6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
33 #include <asm/uaccess.h>
34 #include <asm/cacheflush.h>
36 #include <asm/mmu_context.h>
40 #ifndef arch_mmap_check
41 #define arch_mmap_check(addr, len, flags) (0)
44 #ifndef arch_rebalance_pgtables
45 #define arch_rebalance_pgtables(addr, len) (addr)
48 static void unmap_region(struct mm_struct
*mm
,
49 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
50 unsigned long start
, unsigned long end
);
53 * WARNING: the debugging will use recursive algorithms so never enable this
54 * unless you know what you are doing.
58 /* description of effects of mapping type and prot in current implementation.
59 * this is due to the limited x86 page protection hardware. The expected
60 * behavior is in parens:
63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
65 * w: (no) no w: (no) no w: (yes) yes w: (no) no
66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
69 * w: (no) no w: (no) no w: (copy) copy w: (no) no
70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 pgprot_t protection_map
[16] = {
74 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
75 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
78 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
80 return __pgprot(pgprot_val(protection_map
[vm_flags
&
81 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
82 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
84 EXPORT_SYMBOL(vm_get_page_prot
);
86 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
87 int sysctl_overcommit_ratio
= 50; /* default is 50% */
88 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
89 struct percpu_counter vm_committed_as
;
92 * Check that a process has enough memory to allocate a new virtual
93 * mapping. 0 means there is enough memory for the allocation to
94 * succeed and -ENOMEM implies there is not.
96 * We currently support three overcommit policies, which are set via the
97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100 * Additional code 2002 Jul 20 by Robert Love.
102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104 * Note this is a helper function intended to be used by LSMs which
105 * wish to use this logic.
107 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
109 unsigned long free
, allowed
;
111 vm_acct_memory(pages
);
114 * Sometimes we want to use more memory than we have
116 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
119 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
122 free
= global_page_state(NR_FILE_PAGES
);
123 free
+= nr_swap_pages
;
126 * Any slabs which are created with the
127 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128 * which are reclaimable, under pressure. The dentry
129 * cache and most inode caches should fall into this
131 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
134 * Leave the last 3% for root
143 * nr_free_pages() is very expensive on large systems,
144 * only call if we're about to fail.
149 * Leave reserved pages. The pages are not for anonymous pages.
151 if (n
<= totalreserve_pages
)
154 n
-= totalreserve_pages
;
157 * Leave the last 3% for root
169 allowed
= (totalram_pages
- hugetlb_total_pages())
170 * sysctl_overcommit_ratio
/ 100;
172 * Leave the last 3% for root
175 allowed
-= allowed
/ 32;
176 allowed
+= total_swap_pages
;
178 /* Don't let a single process grow too big:
179 leave 3% of the size of this process for other processes */
181 allowed
-= mm
->total_vm
/ 32;
183 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
186 vm_unacct_memory(pages
);
192 * Requires inode->i_mapping->i_mmap_lock
194 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
195 struct file
*file
, struct address_space
*mapping
)
197 if (vma
->vm_flags
& VM_DENYWRITE
)
198 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
199 if (vma
->vm_flags
& VM_SHARED
)
200 mapping
->i_mmap_writable
--;
202 flush_dcache_mmap_lock(mapping
);
203 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
204 list_del_init(&vma
->shared
.vm_set
.list
);
206 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
207 flush_dcache_mmap_unlock(mapping
);
211 * Unlink a file-based vm structure from its prio_tree, to hide
212 * vma from rmap and vmtruncate before freeing its page tables.
214 void unlink_file_vma(struct vm_area_struct
*vma
)
216 struct file
*file
= vma
->vm_file
;
219 struct address_space
*mapping
= file
->f_mapping
;
220 spin_lock(&mapping
->i_mmap_lock
);
221 __remove_shared_vm_struct(vma
, file
, mapping
);
222 spin_unlock(&mapping
->i_mmap_lock
);
227 * Close a vm structure and free it, returning the next.
229 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
231 struct vm_area_struct
*next
= vma
->vm_next
;
234 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
235 vma
->vm_ops
->close(vma
);
238 if (vma
->vm_flags
& VM_EXECUTABLE
)
239 removed_exe_file_vma(vma
->vm_mm
);
241 mpol_put(vma_policy(vma
));
242 kmem_cache_free(vm_area_cachep
, vma
);
246 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
248 unsigned long rlim
, retval
;
249 unsigned long newbrk
, oldbrk
;
250 struct mm_struct
*mm
= current
->mm
;
251 unsigned long min_brk
;
253 down_write(&mm
->mmap_sem
);
255 #ifdef CONFIG_COMPAT_BRK
256 min_brk
= mm
->end_code
;
258 min_brk
= mm
->start_brk
;
264 * Check against rlimit here. If this check is done later after the test
265 * of oldbrk with newbrk then it can escape the test and let the data
266 * segment grow beyond its set limit the in case where the limit is
267 * not page aligned -Ram Gupta
269 rlim
= current
->signal
->rlim
[RLIMIT_DATA
].rlim_cur
;
270 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
271 (mm
->end_data
- mm
->start_data
) > rlim
)
274 newbrk
= PAGE_ALIGN(brk
);
275 oldbrk
= PAGE_ALIGN(mm
->brk
);
276 if (oldbrk
== newbrk
)
279 /* Always allow shrinking brk. */
280 if (brk
<= mm
->brk
) {
281 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
286 /* Check against existing mmap mappings. */
287 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
290 /* Ok, looks good - let it rip. */
291 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
297 up_write(&mm
->mmap_sem
);
302 static int browse_rb(struct rb_root
*root
)
305 struct rb_node
*nd
, *pn
= NULL
;
306 unsigned long prev
= 0, pend
= 0;
