3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
16 * bitmaps provide an array of bits, implemented using an an
17 * array of unsigned longs. The number of valid bits in a
18 * given bitmap does _not_ need to be an exact multiple of
21 * The possible unused bits in the last, partially used word
22 * of a bitmap are 'don't care'. The implementation makes
23 * no particular effort to keep them zero. It ensures that
24 * their value will not affect the results of any operation.
25 * The bitmap operations that return Boolean (bitmap_empty,
26 * for example) or scalar (bitmap_weight, for example) results
27 * carefully filter out these unused bits from impacting their
30 * These operations actually hold to a slightly stronger rule:
31 * if you don't input any bitmaps to these ops that have some
32 * unused bits set, then they won't output any set unused bits
35 * The byte ordering of bitmaps is more natural on little
36 * endian architectures. See the big-endian headers
37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38 * for the best explanations of this ordering.
41 int __bitmap_empty(const unsigned long *bitmap
, int bits
)
43 int k
, lim
= bits
/BITS_PER_LONG
;
44 for (k
= 0; k
< lim
; ++k
)
48 if (bits
% BITS_PER_LONG
)
49 if (bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
54 EXPORT_SYMBOL(__bitmap_empty
);
56 int __bitmap_full(const unsigned long *bitmap
, int bits
)
58 int k
, lim
= bits
/BITS_PER_LONG
;
59 for (k
= 0; k
< lim
; ++k
)
63 if (bits
% BITS_PER_LONG
)
64 if (~bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
69 EXPORT_SYMBOL(__bitmap_full
);
71 int __bitmap_equal(const unsigned long *bitmap1
,
72 const unsigned long *bitmap2
, int bits
)
74 int k
, lim
= bits
/BITS_PER_LONG
;
75 for (k
= 0; k
< lim
; ++k
)
76 if (bitmap1
[k
] != bitmap2
[k
])
79 if (bits
% BITS_PER_LONG
)
80 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
85 EXPORT_SYMBOL(__bitmap_equal
);
87 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, int bits
)
89 int k
, lim
= bits
/BITS_PER_LONG
;
90 for (k
= 0; k
< lim
; ++k
)
93 if (bits
% BITS_PER_LONG
)
94 dst
[k
] = ~src
[k
] & BITMAP_LAST_WORD_MASK(bits
);
96 EXPORT_SYMBOL(__bitmap_complement
);
99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
100 * @dst : destination bitmap
101 * @src : source bitmap
102 * @shift : shift by this many bits
103 * @bits : bitmap size, in bits
105 * Shifting right (dividing) means moving bits in the MS -> LS bit
106 * direction. Zeros are fed into the vacated MS positions and the
107 * LS bits shifted off the bottom are lost.
109 void __bitmap_shift_right(unsigned long *dst
,
110 const unsigned long *src
, int shift
, int bits
)
112 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
113 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
114 unsigned long mask
= (1UL << left
) - 1;
115 for (k
= 0; off
+ k
< lim
; ++k
) {
116 unsigned long upper
, lower
;
119 * If shift is not word aligned, take lower rem bits of
120 * word above and make them the top rem bits of result.
122 if (!rem
|| off
+ k
+ 1 >= lim
)
125 upper
= src
[off
+ k
+ 1];
126 if (off
+ k
+ 1 == lim
- 1 && left
)
129 lower
= src
[off
+ k
];
130 if (left
&& off
+ k
== lim
- 1)
132 dst
[k
] = upper
<< (BITS_PER_LONG
- rem
) | lower
>> rem
;
133 if (left
&& k
== lim
- 1)
137 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
139 EXPORT_SYMBOL(__bitmap_shift_right
);
143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
144 * @dst : destination bitmap
145 * @src : source bitmap
146 * @shift : shift by this many bits
147 * @bits : bitmap size, in bits
149 * Shifting left (multiplying) means moving bits in the LS -> MS
150 * direction. Zeros are fed into the vacated LS bit positions
151 * and those MS bits shifted off the top are lost.
154 void __bitmap_shift_left(unsigned long *dst
,
155 const unsigned long *src
, int shift
, int bits
)
157 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
158 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
159 for (k
= lim
- off
- 1; k
>= 0; --k
) {
160 unsigned long upper
, lower
;
163 * If shift is not word aligned, take upper rem bits of
164 * word below and make them the bottom rem bits of result.
