fed up with those stupid warnings
[mmotm.git] / drivers / hwmon / asb100.c
blob480f80ea1fa00c1082ee7d89d381c8ba84a002ae
1 /*
2 asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
5 Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
7 (derived from w83781d.c)
9 Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
10 Philip Edelbrock <phil@netroedge.com>, and
11 Mark Studebaker <mdsxyz123@yahoo.com>
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 This driver supports the hardware sensor chips: Asus ASB100 and
30 ASB100-A "BACH".
32 ASB100-A supports pwm1, while plain ASB100 does not. There is no known
33 way for the driver to tell which one is there.
35 Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
36 asb100 7 3 1 4 0x31 0x0694 yes no
39 #include <linux/module.h>
40 #include <linux/slab.h>
41 #include <linux/i2c.h>
42 #include <linux/hwmon.h>
43 #include <linux/hwmon-sysfs.h>
44 #include <linux/hwmon-vid.h>
45 #include <linux/err.h>
46 #include <linux/init.h>
47 #include <linux/jiffies.h>
48 #include <linux/mutex.h>
49 #include "lm75.h"
51 /* I2C addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
54 /* Insmod parameters */
55 I2C_CLIENT_INSMOD_1(asb100);
57 static unsigned short force_subclients[4];
58 module_param_array(force_subclients, short, NULL, 0);
59 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
60 "{bus, clientaddr, subclientaddr1, subclientaddr2}");
62 /* Voltage IN registers 0-6 */
63 #define ASB100_REG_IN(nr) (0x20 + (nr))
64 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
65 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
67 /* FAN IN registers 1-3 */
68 #define ASB100_REG_FAN(nr) (0x28 + (nr))
69 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
71 /* TEMPERATURE registers 1-4 */
72 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
73 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
74 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
76 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
77 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
78 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
80 #define ASB100_REG_TEMP2_CONFIG 0x0152
81 #define ASB100_REG_TEMP3_CONFIG 0x0252
84 #define ASB100_REG_CONFIG 0x40
85 #define ASB100_REG_ALARM1 0x41
86 #define ASB100_REG_ALARM2 0x42
87 #define ASB100_REG_SMIM1 0x43
88 #define ASB100_REG_SMIM2 0x44
89 #define ASB100_REG_VID_FANDIV 0x47
90 #define ASB100_REG_I2C_ADDR 0x48
91 #define ASB100_REG_CHIPID 0x49
92 #define ASB100_REG_I2C_SUBADDR 0x4a
93 #define ASB100_REG_PIN 0x4b
94 #define ASB100_REG_IRQ 0x4c
95 #define ASB100_REG_BANK 0x4e
96 #define ASB100_REG_CHIPMAN 0x4f
98 #define ASB100_REG_WCHIPID 0x58
100 /* bit 7 -> enable, bits 0-3 -> duty cycle */
101 #define ASB100_REG_PWM1 0x59
103 /* CONVERSIONS
104 Rounding and limit checking is only done on the TO_REG variants. */
106 /* These constants are a guess, consistent w/ w83781d */
107 #define ASB100_IN_MIN ( 0)
108 #define ASB100_IN_MAX (4080)
110 /* IN: 1/1000 V (0V to 4.08V)
111 REG: 16mV/bit */
112 static u8 IN_TO_REG(unsigned val)
114 unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
115 return (nval + 8) / 16;
118 static unsigned IN_FROM_REG(u8 reg)
120 return reg * 16;
123 static u8 FAN_TO_REG(long rpm, int div)
125 if (rpm == -1)
126 return 0;
127 if (rpm == 0)
128 return 255;
129 rpm = SENSORS_LIMIT(rpm, 1, 1000000);
130 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
133 static int FAN_FROM_REG(u8 val, int div)
135 return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
138 /* These constants are a guess, consistent w/ w83781d */
139 #define ASB100_TEMP_MIN (-128000)
140 #define ASB100_TEMP_MAX ( 127000)
142 /* TEMP: 0.001C/bit (-128C to +127C)
143 REG: 1C/bit, two's complement */
144 static u8 TEMP_TO_REG(long temp)
146 int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
147 ntemp += (ntemp<0 ? -500 : 500);
148 return (u8)(ntemp / 1000);
151 static int TEMP_FROM_REG(u8 reg)
153 return (s8)reg * 1000;
156 /* PWM: 0 - 255 per sensors documentation
157 REG: (6.25% duty cycle per bit) */