308 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
309 struct vm_area_struct
*vma
;
310 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
311 if (vma
->vm_start
< prev
)
312 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
313 if (vma
->vm_start
< pend
)
314 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
315 if (vma
->vm_start
> vma
->vm_end
)
316 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
319 prev
= vma
->vm_start
;
323 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
327 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
331 void validate_mm(struct mm_struct
*mm
)
335 struct vm_area_struct
*tmp
= mm
->mmap
;
340 if (i
!= mm
->map_count
)
341 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
342 i
= browse_rb(&mm
->mm_rb
);
343 if (i
!= mm
->map_count
)
344 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
348 #define validate_mm(mm) do { } while (0)
351 static struct vm_area_struct
*
352 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
353 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
354 struct rb_node
** rb_parent
)
356 struct vm_area_struct
* vma
;
357 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
359 __rb_link
= &mm
->mm_rb
.rb_node
;
360 rb_prev
= __rb_parent
= NULL
;
364 struct vm_area_struct
*vma_tmp
;
366 __rb_parent
= *__rb_link
;
367 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
369 if (vma_tmp
->vm_end
> addr
) {
371 if (vma_tmp
->vm_start
<= addr
)
373 __rb_link
= &__rb_parent
->rb_left
;
375 rb_prev
= __rb_parent
;
376 __rb_link
= &__rb_parent
->rb_right
;
382 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
383 *rb_link
= __rb_link
;
384 *rb_parent
= __rb_parent
;
389 __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
390 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
393 vma
->vm_next
= prev
->vm_next
;
398 vma
->vm_next
= rb_entry(rb_parent
,
399 struct vm_area_struct
, vm_rb
);
405 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
406 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
408 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
409 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
412 static void __vma_link_file(struct vm_area_struct
*vma
)
418 struct address_space
*mapping
= file
->f_mapping
;
420 if (vma
->vm_flags
& VM_DENYWRITE
)
421 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
422 if (vma
->vm_flags
& VM_SHARED
)
423 mapping
->i_mmap_writable
++;
425 flush_dcache_mmap_lock(mapping
);
426 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
427 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
429 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
430 flush_dcache_mmap_unlock(mapping
);
435 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
436 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
437 struct rb_node
*rb_parent
)
439 __vma_link_list(mm
, vma
, prev
, rb_parent
);
440 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
441 __anon_vma_link(vma
);
444 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
445 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
446 struct rb_node
*rb_parent
)
448 struct address_space
*mapping
= NULL
;
451 mapping
= vma
->vm_file
->f_mapping
;
454 spin_lock(&mapping
->i_mmap_lock
);
455 vma
->vm_truncate_count
= mapping
->truncate_count
;
459 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
460 __vma_link_file(vma
);
462 anon_vma_unlock(vma
);
464 spin_unlock(&mapping
->i_mmap_lock
);
471 * Helper for vma_adjust in the split_vma insert case:
472 * insert vm structure into list and rbtree and anon_vma,
473 * but it has already been inserted into prio_tree earlier.
475 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
477 struct vm_area_struct
*__vma
, *prev
;
478 struct rb_node
**rb_link
, *rb_parent
;
480 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
481 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
482 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
487 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
488 struct vm_area_struct
*prev
)
490 prev
->vm_next
= vma
->vm_next
;
491 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
492 if (mm
->mmap_cache
== vma
)
493 mm
->mmap_cache
= prev
;
497 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
498 * is already present in an i_mmap tree without adjusting the tree.
499 * The following helper function should be used when such adjustments
500 * are necessary. The "insert" vma (if any) is to be inserted
501 * before we drop the necessary locks.
503 void vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
504 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
506 struct mm_struct
*mm
= vma
->vm_mm
;
507 struct vm_area_struct
*next
= vma
->vm_next
;
508 struct vm_area_struct
*importer
= NULL
;
509 struct address_space
*mapping
= NULL
;
510 struct prio_tree_root
*root
= NULL
;
511 struct file
*file
= vma
->vm_file
;
512 struct anon_vma
*anon_vma
= NULL
;
513 long adjust_next
= 0;
516 if (next
&& !insert
) {
517 if (end
>= next
->vm_end
) {
519 * vma expands, overlapping all the next, and
520 * perhaps the one after too (mprotect case 6).
522 again
: remove_next
= 1 + (end
> next
->vm_end
);
524 anon_vma
= next
->anon_vma
;
526 } else if (end
> next
->vm_start
) {
528 * vma expands, overlapping part of the next:
529 * mprotect case 5 shifting the boundary up.
531 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
532 anon_vma
= next
->anon_vma
;
534 } else if (end
< vma
->vm_end
) {
536 * vma shrinks, and !insert tells it's not
537 * split_vma inserting another: so it must be
538 * mprotect case 4 shifting the boundary down.
540 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
541 anon_vma
= next
->anon_vma
;
547 mapping
= file
->f_mapping
;
548 if (!(vma
->vm_flags
& VM_NONLINEAR
))
549 root
= &mapping
->i_mmap
;
550 spin_lock(&mapping
->i_mmap_lock
);
552 vma
->vm_truncate_count
!= next
->vm_truncate_count
) {
554 * unmap_mapping_range might be in progress:
555 * ensure that the expanding vma is rescanned.
557 importer
->vm_truncate_count
= 0;
560 insert
->vm_truncate_count
= vma
->vm_truncate_count
;
562 * Put into prio_tree now, so instantiated pages
563 * are visible to arm/parisc __flush_dcache_page
564 * throughout; but we cannot insert into address
565 * space until vma start or end is updated.
