2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
26 #include "transaction.h"
30 #define BTRFS_ROOT_TRANS_TAG 0
32 static noinline
void put_transaction(struct btrfs_transaction
*transaction
)
34 WARN_ON(transaction
->use_count
== 0);
35 transaction
->use_count
--;
36 if (transaction
->use_count
== 0) {
37 list_del_init(&transaction
->list
);
38 memset(transaction
, 0, sizeof(*transaction
));
39 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
43 static noinline
void switch_commit_root(struct btrfs_root
*root
)
45 free_extent_buffer(root
->commit_root
);
46 root
->commit_root
= btrfs_root_node(root
);
50 * either allocate a new transaction or hop into the existing one
52 static noinline
int join_transaction(struct btrfs_root
*root
)
54 struct btrfs_transaction
*cur_trans
;
55 cur_trans
= root
->fs_info
->running_transaction
;
57 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
,
60 root
->fs_info
->generation
++;
61 cur_trans
->num_writers
= 1;
62 cur_trans
->num_joined
= 0;
63 cur_trans
->transid
= root
->fs_info
->generation
;
64 init_waitqueue_head(&cur_trans
->writer_wait
);
65 init_waitqueue_head(&cur_trans
->commit_wait
);
66 cur_trans
->in_commit
= 0;
67 cur_trans
->blocked
= 0;
68 cur_trans
->use_count
= 1;
69 cur_trans
->commit_done
= 0;
70 cur_trans
->start_time
= get_seconds();
72 cur_trans
->delayed_refs
.root
.rb_node
= NULL
;
73 cur_trans
->delayed_refs
.num_entries
= 0;
74 cur_trans
->delayed_refs
.num_heads_ready
= 0;
75 cur_trans
->delayed_refs
.num_heads
= 0;
76 cur_trans
->delayed_refs
.flushing
= 0;
77 cur_trans
->delayed_refs
.run_delayed_start
= 0;
78 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
80 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
81 list_add_tail(&cur_trans
->list
, &root
->fs_info
->trans_list
);
82 extent_io_tree_init(&cur_trans
->dirty_pages
,
83 root
->fs_info
->btree_inode
->i_mapping
,
85 spin_lock(&root
->fs_info
->new_trans_lock
);
86 root
->fs_info
->running_transaction
= cur_trans
;
87 spin_unlock(&root
->fs_info
->new_trans_lock
);
89 cur_trans
->num_writers
++;
90 cur_trans
->num_joined
++;
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
102 static noinline
int record_root_in_trans(struct btrfs_trans_handle
*trans
,
103 struct btrfs_root
*root
)
105 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
106 WARN_ON(root
== root
->fs_info
->extent_root
);
107 WARN_ON(root
->commit_root
!= root
->node
);
109 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
110 (unsigned long)root
->root_key
.objectid
,
111 BTRFS_ROOT_TRANS_TAG
);
112 root
->last_trans
= trans
->transid
;
113 btrfs_init_reloc_root(trans
, root
);
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
119 struct btrfs_root
*root
)
124 mutex_lock(&root
->fs_info
->trans_mutex
);
125 if (root
->last_trans
== trans
->transid
) {
126 mutex_unlock(&root
->fs_info
->trans_mutex
);
130 record_root_in_trans(trans
, root
);
131 mutex_unlock(&root
->fs_info
->trans_mutex
);
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
139 static void wait_current_trans(struct btrfs_root
*root
)
141 struct btrfs_transaction
*cur_trans
;
143 cur_trans
= root
->fs_info
->running_transaction
;
144 if (cur_trans
&& cur_trans
->blocked
) {
146 cur_trans
->use_count
++;
148 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
149 TASK_UNINTERRUPTIBLE