158 static u8 ASB100_PWM_TO_REG(int pwm)
160 pwm = SENSORS_LIMIT(pwm, 0, 255);
161 return (u8)(pwm / 16);
164 static int ASB100_PWM_FROM_REG(u8 reg)
166 return reg * 16;
169 #define DIV_FROM_REG(val) (1 << (val))
171 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
172 REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
173 static u8 DIV_TO_REG(long val)
175 return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
178 /* For each registered client, we need to keep some data in memory. That
179 data is pointed to by client->data. The structure itself is
180 dynamically allocated, at the same time the client itself is allocated. */
181 struct asb100_data {
182 struct device *hwmon_dev;
183 struct mutex lock;
185 struct mutex update_lock;
186 unsigned long last_updated; /* In jiffies */
188 /* array of 2 pointers to subclients */
189 struct i2c_client *lm75[2];
191 char valid; /* !=0 if following fields are valid */
192 u8 in[7]; /* Register value */
193 u8 in_max[7]; /* Register value */
194 u8 in_min[7]; /* Register value */
195 u8 fan[3]; /* Register value */
196 u8 fan_min[3]; /* Register value */
197 u16 temp[4]; /* Register value (0 and 3 are u8 only) */
198 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
199 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
200 u8 fan_div[3]; /* Register encoding, right justified */
201 u8 pwm; /* Register encoding */
202 u8 vid; /* Register encoding, combined */
203 u32 alarms; /* Register encoding, combined */
204 u8 vrm;
207 static int asb100_read_value(struct i2c_client *client, u16 reg);
208 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
210 static int asb100_probe(struct i2c_client *client,
211 const struct i2c_device_id *id);
212 static int asb100_detect(struct i2c_client *client, int kind,
213 struct i2c_board_info *info);
214 static int asb100_remove(struct i2c_client *client);
215 static struct asb100_data *asb100_update_device(struct device *dev);
216 static void asb100_init_client(struct i2c_client *client);
218 static const struct i2c_device_id asb100_id[] = {
219 { "asb100", asb100 },
222 MODULE_DEVICE_TABLE(i2c, asb100_id);
224 static struct i2c_driver asb100_driver = {
225 .class = I2C_CLASS_HWMON,
226 .driver = {
227 .name = "asb100",
229 .probe = asb100_probe,
230 .remove = asb100_remove,
231 .id_table = asb100_id,
232 .detect = asb100_detect,
233 .address_data = &addr_data,
236 /* 7 Voltages */
237 #define show_in_reg(reg) \
238 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
239 char *buf) \
241 int nr = to_sensor_dev_attr(attr)->index; \
242 struct asb100_data *data = asb100_update_device(dev); \
243 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
246 show_in_reg(in)
247 show_in_reg(in_min)
248 show_in_reg(in_max)
250 #define set_in_reg(REG, reg) \
251 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
252 const char *buf, size_t count) \
254 int nr = to_sensor_dev_attr(attr)->index; \
255 struct i2c_client *client = to_i2c_client(dev); \
256 struct asb100_data *data = i2c_get_clientdata(client); \
257 unsigned long val = simple_strtoul(buf, NULL, 10); \
259 mutex_lock(&data->update_lock); \
260 data->in_##reg[nr] = IN_TO_REG(val); \
261 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
262 data->in_##reg[nr]); \
263 mutex_unlock(&data->update_lock); \
264 return count; \
267 set_in_reg(MIN, min)
268 set_in_reg(MAX, max)
270 #define sysfs_in(offset) \
271 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
272 show_in, NULL, offset); \
273 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
274 show_in_min, set_in_min, offset); \
275 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
276 show_in_max, set_in_max, offset)
278 sysfs_in(0);
279 sysfs_in(1);
280 sysfs_in(2);
281 sysfs_in(3);
282 sysfs_in(4);
283 sysfs_in(5);
284 sysfs_in(6);
286 /* 3 Fans */
287 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
288 char *buf)
290 int nr = to_sensor_dev_attr(attr)->index;
291 struct asb100_data *data = asb100_update_device(dev);
292 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
293 DIV_FROM_REG(data->fan_div[nr])));