567 __vma_link_file(insert
);
572 * When changing only vma->vm_end, we don't really need
575 if (vma
->anon_vma
&& (insert
|| importer
|| start
!= vma
->vm_start
))
576 anon_vma
= vma
->anon_vma
;
578 spin_lock(&anon_vma
->lock
);
580 * Easily overlooked: when mprotect shifts the boundary,
581 * make sure the expanding vma has anon_vma set if the
582 * shrinking vma had, to cover any anon pages imported.
584 if (importer
&& !importer
->anon_vma
) {
585 importer
->anon_vma
= anon_vma
;
586 __anon_vma_link(importer
);
591 flush_dcache_mmap_lock(mapping
);
592 vma_prio_tree_remove(vma
, root
);
594 vma_prio_tree_remove(next
, root
);
597 vma
->vm_start
= start
;
599 vma
->vm_pgoff
= pgoff
;
601 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
602 next
->vm_pgoff
+= adjust_next
;
607 vma_prio_tree_insert(next
, root
);
608 vma_prio_tree_insert(vma
, root
);
609 flush_dcache_mmap_unlock(mapping
);
614 * vma_merge has merged next into vma, and needs
615 * us to remove next before dropping the locks.
617 __vma_unlink(mm
, next
, vma
);
619 __remove_shared_vm_struct(next
, file
, mapping
);
621 __anon_vma_merge(vma
, next
);
624 * split_vma has split insert from vma, and needs
625 * us to insert it before dropping the locks
626 * (it may either follow vma or precede it).
628 __insert_vm_struct(mm
, insert
);
632 spin_unlock(&anon_vma
->lock
);
634 spin_unlock(&mapping
->i_mmap_lock
);
639 if (next
->vm_flags
& VM_EXECUTABLE
)
640 removed_exe_file_vma(mm
);
643 mpol_put(vma_policy(next
));
644 kmem_cache_free(vm_area_cachep
, next
);
646 * In mprotect's case 6 (see comments on vma_merge),
647 * we must remove another next too. It would clutter
648 * up the code too much to do both in one go.
650 if (remove_next
== 2) {
660 * If the vma has a ->close operation then the driver probably needs to release
661 * per-vma resources, so we don't attempt to merge those.
663 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
664 struct file
*file
, unsigned long vm_flags
)
666 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
667 if ((vma
->vm_flags
^ vm_flags
) & ~VM_CAN_NONLINEAR
)
669 if (vma
->vm_file
!= file
)
671 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
676 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
677 struct anon_vma
*anon_vma2
)
679 return !anon_vma1
|| !anon_vma2
|| (anon_vma1
== anon_vma2
);
683 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
684 * in front of (at a lower virtual address and file offset than) the vma.
686 * We cannot merge two vmas if they have differently assigned (non-NULL)
687 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
689 * We don't check here for the merged mmap wrapping around the end of pagecache
690 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
691 * wrap, nor mmaps which cover the final page at index -1UL.
694 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
695 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
697 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
698 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
699 if (vma
->vm_pgoff
== vm_pgoff
)
706 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
707 * beyond (at a higher virtual address and file offset than) the vma.
709 * We cannot merge two vmas if they have differently assigned (non-NULL)
710 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
713 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
714 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
716 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
717 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
719 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
720 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
727 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
728 * whether that can be merged with its predecessor or its successor.
729 * Or both (it neatly fills a hole).
731 * In most cases - when called for mmap, brk or mremap - [addr,end) is
732 * certain not to be mapped by the time vma_merge is called; but when
733 * called for mprotect, it is certain to be already mapped (either at
734 * an offset within prev, or at the start of next), and the flags of
735 * this area are about to be changed to vm_flags - and the no-change
736 * case has already been eliminated.
738 * The following mprotect cases have to be considered, where AAAA is
739 * the area passed down from mprotect_fixup, never extending beyond one
740 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
742 * AAAA AAAA AAAA AAAA
743 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
744 * cannot merge might become might become might become
745 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
746 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
747 * mremap move: PPPPNNNNNNNN 8
749 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
750 * might become case 1 below case 2 below case 3 below
752 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
753 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
755 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
756 struct vm_area_struct
*prev
, unsigned long addr
,
757 unsigned long end
, unsigned long vm_flags
,
758 struct anon_vma
*anon_vma
, struct file
*file
,
759 pgoff_t pgoff
, struct mempolicy
*policy
)
761 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
762 struct vm_area_struct
*area
, *next
;
765 * We later require that vma->vm_flags == vm_flags,
766 * so this tests vma->vm_flags & VM_SPECIAL, too.
768 if (vm_flags
& VM_SPECIAL
)
772 next
= prev
->vm_next
;
776 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
777 next
= next
->vm_next
;
780 * Can it merge with the predecessor?
782 if (prev
&& prev
->vm_end
== addr
&&
783 mpol_equal(vma_policy(prev
), policy
) &&
784 can_vma_merge_after(prev
, vm_flags
,
785 anon_vma
, file
, pgoff
)) {
787 * OK, it can. Can we now merge in the successor as well?
789 if (next
&& end
== next
->vm_start
&&
790 mpol_equal(policy
, vma_policy(next
)) &&
791 can_vma_merge_before(next
, vm_flags
,
792 anon_vma
, file
, pgoff
+pglen
) &&
793 is_mergeable_anon_vma(prev
->anon_vma
,
796 vma_adjust(prev
, prev
->vm_start
,
797 next
->vm_end
, prev
->vm_pgoff
, NULL
);
798 } else /* cases 2, 5, 7 */
799 vma_adjust(prev
, prev
->vm_start
,
800 end
, prev
->vm_pgoff
, NULL
);
805 * Can this new request be merged in front of next?