);
150 if (cur_trans
->blocked
) {
151 mutex_unlock(&root
->fs_info
->trans_mutex
);
153 mutex_lock(&root
->fs_info
->trans_mutex
);
154 finish_wait(&root
->fs_info
->transaction_wait
,
157 finish_wait(&root
->fs_info
->transaction_wait
,
162 put_transaction(cur_trans
);
166 static struct btrfs_trans_handle
*start_transaction(struct btrfs_root
*root
,
167 int num_blocks
, int wait
)
169 struct btrfs_trans_handle
*h
=
170 kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
173 mutex_lock(&root
->fs_info
->trans_mutex
);
174 if (!root
->fs_info
->log_root_recovering
&&
175 ((wait
== 1 && !root
->fs_info
->open_ioctl_trans
) || wait
== 2))
176 wait_current_trans(root
);
177 ret
= join_transaction(root
);
180 h
->transid
= root
->fs_info
->running_transaction
->transid
;
181 h
->transaction
= root
->fs_info
->running_transaction
;
182 h
->blocks_reserved
= num_blocks
;
185 h
->alloc_exclude_nr
= 0;
186 h
->alloc_exclude_start
= 0;
187 h
->delayed_ref_updates
= 0;
189 if (!current
->journal_info
)
190 current
->journal_info
= h
;
192 root
->fs_info
->running_transaction
->use_count
++;
193 record_root_in_trans(h
, root
);
194 mutex_unlock(&root
->fs_info
->trans_mutex
);
198 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
201 return start_transaction(root
, num_blocks
, 1);
203 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
,
206 return start_transaction(root
, num_blocks
, 0);
209 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*r
,
212 return start_transaction(r
, num_blocks
, 2);
215 /* wait for a transaction commit to be fully complete */
216 static noinline
int wait_for_commit(struct btrfs_root
*root
,
217 struct btrfs_transaction
*commit
)
220 mutex_lock(&root
->fs_info
->trans_mutex
);
221 while (!commit
->commit_done
) {
222 prepare_to_wait(&commit
->commit_wait
, &wait
,
223 TASK_UNINTERRUPTIBLE
);
224 if (commit
->commit_done
)
226 mutex_unlock(&root
->fs_info
->trans_mutex
);
228 mutex_lock(&root
->fs_info
->trans_mutex
);
230 mutex_unlock(&root
->fs_info
->trans_mutex
);
231 finish_wait(&commit
->commit_wait
, &wait
);
237 * rate limit against the drop_snapshot code. This helps to slow down new
238 * operations if the drop_snapshot code isn't able to keep up.
240 static void throttle_on_drops(struct btrfs_root
*root
)
242 struct btrfs_fs_info
*info
= root
->fs_info
;
243 int harder_count
= 0;
246 if (atomic_read(&info
->throttles
)) {
249 thr
= atomic_read(&info
->throttle_gen
);
252 prepare_to_wait(&info
->transaction_throttle
,
253 &wait
, TASK_UNINTERRUPTIBLE
);
254 if (!atomic_read(&info
->throttles
)) {
255 finish_wait(&info
->transaction_throttle
, &wait
);
259 finish_wait(&info
->transaction_throttle
, &wait
);
260 } while (thr
== atomic_read(&info
->throttle_gen
));
263 if (root
->fs_info
->total_ref_cache_size
> 1 * 1024 * 1024 &&
267 if (root
->fs_info
->total_ref_cache_size
> 5 * 1024 * 1024 &&
271 if (root
->fs_info
->total_ref_cache_size
> 10 * 1024 * 1024 &&
278 void btrfs_throttle(struct btrfs_root
*root
)
280 mutex_lock(&root
->fs_info
->trans_mutex
);
281 if (!root
->fs_info
->open_ioctl_trans
)
282 wait_current_trans(root
);
283 mutex_unlock(&root
->fs_info
->trans_mutex
);
286 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
287 struct btrfs_root
*root
, int throttle
)
289 struct btrfs_transaction
*cur_trans
;