171 if (left
&& k
== lim
- 1)
172 upper
&= (1UL << left
) - 1;
173 dst
[k
+ off
] = lower
>> (BITS_PER_LONG
- rem
) | upper
<< rem
;
174 if (left
&& k
+ off
== lim
- 1)
175 dst
[k
+ off
] &= (1UL << left
) - 1;
178 memset(dst
, 0, off
*sizeof(unsigned long));
180 EXPORT_SYMBOL(__bitmap_shift_left
);
182 int __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
183 const unsigned long *bitmap2
, int bits
)
186 int nr
= BITS_TO_LONGS(bits
);
187 unsigned long result
= 0;
189 for (k
= 0; k
< nr
; k
++)
190 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
193 EXPORT_SYMBOL(__bitmap_and
);
195 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
196 const unsigned long *bitmap2
, int bits
)
199 int nr
= BITS_TO_LONGS(bits
);
201 for (k
= 0; k
< nr
; k
++)
202 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
204 EXPORT_SYMBOL(__bitmap_or
);
206 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
207 const unsigned long *bitmap2
, int bits
)
210 int nr
= BITS_TO_LONGS(bits
);
212 for (k
= 0; k
< nr
; k
++)
213 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
215 EXPORT_SYMBOL(__bitmap_xor
);
217 int __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
218 const unsigned long *bitmap2
, int bits
)
221 int nr
= BITS_TO_LONGS(bits
);
222 unsigned long result
= 0;
224 for (k
= 0; k
< nr
; k
++)
225 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
228 EXPORT_SYMBOL(__bitmap_andnot
);
230 int __bitmap_intersects(const unsigned long *bitmap1
,
231 const unsigned long *bitmap2
, int bits
)
233 int k
, lim
= bits
/BITS_PER_LONG
;
234 for (k
= 0; k
< lim
; ++k
)
235 if (bitmap1
[k
] & bitmap2
[k
])
238 if (bits
% BITS_PER_LONG
)
239 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
243 EXPORT_SYMBOL(__bitmap_intersects
);
245 int __bitmap_subset(const unsigned long *bitmap1
,
246 const unsigned long *bitmap2
, int bits
)
248 int k
, lim
= bits
/BITS_PER_LONG
;
249 for (k
= 0; k
< lim
; ++k
)
250 if (bitmap1
[k
] & ~bitmap2
[k
])
253 if (bits
% BITS_PER_LONG
)
254 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
258 EXPORT_SYMBOL(__bitmap_subset
);
260 int __bitmap_weight(const unsigned long *bitmap
, int bits
)
262 int k
, w
= 0, lim
= bits
/BITS_PER_LONG
;
264 for (k
= 0; k
< lim
; k
++)
265 w
+= hweight_long(bitmap
[k
]);
267 if (bits
% BITS_PER_LONG
)
268 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
272 EXPORT_SYMBOL(__bitmap_weight
);
274 void bitmap_set(unsigned long *map
, int i
, int len
)
283 EXPORT_SYMBOL(bitmap_set
);
285 void bitmap_clear(unsigned long *map
, int start
, int nr
)
287 int end
= start
+ nr
;
289 while (start
< end
) {
290 __clear_bit(start
, map
);
294 EXPORT_SYMBOL(bitmap_clear
);
296 unsigned long bitmap_find_next_zero_area(unsigned long *map
,
300 unsigned long align_mask
)
302 unsigned long index
, end
, i
;
304 index
= find_next_zero_bit(map
, size
, start
);
306 /* Align allocation */
307 index
= (index
+ align_mask
) & ~align_mask
;
312 i
= find_next_bit(map
, end
, index
);
319 EXPORT_SYMBOL(bitmap_find_next_zero_area
);
322 * Bitmap printing & parsing functions: first version by Bill Irwin,
323 * second version by Paul Jackson, third by Joe Korty.
327 #define nbits_to_hold_value(val) fls(val)
328 #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
329 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
332 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
333 * @buf: byte buffer into which string is placed
334 * @buflen: reserved size of @buf, in bytes
335 * @maskp: pointer to bitmap to convert
336 * @nmaskbits: size of bitmap, in bits
338 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
339 * comma-separated sets of eight digits per set.