807 if (next
&& end
== next
->vm_start
&&
808 mpol_equal(policy
, vma_policy(next
)) &&
809 can_vma_merge_before(next
, vm_flags
,
810 anon_vma
, file
, pgoff
+pglen
)) {
811 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
812 vma_adjust(prev
, prev
->vm_start
,
813 addr
, prev
->vm_pgoff
, NULL
);
814 else /* cases 3, 8 */
815 vma_adjust(area
, addr
, next
->vm_end
,
816 next
->vm_pgoff
- pglen
, NULL
);
824 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
825 * neighbouring vmas for a suitable anon_vma, before it goes off
826 * to allocate a new anon_vma. It checks because a repetitive
827 * sequence of mprotects and faults may otherwise lead to distinct
828 * anon_vmas being allocated, preventing vma merge in subsequent
831 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
833 struct vm_area_struct
*near
;
834 unsigned long vm_flags
;
841 * Since only mprotect tries to remerge vmas, match flags
842 * which might be mprotected into each other later on.
843 * Neither mlock nor madvise tries to remerge at present,
844 * so leave their flags as obstructing a merge.
846 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
847 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
849 if (near
->anon_vma
&& vma
->vm_end
== near
->vm_start
&&
850 mpol_equal(vma_policy(vma
), vma_policy(near
)) &&
851 can_vma_merge_before(near
, vm_flags
,
852 NULL
, vma
->vm_file
, vma
->vm_pgoff
+
853 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
)))
854 return near
->anon_vma
;
857 * It is potentially slow to have to call find_vma_prev here.
858 * But it's only on the first write fault on the vma, not
859 * every time, and we could devise a way to avoid it later
860 * (e.g. stash info in next's anon_vma_node when assigning
861 * an anon_vma, or when trying vma_merge). Another time.
863 BUG_ON(find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
);
867 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
868 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
870 if (near
->anon_vma
&& near
->vm_end
== vma
->vm_start
&&
871 mpol_equal(vma_policy(near
), vma_policy(vma
)) &&
872 can_vma_merge_after(near
, vm_flags
,
873 NULL
, vma
->vm_file
, vma
->vm_pgoff
))
874 return near
->anon_vma
;
877 * There's no absolute need to look only at touching neighbours:
878 * we could search further afield for "compatible" anon_vmas.
879 * But it would probably just be a waste of time searching,
880 * or lead to too many vmas hanging off the same anon_vma.
881 * We're trying to allow mprotect remerging later on,
882 * not trying to minimize memory used for anon_vmas.
887 #ifdef CONFIG_PROC_FS
888 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
889 struct file
*file
, long pages
)
891 const unsigned long stack_flags
892 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
895 mm
->shared_vm
+= pages
;
896 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
897 mm
->exec_vm
+= pages
;
898 } else if (flags
& stack_flags
)
899 mm
->stack_vm
+= pages
;
900 if (flags
& (VM_RESERVED
|VM_IO
))
901 mm
->reserved_vm
+= pages
;
903 #endif /* CONFIG_PROC_FS */
906 * The caller must hold down_write(¤t->mm->mmap_sem).
909 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
910 unsigned long len
, unsigned long prot
,
911 unsigned long flags
, unsigned long pgoff
)
913 struct mm_struct
* mm
= current
->mm
;
915 unsigned int vm_flags
;
917 unsigned long reqprot
= prot
;
920 * Does the application expect PROT_READ to imply PROT_EXEC?
922 * (the exception is when the underlying filesystem is noexec
923 * mounted, in which case we dont add PROT_EXEC.)
925 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
926 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
932 if (!(flags
& MAP_FIXED
))
933 addr
= round_hint_to_min(addr
);
935 error
= arch_mmap_check(addr
, len
, flags
);
939 /* Careful about overflows.. */
940 len
= PAGE_ALIGN(len
);
941 if (!len
|| len
> TASK_SIZE
)
944 /* offset overflow? */
945 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
948 /* Too many mappings? */
949 if (mm
->map_count
> sysctl_max_map_count
)
952 if (flags
& MAP_HUGETLB
) {
953 struct user_struct
*user
= NULL
;
958 * VM_NORESERVE is used because the reservations will be
959 * taken when vm_ops->mmap() is called
960 * A dummy user value is used because we are not locking
961 * memory so no accounting is necessary
963 len
= ALIGN(len
, huge_page_size(&default_hstate
));
964 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
, VM_NORESERVE
,
965 &user
, HUGETLB_ANONHUGE_INODE
);
967 return PTR_ERR(file
);
970 /* Obtain the address to map to. we verify (or select) it and ensure
971 * that it represents a valid section of the address space.
973 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
974 if (addr
& ~PAGE_MASK
)
977 /* Do simple checking here so the lower-level routines won't have
978 * to. we assume access permissions have been handled by the open
979 * of the memory object, so we don't do any here.
981 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
982 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
984 if (flags
& MAP_LOCKED
)
988 /* mlock MCL_FUTURE? */
989 if (vm_flags
& VM_LOCKED
) {
990 unsigned long locked
, lock_limit
;
991 locked
= len
>> PAGE_SHIFT
;
992 locked
+= mm
->locked_vm
;
993 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
994 lock_limit
>>= PAGE_SHIFT
;
995 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
999 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1002 switch (flags
& MAP_TYPE
) {
1004 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1008 * Make sure we don't allow writing to an append-only
1011 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1015 * Make sure there are no mandatory locks on the file.
1017 if (locks_verify_locked(inode
))
1020 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1021 if (!(file
->f_mode
& FMODE_WRITE
))
1022 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1026 if (!(file
->f_mode
& FMODE_READ
))
1028 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1029 if (vm_flags
& VM_EXEC
)
1031 vm_flags
&= ~VM_MAYEXEC
;
1034 if (!file
->f_op
|| !file
->f_op
->mmap
)
1042 switch (flags
& MAP_TYPE
) {
1048 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1052 * Set pgoff according to addr for anon_vma.