290 struct btrfs_fs_info
*info
= root
->fs_info
;
294 unsigned long cur
= trans
->delayed_ref_updates
;
295 trans
->delayed_ref_updates
= 0;
297 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
298 trans
->delayed_ref_updates
= 0;
301 * do a full flush if the transaction is trying
304 if (trans
->transaction
->delayed_refs
.flushing
)
306 btrfs_run_delayed_refs(trans
, root
, cur
);
313 mutex_lock(&info
->trans_mutex
);
314 cur_trans
= info
->running_transaction
;
315 WARN_ON(cur_trans
!= trans
->transaction
);
316 WARN_ON(cur_trans
->num_writers
< 1);
317 cur_trans
->num_writers
--;
319 if (waitqueue_active(&cur_trans
->writer_wait
))
320 wake_up(&cur_trans
->writer_wait
);
321 put_transaction(cur_trans
);
322 mutex_unlock(&info
->trans_mutex
);
324 if (current
->journal_info
== trans
)
325 current
->journal_info
= NULL
;
326 memset(trans
, 0, sizeof(*trans
));
327 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
332 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
333 struct btrfs_root
*root
)
335 return __btrfs_end_transaction(trans
, root
, 0);
338 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
339 struct btrfs_root
*root
)
341 return __btrfs_end_transaction(trans
, root
, 1);
345 * when btree blocks are allocated, they have some corresponding bits set for
346 * them in one of two extent_io trees. This is used to make sure all of
347 * those extents are on disk for transaction or log commit
349 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
350 struct extent_io_tree
*dirty_pages
)
356 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
362 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
366 while (start
<= end
) {
369 index
= start
>> PAGE_CACHE_SHIFT
;
370 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
371 page
= find_get_page(btree_inode
->i_mapping
, index
);
375 btree_lock_page_hook(page
);
376 if (!page
->mapping
) {
378 page_cache_release(page
);
382 if (PageWriteback(page
)) {
384 wait_on_page_writeback(page
);
387 page_cache_release(page
);
391 err
= write_one_page(page
, 0);
394 page_cache_release(page
);
398 ret
= find_first_extent_bit(dirty_pages
, 0, &start
, &end
,
403 clear_extent_dirty(dirty_pages
, start
, end
, GFP_NOFS
);
404 while (start
<= end
) {
405 index
= start
>> PAGE_CACHE_SHIFT
;
406 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
407 page
= find_get_page(btree_inode
->i_mapping
, index
);
410 if (PageDirty(page
)) {
411 btree_lock_page_hook(page
);
412 wait_on_page_writeback(page
);
413 err
= write_one_page(page
, 0);
417 wait_on_page_writeback(page
);
418 page_cache_release(page
);
427 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
428 struct btrfs_root
*root
)
430 if (!trans
|| !trans
->transaction
) {
431 struct inode
*btree_inode
;
432 btree_inode
= root
->fs_info
->btree_inode
;
433 return filemap_write_and_wait(btree_inode
->i_mapping
);
435 return btrfs_write_and_wait_marked_extents(root
,
436 &trans
->transaction
->dirty_pages
);
440 * this is used to update the root pointer in the tree of tree roots.
442 * But, in the case of the extent allocation tree, updating the root
443 * pointer may allocate blocks which may change the root of the extent
446 * So, this loops and repeats and makes sure the cowonly root didn't
447 * change while the root pointer was being updated in the metadata.