296 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
297 char *buf)
299 int nr = to_sensor_dev_attr(attr)->index;
300 struct asb100_data *data = asb100_update_device(dev);
301 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
302 DIV_FROM_REG(data->fan_div[nr])));
305 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
306 char *buf)
308 int nr = to_sensor_dev_attr(attr)->index;
309 struct asb100_data *data = asb100_update_device(dev);
310 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
313 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
314 const char *buf, size_t count)
316 int nr = to_sensor_dev_attr(attr)->index;
317 struct i2c_client *client = to_i2c_client(dev);
318 struct asb100_data *data = i2c_get_clientdata(client);
319 u32 val = simple_strtoul(buf, NULL, 10);
321 mutex_lock(&data->update_lock);
322 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
323 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
324 mutex_unlock(&data->update_lock);
325 return count;
328 /* Note: we save and restore the fan minimum here, because its value is
329 determined in part by the fan divisor. This follows the principle of
330 least surprise; the user doesn't expect the fan minimum to change just
331 because the divisor changed. */
332 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
333 const char *buf, size_t count)
335 int nr = to_sensor_dev_attr(attr)->index;
336 struct i2c_client *client = to_i2c_client(dev);
337 struct asb100_data *data = i2c_get_clientdata(client);
338 unsigned long min;
339 unsigned long val = simple_strtoul(buf, NULL, 10);
340 int reg;
342 mutex_lock(&data->update_lock);
344 min = FAN_FROM_REG(data->fan_min[nr],
345 DIV_FROM_REG(data->fan_div[nr]));
346 data->fan_div[nr] = DIV_TO_REG(val);
348 switch (nr) {
349 case 0: /* fan 1 */
350 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
351 reg = (reg & 0xcf) | (data->fan_div[0] << 4);
352 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
353 break;
355 case 1: /* fan 2 */
356 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
357 reg = (reg & 0x3f) | (data->fan_div[1] << 6);
358 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
359 break;
361 case 2: /* fan 3 */
362 reg = asb100_read_value(client, ASB100_REG_PIN);
363 reg = (reg & 0x3f) | (data->fan_div[2] << 6);
364 asb100_write_value(client, ASB100_REG_PIN, reg);
365 break;
368 data->fan_min[nr] =
369 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
370 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
372 mutex_unlock(&data->update_lock);
374 return count;
377 #define sysfs_fan(offset) \
378 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
379 show_fan, NULL, offset - 1); \
380 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
381 show_fan_min, set_fan_min, offset - 1); \
382 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
383 show_fan_div, set_fan_div, offset - 1)
385 sysfs_fan(1);
386 sysfs_fan(2);
387 sysfs_fan(3);
389 /* 4 Temp. Sensors */
390 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
392 int ret = 0;
394 switch (nr) {
395 case 1: case 2:
396 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
397 break;
398 case 0: case 3: default:
399 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
400 break;
402 return ret;
405 #define show_temp_reg(reg) \
406 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
407 char *buf) \
409 int nr = to_sensor_dev_attr(attr)->index; \
410 struct asb100_data *data = asb100_update_device(dev); \
411 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
414 show_temp_reg(temp);
415 show_temp_reg(temp_max);
416 show_temp_reg(temp_hyst);
418 #define set_temp_reg(REG, reg) \
419 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
420 const char *buf, size_t count) \
422 int nr = to_sensor_dev_attr(attr)->index; \
423 struct i2c_client *client = to_i2c_client(dev); \
424 struct asb100_data *data = i2c_get_clientdata(client); \
425 long val = simple_strtol(buf, NULL, 10); \
427 mutex_lock(&data->update_lock); \
428 switch (nr) { \
429 case 1: case 2: \