1054 pgoff
= addr
>> PAGE_SHIFT
;
1061 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1064 error
= ima_file_mmap(file
, prot
);
1068 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1070 EXPORT_SYMBOL(do_mmap_pgoff
);
1073 * Some shared mappigns will want the pages marked read-only
1074 * to track write events. If so, we'll downgrade vm_page_prot
1075 * to the private version (using protection_map[] without the
1078 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1080 unsigned int vm_flags
= vma
->vm_flags
;
1082 /* If it was private or non-writable, the write bit is already clear */
1083 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1086 /* The backer wishes to know when pages are first written to? */
1087 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1090 /* The open routine did something to the protections already? */
1091 if (pgprot_val(vma
->vm_page_prot
) !=
1092 pgprot_val(vm_get_page_prot(vm_flags
)))
1095 /* Specialty mapping? */
1096 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1099 /* Can the mapping track the dirty pages? */
1100 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1101 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1105 * We account for memory if it's a private writeable mapping,
1106 * not hugepages and VM_NORESERVE wasn't set.
1108 static inline int accountable_mapping(struct file
*file
, unsigned int vm_flags
)
1111 * hugetlb has its own accounting separate from the core VM
1112 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1114 if (file
&& is_file_hugepages(file
))
1117 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1120 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1121 unsigned long len
, unsigned long flags
,
1122 unsigned int vm_flags
, unsigned long pgoff
)
1124 struct mm_struct
*mm
= current
->mm
;
1125 struct vm_area_struct
*vma
, *prev
;
1126 int correct_wcount
= 0;
1128 struct rb_node
**rb_link
, *rb_parent
;
1129 unsigned long charged
= 0;
1130 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1132 /* Clear old maps */
1135 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1136 if (vma
&& vma
->vm_start
< addr
+ len
) {
1137 if (do_munmap(mm
, addr
, len
))
1142 /* Check against address space limit. */
1143 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1147 * Set 'VM_NORESERVE' if we should not account for the
1148 * memory use of this mapping.
1150 if ((flags
& MAP_NORESERVE
)) {
1151 /* We honor MAP_NORESERVE if allowed to overcommit */
1152 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1153 vm_flags
|= VM_NORESERVE
;
1155 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1156 if (file
&& is_file_hugepages(file
))
1157 vm_flags
|= VM_NORESERVE
;
1161 * Private writable mapping: check memory availability
1163 if (accountable_mapping(file
, vm_flags
)) {
1164 charged
= len
>> PAGE_SHIFT
;
1165 if (security_vm_enough_memory(charged
))
1167 vm_flags
|= VM_ACCOUNT
;
1171 * Can we just expand an old mapping?
1173 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1178 * Determine the object being mapped and call the appropriate
1179 * specific mapper. the address has already been validated, but
1180 * not unmapped, but the maps are removed from the list.
1182 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1189 vma
->vm_start
= addr
;
1190 vma
->vm_end
= addr
+ len
;
1191 vma
->vm_flags
= vm_flags
;
1192 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1193 vma
->vm_pgoff
= pgoff
;
1197 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1199 if (vm_flags
& VM_DENYWRITE
) {
1200 error
= deny_write_access(file
);
1205 vma
->vm_file
= file
;
1207 error
= file
->f_op
->mmap(file
, vma
);
1209 goto unmap_and_free_vma
;
1210 if (vm_flags
& VM_EXECUTABLE
)
1211 added_exe_file_vma(mm
);
1213 /* Can addr have changed??
1215 * Answer: Yes, several device drivers can do it in their
1216 * f_op->mmap method. -DaveM
1218 addr
= vma
->vm_start
;
1219 pgoff
= vma
->vm_pgoff
;
1220 vm_flags
= vma
->vm_flags
;
1221 } else if (vm_flags
& VM_SHARED
) {
1222 error
= shmem_zero_setup(vma
);
1227 if (vma_wants_writenotify(vma
))
1228 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1230 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1231 file
= vma
->vm_file
;
1233 /* Once vma denies write, undo our temporary denial count */
1235 atomic_inc(&inode
->i_writecount
);
1237 perf_event_mmap(vma
);
1239 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1240 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1241 if (vm_flags
& VM_LOCKED
) {
1243 * makes pages present; downgrades, drops, reacquires mmap_sem
1245 long nr_pages
= mlock_vma_pages_range(vma
, addr
, addr
+ len
);
1247 return nr_pages
; /* vma gone! */
1248 mm
->locked_vm
+= (len
>> PAGE_SHIFT
) - nr_pages
;
1249 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1250 make_pages_present(addr
, addr
+ len
);
1255 atomic_inc(&inode
->i_writecount
);
1256 vma
->vm_file
= NULL
;
1259 /* Undo any partial mapping done by a device driver. */
1260 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1263 kmem_cache_free(vm_area_cachep
, vma
);
1266 vm_unacct_memory(charged
);
1270 /* Get an address range which is currently unmapped.
1271 * For shmat() with addr=0.
1273 * Ugly calling convention alert:
1274 * Return value with the low bits set means error value,
1276 * if (ret & ~PAGE_MASK)
1279 * This function "knows" that -ENOMEM has the bits set.
