kernel_pmd;
1769 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1770 xen_start_info->nr_pt_frames * PAGE_SIZE +
1771 512*1024);
1773 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1774 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1776 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1778 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1779 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1780 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1782 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1783 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1784 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1786 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1788 xen_write_cr3(__pa(swapper_pg_dir));
1790 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1792 reserve_early(__pa(xen_start_info->pt_base),
1793 __pa(xen_start_info->pt_base +
1794 xen_start_info->nr_pt_frames * PAGE_SIZE),
1795 "XEN PAGETABLES");
1797 return swapper_pg_dir;
1799 #endif /* CONFIG_X86_64 */
1801 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1803 pte_t pte;
1805 phys >>= PAGE_SHIFT;
1807 switch (idx) {
1808 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1809 #ifdef CONFIG_X86_F00F_BUG
1810 case FIX_F00F_IDT:
1811 #endif
1812 #ifdef CONFIG_X86_32
1813 case FIX_WP_TEST:
1814 case FIX_VDSO:
1815 # ifdef CONFIG_HIGHMEM
1816 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1817 # endif
1818 #else
1819 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1820 #endif
1821 #ifdef CONFIG_X86_LOCAL_APIC
1822 case FIX_APIC_BASE: /* maps dummy local APIC */
1823 #endif
1824 case FIX_TEXT_POKE0:
1825 case FIX_TEXT_POKE1:
1826 /* All local page mappings */
1827 pte = pfn_pte(phys, prot);
1828 break;
1830 default:
1831 pte = mfn_pte(phys, prot);
1832 break;
1835 __native_set_fixmap(idx, pte);
1837 #ifdef CONFIG_X86_64
1838 /* Replicate changes to map the vsyscall page into the user
1839 pagetable vsyscall mapping. */
1840 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1841 unsigned long vaddr = __fix_to_virt(idx);
1842 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1844 #endif
1847 static __init void xen_post_allocator_init(void)
1849 pv_mmu_ops.set_pte = xen_set_pte;
1850 pv_mmu_ops.set_pmd = xen_set_pmd;
1851 pv_mmu_ops.set_pud = xen_set_pud;
1852 #if PAGETABLE_LEVELS == 4
1853 pv_mmu_ops.set_pgd = xen_set_pgd;
1854 #endif
1856 /* This will work as long as patching hasn't happened yet
1857 (which it hasn't) */
1858 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1859 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1860 pv_mmu_ops.release_pte = xen_release_pte;
1861 pv_mmu_ops.release_pmd = xen_release_pmd;
1862 #if PAGETABLE_LEVELS == 4
1863 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1864 pv_mmu_ops.release_pud = xen_release_pud;
1865 #endif
1867 #ifdef CONFIG_X86_64
1868 SetPagePinned(virt_to_page(level3_user_vsyscall));
1869 #endif
1870 xen_mark_init_mm_pinned();
1873 static void xen_leave_lazy_mmu(void)
1875 preempt_disable();
1876 xen_mc_flush();
1877 paravirt_leave_lazy_mmu();
1878 preempt_enable();
1881 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1882 .read_cr2 = xen_read_cr2,
1883 .write_cr2 = xen_write_cr2,
1885 .read_cr3 = xen_read_cr3,
1886 .write_cr3 = xen_write_cr3,
1888 .flush_tlb_user = xen_flush_tlb,
1889 .flush_tlb_kernel = xen_flush_tlb,
1890 .flush_tlb_single = xen_flush_tlb_single,
1891 .flush_tlb_others = xen_flush_tlb_others,
1893 .pte_update = paravirt_nop,
1894 .pte_update_defer = paravirt_nop,
1896 .pgd_alloc = xen_pgd_alloc,
1897 .pgd_free = xen_pgd_free,
1899 .alloc_pte = xen_alloc_pte_init,
1900 .release_pte = xen_release_pte_init,
1901 .alloc_pmd = xen_alloc_pmd_init,
1902 .alloc_pmd_clone = paravirt_nop,
1903 .release_pmd = xen_release_pmd_init,
1905 #ifdef CONFIG_HIGHPTE
1906 .kmap_atomic_pte = xen_kmap_atomic_pte,
1907 #endif
1909 #ifdef CONFIG_X86_64
1910 .set_pte = xen_set_pte,
1911 #else
1912 .set_pte = xen_set_pte_init,
1913 #endif
1914 .set_pte_at = xen_set_pte_at,
1915 .set_pmd = xen_set_pmd_hyper,
1917 .ptep_modify_prot_start = __ptep_modify_prot_start,
1918 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1920 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
1921 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1923 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
1924 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1926 #ifdef CONFIG_X86_PAE
1927 .set_pte_atomic = xen_set_pte_atomic,
1928 .pte_clear = xen_pte_clear,
1929 .pmd_clear = xen_pmd_clear,
1930 #endif /* CONFIG_X86_PAE */
1931 .set_pud = xen_set_pud_hyper,
1933 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
1934 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
1936 #if PAGETABLE_LEVELS == 4
1937 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
1938 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
1939 .set_pgd = xen_set_pgd_hyper,
1941 .alloc_pud = xen_alloc_pmd_init,
1942 .release_pud = xen_release_pmd_init,
1943 #endif /* PAGETABLE_LEVELS == 4 */
1945 .activate_mm = xen_activate_mm,
1946 .dup_mmap = xen_dup_mmap,
1947 .exit_mmap = xen_exit_mmap,
1949 .lazy_mode = {
1950 .enter = paravirt_enter_lazy_mmu,
1951 .leave = xen_leave_lazy_mmu,
1954 .set_fixmap = xen_set_fixmap,
1957 void __init xen_init_mmu_ops(void)
1959 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
1960 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
1961 pv_mmu_ops = xen_mmu_ops;
1964 #ifdef CONFIG_XEN_DEBUG_FS
1966 static struct dentry *d_mmu_debug;
1968 static int __init xen_mmu_debugfs(void)
1970 struct dentry *d_xen = xen_init_debugfs();
1972 if (d_xen == NULL)
1973 return -ENOMEM;
1975 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1977 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1979 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1980 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1981 &mmu_stats.pgd_update_pinned);
1982 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1983 &mmu_stats.pgd_update_pinned);
1985 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1986 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1987 &mmu_stats.pud_update_pinned);
1988 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1989 &mmu_stats.pud_update_pinned);
1991 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1992 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1993 &mmu_stats.pmd_update_pinned);
1994 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1995 &mmu_stats.pmd_update_pinned);
1997 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1998 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1999 // &mmu_stats.pte_update_pinned);
2000 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2001 &mmu_stats.pte_update_pinned);
2003 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2004 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2005 &mmu_stats.mmu_update_extended);
2006 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2007 mmu_stats.mmu_update_histo, 20);
2009 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2010 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2011 &mmu_stats.set_pte_at_batched);
2012 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2013 &mmu_stats.set_pte_at_current);
2014 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2015 &mmu_stats.set_pte_at_kernel);
2017 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2018 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2019 &mmu_stats.prot_commit_batched);
2021 return 0;
2023 fs_initcall(xen_mmu_debugfs);
2025 #endif /* CONFIG_XEN_DEBUG_FS */