449 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
450 struct btrfs_root
*root
)
454 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
456 btrfs_write_dirty_block_groups(trans
, root
);
459 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
460 if (old_root_bytenr
== root
->node
->start
)
463 btrfs_set_root_node(&root
->root_item
, root
->node
);
464 ret
= btrfs_update_root(trans
, tree_root
,
469 ret
= btrfs_write_dirty_block_groups(trans
, root
);
473 if (root
!= root
->fs_info
->extent_root
)
474 switch_commit_root(root
);
480 * update all the cowonly tree roots on disk
482 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
483 struct btrfs_root
*root
)
485 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
486 struct list_head
*next
;
487 struct extent_buffer
*eb
;
490 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
493 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
494 btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
, 0, &eb
);
495 btrfs_tree_unlock(eb
);
496 free_extent_buffer(eb
);
498 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
501 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
502 next
= fs_info
->dirty_cowonly_roots
.next
;
504 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
506 update_cowonly_root(trans
, root
);
509 down_write(&fs_info
->extent_commit_sem
);
510 switch_commit_root(fs_info
->extent_root
);
511 up_write(&fs_info
->extent_commit_sem
);
517 * dead roots are old snapshots that need to be deleted. This allocates
518 * a dirty root struct and adds it into the list of dead roots that need to
521 int btrfs_add_dead_root(struct btrfs_root
*root
)
523 mutex_lock(&root
->fs_info
->trans_mutex
);
524 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
525 mutex_unlock(&root
->fs_info
->trans_mutex
);
530 * update all the cowonly tree roots on disk
532 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
533 struct btrfs_root
*root
)
535 struct btrfs_root
*gang
[8];
536 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
542 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
545 BTRFS_ROOT_TRANS_TAG
);
548 for (i
= 0; i
< ret
; i
++) {
550 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
551 (unsigned long)root
->root_key
.objectid
,
552 BTRFS_ROOT_TRANS_TAG
);
554 btrfs_free_log(trans
, root
);
555 btrfs_update_reloc_root(trans
, root
);
557 if (root
->commit_root
!= root
->node
) {
558 switch_commit_root(root
);
559 btrfs_set_root_node(&root
->root_item
,
563 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
574 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
575 * otherwise every leaf in the btree is read and defragged.
577 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
579 struct btrfs_fs_info
*info
= root
->fs_info
;
581 struct btrfs_trans_handle
*trans
;
585 if (root
->defrag_running
)
587 trans
= btrfs_start_transaction(root
, 1);
589 root
->defrag_running
= 1;
590 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
591 nr
= trans
->blocks_used
;
592 btrfs_end_transaction(trans
, root
);
593 btrfs_btree_balance_dirty(info
->tree_root
, nr
);
596 trans
= btrfs_start_transaction(root
, 1);
597 if (root
->fs_info
->closing
|| ret
!= -EAGAIN
)
600 root
->defrag_running
= 0;
602 btrfs_end_transaction(trans
, root
);
608 * when dropping snapshots, we generate a ton of delayed refs, and it makes
609 * sense not to join the transaction while it is trying to flush the current
610 * queue of delayed refs out.
612 * This is used by the drop snapshot code only
614 static noinline
int wait_transaction_pre_flush(struct btrfs_fs_info
*info
)
618 mutex_lock(&info
->trans_mutex
);
619 while (info
->running_transaction
&&
620 info
->running_transaction
->delayed_refs
.flushing
) {
621 prepare_to_wait(&info
->transaction_wait
, &wait
,
622 TASK_UNINTERRUPTIBLE
);
623 mutex_unlock(&info
->trans_mutex
);
627 mutex_lock(&info
->trans_mutex
);
628 finish_wait(&info
->transaction_wait
, &wait
);
630 mutex_unlock(&info
->trans_mutex
);
635 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
638 int btrfs_drop_dead_root(struct btrfs_root
*root
)
640 struct btrfs_trans_handle
*trans
;
641 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
647 * we don't want to jump in and create a bunch of
648 * delayed refs if the transaction is starting to close
650 wait_transaction_pre_flush(tree_root
->fs_info
);
