fed up with those stupid warnings
[mmotm.git] / drivers / pci / pci.c
blob92888038a5aacbece0b4e06c77bd766a19ec6bc3
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 EXPORT_SYMBOL_GPL(pci_power_names);
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
38 #define DEFAULT_CARDBUS_IO_SIZE (256)
39 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
44 #define DEFAULT_HOTPLUG_IO_SIZE (256)
45 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
46 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
47 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
48 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
51 * The default CLS is used if arch didn't set CLS explicitly and not
52 * all pci devices agree on the same value. Arch can override either
53 * the dfl or actual value as it sees fit. Don't forget this is
54 * measured in 32-bit words, not bytes.
56 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
57 u8 pci_cache_line_size;
59 /**
60 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
61 * @bus: pointer to PCI bus structure to search
63 * Given a PCI bus, returns the highest PCI bus number present in the set
64 * including the given PCI bus and its list of child PCI buses.
66 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
68 struct list_head *tmp;
69 unsigned char max, n;
71 max = bus->subordinate;
72 list_for_each(tmp, &bus->children) {
73 n = pci_bus_max_busnr(pci_bus_b(tmp));
74 if(n > max)
75 max = n;
77 return max;
79 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
81 #ifdef CONFIG_HAS_IOMEM
82 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
85 * Make sure the BAR is actually a memory resource, not an IO resource
87 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
88 WARN_ON(1);
89 return NULL;
91 return ioremap_nocache(pci_resource_start(pdev, bar),
92 pci_resource_len(pdev, bar));
94 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
95 #endif
97 #if 0
98 /**
99 * pci_max_busnr - returns maximum PCI bus number
101 * Returns the highest PCI bus number present in the system global list of
102 * PCI buses.
104 unsigned char __devinit
105 pci_max_busnr(void)
107 struct pci_bus *bus = NULL;
108 unsigned char max, n;
110 max = 0;
111 while ((bus = pci_find_next_bus(bus)) != NULL) {
112 n = pci_bus_max_busnr(bus);
113 if(n > max)
114 max = n;
116 return max;
119 #endif /* 0 */
121 #define PCI_FIND_CAP_TTL 48
123 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
124 u8 pos, int cap, int *ttl)
126 u8 id;
128 while ((*ttl)--) {
129 pci_bus_read_config_byte(bus, devfn, pos, &pos);
130 if (pos < 0x40)
131 break;
132 pos &= ~3;
133 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
134 &id);
135 if (id == 0xff)
136 break;
137 if (id == cap)
138 return pos;
139 pos += PCI_CAP_LIST_NEXT;
141 return 0;
144 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
145 u8 pos, int cap)
147 int ttl = PCI_FIND_CAP_TTL;
149 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
152 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
154 return __pci_find_next_cap(dev->bus, dev->devfn,
155 pos + PCI_CAP_LIST_NEXT, cap);
157 EXPORT_SYMBOL_GPL(pci_find_next_capability);
159 static int __pci_bus_find_cap_start(struct pci_bus *bus,
160 unsigned int devfn, u8 hdr_type)
162 u16 status;
164 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
165 if (!(status & PCI_STATUS_CAP_LIST))
166 return 0;
168 switch (hdr_type) {
169 case PCI_HEADER_TYPE_NORMAL:
170 case PCI_HEADER_TYPE_BRIDGE:
171 return PCI_CAPABILITY_LIST;
172 case PCI_HEADER_TYPE_CARDBUS:
173 return PCI_CB_CAPABILITY_LIST;
174 default:
175 return 0;
178 return 0;
182 * pci_find_capability - query for devices' capabilities
183 * @dev: PCI device to query
184 * @cap: capability code
186 * Tell if a device supports a given PCI capability.
187 * Returns the address of the requested capability structure within the
188 * device's PCI configuration space or 0 in case the device does not
189 * support it. Possible values for @cap:
191 * %PCI_CAP_ID_PM Power Management
192 * %PCI_CAP_ID_AGP Accelerated Graphics Port
193 * %PCI_CAP_ID_VPD Vital Product Data
194 * %PCI_CAP_ID_SLOTID Slot Identification
195 * %PCI_CAP_ID_MSI Message Signalled Interrupts
196 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
197 * %PCI_CAP_ID_PCIX PCI-X
198 * %PCI_CAP_ID_EXP PCI Express
200 int pci_find_capability(struct pci_dev *dev, int cap)
202 int pos;
204 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
205 if (pos)
206 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
208 return pos;
212 * pci_bus_find_capability - query for devices' capabilities
213 * @bus: the PCI bus to query
214 * @devfn: PCI device to query
215 * @cap: capability code
217 * Like pci_find_capability() but works for pci devices that do not have a
218 * pci_dev structure set up yet.
220 * Returns the address of the requested capability structure within the
221 * device's PCI configuration space or 0 in case the device does not
222 * support it.
224 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
226 int pos;
227 u8 hdr_type;
229 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
231 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
232 if (pos)
233 pos = __pci_find_next_cap(bus, devfn, pos, cap);
235 return pos;
239 * pci_find_ext_capability - Find an extended capability
240 * @dev: PCI device to query
241 * @cap: capability code
243 * Returns the address of the requested extended capability structure
244 * within the device's PCI configuration space or 0 if the device does
245 * not support it. Possible values for @cap:
247 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
248 * %PCI_EXT_CAP_ID_VC Virtual Channel
249 * %PCI_EXT_CAP_ID_DSN Device Serial Number
250 * %PCI_EXT_CAP_ID_PWR Power Budgeting
252 int pci_find_ext_capability(struct pci_dev *dev, int cap)
254 u32 header;
255 int ttl;
256 int pos = PCI_CFG_SPACE_SIZE;
258 /* minimum 8 bytes per capability */
259 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
261 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
262 return 0;
264 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
265 return 0;
268 * If we have no capabilities, this is indicated by cap ID,
269 * cap version and next pointer all being 0.
271 if (header == 0)
272 return 0;
274 while (ttl-- > 0) {
275 if (PCI_EXT_CAP_ID(header) == cap)
276 return pos;
278 pos = PCI_EXT_CAP_NEXT(header);
279 if (pos < PCI_CFG_SPACE_SIZE)
280 break;
282 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 break;
286 return 0;
288 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
290 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
292 int rc, ttl = PCI_FIND_CAP_TTL;
293 u8 cap, mask;
295 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
296 mask = HT_3BIT_CAP_MASK;
297 else
298 mask = HT_5BIT_CAP_MASK;
300 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
301 PCI_CAP_ID_HT, &ttl);
302 while (pos) {
303 rc = pci_read_config_byte(dev, pos + 3, &cap);
304 if (rc != PCIBIOS_SUCCESSFUL)
305 return 0;
307 if ((cap & mask) == ht_cap)
308 return pos;
310 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
311 pos + PCI_CAP_LIST_NEXT,
312 PCI_CAP_ID_HT, &ttl);
315 return 0;
318 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
319 * @dev: PCI device to query
320 * @pos: Position from which to continue searching
321 * @ht_cap: Hypertransport capability code
323 * To be used in conjunction with pci_find_ht_capability() to search for
324 * all capabilities matching @ht_cap. @pos should always be a value returned
325 * from pci_find_ht_capability().
327 * NB. To be 100% safe against broken PCI devices, the caller should take
328 * steps to avoid an infinite loop.
330 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
332 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
334 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
337 * pci_find_ht_capability - query a device's Hypertransport capabilities
338 * @dev: PCI device to query
339 * @ht_cap: Hypertransport capability code
341 * Tell if a device supports a given Hypertransport capability.
342 * Returns an address within the device's PCI configuration space
343 * or 0 in case the device does not support the request capability.
344 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
345 * which has a Hypertransport capability matching @ht_cap.
347 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
349 int pos;
351 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
352 if (pos)
353 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
355 return pos;
357 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
360 * pci_find_parent_resource - return resource region of parent bus of given region
361 * @dev: PCI device structure contains resources to be searched
362 * @res: child resource record for which parent is sought
364 * For given resource region of given device, return the resource
365 * region of parent bus the given region is contained in or where
366 * it should be allocated from.
368 struct resource *
369 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
371 const struct pci_bus *bus = dev->bus;
372 int i;
373 struct resource *best = NULL;
375 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
376 struct resource *r = bus->resource[i];
377 if (!r)
378 continue;
379 if (res->start && !(res->start >= r->start && res->end <= r->end))
380 continue; /* Not contained */
381 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
382 continue; /* Wrong type */
383 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
384 return r; /* Exact match */
385 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
386 best = r; /* Approximating prefetchable by non-prefetchable */
388 return best;
392 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
393 * @dev: PCI device to have its BARs restored
395 * Restore the BAR values for a given device, so as to make it
396 * accessible by its driver.