341 int bitmap_scnprintf(char *buf
, unsigned int buflen
,
342 const unsigned long *maskp
, int nmaskbits
)
344 int i
, word
, bit
, len
= 0;
346 const char *sep
= "";
350 chunksz
= nmaskbits
& (CHUNKSZ
- 1);
354 i
= ALIGN(nmaskbits
, CHUNKSZ
) - CHUNKSZ
;
355 for (; i
>= 0; i
-= CHUNKSZ
) {
356 chunkmask
= ((1ULL << chunksz
) - 1);
357 word
= i
/ BITS_PER_LONG
;
358 bit
= i
% BITS_PER_LONG
;
359 val
= (maskp
[word
] >> bit
) & chunkmask
;
360 len
+= scnprintf(buf
+len
, buflen
-len
, "%s%0*lx", sep
,
367 EXPORT_SYMBOL(bitmap_scnprintf
);
370 * __bitmap_parse - convert an ASCII hex string into a bitmap.
371 * @buf: pointer to buffer containing string.
372 * @buflen: buffer size in bytes. If string is smaller than this
373 * then it must be terminated with a \0.
374 * @is_user: location of buffer, 0 indicates kernel space
375 * @maskp: pointer to bitmap array that will contain result.
376 * @nmaskbits: size of bitmap, in bits.
378 * Commas group hex digits into chunks. Each chunk defines exactly 32
379 * bits of the resultant bitmask. No chunk may specify a value larger
380 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
381 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
382 * characters and for grouping errors such as "1,,5", ",44", "," and "".
383 * Leading and trailing whitespace accepted, but not embedded whitespace.
385 int __bitmap_parse(const char *buf
, unsigned int buflen
,
386 int is_user
, unsigned long *maskp
,
389 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
391 const char __user
*ubuf
= buf
;
393 bitmap_zero(maskp
, nmaskbits
);
395 nchunks
= nbits
= totaldigits
= c
= 0;
399 /* Get the next chunk of the bitmap */
403 if (__get_user(c
, ubuf
++))
413 * If the last character was a space and the current
414 * character isn't '\0', we've got embedded whitespace.
415 * This is a no-no, so throw an error.
417 if (totaldigits
&& c
&& isspace(old_c
))
420 /* A '\0' or a ',' signal the end of the chunk */
421 if (c
== '\0' || c
== ',')
428 * Make sure there are at least 4 free bits in 'chunk'.
429 * If not, this hexdigit will overflow 'chunk', so
432 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
435 chunk
= (chunk
<< 4) | unhex(c
);
436 ndigits
++; totaldigits
++;
440 if (nchunks
== 0 && chunk
== 0)
443 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
446 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
447 if (nbits
> nmaskbits
)
449 } while (buflen
&& c
== ',');
453 EXPORT_SYMBOL(__bitmap_parse
);
456 * bitmap_parse_user()
458 * @ubuf: pointer to user buffer containing string.
459 * @ulen: buffer size in bytes. If string is smaller than this
460 * then it must be terminated with a \0.
461 * @maskp: pointer to bitmap array that will contain result.
462 * @nmaskbits: size of bitmap, in bits.
464 * Wrapper for __bitmap_parse(), providing it with user buffer.
466 * We cannot have this as an inline function in bitmap.h because it needs
467 * linux/uaccess.h to get the access_ok() declaration and this causes
468 * cyclic dependencies.
470 int bitmap_parse_user(const char __user
*ubuf
,
471 unsigned int ulen
, unsigned long *maskp
,
474 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
476 return __bitmap_parse((const char *)ubuf
, ulen
, 1, maskp
, nmaskbits
);
478 EXPORT_SYMBOL(bitmap_parse_user
);
481 * bscnl_emit(buf, buflen, rbot, rtop, bp)
483 * Helper routine for bitmap_scnlistprintf(). Write decimal number
484 * or range to buf, suppressing output past buf+buflen, with optional
485 * comma-prefix. Return len of what would be written to buf, if it
488 static inline int bscnl_emit(char *buf
, int buflen
, int rbot
, int rtop
, int len
)
491 len
+= scnprintf(buf
+ len
, buflen
- len
, ",");
493 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d", rbot
);
495 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d-%d", rbot
, rtop
);
500 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
501 * @buf: byte buffer into which string is placed
502 * @buflen: reserved size of @buf, in bytes
503 * @maskp: pointer to bitmap to convert
504 * @nmaskbits: size of bitmap, in bits
506 * Output format is a comma-separated list of decimal numbers and
507 * ranges. Consecutively set bits are shown as two hyphen-separated
508 * decimal numbers, the smallest and largest bit numbers set in
509 * the range. Output format is compatible with the format
510 * accepted as input by bitmap_parselist().
