fed up with those stupid warnings
[mmotm.git] / kernel / time / timekeeping.c
blob5a447b9e7bc7819baa9b0b76f08b3974d804378b
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* The shift value of the current clocksource. */
29 int shift;
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* Raw nano seconds accumulated per NTP interval. */
36 u32 raw_interval;
38 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
39 u64 xtime_nsec;
40 /* Difference between accumulated time and NTP time in ntp
41 * shifted nano seconds. */
42 s64 ntp_error;
43 /* Shift conversion between clock shifted nano seconds and
44 * ntp shifted nano seconds. */
45 int ntp_error_shift;
46 /* NTP adjusted clock multiplier */
47 u32 mult;
50 struct timekeeper timekeeper;
52 /**
53 * timekeeper_setup_internals - Set up internals to use clocksource clock.
55 * @clock: Pointer to clocksource.
57 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
58 * pair and interval request.
60 * Unless you're the timekeeping code, you should not be using this!
62 static void timekeeper_setup_internals(struct clocksource *clock)
64 cycle_t interval;
65 u64 tmp;
67 timekeeper.clock = clock;
68 clock->cycle_last = clock->read(clock);
70 /* Do the ns -> cycle conversion first, using original mult */
71 tmp = NTP_INTERVAL_LENGTH;
72 tmp <<= clock->shift;
73 tmp += clock->mult/2;
74 do_div(tmp, clock->mult);
75 if (tmp == 0)
76 tmp = 1;
78 interval = (cycle_t) tmp;
79 timekeeper.cycle_interval = interval;
81 /* Go back from cycles -> shifted ns */
82 timekeeper.xtime_interval = (u64) interval * clock->mult;
83 timekeeper.raw_interval =
84 ((u64) interval * clock->mult) >> clock->shift;
86 timekeeper.xtime_nsec = 0;
87 timekeeper.shift = clock->shift;
89 timekeeper.ntp_error = 0;
90 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
93 * The timekeeper keeps its own mult values for the currently
94 * active clocksource. These value will be adjusted via NTP
95 * to counteract clock drifting.
97 timekeeper.mult = clock->mult;
100 /* Timekeeper helper functions. */
101 static inline s64 timekeeping_get_ns(void)
103 cycle_t cycle_now, cycle_delta;
104 struct clocksource *clock;
106 /* read clocksource: */
107 clock = timekeeper.clock;
108 cycle_now = clock->read(clock);
110 /* calculate the delta since the last update_wall_time: */
111 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
113 /* return delta convert to nanoseconds using ntp adjusted mult. */
114 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
115 timekeeper.shift);
118 static inline s64 timekeeping_get_ns_raw(void)
120 cycle_t cycle_now, cycle_delta;
121 struct clocksource *clock;
123 /* read clocksource: */
124 clock = timekeeper.clock;
125 cycle_now = clock->read(clock);
127 /* calculate the delta since the last update_wall_time: */
128 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
130 /* return delta convert to nanoseconds using ntp adjusted mult. */
131 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
135 * This read-write spinlock protects us from races in SMP while
136 * playing with xtime.
138 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
142 * The current time
143 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
144 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
145 * at zero at system boot time, so wall_to_monotonic will be negative,
146 * however, we will ALWAYS keep the tv_nsec part positive so we can use
147 * the usual normalization.
149 * wall_to_monotonic is moved after resume from suspend for the monotonic
150 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
151 * to get the real boot based time offset.
153 * - wall_to_monotonic is no longer the boot time, getboottime must be
154 * used instead.