398 static void
399 pci_restore_bars(struct pci_dev *dev)
401 int i;
403 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
404 pci_update_resource(dev, i);
407 static struct pci_platform_pm_ops *pci_platform_pm;
409 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
411 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
412 || !ops->sleep_wake || !ops->can_wakeup)
413 return -EINVAL;
414 pci_platform_pm = ops;
415 return 0;
418 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
420 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
423 static inline int platform_pci_set_power_state(struct pci_dev *dev,
424 pci_power_t t)
426 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
429 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
431 return pci_platform_pm ?
432 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
435 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
437 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
440 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
442 return pci_platform_pm ?
443 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
447 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
448 * given PCI device
449 * @dev: PCI device to handle.
450 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
452 * RETURN VALUE:
453 * -EINVAL if the requested state is invalid.
454 * -EIO if device does not support PCI PM or its PM capabilities register has a
455 * wrong version, or device doesn't support the requested state.
456 * 0 if device already is in the requested state.
457 * 0 if device's power state has been successfully changed.
459 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
461 u16 pmcsr;
462 bool need_restore = false;
464 /* Check if we're already there */
465 if (dev->current_state == state)
466 return 0;
468 if (!dev->pm_cap)
469 return -EIO;
471 if (state < PCI_D0 || state > PCI_D3hot)
472 return -EINVAL;
474 /* Validate current state:
475 * Can enter D0 from any state, but if we can only go deeper
476 * to sleep if we're already in a low power state
478 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
479 && dev->current_state > state) {
480 dev_err(&dev->dev, "invalid power transition "
481 "(from state %d to %d)\n", dev->current_state, state);
482 return -EINVAL;
485 /* check if this device supports the desired state */
486 if ((state == PCI_D1 && !dev->d1_support)
487 || (state == PCI_D2 && !dev->d2_support))
488 return -EIO;
490 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
492 /* If we're (effectively) in D3, force entire word to 0.
493 * This doesn't affect PME_Status, disables PME_En, and
494 * sets PowerState to 0.
496 switch (dev->current_state) {
497 case PCI_D0:
498 case PCI_D1:
499 case PCI_D2:
500 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
501 pmcsr |= state;
502 break;
503 case PCI_D3hot:
504 case PCI_D3cold:
505 case PCI_UNKNOWN: /* Boot-up */
506 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
507 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
508 need_restore = true;
509 /* Fall-through: force to D0 */
510 default:
511 pmcsr = 0;
512 break;
515 /* enter specified state */
516 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
518 /* Mandatory power management transition delays */
519 /* see PCI PM 1.1 5.6.1 table 18 */
520 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
521 msleep(pci_pm_d3_delay);
522 else if (state == PCI_D2 || dev->current_state == PCI_D2)
523 udelay(PCI_PM_D2_DELAY);
525 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
526 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
527 if (dev->current_state != state && printk_ratelimit())
528 dev_info(&dev->dev, "Refused to change power state, "
529 "currently in D%d\n", dev->current_state);
531 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
532 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
533 * from D3hot to D0 _may_ perform an internal reset, thereby
534 * going to "D0 Uninitialized" rather than "D0 Initialized".
535 * For example, at least some versions of the 3c905B and the
536 * 3c556B exhibit this behaviour.
538 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
539 * devices in a D3hot state at boot. Consequently, we need to
540 * restore at least the BARs so that the device will be
541 * accessible to its driver.
543 if (need_restore)
544 pci_restore_bars(dev);
546 if (dev->bus->self)
547 pcie_aspm_pm_state_change(dev->bus->self);
549 return 0;
553 * pci_update_current_state - Read PCI power state of given device from its
554 * PCI PM registers and cache it
555 * @dev: PCI device to handle.
556 * @state: State to cache in case the device doesn't have the PM capability
558 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
560 if (dev->pm_cap) {
561 u16 pmcsr;
563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
564 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
565 } else {
566 dev->current_state = state;
571 * pci_platform_power_transition - Use platform to change device power state
572 * @dev: PCI device to handle.
573 * @state: State to put the device into.
575 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
577 int error;
579 if (platform_pci_power_manageable(dev)) {
580 error = platform_pci_set_power_state(dev, state);
581 if (!error)
582 pci_update_current_state(dev, state);
583 } else {
584 error = -ENODEV;
585 /* Fall back to PCI_D0 if native PM is not supported */
586 if (!dev->pm_cap)
587 dev->current_state = PCI_D0;
590 return error;
594 * __pci_start_power_transition - Start power transition of a PCI device
595 * @dev: PCI device to handle.
596 * @state: State to put the device into.
598 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
600 if (state == PCI_D0)
601 pci_platform_power_transition(dev, PCI_D0);
605 * __pci_complete_power_transition - Complete power transition of a PCI device
606 * @dev: PCI device to handle.
607 * @state: State to put the device into.
609 * This function should not be called directly by device drivers.
611 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
613 return state > PCI_D0 ?
614 pci_platform_power_transition(dev, state) : -EINVAL;
616 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
619 * pci_set_power_state - Set the power state of a PCI device
620 * @dev: PCI device to handle.
621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
623 * Transition a device to a new power state, using the platform firmware and/or
624 * the device's PCI PM registers.
626 * RETURN VALUE:
627 * -EINVAL if the requested state is invalid.
628 * -EIO if device does not support PCI PM or its PM capabilities register has a
629 * wrong version, or device doesn't support the requested state.
630 * 0 if device already is in the requested state.
631 * 0 if device's power state has been successfully changed.
633 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
635 int error;
637 /* bound the state we're entering */
638 if (state > PCI_D3hot)
639 state = PCI_D3hot;
640 else if (state < PCI_D0)
641 state = PCI_D0;
642 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
644 * If the device or the parent bridge do not support PCI PM,
645 * ignore the request if we're doing anything other than putting
646 * it into D0 (which would only happen on boot).
648 return 0;
650 /* Check if we're already there */
651 if (dev->current_state == state)
652 return 0;
654 __pci_start_power_transition(dev, state);
656 /* This device is quirked not to be put into D3, so
657 don't put it in D3 */
658 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
659 return 0;
661 error = pci_raw_set_power_state(dev, state);
663 if (!__pci_complete_power_transition(dev, state))
664 error = 0;
666 return error;
670 * pci_choose_state - Choose the power state of a PCI device
671 * @dev: PCI device to be suspended
672 * @state: target sleep state for the whole system. This is the value
673 * that is passed to suspend() function.
675 * Returns PCI power state suitable for given device and given system
676 * message.