512 * The return value is the number of characters which would be
513 * generated for the given input, excluding the trailing '\0', as
516 int bitmap_scnlistprintf(char *buf
, unsigned int buflen
,
517 const unsigned long *maskp
, int nmaskbits
)
520 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
527 rbot
= cur
= find_first_bit(maskp
, nmaskbits
);
528 while (cur
< nmaskbits
) {
530 cur
= find_next_bit(maskp
, nmaskbits
, cur
+1);
531 if (cur
>= nmaskbits
|| cur
> rtop
+ 1) {
532 len
= bscnl_emit(buf
, buflen
, rbot
, rtop
, len
);
538 EXPORT_SYMBOL(bitmap_scnlistprintf
);
541 * bitmap_parselist - convert list format ASCII string to bitmap
542 * @bp: read nul-terminated user string from this buffer
543 * @maskp: write resulting mask here
544 * @nmaskbits: number of bits in mask to be written
546 * Input format is a comma-separated list of decimal numbers and
547 * ranges. Consecutively set bits are shown as two hyphen-separated
548 * decimal numbers, the smallest and largest bit numbers set in
551 * Returns 0 on success, -errno on invalid input strings.
553 * %-EINVAL: second number in range smaller than first
554 * %-EINVAL: invalid character in string
555 * %-ERANGE: bit number specified too large for mask
557 int bitmap_parselist(const char *bp
, unsigned long *maskp
, int nmaskbits
)
561 bitmap_zero(maskp
, nmaskbits
);
565 b
= a
= simple_strtoul(bp
, (char **)&bp
, BASEDEC
);
570 b
= simple_strtoul(bp
, (char **)&bp
, BASEDEC
);
582 } while (*bp
!= '\0' && *bp
!= '\n');
585 EXPORT_SYMBOL(bitmap_parselist
);
588 * bitmap_pos_to_ord(buf, pos, bits)
589 * @buf: pointer to a bitmap
590 * @pos: a bit position in @buf (0 <= @pos < @bits)
591 * @bits: number of valid bit positions in @buf
593 * Map the bit at position @pos in @buf (of length @bits) to the
594 * ordinal of which set bit it is. If it is not set or if @pos
595 * is not a valid bit position, map to -1.
597 * If for example, just bits 4 through 7 are set in @buf, then @pos
598 * values 4 through 7 will get mapped to 0 through 3, respectively,
599 * and other @pos values will get mapped to 0. When @pos value 7
600 * gets mapped to (returns) @ord value 3 in this example, that means
601 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
603 * The bit positions 0 through @bits are valid positions in @buf.
605 static int bitmap_pos_to_ord(const unsigned long *buf
, int pos
, int bits
)
609 if (pos
< 0 || pos
>= bits
|| !test_bit(pos
, buf
))
612 i
= find_first_bit(buf
, bits
);
615 i
= find_next_bit(buf
, bits
, i
+ 1);
624 * bitmap_ord_to_pos(buf, ord, bits)
625 * @buf: pointer to bitmap
626 * @ord: ordinal bit position (n-th set bit, n >= 0)
627 * @bits: number of valid bit positions in @buf
629 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
630 * Value of @ord should be in range 0 <= @ord < weight(buf), else
631 * results are undefined.
633 * If for example, just bits 4 through 7 are set in @buf, then @ord
634 * values 0 through 3 will get mapped to 4 through 7, respectively,
635 * and all other @ord values return undefined values. When @ord value 3
636 * gets mapped to (returns) @pos value 7 in this example, that means
637 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
639 * The bit positions 0 through @bits are valid positions in @buf.
641 static int bitmap_ord_to_pos(const unsigned long *buf
, int ord
, int bits
)
645 if (ord
>= 0 && ord
< bits
) {
648 for (i
= find_first_bit(buf
, bits
);
650 i
= find_next_bit(buf
, bits
, i
+ 1))
652 if (i
< bits
&& ord
== 0)
660 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
661 * @dst: remapped result
662 * @src: subset to be remapped
663 * @old: defines domain of map
664 * @new: defines range of map
665 * @bits: number of bits in each of these bitmaps
667 * Let @old and @new define a mapping of bit positions, such that
668 * whatever position is held by the n-th set bit in @old is mapped
669 * to the n-th set bit in @new. In the more general case, allowing
670 * for the possibility that the weight 'w' of @new is less than the
671 * weight of @old, map the position of the n-th set bit in @old to
672 * the position of the m-th set bit in @new, where m == n % w.