156 struct timespec xtime __attribute__ ((aligned (16)));
157 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
158 static struct timespec total_sleep_time;
161 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
163 struct timespec raw_time;
165 /* flag for if timekeeping is suspended */
166 int __read_mostly timekeeping_suspended;
168 /* must hold xtime_lock */
169 void timekeeping_leap_insert(int leapsecond)
171 xtime.tv_sec += leapsecond;
172 wall_to_monotonic.tv_sec -= leapsecond;
173 update_vsyscall(&xtime, timekeeper.clock);
176 #ifdef CONFIG_GENERIC_TIME
179 * timekeeping_forward_now - update clock to the current time
181 * Forward the current clock to update its state since the last call to
182 * update_wall_time(). This is useful before significant clock changes,
183 * as it avoids having to deal with this time offset explicitly.
185 static void timekeeping_forward_now(void)
187 cycle_t cycle_now, cycle_delta;
188 struct clocksource *clock;
189 s64 nsec;
191 clock = timekeeper.clock;
192 cycle_now = clock->read(clock);
193 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
194 clock->cycle_last = cycle_now;
196 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
197 timekeeper.shift);
199 /* If arch requires, add in gettimeoffset() */
200 nsec += arch_gettimeoffset();
202 timespec_add_ns(&xtime, nsec);
204 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
205 timespec_add_ns(&raw_time, nsec);
209 * getnstimeofday - Returns the time of day in a timespec
210 * @ts: pointer to the timespec to be set
212 * Returns the time of day in a timespec.
214 void getnstimeofday(struct timespec *ts)
216 unsigned long seq;
217 s64 nsecs;
219 WARN_ON(timekeeping_suspended);
221 do {
222 seq = read_seqbegin(&xtime_lock);
224 *ts = xtime;
225 nsecs = timekeeping_get_ns();
227 /* If arch requires, add in gettimeoffset() */
228 nsecs += arch_gettimeoffset();
230 } while (read_seqretry(&xtime_lock, seq));
232 timespec_add_ns(ts, nsecs);
235 EXPORT_SYMBOL(getnstimeofday);
237 ktime_t ktime_get(void)
239 unsigned int seq;
240 s64 secs, nsecs;
242 WARN_ON(timekeeping_suspended);
244 do {
245 seq = read_seqbegin(&xtime_lock);
246 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
247 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
248 nsecs += timekeeping_get_ns();
250 } while (read_seqretry(&xtime_lock, seq));
252 * Use ktime_set/ktime_add_ns to create a proper ktime on
253 * 32-bit architectures without CONFIG_KTIME_SCALAR.
255 return ktime_add_ns(ktime_set(secs, 0), nsecs);
257 EXPORT_SYMBOL_GPL(ktime_get);
260 * ktime_get_ts - get the monotonic clock in timespec format
261 * @ts: pointer to timespec variable
263 * The function calculates the monotonic clock from the realtime
264 * clock and the wall_to_monotonic offset and stores the result
265 * in normalized timespec format in the variable pointed to by @ts.
267 void ktime_get_ts(struct timespec *ts)
269 struct timespec tomono;
270 unsigned int seq;
271 s64 nsecs;
273 WARN_ON(timekeeping_suspended);
275 do {
276 seq = read_seqbegin(&xtime_lock);
277 *ts = xtime;
278 tomono = wall_to_monotonic;
279 nsecs = timekeeping_get_ns();
281 } while (read_seqretry(&xtime_lock, seq));
283 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
284 ts->tv_nsec + tomono.tv_nsec + nsecs);
286 EXPORT_SYMBOL_GPL(ktime_get_ts);
289 * do_gettimeofday - Returns the time of day in a timeval
290 * @tv: pointer to the timeval to be set
292 * NOTE: Users should be converted to using getnstimeofday()
294 void do_gettimeofday(struct timeval *tv)
296 struct timespec now;
298 getnstimeofday(&now);
299 tv->tv_sec = now.tv_sec;
300 tv->tv_usec = now.tv_nsec/1000;
303 EXPORT_SYMBOL(do_gettimeofday);
305 * do_settimeofday - Sets the time of day
306 * @tv: pointer to the timespec variable containing the new time