679 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
681 pci_power_t ret;
683 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
684 return PCI_D0;
686 ret = platform_pci_choose_state(dev);
687 if (ret != PCI_POWER_ERROR)
688 return ret;
690 switch (state.event) {
691 case PM_EVENT_ON:
692 return PCI_D0;
693 case PM_EVENT_FREEZE:
694 case PM_EVENT_PRETHAW:
695 /* REVISIT both freeze and pre-thaw "should" use D0 */
696 case PM_EVENT_SUSPEND:
697 case PM_EVENT_HIBERNATE:
698 return PCI_D3hot;
699 default:
700 dev_info(&dev->dev, "unrecognized suspend event %d\n",
701 state.event);
702 BUG();
704 return PCI_D0;
707 EXPORT_SYMBOL(pci_choose_state);
709 #define PCI_EXP_SAVE_REGS 7
711 #define pcie_cap_has_devctl(type, flags) 1
712 #define pcie_cap_has_lnkctl(type, flags) \
713 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
714 (type == PCI_EXP_TYPE_ROOT_PORT || \
715 type == PCI_EXP_TYPE_ENDPOINT || \
716 type == PCI_EXP_TYPE_LEG_END))
717 #define pcie_cap_has_sltctl(type, flags) \
718 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
719 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
720 (type == PCI_EXP_TYPE_DOWNSTREAM && \
721 (flags & PCI_EXP_FLAGS_SLOT))))
722 #define pcie_cap_has_rtctl(type, flags) \
723 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
724 (type == PCI_EXP_TYPE_ROOT_PORT || \
725 type == PCI_EXP_TYPE_RC_EC))
726 #define pcie_cap_has_devctl2(type, flags) \
727 ((flags & PCI_EXP_FLAGS_VERS) > 1)
728 #define pcie_cap_has_lnkctl2(type, flags) \
729 ((flags & PCI_EXP_FLAGS_VERS) > 1)
730 #define pcie_cap_has_sltctl2(type, flags) \
731 ((flags & PCI_EXP_FLAGS_VERS) > 1)
733 static int pci_save_pcie_state(struct pci_dev *dev)
735 int pos, i = 0;
736 struct pci_cap_saved_state *save_state;
737 u16 *cap;
738 u16 flags;
740 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
741 if (pos <= 0)
742 return 0;
744 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
745 if (!save_state) {
746 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
747 return -ENOMEM;
749 cap = (u16 *)&save_state->data[0];
751 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
753 if (pcie_cap_has_devctl(dev->pcie_type, flags))
754 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
755 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
756 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
757 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
758 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
759 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
760 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
761 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
762 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
763 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
764 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
765 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
766 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
768 return 0;
771 static void pci_restore_pcie_state(struct pci_dev *dev)
773 int i = 0, pos;
774 struct pci_cap_saved_state *save_state;
775 u16 *cap;
776 u16 flags;
778 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
779 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
780 if (!save_state || pos <= 0)
781 return;
782 cap = (u16 *)&save_state->data[0];
784 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
786 if (pcie_cap_has_devctl(dev->pcie_type, flags))
787 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
788 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
789 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
790 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
791 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
792 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
793 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
794 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
795 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
796 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
797 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
798 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
799 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
803 static int pci_save_pcix_state(struct pci_dev *dev)
805 int pos;
806 struct pci_cap_saved_state *save_state;
808 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
809 if (pos <= 0)
810 return 0;
812 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
813 if (!save_state) {
814 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
815 return -ENOMEM;
818 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
820 return 0;
823 static void pci_restore_pcix_state(struct pci_dev *dev)
825 int i = 0, pos;
826 struct pci_cap_saved_state *save_state;
827 u16 *cap;
829 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
830 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
831 if (!save_state || pos <= 0)
832 return;
833 cap = (u16 *)&save_state->data[0];
835 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
840 * pci_save_state - save the PCI configuration space of a device before suspending
841 * @dev: - PCI device that we're dealing with
844 pci_save_state(struct pci_dev *dev)
846 int i;
847 u32 val;
849 /* Unable to read PCI device/manufacturer state? Something is seriously wrong! */
850 if (pci_read_config_dword(dev, 0, &val) || val == 0xffffffff) {
851 printk("Broken read from PCI device %s\n", pci_name(dev));
852 WARN_ON(1);
853 return -1;
856 /* XXX: 100% dword access ok here? */
857 for (i = 0; i < 16; i++)
858 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
859 dev->state_saved = true;
860 if ((i = pci_save_pcie_state(dev)) != 0)
861 return i;
862 if ((i = pci_save_pcix_state(dev)) != 0)
863 return i;
864 return 0;
867 /**
868 * pci_restore_state - Restore the saved state of a PCI device
869 * @dev: - PCI device that we're dealing with
871 int
872 pci_restore_state(struct pci_dev *dev)
874 int i;
875 u32 val;
877 if (!dev->state_saved)
878 return 0;
880 /* PCI Express register must be restored first */
881 pci_restore_pcie_state(dev);
884 * The Base Address register should be programmed before the command
885 * register(s)
887 for (i = 15; i >= 0; i--) {
888 pci_read_config_dword(dev, i * 4, &val);
889 if (val != dev->saved_config_space[i]) {
890 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
891 "space at offset %#x (was %#x, writing %#x)\n",
892 i, val, (int)dev->saved_config_space[i]);
893 pci_write_config_dword(dev,i * 4,
894 dev->saved_config_space[i]);
897 pci_restore_pcix_state(dev);
898 pci_restore_msi_state(dev);
899 pci_restore_iov_state(dev);
901 dev->state_saved = false;
903 return 0;
906 static int do_pci_enable_device(struct pci_dev *dev, int bars)
908 int err;
910 err = pci_set_power_state(dev, PCI_D0);
911 if (err < 0 && err != -EIO)
912 return err;
913 err = pcibios_enable_device(dev, bars);
914 if (err < 0)
915 return err;
916 pci_fixup_device(pci_fixup_enable, dev);
918 return 0;
922 * pci_reenable_device - Resume abandoned device
923 * @dev: PCI device to be resumed
925 * Note this function is a backend of pci_default_resume and is not supposed
926 * to be called by normal code, write proper resume handler and use it instead.
928 int pci_reenable_device(struct pci_dev *dev)
930 if (pci_is_enabled(dev))
931 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
932 return 0;
935 static int __pci_enable_device_flags(struct pci_dev *dev,
936 resource_size_t flags)
938 int err;
939 int i, bars = 0;
941 if (atomic_add_return(1, &dev->enable_cnt) > 1)
942 return 0; /* already enabled */
944 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
945 if (dev->resource[i].flags & flags)
946 bars |= (1 << i);
948 err = do_pci_enable_device(dev, bars);
949 if (err < 0)
950 atomic_dec(&dev->enable_cnt);
951 return err;
955 * pci_enable_device_io - Initialize a device for use with IO space
956 * @dev: PCI device to be initialized
958 * Initialize device before it's used by a driver. Ask low-level code
959 * to enable I/O resources. Wake up the device if it was suspended.
960 * Beware, this function can fail.
962 int pci_enable_device_io(struct pci_dev *dev)
964 return __pci_enable_device_flags(dev, IORESOURCE_IO);
968 * pci_enable_device_mem - Initialize a device for use with Memory space
969 * @dev: PCI device to be initialized
971 * Initialize device before it's used by a driver. Ask low-level code
972 * to enable Memory resources. Wake up the device if it was suspended.
973 * Beware, this function can fail.
975 int pci_enable_device_mem(struct pci_dev *dev)
977 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
981 * pci_enable_device - Initialize device before it's used by a driver.
982 * @dev: PCI device to be initialized
984 * Initialize device before it's used by a driver. Ask low-level code
985 * to enable I/O and memory. Wake up the device if it was suspended.
986 * Beware, this function can fail.
988 * Note we don't actually enable the device many times if we call
989 * this function repeatedly (we just increment the count).
991 int pci_enable_device(struct pci_dev *dev)
993 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
997 * Managed PCI resources. This manages device on/off, intx/msi/msix
998 * on/off and BAR regions. pci_dev itself records msi/msix status, so
999 * there's no need to track it separately. pci_devres is initialized
1000 * when a device is enabled using managed PCI device enable interface.
1002 struct pci_devres {
1003 unsigned int enabled:1;
1004 unsigned int pinned:1;
1005 unsigned int orig_intx:1;
1006 unsigned int restore_intx:1;
1007 u32 region_mask;
1010 static void pcim_release(struct device *gendev, void *res)
1012 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1013 struct pci_devres *this = res;
1014 int i;
1016 if (dev->msi_enabled)
1017 pci_disable_msi(dev);
1018 if (dev->msix_enabled)
1019 pci_disable_msix(dev);
1021 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1022 if (this->region_mask & (1 << i))
1023 pci_release_region(dev, i);
1025 if (this->restore_intx)
1026 pci_intx(dev, this->orig_intx);
1028 if (this->enabled && !this->pinned)
1029 pci_disable_device(dev);
1032 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1034 struct pci_devres *dr, *new_dr;
1036 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1037 if (dr)
1038 return dr;
1040 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1041 if (!new_dr)
1042 return NULL;
1043 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1046 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1048 if (pci_is_managed(pdev))
1049 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1050 return NULL;
1054 * pcim_enable_device - Managed pci_enable_device()
1055 * @pdev: PCI device to be initialized
1057 * Managed pci_enable_device().
1059 int pcim_enable_device(struct pci_dev *pdev)
1061 struct pci_devres *dr;
1062 int rc;
1064 dr = get_pci_dr(pdev);
1065 if (unlikely(!dr))
1066 return -ENOMEM;
1067 if (dr->enabled)
1068 return 0;
1070 rc = pci_enable_device(pdev);
1071 if (!rc) {
1072 pdev->is_managed = 1;
1073 dr->enabled = 1;
1075 return rc;
1079 * pcim_pin_device - Pin managed PCI device
1080 * @pdev: PCI device to pin
1082 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1083 * driver detach. @pdev must have been enabled with
1084 * pcim_enable_device().
1086 void pcim_pin_device(struct pci_dev *pdev)
1088 struct pci_devres *dr;
1090 dr = find_pci_dr(pdev);
1091 WARN_ON(!dr || !dr->enabled);
1092 if (dr)
1093 dr->pinned = 1;
1097 * pcibios_disable_device - disable arch specific PCI resources for device dev
1098 * @dev: the PCI device to disable
1100 * Disables architecture specific PCI resources for the device. This
1101 * is the default implementation. Architecture implementations can
1102 * override this.
1104 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1106 static void do_pci_disable_device(struct pci_dev *dev)
1108 u16 pci_command;
1110 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1111 if (pci_command & PCI_COMMAND_MASTER) {
1112 pci_command &= ~PCI_COMMAND_MASTER;
1113 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1116 pcibios_disable_device(dev);
1120 * pci_disable_enabled_device - Disable device without updating enable_cnt
1121 * @dev: PCI device to disable
1123 * NOTE: This function is a backend of PCI power management routines and is
1124 * not supposed to be called drivers.