674 * If either of the @old and @new bitmaps are empty, or if @src and
675 * @dst point to the same location, then this routine copies @src
678 * The positions of unset bits in @old are mapped to themselves
679 * (the identify map).
681 * Apply the above specified mapping to @src, placing the result in
682 * @dst, clearing any bits previously set in @dst.
684 * For example, lets say that @old has bits 4 through 7 set, and
685 * @new has bits 12 through 15 set. This defines the mapping of bit
686 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
687 * bit positions unchanged. So if say @src comes into this routine
688 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
691 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
692 const unsigned long *old
, const unsigned long *new,
697 if (dst
== src
) /* following doesn't handle inplace remaps */
699 bitmap_zero(dst
, bits
);
701 w
= bitmap_weight(new, bits
);
702 for (oldbit
= find_first_bit(src
, bits
);
704 oldbit
= find_next_bit(src
, bits
, oldbit
+ 1)) {
705 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
707 set_bit(oldbit
, dst
); /* identity map */
709 set_bit(bitmap_ord_to_pos(new, n
% w
, bits
), dst
);
712 EXPORT_SYMBOL(bitmap_remap
);
715 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
716 * @oldbit: bit position to be mapped
717 * @old: defines domain of map
718 * @new: defines range of map
719 * @bits: number of bits in each of these bitmaps
721 * Let @old and @new define a mapping of bit positions, such that
722 * whatever position is held by the n-th set bit in @old is mapped
723 * to the n-th set bit in @new. In the more general case, allowing
724 * for the possibility that the weight 'w' of @new is less than the
725 * weight of @old, map the position of the n-th set bit in @old to
726 * the position of the m-th set bit in @new, where m == n % w.
728 * The positions of unset bits in @old are mapped to themselves
729 * (the identify map).
731 * Apply the above specified mapping to bit position @oldbit, returning
732 * the new bit position.
734 * For example, lets say that @old has bits 4 through 7 set, and
735 * @new has bits 12 through 15 set. This defines the mapping of bit
736 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
737 * bit positions unchanged. So if say @oldbit is 5, then this routine
740 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
741 const unsigned long *new, int bits
)
743 int w
= bitmap_weight(new, bits
);
744 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
748 return bitmap_ord_to_pos(new, n
% w
, bits
);
750 EXPORT_SYMBOL(bitmap_bitremap
);
753 * bitmap_onto - translate one bitmap relative to another
754 * @dst: resulting translated bitmap
755 * @orig: original untranslated bitmap
756 * @relmap: bitmap relative to which translated
757 * @bits: number of bits in each of these bitmaps
759 * Set the n-th bit of @dst iff there exists some m such that the
760 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
761 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
762 * (If you understood the previous sentence the first time your
763 * read it, you're overqualified for your current job.)
765 * In other words, @orig is mapped onto (surjectively) @dst,
766 * using the the map { <n, m> | the n-th bit of @relmap is the
767 * m-th set bit of @relmap }.
769 * Any set bits in @orig above bit number W, where W is the
770 * weight of (number of set bits in) @relmap are mapped nowhere.
771 * In particular, if for all bits m set in @orig, m >= W, then
772 * @dst will end up empty. In situations where the possibility
773 * of such an empty result is not desired, one way to avoid it is
774 * to use the bitmap_fold() operator, below, to first fold the
775 * @orig bitmap over itself so that all its set bits x are in the
776 * range 0 <= x < W. The bitmap_fold() operator does this by
777 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
779 * Example [1] for bitmap_onto():
780 * Let's say @relmap has bits 30-39 set, and @orig has bits
781 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
782 * @dst will have bits 31, 33, 35, 37 and 39 set.
784 * When bit 0 is set in @orig, it means turn on the bit in
785 * @dst corresponding to whatever is the first bit (if any)
786 * that is turned on in @relmap. Since bit 0 was off in the
787 * above example, we leave off that bit (bit 30) in @dst.
789 * When bit 1 is set in @orig (as in the above example), it
790 * means turn on the bit in @dst corresponding to whatever
791 * is the second bit that is turned on in @relmap. The second
792 * bit in @relmap that was turned on in the above example was
793 * bit 31, so we turned on bit 31 in @dst.