651 trans
= btrfs_start_transaction(tree_root
, 1);
654 * we've joined a transaction, make sure it isn't
657 if (trans
->transaction
->delayed_refs
.flushing
) {
658 btrfs_end_transaction(trans
, tree_root
);
662 ret
= btrfs_drop_snapshot(trans
, root
);
666 ret
= btrfs_update_root(trans
, tree_root
,
672 nr
= trans
->blocks_used
;
673 ret
= btrfs_end_transaction(trans
, tree_root
);
676 btrfs_btree_balance_dirty(tree_root
, nr
);
681 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
684 nr
= trans
->blocks_used
;
685 ret
= btrfs_end_transaction(trans
, tree_root
);
688 free_extent_buffer(root
->node
);
689 free_extent_buffer(root
->commit_root
);
692 btrfs_btree_balance_dirty(tree_root
, nr
);
698 * new snapshots need to be created at a very specific time in the
699 * transaction commit. This does the actual creation
701 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
702 struct btrfs_fs_info
*fs_info
,
703 struct btrfs_pending_snapshot
*pending
)
705 struct btrfs_key key
;
706 struct btrfs_root_item
*new_root_item
;
707 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
708 struct btrfs_root
*root
= pending
->root
;
709 struct extent_buffer
*tmp
;
710 struct extent_buffer
*old
;
714 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
715 if (!new_root_item
) {
719 ret
= btrfs_find_free_objectid(trans
, tree_root
, 0, &objectid
);
723 record_root_in_trans(trans
, root
);
724 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
725 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
727 key
.objectid
= objectid
;
728 /* record when the snapshot was created in key.offset */
729 key
.offset
= trans
->transid
;
730 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
732 old
= btrfs_lock_root_node(root
);
733 btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
734 btrfs_set_lock_blocking(old
);
736 btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
737 btrfs_tree_unlock(old
);
738 free_extent_buffer(old
);
740 btrfs_set_root_node(new_root_item
, tmp
);
741 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
743 btrfs_tree_unlock(tmp
);
744 free_extent_buffer(tmp
);
748 key
.offset
= (u64
)-1;
749 memcpy(&pending
->root_key
, &key
, sizeof(key
));
751 kfree(new_root_item
);
752 btrfs_unreserve_metadata_space(root
, 6);
756 static noinline
int finish_pending_snapshot(struct btrfs_fs_info
*fs_info
,
757 struct btrfs_pending_snapshot
*pending
)
762 struct btrfs_trans_handle
*trans
;
763 struct inode
*parent_inode
;
765 struct btrfs_root
*parent_root
;
767 parent_inode
= pending
->dentry
->d_parent
->d_inode
;
768 parent_root
= BTRFS_I(parent_inode
)->root
;
769 trans
= btrfs_join_transaction(parent_root
, 1);
772 * insert the directory item
774 namelen
= strlen(pending
->name
);
775 ret
= btrfs_set_inode_index(parent_inode
, &index
);
776 ret
= btrfs_insert_dir_item(trans
, parent_root
,
777 pending
->name
, namelen
,
779 &pending
->root_key
, BTRFS_FT_DIR
, index
);
784 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+ namelen
* 2);
785 ret
= btrfs_update_inode(trans
, parent_root
, parent_inode
);
788 ret
= btrfs_add_root_ref(trans
, parent_root
->fs_info
->tree_root
,
789 pending
->root_key
.objectid
,
790 parent_root
->root_key
.objectid
,
791 parent_inode
->i_ino
, index
, pending
->name
,
796 inode
= btrfs_lookup_dentry(parent_inode
, pending
->dentry
);
797 d_instantiate(pending
->dentry
, inode
);
799 btrfs_end_transaction(trans
, fs_info
->fs_root
);
804 * create all the snapshots we've scheduled for creation
806 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
807 struct btrfs_fs_info
*fs_info
)
809 struct btrfs_pending_snapshot
*pending
;
810 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
813 list_for_each_entry(pending
, head
, list
) {
814 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
820 static noinline
int finish_pending_snapshots(struct btrfs_trans_handle
*trans
,
821 struct btrfs_fs_info
*fs_info
)
823 struct btrfs_pending_snapshot
*pending
;
824 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
827 while (!list_empty(head
)) {
828 pending
= list_entry(head
->next
,
829 struct btrfs_pending_snapshot
, list
);
830 ret
= finish_pending_snapshot(fs_info
, pending
);
832 list_del(&pending
->list
);
833 kfree(pending
->name
);
839 static void update_super_roots(struct btrfs_root
*root
)
841 struct btrfs_root_item
*root_item
;