1126 void pci_disable_enabled_device(struct pci_dev *dev)
1128 if (pci_is_enabled(dev))
1129 do_pci_disable_device(dev);
1133 * pci_disable_device - Disable PCI device after use
1134 * @dev: PCI device to be disabled
1136 * Signal to the system that the PCI device is not in use by the system
1137 * anymore. This only involves disabling PCI bus-mastering, if active.
1139 * Note we don't actually disable the device until all callers of
1140 * pci_device_enable() have called pci_device_disable().
1142 void
1143 pci_disable_device(struct pci_dev *dev)
1145 struct pci_devres *dr;
1147 dr = find_pci_dr(dev);
1148 if (dr)
1149 dr->enabled = 0;
1151 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1152 return;
1154 do_pci_disable_device(dev);
1156 dev->is_busmaster = 0;
1160 * pcibios_set_pcie_reset_state - set reset state for device dev
1161 * @dev: the PCI-E device reset
1162 * @state: Reset state to enter into
1165 * Sets the PCI-E reset state for the device. This is the default
1166 * implementation. Architecture implementations can override this.
1168 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1169 enum pcie_reset_state state)
1171 return -EINVAL;
1175 * pci_set_pcie_reset_state - set reset state for device dev
1176 * @dev: the PCI-E device reset
1177 * @state: Reset state to enter into
1180 * Sets the PCI reset state for the device.
1182 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1184 return pcibios_set_pcie_reset_state(dev, state);
1188 * pci_pme_capable - check the capability of PCI device to generate PME#
1189 * @dev: PCI device to handle.
1190 * @state: PCI state from which device will issue PME#.
1192 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1194 if (!dev->pm_cap)
1195 return false;
1197 return !!(dev->pme_support & (1 << state));
1201 * pci_pme_active - enable or disable PCI device's PME# function
1202 * @dev: PCI device to handle.
1203 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1205 * The caller must verify that the device is capable of generating PME# before
1206 * calling this function with @enable equal to 'true'.
1208 void pci_pme_active(struct pci_dev *dev, bool enable)
1210 u16 pmcsr;
1212 if (!dev->pm_cap)
1213 return;
1215 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1216 /* Clear PME_Status by writing 1 to it and enable PME# */
1217 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1218 if (!enable)
1219 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1221 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1223 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1224 enable ? "enabled" : "disabled");
1228 * pci_enable_wake - enable PCI device as wakeup event source
1229 * @dev: PCI device affected
1230 * @state: PCI state from which device will issue wakeup events
1231 * @enable: True to enable event generation; false to disable
1233 * This enables the device as a wakeup event source, or disables it.
1234 * When such events involves platform-specific hooks, those hooks are
1235 * called automatically by this routine.
1237 * Devices with legacy power management (no standard PCI PM capabilities)
1238 * always require such platform hooks.
1240 * RETURN VALUE:
1241 * 0 is returned on success
1242 * -EINVAL is returned if device is not supposed to wake up the system
1243 * Error code depending on the platform is returned if both the platform and
1244 * the native mechanism fail to enable the generation of wake-up events
1246 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1248 int ret = 0;
1250 if (enable && !device_may_wakeup(&dev->dev))
1251 return -EINVAL;
1253 /* Don't do the same thing twice in a row for one device. */
1254 if (!!enable == !!dev->wakeup_prepared)
1255 return 0;
1258 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1259 * Anderson we should be doing PME# wake enable followed by ACPI wake
1260 * enable. To disable wake-up we call the platform first, for symmetry.
1263 if (enable) {
1264 int error;
1266 if (pci_pme_capable(dev, state))
1267 pci_pme_active(dev, true);
1268 else
1269 ret = 1;
1270 error = platform_pci_sleep_wake(dev, true);
1271 if (ret)
1272 ret = error;
1273 if (!ret)
1274 dev->wakeup_prepared = true;
1275 } else {
1276 platform_pci_sleep_wake(dev, false);
1277 pci_pme_active(dev, false);
1278 dev->wakeup_prepared = false;
1281 return ret;
1285 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1286 * @dev: PCI device to prepare
1287 * @enable: True to enable wake-up event generation; false to disable
1289 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1290 * and this function allows them to set that up cleanly - pci_enable_wake()
1291 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1292 * ordering constraints.
1294 * This function only returns error code if the device is not capable of
1295 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1296 * enable wake-up power for it.
1298 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1300 return pci_pme_capable(dev, PCI_D3cold) ?
1301 pci_enable_wake(dev, PCI_D3cold, enable) :
1302 pci_enable_wake(dev, PCI_D3hot, enable);
1306 * pci_target_state - find an appropriate low power state for a given PCI dev
1307 * @dev: PCI device
1309 * Use underlying platform code to find a supported low power state for @dev.
1310 * If the platform can't manage @dev, return the deepest state from which it
1311 * can generate wake events, based on any available PME info.
1313 pci_power_t pci_target_state(struct pci_dev *dev)
1315 pci_power_t target_state = PCI_D3hot;
1317 if (platform_pci_power_manageable(dev)) {
1319 * Call the platform to choose the target state of the device
1320 * and enable wake-up from this state if supported.
1322 pci_power_t state = platform_pci_choose_state(dev);
1324 switch (state) {
1325 case PCI_POWER_ERROR:
1326 case PCI_UNKNOWN:
1327 break;
1328 case PCI_D1:
1329 case PCI_D2:
1330 if (pci_no_d1d2(dev))
1331 break;
1332 default:
1333 target_state = state;
1335 } else if (!dev->pm_cap) {
1336 target_state = PCI_D0;
1337 } else if (device_may_wakeup(&dev->dev)) {
1339 * Find the deepest state from which the device can generate
1340 * wake-up events, make it the target state and enable device
1341 * to generate PME#.
1343 if (dev->pme_support) {
1344 while (target_state
1345 && !(dev->pme_support & (1 << target_state)))
1346 target_state--;
1350 return target_state;
1354 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1355 * @dev: Device to handle.
1357 * Choose the power state appropriate for the device depending on whether
1358 * it can wake up the system and/or is power manageable by the platform
1359 * (PCI_D3hot is the default) and put the device into that state.
1361 int pci_prepare_to_sleep(struct pci_dev *dev)
1363 pci_power_t target_state = pci_target_state(dev);
1364 int error;
1366 if (target_state == PCI_POWER_ERROR)
1367 return -EIO;
1369 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1371 error = pci_set_power_state(dev, target_state);
1373 if (error)
1374 pci_enable_wake(dev, target_state, false);
1376 return error;
1380 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1381 * @dev: Device to handle.
1383 * Disable device's sytem wake-up capability and put it into D0.
1385 int pci_back_from_sleep(struct pci_dev *dev)
1387 pci_enable_wake(dev, PCI_D0, false);
1388 return pci_set_power_state(dev, PCI_D0);
1392 * pci_pm_init - Initialize PM functions of given PCI device
1393 * @dev: PCI device to handle.
1395 void pci_pm_init(struct pci_dev *dev)
1397 int pm;
1398 u16 pmc;
1400 device_enable_async_suspend(&dev->dev, true);
1401 dev->wakeup_prepared = false;
1402 dev->pm_cap = 0;
1404 /* find PCI PM capability in list */
1405 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1406 if (!pm)
1407 return;
1408 /* Check device's ability to generate PME# */
1409 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1411 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1412 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1413 pmc & PCI_PM_CAP_VER_MASK);
1414 return;
1417 dev->pm_cap = pm;
1419 dev->d1_support = false;
1420 dev->d2_support = false;
1421 if (!pci_no_d1d2(dev)) {
1422 if (pmc & PCI_PM_CAP_D1)
1423 dev->d1_support = true;
1424 if (pmc & PCI_PM_CAP_D2)
1425 dev->d2_support = true;
1427 if (dev->d1_support || dev->d2_support)
1428 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1429 dev->d1_support ? " D1" : "",
1430 dev->d2_support ? " D2" : "");
1433 pmc &= PCI_PM_CAP_PME_MASK;
1434 if (pmc) {
1435 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1436 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1437 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1438 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1439 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1440 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1441 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1443 * Make device's PM flags reflect the wake-up capability, but
1444 * let the user space enable it to wake up the system as needed.
1446 device_set_wakeup_capable(&dev->dev, true);
1447 device_set_wakeup_enable(&dev->dev, false);
1448 /* Disable the PME# generation functionality */
1449 pci_pme_active(dev, false);
1450 } else {
1451 dev->pme_support = 0;
1456 * platform_pci_wakeup_init - init platform wakeup if present
1457 * @dev: PCI device
1459 * Some devices don't have PCI PM caps but can still generate wakeup
1460 * events through platform methods (like ACPI events). If @dev supports
1461 * platform wakeup events, set the device flag to indicate as much. This
1462 * may be redundant if the device also supports PCI PM caps, but double
1463 * initialization should be safe in that case.