795 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
796 * because they were the 4th, 6th, 8th and 10th set bits
797 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
798 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
800 * When bit 11 is set in @orig, it means turn on the bit in
801 * @dst corresponding to whatever is the twelth bit that is
802 * turned on in @relmap. In the above example, there were
803 * only ten bits turned on in @relmap (30..39), so that bit
804 * 11 was set in @orig had no affect on @dst.
806 * Example [2] for bitmap_fold() + bitmap_onto():
807 * Let's say @relmap has these ten bits set:
808 * 40 41 42 43 45 48 53 61 74 95
809 * (for the curious, that's 40 plus the first ten terms of the
810 * Fibonacci sequence.)
812 * Further lets say we use the following code, invoking
813 * bitmap_fold() then bitmap_onto, as suggested above to
814 * avoid the possitility of an empty @dst result:
816 * unsigned long *tmp; // a temporary bitmap's bits
818 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
819 * bitmap_onto(dst, tmp, relmap, bits);
821 * Then this table shows what various values of @dst would be, for
822 * various @orig's. I list the zero-based positions of each set bit.
823 * The tmp column shows the intermediate result, as computed by
824 * using bitmap_fold() to fold the @orig bitmap modulo ten
825 * (the weight of @relmap).
832 * 1 3 5 7 1 3 5 7 41 43 48 61
833 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
834 * 0 9 18 27 0 9 8 7 40 61 74 95
836 * 0 11 22 33 0 1 2 3 40 41 42 43
837 * 0 12 24 36 0 2 4 6 40 42 45 53
838 * 78 102 211 1 2 8 41 42 74 (*)
840 * (*) For these marked lines, if we hadn't first done bitmap_fold()
841 * into tmp, then the @dst result would have been empty.
843 * If either of @orig or @relmap is empty (no set bits), then @dst
844 * will be returned empty.
846 * If (as explained above) the only set bits in @orig are in positions
847 * m where m >= W, (where W is the weight of @relmap) then @dst will
848 * once again be returned empty.
850 * All bits in @dst not set by the above rule are cleared.
852 void bitmap_onto(unsigned long *dst
, const unsigned long *orig
,
853 const unsigned long *relmap
, int bits
)
855 int n
, m
; /* same meaning as in above comment */
857 if (dst
== orig
) /* following doesn't handle inplace mappings */
859 bitmap_zero(dst
, bits
);
862 * The following code is a more efficient, but less
863 * obvious, equivalent to the loop:
864 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
865 * n = bitmap_ord_to_pos(orig, m, bits);
866 * if (test_bit(m, orig))
872 for (n
= find_first_bit(relmap
, bits
);
874 n
= find_next_bit(relmap
, bits
, n
+ 1)) {
875 /* m == bitmap_pos_to_ord(relmap, n, bits) */
876 if (test_bit(m
, orig
))
881 EXPORT_SYMBOL(bitmap_onto
);
884 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
885 * @dst: resulting smaller bitmap
886 * @orig: original larger bitmap
887 * @sz: specified size
888 * @bits: number of bits in each of these bitmaps
890 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
891 * Clear all other bits in @dst. See further the comment and
892 * Example [2] for bitmap_onto() for why and how to use this.
894 void bitmap_fold(unsigned long *dst
, const unsigned long *orig
,
899 if (dst
== orig
) /* following doesn't handle inplace mappings */
901 bitmap_zero(dst
, bits
);
903 for (oldbit
= find_first_bit(orig
, bits
);
905 oldbit
= find_next_bit(orig
, bits
, oldbit
+ 1))
906 set_bit(oldbit
% sz
, dst
);
908 EXPORT_SYMBOL(bitmap_fold
);
911 * Common code for bitmap_*_region() routines.
912 * bitmap: array of unsigned longs corresponding to the bitmap
913 * pos: the beginning of the region
914 * order: region size (log base 2 of number of bits)
915 * reg_op: operation(s) to perform on that region of bitmap
917 * Can set, verify and/or release a region of bits in a bitmap,
918 * depending on which combination of REG_OP_* flag bits is set.
920 * A region of a bitmap is a sequence of bits in the bitmap, of
921 * some size '1 << order' (a power of two), aligned to that same
922 * '1 << order' power of two.
924 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
925 * Returns 0 in all other cases and reg_ops.