842 struct btrfs_super_block
*super
;
844 super
= &root
->fs_info
->super_copy
;
846 root_item
= &root
->fs_info
->chunk_root
->root_item
;
847 super
->chunk_root
= root_item
->bytenr
;
848 super
->chunk_root_generation
= root_item
->generation
;
849 super
->chunk_root_level
= root_item
->level
;
851 root_item
= &root
->fs_info
->tree_root
->root_item
;
852 super
->root
= root_item
->bytenr
;
853 super
->generation
= root_item
->generation
;
854 super
->root_level
= root_item
->level
;
857 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
860 spin_lock(&info
->new_trans_lock
);
861 if (info
->running_transaction
)
862 ret
= info
->running_transaction
->in_commit
;
863 spin_unlock(&info
->new_trans_lock
);
867 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
868 struct btrfs_root
*root
)
870 unsigned long joined
= 0;
871 unsigned long timeout
= 1;
872 struct btrfs_transaction
*cur_trans
;
873 struct btrfs_transaction
*prev_trans
= NULL
;
877 unsigned long now
= get_seconds();
878 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
880 btrfs_run_ordered_operations(root
, 0);
882 /* make a pass through all the delayed refs we have so far
883 * any runnings procs may add more while we are here
885 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
888 cur_trans
= trans
->transaction
;
890 * set the flushing flag so procs in this transaction have to
891 * start sending their work down.
893 cur_trans
->delayed_refs
.flushing
= 1;
895 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
898 mutex_lock(&root
->fs_info
->trans_mutex
);
899 if (cur_trans
->in_commit
) {
900 cur_trans
->use_count
++;
901 mutex_unlock(&root
->fs_info
->trans_mutex
);
902 btrfs_end_transaction(trans
, root
);
904 ret
= wait_for_commit(root
, cur_trans
);
907 mutex_lock(&root
->fs_info
->trans_mutex
);
908 put_transaction(cur_trans
);
909 mutex_unlock(&root
->fs_info
->trans_mutex
);
914 trans
->transaction
->in_commit
= 1;
915 trans
->transaction
->blocked
= 1;
916 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
917 prev_trans
= list_entry(cur_trans
->list
.prev
,
918 struct btrfs_transaction
, list
);
919 if (!prev_trans
->commit_done
) {
920 prev_trans
->use_count
++;
921 mutex_unlock(&root
->fs_info
->trans_mutex
);
923 wait_for_commit(root
, prev_trans
);
925 mutex_lock(&root
->fs_info
->trans_mutex
);
926 put_transaction(prev_trans
);
930 if (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1)
934 int snap_pending
= 0;
935 joined
= cur_trans
->num_joined
;
936 if (!list_empty(&trans
->transaction
->pending_snapshots
))
939 WARN_ON(cur_trans
!= trans
->transaction
);
940 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
941 TASK_UNINTERRUPTIBLE
);
943 if (cur_trans
->num_writers
> 1)
944 timeout
= MAX_SCHEDULE_TIMEOUT
;
945 else if (should_grow
)
948 mutex_unlock(&root
->fs_info
->trans_mutex
);
950 if (flush_on_commit
) {
951 btrfs_start_delalloc_inodes(root
);
952 ret
= btrfs_wait_ordered_extents(root
, 0);
954 } else if (snap_pending
) {
955 ret
= btrfs_wait_ordered_extents(root
, 1);
960 * rename don't use btrfs_join_transaction, so, once we
961 * set the transaction to blocked above, we aren't going
962 * to get any new ordered operations. We can safely run
963 * it here and no for sure that nothing new will be added
966 btrfs_run_ordered_operations(root
, 1);
969 if (cur_trans
->num_writers
> 1 || should_grow
)
970 schedule_timeout(timeout
);
972 mutex_lock(&root
->fs_info
->trans_mutex
);
973 finish_wait(&cur_trans
->writer_wait
, &wait
);
974 } while (cur_trans
->num_writers
> 1 ||
975 (should_grow
&& cur_trans
->num_joined
!= joined
));
977 ret
= create_pending_snapshots(trans
, root
->fs_info
);
980 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
983 WARN_ON(cur_trans
!= trans
->transaction
);
985 /* btrfs_commit_tree_roots is responsible for getting the
986 * various roots consistent with each other. Every pointer
987 * in the tree of tree roots has to point to the most up to date
988 * root for every subvolume and other tree. So, we have to keep
989 * the tree logging code from jumping in and changing any
992 * At this point in the commit, there can't be any tree-log
993 * writers, but a little lower down we drop the trans mutex
994 * and let new people in. By holding the tree_log_mutex
995 * from now until after the super is written, we avoid races
996 * with the tree-log code.