308 * Sets the time of day to the new time and update NTP and notify hrtimers
310 int do_settimeofday(struct timespec *tv)
312 struct timespec ts_delta;
313 unsigned long flags;
315 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
316 return -EINVAL;
318 write_seqlock_irqsave(&xtime_lock, flags);
320 timekeeping_forward_now();
322 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
323 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
324 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
326 xtime = *tv;
328 timekeeper.ntp_error = 0;
329 ntp_clear();
331 update_vsyscall(&xtime, timekeeper.clock);
333 write_sequnlock_irqrestore(&xtime_lock, flags);
335 /* signal hrtimers about time change */
336 clock_was_set();
338 return 0;
341 EXPORT_SYMBOL(do_settimeofday);
344 * change_clocksource - Swaps clocksources if a new one is available
346 * Accumulates current time interval and initializes new clocksource
348 static int change_clocksource(void *data)
350 struct clocksource *new, *old;
352 new = (struct clocksource *) data;
354 timekeeping_forward_now();
355 if (!new->enable || new->enable(new) == 0) {
356 old = timekeeper.clock;
357 timekeeper_setup_internals(new);
358 if (old->disable)
359 old->disable(old);
361 return 0;
365 * timekeeping_notify - Install a new clock source
366 * @clock: pointer to the clock source
368 * This function is called from clocksource.c after a new, better clock
369 * source has been registered. The caller holds the clocksource_mutex.
371 void timekeeping_notify(struct clocksource *clock)
373 if (timekeeper.clock == clock)
374 return;
375 stop_machine(change_clocksource, clock, NULL);
376 tick_clock_notify();
379 #else /* GENERIC_TIME */
381 static inline void timekeeping_forward_now(void) { }
384 * ktime_get - get the monotonic time in ktime_t format
386 * returns the time in ktime_t format
388 ktime_t ktime_get(void)
390 struct timespec now;
392 ktime_get_ts(&now);
394 return timespec_to_ktime(now);
396 EXPORT_SYMBOL_GPL(ktime_get);
399 * ktime_get_ts - get the monotonic clock in timespec format
400 * @ts: pointer to timespec variable
402 * The function calculates the monotonic clock from the realtime
403 * clock and the wall_to_monotonic offset and stores the result
404 * in normalized timespec format in the variable pointed to by @ts.
406 void ktime_get_ts(struct timespec *ts)
408 struct timespec tomono;
409 unsigned long seq;
411 do {
412 seq = read_seqbegin(&xtime_lock);
413 getnstimeofday(ts);
414 tomono = wall_to_monotonic;
416 } while (read_seqretry(&xtime_lock, seq));
418 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
419 ts->tv_nsec + tomono.tv_nsec);
421 EXPORT_SYMBOL_GPL(ktime_get_ts);
423 #endif /* !GENERIC_TIME */
426 * ktime_get_real - get the real (wall-) time in ktime_t format
428 * returns the time in ktime_t format
430 ktime_t ktime_get_real(void)
432 struct timespec now;
434 getnstimeofday(&now);
436 return timespec_to_ktime(now);
438 EXPORT_SYMBOL_GPL(ktime_get_real);
441 * getrawmonotonic - Returns the raw monotonic time in a timespec
442 * @ts: pointer to the timespec to be set
444 * Returns the raw monotonic time (completely un-modified by ntp)
446 void getrawmonotonic(struct timespec *ts)
448 unsigned long seq;
449 s64 nsecs;
451 do {
452 seq = read_seqbegin(&xtime_lock);
453 nsecs = timekeeping_get_ns_raw();
454 *ts = raw_time;
456 } while (read_seqretry(&xtime_lock, seq));
458 timespec_add_ns(ts, nsecs);
460 EXPORT_SYMBOL(getrawmonotonic);
464 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
466 int timekeeping_valid_for_hres(void)
468 unsigned long seq;
469 int ret;
471 do {
472 seq = read_seqbegin(&xtime_lock);
474 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
476 } while (read_seqretry(&xtime_lock, seq));
478 return ret;
482 * read_persistent_clock - Return time from the persistent clock.