1281 #ifndef HAVE_ARCH_UNMAPPED_AREA
1283 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1284 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1286 struct mm_struct
*mm
= current
->mm
;
1287 struct vm_area_struct
*vma
;
1288 unsigned long start_addr
;
1290 if (len
> TASK_SIZE
)
1293 if (flags
& MAP_FIXED
)
1297 addr
= PAGE_ALIGN(addr
);
1298 vma
= find_vma(mm
, addr
);
1299 if (TASK_SIZE
- len
>= addr
&&
1300 (!vma
|| addr
+ len
<= vma
->vm_start
))
1303 if (len
> mm
->cached_hole_size
) {
1304 start_addr
= addr
= mm
->free_area_cache
;
1306 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1307 mm
->cached_hole_size
= 0;
1311 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1312 /* At this point: (!vma || addr < vma->vm_end). */
1313 if (TASK_SIZE
- len
< addr
) {
1315 * Start a new search - just in case we missed
1318 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1319 addr
= TASK_UNMAPPED_BASE
;
1321 mm
->cached_hole_size
= 0;
1326 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1328 * Remember the place where we stopped the search:
1330 mm
->free_area_cache
= addr
+ len
;
1333 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1334 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1340 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1343 * Is this a new hole at the lowest possible address?
1345 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1346 mm
->free_area_cache
= addr
;
1347 mm
->cached_hole_size
= ~0UL;
1352 * This mmap-allocator allocates new areas top-down from below the
1353 * stack's low limit (the base):
1355 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1357 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1358 const unsigned long len
, const unsigned long pgoff
,
1359 const unsigned long flags
)
1361 struct vm_area_struct
*vma
;
1362 struct mm_struct
*mm
= current
->mm
;
1363 unsigned long addr
= addr0
;
1365 /* requested length too big for entire address space */
1366 if (len
> TASK_SIZE
)
1369 if (flags
& MAP_FIXED
)
1372 /* requesting a specific address */
1374 addr
= PAGE_ALIGN(addr
);
1375 vma
= find_vma(mm
, addr
);
1376 if (TASK_SIZE
- len
>= addr
&&
1377 (!vma
|| addr
+ len
<= vma
->vm_start
))
1381 /* check if free_area_cache is useful for us */
1382 if (len
<= mm
->cached_hole_size
) {
1383 mm
->cached_hole_size
= 0;
1384 mm
->free_area_cache
= mm
->mmap_base
;
1387 /* either no address requested or can't fit in requested address hole */
1388 addr
= mm
->free_area_cache
;
1390 /* make sure it can fit in the remaining address space */
1392 vma
= find_vma(mm
, addr
-len
);
1393 if (!vma
|| addr
<= vma
->vm_start
)
1394 /* remember the address as a hint for next time */
1395 return (mm
->free_area_cache
= addr
-len
);
1398 if (mm
->mmap_base
< len
)
1401 addr
= mm
->mmap_base
-len
;
1405 * Lookup failure means no vma is above this address,
1406 * else if new region fits below vma->vm_start,
1407 * return with success:
1409 vma
= find_vma(mm
, addr
);
1410 if (!vma
|| addr
+len
<= vma
->vm_start
)
1411 /* remember the address as a hint for next time */
1412 return (mm
->free_area_cache
= addr
);
1414 /* remember the largest hole we saw so far */
1415 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1416 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1418 /* try just below the current vma->vm_start */
1419 addr
= vma
->vm_start
-len
;
1420 } while (len
< vma
->vm_start
);
1424 * A failed mmap() very likely causes application failure,
1425 * so fall back to the bottom-up function here. This scenario
1426 * can happen with large stack limits and large mmap()
1429 mm
->cached_hole_size
= ~0UL;
1430 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1431 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1433 * Restore the topdown base:
1435 mm
->free_area_cache
= mm
->mmap_base
;
1436 mm
->cached_hole_size
= ~0UL;
1442 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1445 * Is this a new hole at the highest possible address?
1447 if (addr
> mm
->free_area_cache
)
1448 mm
->free_area_cache
= addr
;
1450 /* dont allow allocations above current base */
1451 if (mm
->free_area_cache
> mm
->mmap_base
)
1452 mm
->free_area_cache
= mm
->mmap_base
;
1456 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1457 unsigned long pgoff
, unsigned long flags
)
1459 unsigned long (*get_area
)(struct file
*, unsigned long,
1460 unsigned long, unsigned long, unsigned long);
1462 get_area
= current
->mm
->get_unmapped_area
;
1463 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1464 get_area
= file
->f_op
->get_unmapped_area
;
1465 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1466 if (IS_ERR_VALUE(addr
))
1469 if (addr
> TASK_SIZE
- len
)
1471 if (addr
& ~PAGE_MASK
)
1474 return arch_rebalance_pgtables(addr
, len
);
1477 EXPORT_SYMBOL(get_unmapped_area
);
1479 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1480 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1482 struct vm_area_struct
*vma
= NULL
;
1485 /* Check the cache first. */
1486 /* (Cache hit rate is typically around 35%.) */
1487 vma
= mm
->mmap_cache
;
1488 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1489 struct rb_node
* rb_node
;
1491 rb_node
= mm
->mm_rb
.rb_node
;
1495 struct vm_area_struct
* vma_tmp
;
1497 vma_tmp
= rb_entry(rb_node
,
1498 struct vm_area_struct
, vm_rb
);
1500 if (vma_tmp
->vm_end
> addr
) {
1502 if (vma_tmp
->vm_start
<= addr
)
1504 rb_node
= rb_node
->rb_left
;
1506 rb_node
= rb_node
->rb_right
;
1509 mm
->mmap_cache
= vma
;
1515 EXPORT_SYMBOL(find_vma
);
1517 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1518 struct vm_area_struct
*
1519 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1520 struct vm_area_struct
**pprev
)
1522 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1523 struct rb_node
*rb_node
;
1527 /* Guard against addr being lower than the first VMA */
1530 /* Go through the RB tree quickly. */
1531 rb_node
= mm
->mm_rb
.rb_node
;
1534 struct vm_area_struct
*vma_tmp
;
1535 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1537 if (addr
< vma_tmp
->vm_end
) {
1538 rb_node
= rb_node
->rb_left
;
1541 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1543 rb_node
= rb_node
->rb_right
;
1549 return prev
? prev
->vm_next
: vma
;
1553 * Verify that the stack growth is acceptable and
1554 * update accounting. This is shared with both the
1555 * grow-up and grow-down cases.