1465 void platform_pci_wakeup_init(struct pci_dev *dev)
1467 if (!platform_pci_can_wakeup(dev))
1468 return;
1470 device_set_wakeup_capable(&dev->dev, true);
1471 device_set_wakeup_enable(&dev->dev, false);
1472 platform_pci_sleep_wake(dev, false);
1476 * pci_add_save_buffer - allocate buffer for saving given capability registers
1477 * @dev: the PCI device
1478 * @cap: the capability to allocate the buffer for
1479 * @size: requested size of the buffer
1481 static int pci_add_cap_save_buffer(
1482 struct pci_dev *dev, char cap, unsigned int size)
1484 int pos;
1485 struct pci_cap_saved_state *save_state;
1487 pos = pci_find_capability(dev, cap);
1488 if (pos <= 0)
1489 return 0;
1491 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1492 if (!save_state)
1493 return -ENOMEM;
1495 save_state->cap_nr = cap;
1496 pci_add_saved_cap(dev, save_state);
1498 return 0;
1502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1503 * @dev: the PCI device
1505 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1507 int error;
1509 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1510 PCI_EXP_SAVE_REGS * sizeof(u16));
1511 if (error)
1512 dev_err(&dev->dev,
1513 "unable to preallocate PCI Express save buffer\n");
1515 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1516 if (error)
1517 dev_err(&dev->dev,
1518 "unable to preallocate PCI-X save buffer\n");
1522 * pci_enable_ari - enable ARI forwarding if hardware support it
1523 * @dev: the PCI device
1525 void pci_enable_ari(struct pci_dev *dev)
1527 int pos;
1528 u32 cap;
1529 u16 ctrl;
1530 struct pci_dev *bridge;
1532 if (!dev->is_pcie || dev->devfn)
1533 return;
1535 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1536 if (!pos)
1537 return;
1539 bridge = dev->bus->self;
1540 if (!bridge || !bridge->is_pcie)
1541 return;
1543 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1544 if (!pos)
1545 return;
1547 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1548 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1549 return;
1551 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1552 ctrl |= PCI_EXP_DEVCTL2_ARI;
1553 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1555 bridge->ari_enabled = 1;
1559 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1560 * @dev: the PCI device
1561 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1563 * Perform INTx swizzling for a device behind one level of bridge. This is
1564 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1565 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1566 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1567 * the PCI Express Base Specification, Revision 2.1)
1569 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1571 int slot;
1573 if (pci_ari_enabled(dev->bus))
1574 slot = 0;
1575 else
1576 slot = PCI_SLOT(dev->devfn);
1578 return (((pin - 1) + slot) % 4) + 1;
1582 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1584 u8 pin;
1586 pin = dev->pin;
1587 if (!pin)
1588 return -1;
1590 while (!pci_is_root_bus(dev->bus)) {
1591 pin = pci_swizzle_interrupt_pin(dev, pin);
1592 dev = dev->bus->self;
1594 *bridge = dev;
1595 return pin;
1599 * pci_common_swizzle - swizzle INTx all the way to root bridge
1600 * @dev: the PCI device
1601 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1603 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1604 * bridges all the way up to a PCI root bus.
1606 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1608 u8 pin = *pinp;
1610 while (!pci_is_root_bus(dev->bus)) {
1611 pin = pci_swizzle_interrupt_pin(dev, pin);
1612 dev = dev->bus->self;
1614 *pinp = pin;
1615 return PCI_SLOT(dev->devfn);
1619 * pci_release_region - Release a PCI bar
1620 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1621 * @bar: BAR to release
1623 * Releases the PCI I/O and memory resources previously reserved by a
1624 * successful call to pci_request_region. Call this function only
1625 * after all use of the PCI regions has ceased.
1627 void pci_release_region(struct pci_dev *pdev, int bar)
1629 struct pci_devres *dr;
1631 if (pci_resource_len(pdev, bar) == 0)
1632 return;
1633 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1634 release_region(pci_resource_start(pdev, bar),
1635 pci_resource_len(pdev, bar));
1636 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1637 release_mem_region(pci_resource_start(pdev, bar),
1638 pci_resource_len(pdev, bar));
1640 dr = find_pci_dr(pdev);
1641 if (dr)
1642 dr->region_mask &= ~(1 << bar);
1646 * __pci_request_region - Reserved PCI I/O and memory resource
1647 * @pdev: PCI device whose resources are to be reserved
1648 * @bar: BAR to be reserved
1649 * @res_name: Name to be associated with resource.
1650 * @exclusive: whether the region access is exclusive or not
1652 * Mark the PCI region associated with PCI device @pdev BR @bar as
1653 * being reserved by owner @res_name. Do not access any
1654 * address inside the PCI regions unless this call returns
1655 * successfully.
1657 * If @exclusive is set, then the region is marked so that userspace
1658 * is explicitly not allowed to map the resource via /dev/mem or
1659 * sysfs MMIO access.
1661 * Returns 0 on success, or %EBUSY on error. A warning
1662 * message is also printed on failure.
1664 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1665 int exclusive)
1667 struct pci_devres *dr;
1669 if (pci_resource_len(pdev, bar) == 0)
1670 return 0;
1672 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1673 if (!request_region(pci_resource_start(pdev, bar),
1674 pci_resource_len(pdev, bar), res_name))
1675 goto err_out;
1677 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1678 if (!__request_mem_region(pci_resource_start(pdev, bar),
1679 pci_resource_len(pdev, bar), res_name,
1680 exclusive))
1681 goto err_out;
1684 dr = find_pci_dr(pdev);
1685 if (dr)
1686 dr->region_mask |= 1 << bar;
1688 return 0;
1690 err_out:
1691 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1692 bar,
1693 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1694 &pdev->resource[bar]);
1695 return -EBUSY;
1699 * pci_request_region - Reserve PCI I/O and memory resource
1700 * @pdev: PCI device whose resources are to be reserved
1701 * @bar: BAR to be reserved
1702 * @res_name: Name to be associated with resource
1704 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1705 * being reserved by owner @res_name. Do not access any
1706 * address inside the PCI regions unless this call returns
1707 * successfully.
1709 * Returns 0 on success, or %EBUSY on error. A warning
1710 * message is also printed on failure.
1712 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1714 return __pci_request_region(pdev, bar, res_name, 0);
1718 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1719 * @pdev: PCI device whose resources are to be reserved
1720 * @bar: BAR to be reserved
1721 * @res_name: Name to be associated with resource.
1723 * Mark the PCI region associated with PCI device @pdev BR @bar as
1724 * being reserved by owner @res_name. Do not access any
1725 * address inside the PCI regions unless this call returns
1726 * successfully.
1728 * Returns 0 on success, or %EBUSY on error. A warning
1729 * message is also printed on failure.
1731 * The key difference that _exclusive makes it that userspace is
1732 * explicitly not allowed to map the resource via /dev/mem or
1733 * sysfs.
1735 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1737 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1740 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1741 * @pdev: PCI device whose resources were previously reserved
1742 * @bars: Bitmask of BARs to be released
1744 * Release selected PCI I/O and memory resources previously reserved.
1745 * Call this function only after all use of the PCI regions has ceased.
1747 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1749 int i;
1751 for (i = 0; i < 6; i++)
1752 if (bars & (1 << i))
1753 pci_release_region(pdev, i);
1756 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1757 const char *res_name, int excl)
1759 int i;
1761 for (i = 0; i < 6; i++)
1762 if (bars & (1 << i))
1763 if (__pci_request_region(pdev, i, res_name, excl))
1764 goto err_out;
1765 return 0;
1767 err_out:
1768 while(--i >= 0)
1769 if (bars & (1 << i))
1770 pci_release_region(pdev, i);
1772 return -EBUSY;
1777 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1778 * @pdev: PCI device whose resources are to be reserved
1779 * @bars: Bitmask of BARs to be requested
1780 * @res_name: Name to be associated with resource
1782 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1783 const char *res_name)
1785 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1788 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1789 int bars, const char *res_name)
1791 return __pci_request_selected_regions(pdev, bars, res_name,
1792 IORESOURCE_EXCLUSIVE);
1796 * pci_release_regions - Release reserved PCI I/O and memory resources
1797 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1799 * Releases all PCI I/O and memory resources previously reserved by a
1800 * successful call to pci_request_regions. Call this function only
1801 * after all use of the PCI regions has ceased.
1804 void pci_release_regions(struct pci_dev *pdev)
1806 pci_release_selected_regions(pdev, (1 << 6) - 1);
1810 * pci_request_regions - Reserved PCI I/O and memory resources
1811 * @pdev: PCI device whose resources are to be reserved
1812 * @res_name: Name to be associated with resource.