484 * Weak dummy function for arches that do not yet support it.
485 * Reads the time from the battery backed persistent clock.
486 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
488 * XXX - Do be sure to remove it once all arches implement it.
490 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
492 ts->tv_sec = 0;
493 ts->tv_nsec = 0;
497 * read_boot_clock - Return time of the system start.
499 * Weak dummy function for arches that do not yet support it.
500 * Function to read the exact time the system has been started.
501 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
503 * XXX - Do be sure to remove it once all arches implement it.
505 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
507 ts->tv_sec = 0;
508 ts->tv_nsec = 0;
512 * timekeeping_init - Initializes the clocksource and common timekeeping values
514 void __init timekeeping_init(void)
516 struct clocksource *clock;
517 unsigned long flags;
518 struct timespec now, boot;
520 read_persistent_clock(&now);
521 read_boot_clock(&boot);
523 write_seqlock_irqsave(&xtime_lock, flags);
525 ntp_init();
527 clock = clocksource_default_clock();
528 if (clock->enable)
529 clock->enable(clock);
530 timekeeper_setup_internals(clock);
532 xtime.tv_sec = now.tv_sec;
533 xtime.tv_nsec = now.tv_nsec;
534 raw_time.tv_sec = 0;
535 raw_time.tv_nsec = 0;
536 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
537 boot.tv_sec = xtime.tv_sec;
538 boot.tv_nsec = xtime.tv_nsec;
540 set_normalized_timespec(&wall_to_monotonic,
541 -boot.tv_sec, -boot.tv_nsec);
542 total_sleep_time.tv_sec = 0;
543 total_sleep_time.tv_nsec = 0;
544 write_sequnlock_irqrestore(&xtime_lock, flags);
547 /* time in seconds when suspend began */
548 static struct timespec timekeeping_suspend_time;
551 * timekeeping_resume - Resumes the generic timekeeping subsystem.
552 * @dev: unused
554 * This is for the generic clocksource timekeeping.
555 * xtime/wall_to_monotonic/jiffies/etc are
556 * still managed by arch specific suspend/resume code.
558 static int timekeeping_resume(struct sys_device *dev)
560 unsigned long flags;
561 struct timespec ts;
563 read_persistent_clock(&ts);
565 clocksource_resume();
567 write_seqlock_irqsave(&xtime_lock, flags);
569 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
570 ts = timespec_sub(ts, timekeeping_suspend_time);
571 xtime = timespec_add_safe(xtime, ts);
572 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
573 total_sleep_time = timespec_add_safe(total_sleep_time, ts);
575 /* re-base the last cycle value */
576 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
577 timekeeper.ntp_error = 0;
578 timekeeping_suspended = 0;
579 write_sequnlock_irqrestore(&xtime_lock, flags);
581 touch_softlockup_watchdog();
583 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
585 /* Resume hrtimers */
586 hres_timers_resume();
588 return 0;
591 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
593 unsigned long flags;
595 read_persistent_clock(&timekeeping_suspend_time);
597 write_seqlock_irqsave(&xtime_lock, flags);
598 timekeeping_forward_now();
599 timekeeping_suspended = 1;
600 write_sequnlock_irqrestore(&xtime_lock, flags);
602 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
604 return 0;
607 /* sysfs resume/suspend bits for timekeeping */
608 static struct sysdev_class timekeeping_sysclass = {
609 .name = "timekeeping",
610 .resume = timekeeping_resume,
611 .suspend = timekeeping_suspend,
614 static struct sys_device device_timer = {
615 .id = 0,
616 .cls = &timekeeping_sysclass,
619 static int __init timekeeping_init_device(void)
621 int error = sysdev_class_register(&timekeeping_sysclass);
622 if (!error)
623 error = sysdev_register(&device_timer);
624 return error;
627 device_initcall(timekeeping_init_device);
630 * If the error is already larger, we look ahead even further
631 * to compensate for late or lost adjustments.