1557 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1559 struct mm_struct
*mm
= vma
->vm_mm
;
1560 struct rlimit
*rlim
= current
->signal
->rlim
;
1561 unsigned long new_start
;
1563 /* address space limit tests */
1564 if (!may_expand_vm(mm
, grow
))
1567 /* Stack limit test */
1568 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
)
1571 /* mlock limit tests */
1572 if (vma
->vm_flags
& VM_LOCKED
) {
1573 unsigned long locked
;
1574 unsigned long limit
;
1575 locked
= mm
->locked_vm
+ grow
;
1576 limit
= rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
1577 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1581 /* Check to ensure the stack will not grow into a hugetlb-only region */
1582 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1584 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1588 * Overcommit.. This must be the final test, as it will
1589 * update security statistics.
1591 if (security_vm_enough_memory_mm(mm
, grow
))
1594 /* Ok, everything looks good - let it rip */
1595 mm
->total_vm
+= grow
;
1596 if (vma
->vm_flags
& VM_LOCKED
)
1597 mm
->locked_vm
+= grow
;
1598 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1602 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1604 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1605 * vma is the last one with address > vma->vm_end. Have to extend vma.
1610 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1614 if (!(vma
->vm_flags
& VM_GROWSUP
))
1618 * We must make sure the anon_vma is allocated
1619 * so that the anon_vma locking is not a noop.
1621 if (unlikely(anon_vma_prepare(vma
)))
1626 * vma->vm_start/vm_end cannot change under us because the caller
1627 * is required to hold the mmap_sem in read mode. We need the
1628 * anon_vma lock to serialize against concurrent expand_stacks.
1629 * Also guard against wrapping around to address 0.
1631 if (address
< PAGE_ALIGN(address
+4))
1632 address
= PAGE_ALIGN(address
+4);
1634 anon_vma_unlock(vma
);
1639 /* Somebody else might have raced and expanded it already */
1640 if (address
> vma
->vm_end
) {
1641 unsigned long size
, grow
;
1643 size
= address
- vma
->vm_start
;
1644 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1646 error
= acct_stack_growth(vma
, size
, grow
);
1648 vma
->vm_end
= address
;
1650 anon_vma_unlock(vma
);
1653 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1656 * vma is the first one with address < vma->vm_start. Have to extend vma.
1658 static int expand_downwards(struct vm_area_struct
*vma
,
1659 unsigned long address
)
1664 * We must make sure the anon_vma is allocated
1665 * so that the anon_vma locking is not a noop.
1667 if (unlikely(anon_vma_prepare(vma
)))
1670 address
&= PAGE_MASK
;
1671 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1678 * vma->vm_start/vm_end cannot change under us because the caller
1679 * is required to hold the mmap_sem in read mode. We need the
1680 * anon_vma lock to serialize against concurrent expand_stacks.
1683 /* Somebody else might have raced and expanded it already */
1684 if (address
< vma
->vm_start
) {
1685 unsigned long size
, grow
;
1687 size
= vma
->vm_end
- address
;
1688 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1690 error
= acct_stack_growth(vma
, size
, grow
);
1692 vma
->vm_start
= address
;
1693 vma
->vm_pgoff
-= grow
;
1696 anon_vma_unlock(vma
);
1700 int expand_stack_downwards(struct vm_area_struct
*vma
, unsigned long address
)
1702 return expand_downwards(vma
, address
);
1705 #ifdef CONFIG_STACK_GROWSUP
1706 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1708 return expand_upwards(vma
, address
);
1711 struct vm_area_struct
*
1712 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1714 struct vm_area_struct
*vma
, *prev
;
1717 vma
= find_vma_prev(mm
, addr
, &prev
);
1718 if (vma
&& (vma
->vm_start
<= addr
))
1720 if (!prev
|| expand_stack(prev
, addr
))
1722 if (prev
->vm_flags
& VM_LOCKED
) {
1723 if (mlock_vma_pages_range(prev
, addr
, prev
->vm_end
) < 0)
1724 return NULL
; /* vma gone! */
1729 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1731 return expand_downwards(vma
, address
);
1734 struct vm_area_struct
*
1735 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1737 struct vm_area_struct
* vma
;
1738 unsigned long start
;
1741 vma
= find_vma(mm
,addr
);
1744 if (vma
->vm_start
<= addr
)
1746 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1748 start
= vma
->vm_start
;
1749 if (expand_stack(vma
, addr
))
1751 if (vma
->vm_flags
& VM_LOCKED
) {
1752 if (mlock_vma_pages_range(vma
, addr
, start
) < 0)
1753 return NULL
; /* vma gone! */
1760 * Ok - we have the memory areas we should free on the vma list,
1761 * so release them, and do the vma updates.
1763 * Called with the mm semaphore held.
1765 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1767 /* Update high watermark before we lower total_vm */
1768 update_hiwater_vm(mm
);
1770 long nrpages
= vma_pages(vma
);
1772 mm
->total_vm
-= nrpages
;
1773 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1774 vma
= remove_vma(vma
);
1780 * Get rid of page table information in the indicated region.
1782 * Called with the mm semaphore held.
1784 static void unmap_region(struct mm_struct
*mm
,
1785 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1786 unsigned long start
, unsigned long end
)
1788 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1789 struct mmu_gather
*tlb
;
1790 unsigned long nr_accounted
= 0;
1793 tlb
= tlb_gather_mmu(mm
, 0);
1794 update_hiwater_rss(mm
);
1795 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1796 vm_unacct_memory(nr_accounted
);
1797 free_pgtables(tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1798 next
? next
->vm_start
: 0);
1799 tlb_finish_mmu(tlb
, start
, end
);
1803 * Create a list of vma's touched by the unmap, removing them from the mm's
1804 * vma list as we go..