430 data->reg[nr] = LM75_TEMP_TO_REG(val); \
431 break; \
432 case 0: case 3: default: \
433 data->reg[nr] = TEMP_TO_REG(val); \
434 break; \
436 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
437 data->reg[nr]); \
438 mutex_unlock(&data->update_lock); \
439 return count; \
442 set_temp_reg(MAX, temp_max);
443 set_temp_reg(HYST, temp_hyst);
445 #define sysfs_temp(num) \
446 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
447 show_temp, NULL, num - 1); \
448 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
449 show_temp_max, set_temp_max, num - 1); \
450 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
451 show_temp_hyst, set_temp_hyst, num - 1)
453 sysfs_temp(1);
454 sysfs_temp(2);
455 sysfs_temp(3);
456 sysfs_temp(4);
458 /* VID */
459 static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
460 char *buf)
462 struct asb100_data *data = asb100_update_device(dev);
463 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
466 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
468 /* VRM */
469 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
470 char *buf)
472 struct asb100_data *data = dev_get_drvdata(dev);
473 return sprintf(buf, "%d\n", data->vrm);
476 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
477 const char *buf, size_t count)
479 struct asb100_data *data = dev_get_drvdata(dev);
480 data->vrm = simple_strtoul(buf, NULL, 10);
481 return count;
484 /* Alarms */
485 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
487 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
488 char *buf)
490 struct asb100_data *data = asb100_update_device(dev);
491 return sprintf(buf, "%u\n", data->alarms);
494 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
496 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
497 char *buf)
499 int bitnr = to_sensor_dev_attr(attr)->index;
500 struct asb100_data *data = asb100_update_device(dev);
501 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
503 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
504 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
505 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
506 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
507 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
508 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
509 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
510 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
511 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
512 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
513 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
515 /* 1 PWM */
516 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
517 char *buf)
519 struct asb100_data *data = asb100_update_device(dev);
520 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
523 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
524 const char *buf, size_t count)
526 struct i2c_client *client = to_i2c_client(dev);
527 struct asb100_data *data = i2c_get_clientdata(client);
528 unsigned long val = simple_strtoul(buf, NULL, 10);
530 mutex_lock(&data->update_lock);
531 data->pwm &= 0x80; /* keep the enable bit */
532 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
533 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
534 mutex_unlock(&data->update_lock);
535 return count;
538 static ssize_t show_pwm_enable1(struct device *dev,
539 struct device_attribute *attr, char *buf)
541 struct asb100_data *data = asb100_update_device(dev);
542 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
545 static ssize_t set_pwm_enable1(struct device *dev,
546 struct device_attribute *attr, const char *buf, size_t count)
548 struct i2c_client *client = to_i2c_client(dev);
549 struct asb100_data *data = i2c_get_clientdata(client);
550 unsigned long val = simple_strtoul(buf, NULL, 10);
552 mutex_lock(&data->update_lock);
553 data->pwm &= 0x0f; /* keep the duty cycle bits */
554 data->pwm |= (val ? 0x80 : 0x00);
555 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
556 mutex_unlock(&data->update_lock);
557 return count;
560 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