633 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
634 s64 *offset)
636 s64 tick_error, i;
637 u32 look_ahead, adj;
638 s32 error2, mult;
641 * Use the current error value to determine how much to look ahead.
642 * The larger the error the slower we adjust for it to avoid problems
643 * with losing too many ticks, otherwise we would overadjust and
644 * produce an even larger error. The smaller the adjustment the
645 * faster we try to adjust for it, as lost ticks can do less harm
646 * here. This is tuned so that an error of about 1 msec is adjusted
647 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
649 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
650 error2 = abs(error2);
651 for (look_ahead = 0; error2 > 0; look_ahead++)
652 error2 >>= 2;
655 * Now calculate the error in (1 << look_ahead) ticks, but first
656 * remove the single look ahead already included in the error.
658 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
659 tick_error -= timekeeper.xtime_interval >> 1;
660 error = ((error - tick_error) >> look_ahead) + tick_error;
662 /* Finally calculate the adjustment shift value. */
663 i = *interval;
664 mult = 1;
665 if (error < 0) {
666 error = -error;
667 *interval = -*interval;
668 *offset = -*offset;
669 mult = -1;
671 for (adj = 0; error > i; adj++)
672 error >>= 1;
674 *interval <<= adj;
675 *offset <<= adj;
676 return mult << adj;
680 * Adjust the multiplier to reduce the error value,
681 * this is optimized for the most common adjustments of -1,0,1,
682 * for other values we can do a bit more work.
684 static void timekeeping_adjust(s64 offset)
686 s64 error, interval = timekeeper.cycle_interval;
687 int adj;
689 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
690 if (error > interval) {
691 error >>= 2;
692 if (likely(error <= interval))
693 adj = 1;
694 else
695 adj = timekeeping_bigadjust(error, &interval, &offset);
696 } else if (error < -interval) {
697 error >>= 2;
698 if (likely(error >= -interval)) {
699 adj = -1;
700 interval = -interval;
701 offset = -offset;
702 } else
703 adj = timekeeping_bigadjust(error, &interval, &offset);
704 } else
705 return;
707 timekeeper.mult += adj;
708 timekeeper.xtime_interval += interval;
709 timekeeper.xtime_nsec -= offset;
710 timekeeper.ntp_error -= (interval - offset) <<
711 timekeeper.ntp_error_shift;
715 * logarithmic_accumulation - shifted accumulation of cycles
717 * This functions accumulates a shifted interval of cycles into
718 * into a shifted interval nanoseconds. Allows for O(log) accumulation
719 * loop.
721 * Returns the unconsumed cycles.
723 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
725 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
727 /* If the offset is smaller then a shifted interval, do nothing */
728 if (offset < timekeeper.cycle_interval<<shift)
729 return offset;
731 /* Accumulate one shifted interval */
732 offset -= timekeeper.cycle_interval << shift;
733 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
735 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
736 while (timekeeper.xtime_nsec >= nsecps) {
737 timekeeper.xtime_nsec -= nsecps;
738 xtime.tv_sec++;
739 second_overflow();
742 /* Accumulate into raw time */
743 raw_time.tv_nsec += timekeeper.raw_interval << shift;;
744 while (raw_time.tv_nsec >= NSEC_PER_SEC) {
745 raw_time.tv_nsec -= NSEC_PER_SEC;
746 raw_time.tv_sec++;
749 /* Accumulate error between NTP and clock interval */
750 timekeeper.ntp_error += tick_length << shift;
751 timekeeper.ntp_error -= timekeeper.xtime_interval <<
752 (timekeeper.ntp_error_shift + shift);
754 return offset;
758 * update_wall_time - Uses the current clocksource to increment the wall time
760 * Called from the timer interrupt, must hold a write on xtime_lock.