1814 * Mark all PCI regions associated with PCI device @pdev as
1815 * being reserved by owner @res_name. Do not access any
1816 * address inside the PCI regions unless this call returns
1817 * successfully.
1819 * Returns 0 on success, or %EBUSY on error. A warning
1820 * message is also printed on failure.
1822 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1824 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1828 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1829 * @pdev: PCI device whose resources are to be reserved
1830 * @res_name: Name to be associated with resource.
1832 * Mark all PCI regions associated with PCI device @pdev as
1833 * being reserved by owner @res_name. Do not access any
1834 * address inside the PCI regions unless this call returns
1835 * successfully.
1837 * pci_request_regions_exclusive() will mark the region so that
1838 * /dev/mem and the sysfs MMIO access will not be allowed.
1840 * Returns 0 on success, or %EBUSY on error. A warning
1841 * message is also printed on failure.
1843 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1845 return pci_request_selected_regions_exclusive(pdev,
1846 ((1 << 6) - 1), res_name);
1849 static void __pci_set_master(struct pci_dev *dev, bool enable)
1851 u16 old_cmd, cmd;
1853 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1854 if (enable)
1855 cmd = old_cmd | PCI_COMMAND_MASTER;
1856 else
1857 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1858 if (cmd != old_cmd) {
1859 dev_dbg(&dev->dev, "%s bus mastering\n",
1860 enable ? "enabling" : "disabling");
1861 pci_write_config_word(dev, PCI_COMMAND, cmd);
1863 dev->is_busmaster = enable;
1867 * pci_set_master - enables bus-mastering for device dev
1868 * @dev: the PCI device to enable
1870 * Enables bus-mastering on the device and calls pcibios_set_master()
1871 * to do the needed arch specific settings.
1873 void pci_set_master(struct pci_dev *dev)
1875 __pci_set_master(dev, true);
1876 pcibios_set_master(dev);
1880 * pci_clear_master - disables bus-mastering for device dev
1881 * @dev: the PCI device to disable
1883 void pci_clear_master(struct pci_dev *dev)
1885 __pci_set_master(dev, false);
1889 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1890 * @dev: the PCI device for which MWI is to be enabled
1892 * Helper function for pci_set_mwi.
1893 * Originally copied from drivers/net/acenic.c.
1894 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1896 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1898 int pci_set_cacheline_size(struct pci_dev *dev)
1900 u8 cacheline_size;
1902 if (!pci_cache_line_size)
1903 return -EINVAL;
1905 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1906 equal to or multiple of the right value. */
1907 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1908 if (cacheline_size >= pci_cache_line_size &&
1909 (cacheline_size % pci_cache_line_size) == 0)
1910 return 0;
1912 /* Write the correct value. */
1913 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1914 /* Read it back. */
1915 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1916 if (cacheline_size == pci_cache_line_size)
1917 return 0;
1919 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1920 "supported\n", pci_cache_line_size << 2);
1922 return -EINVAL;
1924 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
1926 #ifdef PCI_DISABLE_MWI
1927 int pci_set_mwi(struct pci_dev *dev)
1929 return 0;
1932 int pci_try_set_mwi(struct pci_dev *dev)
1934 return 0;
1937 void pci_clear_mwi(struct pci_dev *dev)
1941 #else
1944 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1945 * @dev: the PCI device for which MWI is enabled
1947 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1949 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1952 pci_set_mwi(struct pci_dev *dev)
1954 int rc;
1955 u16 cmd;
1957 rc = pci_set_cacheline_size(dev);
1958 if (rc)
1959 return rc;
1961 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1962 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1963 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1964 cmd |= PCI_COMMAND_INVALIDATE;
1965 pci_write_config_word(dev, PCI_COMMAND, cmd);
1968 return 0;
1972 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1973 * @dev: the PCI device for which MWI is enabled
1975 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1976 * Callers are not required to check the return value.
1978 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1980 int pci_try_set_mwi(struct pci_dev *dev)
1982 int rc = pci_set_mwi(dev);
1983 return rc;
1987 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1988 * @dev: the PCI device to disable
1990 * Disables PCI Memory-Write-Invalidate transaction on the device
1992 void
1993 pci_clear_mwi(struct pci_dev *dev)
1995 u16 cmd;
1997 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1998 if (cmd & PCI_COMMAND_INVALIDATE) {
1999 cmd &= ~PCI_COMMAND_INVALIDATE;
2000 pci_write_config_word(dev, PCI_COMMAND, cmd);
2003 #endif /* ! PCI_DISABLE_MWI */
2006 * pci_intx - enables/disables PCI INTx for device dev
2007 * @pdev: the PCI device to operate on
2008 * @enable: boolean: whether to enable or disable PCI INTx
2010 * Enables/disables PCI INTx for device dev
2012 void
2013 pci_intx(struct pci_dev *pdev, int enable)
2015 u16 pci_command, new;
2017 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2019 if (enable) {
2020 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2021 } else {
2022 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2025 if (new != pci_command) {
2026 struct pci_devres *dr;
2028 pci_write_config_word(pdev, PCI_COMMAND, new);
2030 dr = find_pci_dr(pdev);
2031 if (dr && !dr->restore_intx) {
2032 dr->restore_intx = 1;
2033 dr->orig_intx = !enable;
2039 * pci_msi_off - disables any msi or msix capabilities
2040 * @dev: the PCI device to operate on
2042 * If you want to use msi see pci_enable_msi and friends.
2043 * This is a lower level primitive that allows us to disable
2044 * msi operation at the device level.
2046 void pci_msi_off(struct pci_dev *dev)
2048 int pos;
2049 u16 control;
2051 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2052 if (pos) {
2053 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2054 control &= ~PCI_MSI_FLAGS_ENABLE;
2055 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2057 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2058 if (pos) {
2059 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2060 control &= ~PCI_MSIX_FLAGS_ENABLE;
2061 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2065 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2067 * These can be overridden by arch-specific implementations
2070 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2072 if (!pci_dma_supported(dev, mask))
2073 return -EIO;
2075 dev->dma_mask = mask;
2077 return 0;
2081 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2083 if (!pci_dma_supported(dev, mask))
2084 return -EIO;
2086 dev->dev.coherent_dma_mask = mask;
2088 return 0;
2090 #endif
2092 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2093 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2095 return dma_set_max_seg_size(&dev->dev, size);
2097 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2098 #endif
2100 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2101 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2103 return dma_set_seg_boundary(&dev->dev, mask);
2105 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2106 #endif
2108 static int pcie_flr(struct pci_dev *dev, int probe)
2110 int i;
2111 int pos;
2112 u32 cap;
2113 u16 status;
2115 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2116 if (!pos)
2117 return -ENOTTY;
2119 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2120 if (!(cap & PCI_EXP_DEVCAP_FLR))
2121 return -ENOTTY;
2123 if (probe)
2124 return 0;
2126 /* Wait for Transaction Pending bit clean */
2127 for (i = 0; i < 4; i++) {
2128 if (i)
2129 msleep((1 << (i - 1)) * 100);
2131 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2132 if (!(status & PCI_EXP_DEVSTA_TRPND))
2133 goto clear;
2136 dev_err(&dev->dev, "transaction is not cleared; "
2137 "proceeding with reset anyway\n");
2139 clear:
2140 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL,
2141 PCI_EXP_DEVCTL_BCR_FLR);
2142 msleep(100);
2144 return 0;
2147 static int pci_af_flr(struct pci_dev *dev, int probe)
2149 int i;
2150 int pos;
2151 u8 cap;
2152 u8 status;
2154 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2155 if (!pos)
2156 return -ENOTTY;
2158 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2159 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2160 return -ENOTTY;
2162 if (probe)
2163 return 0;
2165 /* Wait for Transaction Pending bit clean */
2166 for (i = 0; i < 4; i++) {
2167 if (i)
2168 msleep((1 << (i - 1)) * 100);
2170 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2171 if (!(status & PCI_AF_STATUS_TP))
2172 goto clear;
2175 dev_err(&dev->dev, "transaction is not cleared; "
2176 "proceeding with reset anyway\n");
2178 clear:
2179 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2180 msleep(100);
2182 return 0;
2185 static int pci_pm_reset(struct pci_dev *dev, int probe)
2187 u16 csr;
2189 if (!dev->pm_cap)
2190 return -ENOTTY;
2192 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2193 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2194 return -ENOTTY;
2196 if (probe)
2197 return 0;
2199 if (dev->current_state != PCI_D0)
2200 return -EINVAL;
2202 csr &= ~PCI_PM_CTRL_STATE_MASK;
2203 csr |= PCI_D3hot;
2204 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2205 msleep(pci_pm_d3_delay);
2207 csr &= ~PCI_PM_CTRL_STATE_MASK;
2208 csr |= PCI_D0;
2209 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2210 msleep(pci_pm_d3_delay);
2212 return 0;
2215 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2217 u16 ctrl;
2218 struct pci_dev *pdev;
2220 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2221 return -ENOTTY;
2223 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2224 if (pdev != dev)
2225 return -ENOTTY;
2227 if (probe)
2228 return 0;
2230 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2231 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2232 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2233 msleep(100);
2235 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2236 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2237 msleep(100);
2239 return 0;
2242 static int pci_dev_reset(struct pci_dev *dev, int probe)
2244 int rc;
2246 might_sleep();
2248 if (!probe) {
2249 pci_block_user_cfg_access(dev);
2250 /* block PM suspend, driver probe, etc. */
2251 down(&dev->dev.sem);
2254 rc = pcie_flr(dev, probe);
2255 if (rc != -ENOTTY)
2256 goto done;
2258 rc = pci_af_flr(dev, probe);
2259 if (rc != -ENOTTY)
2260 goto done;
2262 rc = pci_pm_reset(dev, probe);
2263 if (rc != -ENOTTY)
2264 goto done;
2266 rc = pci_parent_bus_reset(dev, probe);
2267 done:
2268 if (!probe) {
2269 up(&dev->dev.sem);
2270 pci_unblock_user_cfg_access(dev);
2273 return rc;
2277 * __pci_reset_function - reset a PCI device function
2278 * @dev: PCI device to reset
2280 * Some devices allow an individual function to be reset without affecting
2281 * other functions in the same device. The PCI device must be responsive
2282 * to PCI config space in order to use this function.