561 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
562 show_pwm_enable1, set_pwm_enable1);
564 static struct attribute *asb100_attributes[] = {
565 &sensor_dev_attr_in0_input.dev_attr.attr,
566 &sensor_dev_attr_in0_min.dev_attr.attr,
567 &sensor_dev_attr_in0_max.dev_attr.attr,
568 &sensor_dev_attr_in1_input.dev_attr.attr,
569 &sensor_dev_attr_in1_min.dev_attr.attr,
570 &sensor_dev_attr_in1_max.dev_attr.attr,
571 &sensor_dev_attr_in2_input.dev_attr.attr,
572 &sensor_dev_attr_in2_min.dev_attr.attr,
573 &sensor_dev_attr_in2_max.dev_attr.attr,
574 &sensor_dev_attr_in3_input.dev_attr.attr,
575 &sensor_dev_attr_in3_min.dev_attr.attr,
576 &sensor_dev_attr_in3_max.dev_attr.attr,
577 &sensor_dev_attr_in4_input.dev_attr.attr,
578 &sensor_dev_attr_in4_min.dev_attr.attr,
579 &sensor_dev_attr_in4_max.dev_attr.attr,
580 &sensor_dev_attr_in5_input.dev_attr.attr,
581 &sensor_dev_attr_in5_min.dev_attr.attr,
582 &sensor_dev_attr_in5_max.dev_attr.attr,
583 &sensor_dev_attr_in6_input.dev_attr.attr,
584 &sensor_dev_attr_in6_min.dev_attr.attr,
585 &sensor_dev_attr_in6_max.dev_attr.attr,
587 &sensor_dev_attr_fan1_input.dev_attr.attr,
588 &sensor_dev_attr_fan1_min.dev_attr.attr,
589 &sensor_dev_attr_fan1_div.dev_attr.attr,
590 &sensor_dev_attr_fan2_input.dev_attr.attr,
591 &sensor_dev_attr_fan2_min.dev_attr.attr,
592 &sensor_dev_attr_fan2_div.dev_attr.attr,
593 &sensor_dev_attr_fan3_input.dev_attr.attr,
594 &sensor_dev_attr_fan3_min.dev_attr.attr,
595 &sensor_dev_attr_fan3_div.dev_attr.attr,
597 &sensor_dev_attr_temp1_input.dev_attr.attr,
598 &sensor_dev_attr_temp1_max.dev_attr.attr,
599 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
600 &sensor_dev_attr_temp2_input.dev_attr.attr,
601 &sensor_dev_attr_temp2_max.dev_attr.attr,
602 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
603 &sensor_dev_attr_temp3_input.dev_attr.attr,
604 &sensor_dev_attr_temp3_max.dev_attr.attr,
605 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
606 &sensor_dev_attr_temp4_input.dev_attr.attr,
607 &sensor_dev_attr_temp4_max.dev_attr.attr,
608 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
610 &sensor_dev_attr_in0_alarm.dev_attr.attr,
611 &sensor_dev_attr_in1_alarm.dev_attr.attr,
612 &sensor_dev_attr_in2_alarm.dev_attr.attr,
613 &sensor_dev_attr_in3_alarm.dev_attr.attr,
614 &sensor_dev_attr_in4_alarm.dev_attr.attr,
615 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
616 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
617 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
618 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
619 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
620 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
622 &dev_attr_cpu0_vid.attr,
623 &dev_attr_vrm.attr,
624 &dev_attr_alarms.attr,
625 &dev_attr_pwm1.attr,
626 &dev_attr_pwm1_enable.attr,
628 NULL
631 static const struct attribute_group asb100_group = {
632 .attrs = asb100_attributes,
635 static int asb100_detect_subclients(struct i2c_client *client)
637 int i, id, err;
638 int address = client->addr;
639 unsigned short sc_addr[2];
640 struct asb100_data *data = i2c_get_clientdata(client);
641 struct i2c_adapter *adapter = client->adapter;
643 id = i2c_adapter_id(adapter);
645 if (force_subclients[0] == id && force_subclients[1] == address) {
646 for (i = 2; i <= 3; i++) {
647 if (force_subclients[i] < 0x48 ||
648 force_subclients[i] > 0x4f) {
649 dev_err(&client->dev, "invalid subclient "
650 "address %d; must be 0x48-0x4f\n",
651 force_subclients[i]);
652 err = -ENODEV;
653 goto ERROR_SC_2;
656 asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
657 (force_subclients[2] & 0x07) |
658 ((force_subclients[3] & 0x07) << 4));
659 sc_addr[0] = force_subclients[2];
660 sc_addr[1] = force_subclients[3];
661 } else {
662 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
663 sc_addr[0] = 0x48 + (val & 0x07);
664 sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
667 if (sc_addr[0] == sc_addr[1]) {
668 dev_err(&client->dev, "duplicate addresses 0x%x "
669 "for subclients\n", sc_addr[0]);
670 err = -ENODEV;