762 void update_wall_time(void)
764 struct clocksource *clock;
765 cycle_t offset;
766 int shift = 0, maxshift;
768 /* Make sure we're fully resumed: */
769 if (unlikely(timekeeping_suspended))
770 return;
772 clock = timekeeper.clock;
773 #ifdef CONFIG_GENERIC_TIME
774 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
775 #else
776 offset = timekeeper.cycle_interval;
777 #endif
778 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
781 * With NO_HZ we may have to accumulate many cycle_intervals
782 * (think "ticks") worth of time at once. To do this efficiently,
783 * we calculate the largest doubling multiple of cycle_intervals
784 * that is smaller then the offset. We then accumulate that
785 * chunk in one go, and then try to consume the next smaller
786 * doubled multiple.
788 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
789 shift = max(0, shift);
790 /* Bound shift to one less then what overflows tick_length */
791 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
792 shift = min(shift, maxshift);
793 while (offset >= timekeeper.cycle_interval) {
794 offset = logarithmic_accumulation(offset, shift);
795 shift--;
798 /* correct the clock when NTP error is too big */
799 timekeeping_adjust(offset);
802 * Since in the loop above, we accumulate any amount of time
803 * in xtime_nsec over a second into xtime.tv_sec, its possible for
804 * xtime_nsec to be fairly small after the loop. Further, if we're
805 * slightly speeding the clocksource up in timekeeping_adjust(),
806 * its possible the required corrective factor to xtime_nsec could
807 * cause it to underflow.
809 * Now, we cannot simply roll the accumulated second back, since
810 * the NTP subsystem has been notified via second_overflow. So
811 * instead we push xtime_nsec forward by the amount we underflowed,
812 * and add that amount into the error.
814 * We'll correct this error next time through this function, when
815 * xtime_nsec is not as small.
817 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
818 s64 neg = -(s64)timekeeper.xtime_nsec;
819 timekeeper.xtime_nsec = 0;
820 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
823 /* store full nanoseconds into xtime after rounding it up and
824 * add the remainder to the error difference.
826 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
827 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
828 timekeeper.ntp_error += timekeeper.xtime_nsec <<
829 timekeeper.ntp_error_shift;
831 /* check to see if there is a new clocksource to use */
832 update_vsyscall(&xtime, timekeeper.clock);
836 * getboottime - Return the real time of system boot.
837 * @ts: pointer to the timespec to be set
839 * Returns the time of day in a timespec.
841 * This is based on the wall_to_monotonic offset and the total suspend
842 * time. Calls to settimeofday will affect the value returned (which
843 * basically means that however wrong your real time clock is at boot time,
844 * you get the right time here).
846 void getboottime(struct timespec *ts)
848 struct timespec boottime = {
849 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
850 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
853 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
857 * monotonic_to_bootbased - Convert the monotonic time to boot based.
858 * @ts: pointer to the timespec to be converted
860 void monotonic_to_bootbased(struct timespec *ts)
862 *ts = timespec_add_safe(*ts, total_sleep_time);
865 unsigned long get_seconds(void)
867 return xtime.tv_sec;
869 EXPORT_SYMBOL(get_seconds);
871 struct timespec __current_kernel_time(void)
873 return xtime;
876 struct timespec current_kernel_time(void)
878 struct timespec now;
879 unsigned long seq;
881 do {
882 seq = read_seqbegin(&xtime_lock);
883 now = xtime;
884 } while (read_seqretry(&xtime_lock, seq));
886 return now;
888 EXPORT_SYMBOL(current_kernel_time);
890 struct timespec get_monotonic_coarse(void)
892 struct timespec now, mono;
893 unsigned long seq;
895 do {
896 seq = read_seqbegin(&xtime_lock);
897 now = xtime;
898 mono = wall_to_monotonic;
899 } while (read_seqretry(&xtime_lock, seq));
901 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
902 now.tv_nsec + mono.tv_nsec);
903 return now;