2284 * The device function is presumed to be unused when this function is called.
2285 * Resetting the device will make the contents of PCI configuration space
2286 * random, so any caller of this must be prepared to reinitialise the
2287 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2288 * etc.
2290 * Returns 0 if the device function was successfully reset or negative if the
2291 * device doesn't support resetting a single function.
2293 int __pci_reset_function(struct pci_dev *dev)
2295 return pci_dev_reset(dev, 0);
2297 EXPORT_SYMBOL_GPL(__pci_reset_function);
2300 * pci_probe_reset_function - check whether the device can be safely reset
2301 * @dev: PCI device to reset
2303 * Some devices allow an individual function to be reset without affecting
2304 * other functions in the same device. The PCI device must be responsive
2305 * to PCI config space in order to use this function.
2307 * Returns 0 if the device function can be reset or negative if the
2308 * device doesn't support resetting a single function.
2310 int pci_probe_reset_function(struct pci_dev *dev)
2312 return pci_dev_reset(dev, 1);
2316 * pci_reset_function - quiesce and reset a PCI device function
2317 * @dev: PCI device to reset
2319 * Some devices allow an individual function to be reset without affecting
2320 * other functions in the same device. The PCI device must be responsive
2321 * to PCI config space in order to use this function.
2323 * This function does not just reset the PCI portion of a device, but
2324 * clears all the state associated with the device. This function differs
2325 * from __pci_reset_function in that it saves and restores device state
2326 * over the reset.
2328 * Returns 0 if the device function was successfully reset or negative if the
2329 * device doesn't support resetting a single function.
2331 int pci_reset_function(struct pci_dev *dev)
2333 int rc;
2335 rc = pci_dev_reset(dev, 1);
2336 if (rc)
2337 return rc;
2339 pci_save_state(dev);
2342 * both INTx and MSI are disabled after the Interrupt Disable bit
2343 * is set and the Bus Master bit is cleared.
2345 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2347 rc = pci_dev_reset(dev, 0);
2349 pci_restore_state(dev);
2351 return rc;
2353 EXPORT_SYMBOL_GPL(pci_reset_function);
2356 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2357 * @dev: PCI device to query
2359 * Returns mmrbc: maximum designed memory read count in bytes
2360 * or appropriate error value.
2362 int pcix_get_max_mmrbc(struct pci_dev *dev)
2364 int err, cap;
2365 u32 stat;
2367 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2368 if (!cap)
2369 return -EINVAL;
2371 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2372 if (err)
2373 return -EINVAL;
2375 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2377 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2380 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2381 * @dev: PCI device to query
2383 * Returns mmrbc: maximum memory read count in bytes
2384 * or appropriate error value.
2386 int pcix_get_mmrbc(struct pci_dev *dev)
2388 int ret, cap;
2389 u32 cmd;
2391 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2392 if (!cap)
2393 return -EINVAL;
2395 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2396 if (!ret)
2397 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2399 return ret;
2401 EXPORT_SYMBOL(pcix_get_mmrbc);
2404 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2405 * @dev: PCI device to query
2406 * @mmrbc: maximum memory read count in bytes
2407 * valid values are 512, 1024, 2048, 4096
2409 * If possible sets maximum memory read byte count, some bridges have erratas
2410 * that prevent this.
2412 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2414 int cap, err = -EINVAL;
2415 u32 stat, cmd, v, o;
2417 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2418 goto out;
2420 v = ffs(mmrbc) - 10;
2422 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2423 if (!cap)
2424 goto out;
2426 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2427 if (err)
2428 goto out;
2430 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2431 return -E2BIG;
2433 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2434 if (err)
2435 goto out;
2437 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2438 if (o != v) {
2439 if (v > o && dev->bus &&
2440 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2441 return -EIO;
2443 cmd &= ~PCI_X_CMD_MAX_READ;
2444 cmd |= v << 2;
2445 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2447 out:
2448 return err;
2450 EXPORT_SYMBOL(pcix_set_mmrbc);
2453 * pcie_get_readrq - get PCI Express read request size
2454 * @dev: PCI device to query
2456 * Returns maximum memory read request in bytes
2457 * or appropriate error value.
2459 int pcie_get_readrq(struct pci_dev *dev)
2461 int ret, cap;
2462 u16 ctl;
2464 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2465 if (!cap)
2466 return -EINVAL;
2468 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2469 if (!ret)
2470 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2472 return ret;
2474 EXPORT_SYMBOL(pcie_get_readrq);
2477 * pcie_set_readrq - set PCI Express maximum memory read request
2478 * @dev: PCI device to query
2479 * @rq: maximum memory read count in bytes
2480 * valid values are 128, 256, 512, 1024, 2048, 4096
2482 * If possible sets maximum read byte count
2484 int pcie_set_readrq(struct pci_dev *dev, int rq)
2486 int cap, err = -EINVAL;
2487 u16 ctl, v;
2489 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2490 goto out;
2492 v = (ffs(rq) - 8) << 12;
2494 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2495 if (!cap)
2496 goto out;
2498 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2499 if (err)
2500 goto out;
2502 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2503 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2504 ctl |= v;
2505 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2508 out:
2509 return err;
2511 EXPORT_SYMBOL(pcie_set_readrq);
2514 * pci_select_bars - Make BAR mask from the type of resource
2515 * @dev: the PCI device for which BAR mask is made
2516 * @flags: resource type mask to be selected
2518 * This helper routine makes bar mask from the type of resource.
2520 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2522 int i, bars = 0;
2523 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2524 if (pci_resource_flags(dev, i) & flags)
2525 bars |= (1 << i);
2526 return bars;
2530 * pci_resource_bar - get position of the BAR associated with a resource
2531 * @dev: the PCI device
2532 * @resno: the resource number
2533 * @type: the BAR type to be filled in
2535 * Returns BAR position in config space, or 0 if the BAR is invalid.
2537 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2539 int reg;
2541 if (resno < PCI_ROM_RESOURCE) {
2542 *type = pci_bar_unknown;
2543 return PCI_BASE_ADDRESS_0 + 4 * resno;
2544 } else if (resno == PCI_ROM_RESOURCE) {
2545 *type = pci_bar_mem32;
2546 return dev->rom_base_reg;
2547 } else if (resno < PCI_BRIDGE_RESOURCES) {
2548 /* device specific resource */
2549 reg = pci_iov_resource_bar(dev, resno, type);
2550 if (reg)
2551 return reg;
2554 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2555 return 0;
2559 * pci_set_vga_state - set VGA decode state on device and parents if requested
2560 * @dev: the PCI device
2561 * @decode: true = enable decoding, false = disable decoding
2562 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2563 * @change_bridge: traverse ancestors and change bridges
2565 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2566 unsigned int command_bits, bool change_bridge)
2568 struct pci_bus *bus;
2569 struct pci_dev *bridge;
2570 u16 cmd;
2572 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2574 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2575 if (decode == true)
2576 cmd |= command_bits;
2577 else
2578 cmd &= ~command_bits;
2579 pci_write_config_word(dev, PCI_COMMAND, cmd);
2581 if (change_bridge == false)
2582 return 0;
2584 bus = dev->bus;
2585 while (bus) {
2586 bridge = bus->self;
2587 if (bridge) {
2588 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2589 &cmd);
2590 if (decode == true)
2591 cmd |= PCI_BRIDGE_CTL_VGA;
2592 else
2593 cmd &= ~PCI_BRIDGE_CTL_VGA;
2594 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2595 cmd);
2597 bus = bus->parent;
2599 return 0;
2602 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2603 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2604 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2607 * pci_specified_resource_alignment - get resource alignment specified by user.