671 goto ERROR_SC_2;
674 data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
675 if (!data->lm75[0]) {
676 dev_err(&client->dev, "subclient %d registration "
677 "at address 0x%x failed.\n", 1, sc_addr[0]);
678 err = -ENOMEM;
679 goto ERROR_SC_2;
682 data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
683 if (!data->lm75[1]) {
684 dev_err(&client->dev, "subclient %d registration "
685 "at address 0x%x failed.\n", 2, sc_addr[1]);
686 err = -ENOMEM;
687 goto ERROR_SC_3;
690 return 0;
692 /* Undo inits in case of errors */
693 ERROR_SC_3:
694 i2c_unregister_device(data->lm75[0]);
695 ERROR_SC_2:
696 return err;
699 /* Return 0 if detection is successful, -ENODEV otherwise */
700 static int asb100_detect(struct i2c_client *client, int kind,
701 struct i2c_board_info *info)
703 struct i2c_adapter *adapter = client->adapter;
704 int val1, val2;
706 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
707 pr_debug("asb100.o: detect failed, "
708 "smbus byte data not supported!\n");
709 return -ENODEV;
712 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
713 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
715 /* If we're in bank 0 */
716 if ((!(val1 & 0x07)) &&
717 /* Check for ASB100 ID (low byte) */
718 (((!(val1 & 0x80)) && (val2 != 0x94)) ||
719 /* Check for ASB100 ID (high byte ) */
720 ((val1 & 0x80) && (val2 != 0x06)))) {
721 pr_debug("asb100: detect failed, bad chip id 0x%02x!\n", val2);
722 return -ENODEV;
725 /* Put it now into bank 0 and Vendor ID High Byte */
726 i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
727 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
728 | 0x80);
730 /* Determine the chip type. */
731 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
732 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
734 if (val1 != 0x31 || val2 != 0x06)
735 return -ENODEV;
737 strlcpy(info->type, "asb100", I2C_NAME_SIZE);
739 return 0;
742 static int asb100_probe(struct i2c_client *client,
743 const struct i2c_device_id *id)
745 int err;
746 struct asb100_data *data;
748 data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL);
749 if (!data) {
750 pr_debug("asb100.o: probe failed, kzalloc failed!\n");
751 err = -ENOMEM;
752 goto ERROR0;
755 i2c_set_clientdata(client, data);
756 mutex_init(&data->lock);
757 mutex_init(&data->update_lock);
759 /* Attach secondary lm75 clients */
760 err = asb100_detect_subclients(client);
761 if (err)
762 goto ERROR1;
764 /* Initialize the chip */
765 asb100_init_client(client);
767 /* A few vars need to be filled upon startup */
768 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
769 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
770 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
772 /* Register sysfs hooks */
773 if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
774 goto ERROR3;
776 data->hwmon_dev = hwmon_device_register(&client->dev);
777 if (IS_ERR(data->hwmon_dev)) {
778 err = PTR_ERR(data->hwmon_dev);
779 goto ERROR4;
782 return 0;
784 ERROR4:
785 sysfs_remove_group(&client->dev.kobj, &asb100_group);
786 ERROR3:
787 i2c_unregister_device(data->lm75[1]);
788 i2c_unregister_device(data->lm75[0]);
789 ERROR1:
790 kfree(data);
791 ERROR0:
792 return err;
795 static int asb100_remove(struct i2c_client *client)
797 struct asb100_data *data = i2c_get_clientdata(client);
799 hwmon_device_unregister(data->hwmon_dev);
800 sysfs_remove_group(&client->dev.kobj, &asb100_group);
802 i2c_unregister_device(data->lm75[1]);
803 i2c_unregister_device(data->lm75[0]);
805 kfree(data);
807 return 0;
810 /* The SMBus locks itself, usually, but nothing may access the chip between
811 bank switches. */
812 static int asb100_read_value(struct i2c_client *client, u16 reg)
814 struct asb100_data *data = i2c_get_clientdata(client);
815 struct i2c_client *cl;
816 int res, bank;
818 mutex_lock(&data->lock);
820 bank = (reg >> 8) & 0x0f;
821 if (bank > 2)
822 /* switch banks */
823 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
825 if (bank == 0 || bank > 2) {
826 res = i2c_smbus_read_byte_data(client, reg & 0xff);