929 REG_OP_ISFREE
, /* true if region is all zero bits */
930 REG_OP_ALLOC
, /* set all bits in region */
931 REG_OP_RELEASE
, /* clear all bits in region */
934 static int __reg_op(unsigned long *bitmap
, int pos
, int order
, int reg_op
)
936 int nbits_reg
; /* number of bits in region */
937 int index
; /* index first long of region in bitmap */
938 int offset
; /* bit offset region in bitmap[index] */
939 int nlongs_reg
; /* num longs spanned by region in bitmap */
940 int nbitsinlong
; /* num bits of region in each spanned long */
941 unsigned long mask
; /* bitmask for one long of region */
942 int i
; /* scans bitmap by longs */
943 int ret
= 0; /* return value */
946 * Either nlongs_reg == 1 (for small orders that fit in one long)
947 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
949 nbits_reg
= 1 << order
;
950 index
= pos
/ BITS_PER_LONG
;
951 offset
= pos
- (index
* BITS_PER_LONG
);
952 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
953 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
956 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
957 * overflows if nbitsinlong == BITS_PER_LONG.
959 mask
= (1UL << (nbitsinlong
- 1));
965 for (i
= 0; i
< nlongs_reg
; i
++) {
966 if (bitmap
[index
+ i
] & mask
)
969 ret
= 1; /* all bits in region free (zero) */
973 for (i
= 0; i
< nlongs_reg
; i
++)
974 bitmap
[index
+ i
] |= mask
;
978 for (i
= 0; i
< nlongs_reg
; i
++)
979 bitmap
[index
+ i
] &= ~mask
;
987 * bitmap_find_free_region - find a contiguous aligned mem region
988 * @bitmap: array of unsigned longs corresponding to the bitmap
989 * @bits: number of bits in the bitmap
990 * @order: region size (log base 2 of number of bits) to find
992 * Find a region of free (zero) bits in a @bitmap of @bits bits and
993 * allocate them (set them to one). Only consider regions of length
994 * a power (@order) of two, aligned to that power of two, which
995 * makes the search algorithm much faster.
997 * Return the bit offset in bitmap of the allocated region,
998 * or -errno on failure.
1000 int bitmap_find_free_region(unsigned long *bitmap
, int bits
, int order
)
1002 int pos
, end
; /* scans bitmap by regions of size order */
1004 for (pos
= 0 ; (end
= pos
+ (1 << order
)) <= bits
; pos
= end
) {
1005 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1007 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1012 EXPORT_SYMBOL(bitmap_find_free_region
);
1015 * bitmap_release_region - release allocated bitmap region
1016 * @bitmap: array of unsigned longs corresponding to the bitmap
1017 * @pos: beginning of bit region to release
1018 * @order: region size (log base 2 of number of bits) to release
1020 * This is the complement to __bitmap_find_free_region() and releases
1021 * the found region (by clearing it in the bitmap).
1025 void bitmap_release_region(unsigned long *bitmap
, int pos
, int order
)
1027 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
1029 EXPORT_SYMBOL(bitmap_release_region
);
1032 * bitmap_allocate_region - allocate bitmap region
1033 * @bitmap: array of unsigned longs corresponding to the bitmap
1034 * @pos: beginning of bit region to allocate
1035 * @order: region size (log base 2 of number of bits) to allocate
1037 * Allocate (set bits in) a specified region of a bitmap.
1039 * Return 0 on success, or %-EBUSY if specified region wasn't
1040 * free (not all bits were zero).
1042 int bitmap_allocate_region(unsigned long *bitmap
, int pos
, int order
)
1044 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1046 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1049 EXPORT_SYMBOL(bitmap_allocate_region
);
1052 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1053 * @dst: destination buffer
1054 * @src: bitmap to copy
1055 * @nbits: number of bits in the bitmap
1057 * Require nbits % BITS_PER_LONG == 0.
1059 void bitmap_copy_le(void *dst
, const unsigned long *src
, int nbits
)
1061 unsigned long *d
= dst
;
1064 for (i
= 0; i
< nbits
/BITS_PER_LONG
; i
++) {
1065 if (BITS_PER_LONG
== 64)
1066 d
[i
] = cpu_to_le64(src
[i
]);
1068 d
[i
] = cpu_to_le32(src
[i
]);
1071 EXPORT_SYMBOL(bitmap_copy_le
);