2608 * @dev: the PCI device to get
2610 * RETURNS: Resource alignment if it is specified.
2611 * Zero if it is not specified.
2613 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2615 int seg, bus, slot, func, align_order, count;
2616 resource_size_t align = 0;
2617 char *p;
2619 spin_lock(&resource_alignment_lock);
2620 p = resource_alignment_param;
2621 while (*p) {
2622 count = 0;
2623 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2624 p[count] == '@') {
2625 p += count + 1;
2626 } else {
2627 align_order = -1;
2629 if (sscanf(p, "%x:%x:%x.%x%n",
2630 &seg, &bus, &slot, &func, &count) != 4) {
2631 seg = 0;
2632 if (sscanf(p, "%x:%x.%x%n",
2633 &bus, &slot, &func, &count) != 3) {
2634 /* Invalid format */
2635 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2637 break;
2640 p += count;
2641 if (seg == pci_domain_nr(dev->bus) &&
2642 bus == dev->bus->number &&
2643 slot == PCI_SLOT(dev->devfn) &&
2644 func == PCI_FUNC(dev->devfn)) {
2645 if (align_order == -1) {
2646 align = PAGE_SIZE;
2647 } else {
2648 align = 1 << align_order;
2650 /* Found */
2651 break;
2653 if (*p != ';' && *p != ',') {
2654 /* End of param or invalid format */
2655 break;
2657 p++;
2659 spin_unlock(&resource_alignment_lock);
2660 return align;
2664 * pci_is_reassigndev - check if specified PCI is target device to reassign
2665 * @dev: the PCI device to check
2667 * RETURNS: non-zero for PCI device is a target device to reassign,
2668 * or zero is not.
2670 int pci_is_reassigndev(struct pci_dev *dev)
2672 return (pci_specified_resource_alignment(dev) != 0);
2675 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2677 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2678 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2679 spin_lock(&resource_alignment_lock);
2680 strncpy(resource_alignment_param, buf, count);
2681 resource_alignment_param[count] = '\0';
2682 spin_unlock(&resource_alignment_lock);
2683 return count;
2686 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2688 size_t count;
2689 spin_lock(&resource_alignment_lock);
2690 count = snprintf(buf, size, "%s", resource_alignment_param);
2691 spin_unlock(&resource_alignment_lock);
2692 return count;
2695 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2697 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2700 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2701 const char *buf, size_t count)
2703 return pci_set_resource_alignment_param(buf, count);
2706 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2707 pci_resource_alignment_store);
2709 static int __init pci_resource_alignment_sysfs_init(void)
2711 return bus_create_file(&pci_bus_type,
2712 &bus_attr_resource_alignment);
2715 late_initcall(pci_resource_alignment_sysfs_init);
2717 static void __devinit pci_no_domains(void)
2719 #ifdef CONFIG_PCI_DOMAINS
2720 pci_domains_supported = 0;
2721 #endif
2725 * pci_ext_cfg_enabled - can we access extended PCI config space?
2726 * @dev: The PCI device of the root bridge.
2728 * Returns 1 if we can access PCI extended config space (offsets
2729 * greater than 0xff). This is the default implementation. Architecture
2730 * implementations can override this.
2732 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2734 return 1;
2737 static int __devinit pci_init(void)
2739 struct pci_dev *dev = NULL;
2740 u8 cls = 0;
2741 u8 tmp;
2743 if (pci_cache_line_size)
2744 printk(KERN_DEBUG "PCI: CLS %u bytes\n",
2745 pci_cache_line_size << 2);
2747 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2748 pci_fixup_device(pci_fixup_final, dev);
2750 * If arch hasn't set it explicitly yet, use the CLS
2751 * value shared by all PCI devices. If there's a
2752 * mismatch, fall back to the default value.
2754 if (!pci_cache_line_size) {
2755 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &tmp);
2756 if (!cls)
2757 cls = tmp;
2758 if (!tmp || cls == tmp)
2759 continue;
2761 printk(KERN_DEBUG "PCI: CLS mismatch (%u != %u), "
2762 "using %u bytes\n", cls << 2, tmp << 2,
2763 pci_dfl_cache_line_size << 2);
2764 pci_cache_line_size = pci_dfl_cache_line_size;
2767 if (!pci_cache_line_size) {
2768 printk(KERN_DEBUG "PCI: CLS %u bytes, default %u\n",
2769 cls << 2, pci_dfl_cache_line_size << 2);
2770 pci_cache_line_size = cls;
2773 return 0;
2776 static int __init pci_setup(char *str)
2778 while (str) {
2779 char *k = strchr(str, ',');
2780 if (k)
2781 *k++ = 0;
2782 if (*str && (str = pcibios_setup(str)) && *str) {
2783 if (!strcmp(str, "nomsi")) {
2784 pci_no_msi();
2785 } else if (!strcmp(str, "noaer")) {
2786 pci_no_aer();
2787 } else if (!strcmp(str, "nodomains")) {
2788 pci_no_domains();
2789 } else if (!strncmp(str, "cbiosize=", 9)) {
2790 pci_cardbus_io_size = memparse(str + 9, &str);
2791 } else if (!strncmp(str, "cbmemsize=", 10)) {
2792 pci_cardbus_mem_size = memparse(str + 10, &str);
2793 } else if (!strncmp(str, "resource_alignment=", 19)) {
2794 pci_set_resource_alignment_param(str + 19,
2795 strlen(str + 19));
2796 } else if (!strncmp(str, "ecrc=", 5)) {
2797 pcie_ecrc_get_policy(str + 5);
2798 } else if (!strncmp(str, "hpiosize=", 9)) {
2799 pci_hotplug_io_size = memparse(str + 9, &str);
2800 } else if (!strncmp(str, "hpmemsize=", 10)) {
2801 pci_hotplug_mem_size = memparse(str + 10, &str);
2802 } else {
2803 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2804 str);
2807 str = k;
2809 return 0;
2811 early_param("pci", pci_setup);
2813 device_initcall(pci_init);
2815 EXPORT_SYMBOL(pci_reenable_device);
2816 EXPORT_SYMBOL(pci_enable_device_io);
2817 EXPORT_SYMBOL(pci_enable_device_mem);
2818 EXPORT_SYMBOL(pci_enable_device);
2819 EXPORT_SYMBOL(pcim_enable_device);
2820 EXPORT_SYMBOL(pcim_pin_device);
2821 EXPORT_SYMBOL(pci_disable_device);
2822 EXPORT_SYMBOL(pci_find_capability);
2823 EXPORT_SYMBOL(pci_bus_find_capability);
2824 EXPORT_SYMBOL(pci_release_regions);
2825 EXPORT_SYMBOL(pci_request_regions);
2826 EXPORT_SYMBOL(pci_request_regions_exclusive);
2827 EXPORT_SYMBOL(pci_release_region);
2828 EXPORT_SYMBOL(pci_request_region);
2829 EXPORT_SYMBOL(pci_request_region_exclusive);
2830 EXPORT_SYMBOL(pci_release_selected_regions);
2831 EXPORT_SYMBOL(pci_request_selected_regions);
2832 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2833 EXPORT_SYMBOL(pci_set_master);
2834 EXPORT_SYMBOL(pci_clear_master);
2835 EXPORT_SYMBOL(pci_set_mwi);
2836 EXPORT_SYMBOL(pci_try_set_mwi);
2837 EXPORT_SYMBOL(pci_clear_mwi);
2838 EXPORT_SYMBOL_GPL(pci_intx);
2839 EXPORT_SYMBOL(pci_set_dma_mask);
2840 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2841 EXPORT_SYMBOL(pci_assign_resource);
2842 EXPORT_SYMBOL(pci_find_parent_resource);
2843 EXPORT_SYMBOL(pci_select_bars);
2845 EXPORT_SYMBOL(pci_set_power_state);
2846 EXPORT_SYMBOL(pci_save_state);
2847 EXPORT_SYMBOL(pci_restore_state);
2848 EXPORT_SYMBOL(pci_pme_capable);
2849 EXPORT_SYMBOL(pci_pme_active);
2850 EXPORT_SYMBOL(pci_enable_wake);
2851 EXPORT_SYMBOL(pci_wake_from_d3);
2852 EXPORT_SYMBOL(pci_target_state);
2853 EXPORT_SYMBOL(pci_prepare_to_sleep);
2854 EXPORT_SYMBOL(pci_back_from_sleep);
2855 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);