827 } else {
828 /* switch to subclient */
829 cl = data->lm75[bank - 1];
831 /* convert from ISA to LM75 I2C addresses */
832 switch (reg & 0xff) {
833 case 0x50: /* TEMP */
834 res = swab16(i2c_smbus_read_word_data(cl, 0));
835 break;
836 case 0x52: /* CONFIG */
837 res = i2c_smbus_read_byte_data(cl, 1);
838 break;
839 case 0x53: /* HYST */
840 res = swab16(i2c_smbus_read_word_data(cl, 2));
841 break;
842 case 0x55: /* MAX */
843 default:
844 res = swab16(i2c_smbus_read_word_data(cl, 3));
845 break;
849 if (bank > 2)
850 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
852 mutex_unlock(&data->lock);
854 return res;
857 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
859 struct asb100_data *data = i2c_get_clientdata(client);
860 struct i2c_client *cl;
861 int bank;
863 mutex_lock(&data->lock);
865 bank = (reg >> 8) & 0x0f;
866 if (bank > 2)
867 /* switch banks */
868 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
870 if (bank == 0 || bank > 2) {
871 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
872 } else {
873 /* switch to subclient */
874 cl = data->lm75[bank - 1];
876 /* convert from ISA to LM75 I2C addresses */
877 switch (reg & 0xff) {
878 case 0x52: /* CONFIG */
879 i2c_smbus_write_byte_data(cl, 1, value & 0xff);
880 break;
881 case 0x53: /* HYST */
882 i2c_smbus_write_word_data(cl, 2, swab16(value));
883 break;
884 case 0x55: /* MAX */
885 i2c_smbus_write_word_data(cl, 3, swab16(value));
886 break;
890 if (bank > 2)
891 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
893 mutex_unlock(&data->lock);
896 static void asb100_init_client(struct i2c_client *client)
898 struct asb100_data *data = i2c_get_clientdata(client);
900 data->vrm = vid_which_vrm();
902 /* Start monitoring */
903 asb100_write_value(client, ASB100_REG_CONFIG,
904 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
907 static struct asb100_data *asb100_update_device(struct device *dev)
909 struct i2c_client *client = to_i2c_client(dev);
910 struct asb100_data *data = i2c_get_clientdata(client);
911 int i;
913 mutex_lock(&data->update_lock);
915 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
916 || !data->valid) {
918 dev_dbg(&client->dev, "starting device update...\n");
920 /* 7 voltage inputs */
921 for (i = 0; i < 7; i++) {
922 data->in[i] = asb100_read_value(client,
923 ASB100_REG_IN(i));
924 data->in_min[i] = asb100_read_value(client,
925 ASB100_REG_IN_MIN(i));
926 data->in_max[i] = asb100_read_value(client,
927 ASB100_REG_IN_MAX(i));
930 /* 3 fan inputs */
931 for (i = 0; i < 3; i++) {
932 data->fan[i] = asb100_read_value(client,
933 ASB100_REG_FAN(i));
934 data->fan_min[i] = asb100_read_value(client,
935 ASB100_REG_FAN_MIN(i));
938 /* 4 temperature inputs */
939 for (i = 1; i <= 4; i++) {
940 data->temp[i-1] = asb100_read_value(client,
941 ASB100_REG_TEMP(i));
942 data->temp_max[i-1] = asb100_read_value(client,
943 ASB100_REG_TEMP_MAX(i));
944 data->temp_hyst[i-1] = asb100_read_value(client,
945 ASB100_REG_TEMP_HYST(i));
948 /* VID and fan divisors */
949 i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
950 data->vid = i & 0x0f;
951 data->vid |= (asb100_read_value(client,
952 ASB100_REG_CHIPID) & 0x01) << 4;
953 data->fan_div[0] = (i >> 4) & 0x03;
954 data->fan_div[1] = (i >> 6) & 0x03;
955 data->fan_div[2] = (asb100_read_value(client,
956 ASB100_REG_PIN) >> 6) & 0x03;
958 /* PWM */
959 data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
961 /* alarms */
962 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
963 (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
965 data->last_updated = jiffies;
966 data->valid = 1;
968 dev_dbg(&client->dev, "... device update complete\n");
971 mutex_unlock(&data->update_lock);
973 return data;
976 static int __init asb100_init(void)
978 return i2c_add_driver(&asb100_driver);
981 static void __exit asb100_exit(void)
983 i2c_del_driver(&asb100_driver);
986 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
987 MODULE_DESCRIPTION("ASB100 Bach driver");
988 MODULE_LICENSE("GPL");
990 module_init(asb100_init);
991 module_exit(asb100_exit);