998 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1000 ret
= commit_fs_roots(trans
, root
);
1003 /* commit_fs_roots gets rid of all the tree log roots, it is now
1004 * safe to free the root of tree log roots
1006 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1008 ret
= commit_cowonly_roots(trans
, root
);
1011 btrfs_prepare_extent_commit(trans
, root
);
1013 cur_trans
= root
->fs_info
->running_transaction
;
1014 spin_lock(&root
->fs_info
->new_trans_lock
);
1015 root
->fs_info
->running_transaction
= NULL
;
1016 spin_unlock(&root
->fs_info
->new_trans_lock
);
1018 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1019 root
->fs_info
->tree_root
->node
);
1020 switch_commit_root(root
->fs_info
->tree_root
);
1022 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1023 root
->fs_info
->chunk_root
->node
);
1024 switch_commit_root(root
->fs_info
->chunk_root
);
1026 update_super_roots(root
);
1028 if (!root
->fs_info
->log_root_recovering
) {
1029 btrfs_set_super_log_root(&root
->fs_info
->super_copy
, 0);
1030 btrfs_set_super_log_root_level(&root
->fs_info
->super_copy
, 0);
1033 memcpy(&root
->fs_info
->super_for_commit
, &root
->fs_info
->super_copy
,
1034 sizeof(root
->fs_info
->super_copy
));
1036 trans
->transaction
->blocked
= 0;
1038 wake_up(&root
->fs_info
->transaction_wait
);
1040 mutex_unlock(&root
->fs_info
->trans_mutex
);
1041 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1043 write_ctree_super(trans
, root
, 0);
1046 * the super is written, we can safely allow the tree-loggers
1047 * to go about their business
1049 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1051 btrfs_finish_extent_commit(trans
, root
);
1053 /* do the directory inserts of any pending snapshot creations */
1054 finish_pending_snapshots(trans
, root
->fs_info
);
1056 mutex_lock(&root
->fs_info
->trans_mutex
);
1058 cur_trans
->commit_done
= 1;
1060 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1062 wake_up(&cur_trans
->commit_wait
);
1064 put_transaction(cur_trans
);
1065 put_transaction(cur_trans
);
1067 mutex_unlock(&root
->fs_info
->trans_mutex
);
1069 if (current
->journal_info
== trans
)
1070 current
->journal_info
= NULL
;
1072 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1077 * interface function to delete all the snapshots we have scheduled for deletion
1079 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1082 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1084 mutex_lock(&fs_info
->trans_mutex
);
1085 list_splice_init(&fs_info
->dead_roots
, &list
);
1086 mutex_unlock(&fs_info
->trans_mutex
);
1088 while (!list_empty(&list
)) {
1089 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1090 list_del(&root
->root_list
);
1092 if (btrfs_header_backref_rev(root
->node
) <
1093 BTRFS_MIXED_BACKREF_REV
)
1094 btrfs_drop_snapshot(root
, 0);
1096 btrfs_drop_snapshot(root
, 1);