1807 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1808 struct vm_area_struct
*prev
, unsigned long end
)
1810 struct vm_area_struct
**insertion_point
;
1811 struct vm_area_struct
*tail_vma
= NULL
;
1814 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1816 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1820 } while (vma
&& vma
->vm_start
< end
);
1821 *insertion_point
= vma
;
1822 tail_vma
->vm_next
= NULL
;
1823 if (mm
->unmap_area
== arch_unmap_area
)
1824 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1826 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1827 mm
->unmap_area(mm
, addr
);
1828 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1832 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1833 * munmap path where it doesn't make sense to fail.
1835 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1836 unsigned long addr
, int new_below
)
1838 struct mempolicy
*pol
;
1839 struct vm_area_struct
*new;
1841 if (is_vm_hugetlb_page(vma
) && (addr
&
1842 ~(huge_page_mask(hstate_vma(vma
)))))
1845 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1849 /* most fields are the same, copy all, and then fixup */
1855 new->vm_start
= addr
;
1856 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1859 pol
= mpol_dup(vma_policy(vma
));
1861 kmem_cache_free(vm_area_cachep
, new);
1862 return PTR_ERR(pol
);
1864 vma_set_policy(new, pol
);
1867 get_file(new->vm_file
);
1868 if (vma
->vm_flags
& VM_EXECUTABLE
)
1869 added_exe_file_vma(mm
);
1872 if (new->vm_ops
&& new->vm_ops
->open
)
1873 new->vm_ops
->open(new);
1876 vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1877 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1879 vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1885 * Split a vma into two pieces at address 'addr', a new vma is allocated
1886 * either for the first part or the tail.
1888 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1889 unsigned long addr
, int new_below
)
1891 if (mm
->map_count
>= sysctl_max_map_count
)
1894 return __split_vma(mm
, vma
, addr
, new_below
);
1897 /* Munmap is split into 2 main parts -- this part which finds
1898 * what needs doing, and the areas themselves, which do the
1899 * work. This now handles partial unmappings.
1900 * Jeremy Fitzhardinge <jeremy@goop.org>
1902 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1905 struct vm_area_struct
*vma
, *prev
, *last
;
1907 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
1910 if ((len
= PAGE_ALIGN(len
)) == 0)
1913 /* Find the first overlapping VMA */
1914 vma
= find_vma_prev(mm
, start
, &prev
);
1917 /* we have start < vma->vm_end */
1919 /* if it doesn't overlap, we have nothing.. */
1921 if (vma
->vm_start
>= end
)
1925 * If we need to split any vma, do it now to save pain later.
1927 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1928 * unmapped vm_area_struct will remain in use: so lower split_vma
1929 * places tmp vma above, and higher split_vma places tmp vma below.
1931 if (start
> vma
->vm_start
) {
1935 * Make sure that map_count on return from munmap() will
1936 * not exceed its limit; but let map_count go just above
1937 * its limit temporarily, to help free resources as expected.
1939 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
1942 error
= __split_vma(mm
, vma
, start
, 0);
1948 /* Does it split the last one? */
1949 last
= find_vma(mm
, end
);
1950 if (last
&& end
> last
->vm_start
) {
1951 int error
= __split_vma(mm
, last
, end
, 1);
1955 vma
= prev
? prev
->vm_next
: mm
->mmap
;
1958 * unlock any mlock()ed ranges before detaching vmas
1960 if (mm
->locked_vm
) {
1961 struct vm_area_struct
*tmp
= vma
;
1962 while (tmp
&& tmp
->vm_start
< end
) {
1963 if (tmp
->vm_flags
& VM_LOCKED
) {
1964 mm
->locked_vm
-= vma_pages(tmp
);
1965 munlock_vma_pages_all(tmp
);
1972 * Remove the vma's, and unmap the actual pages
1974 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
1975 unmap_region(mm
, vma
, prev
, start
, end
);
1977 /* Fix up all other VM information */
1978 remove_vma_list(mm
, vma
);
1983 EXPORT_SYMBOL(do_munmap
);
1985 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1988 struct mm_struct
*mm
= current
->mm
;
1990 profile_munmap(addr
);
1992 down_write(&mm
->mmap_sem
);
1993 ret
= do_munmap(mm
, addr
, len
);
1994 up_write(&mm
->mmap_sem
);
1998 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2000 #ifdef CONFIG_DEBUG_VM
2001 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2003 up_read(&mm
->mmap_sem
);
2009 * this is really a simplified "do_mmap". it only handles
2010 * anonymous maps. eventually we may be able to do some
2011 * brk-specific accounting here.
2013 unsigned long do_brk(unsigned long addr
, unsigned long len
)
2015 struct mm_struct
* mm
= current
->mm
;
2016 struct vm_area_struct
* vma
, * prev
;
2017 unsigned long flags
;
2018 struct rb_node
** rb_link
, * rb_parent
;
2019 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2022 len
= PAGE_ALIGN(len
);
2026 if ((addr
+ len
) > TASK_SIZE
|| (addr
+ len
) < addr
)
2029 if (is_hugepage_only_range(mm
, addr
, len
))
2032 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
2036 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2038 error
= arch_mmap_check(addr
, len
, flags
);
2045 if (mm
->def_flags
& VM_LOCKED
) {
2046 unsigned long locked
, lock_limit
;
2047 locked
= len
>> PAGE_SHIFT
;
2048 locked
+= mm
->locked_vm
;
2049 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2050 lock_limit
>>= PAGE_SHIFT
;
2051 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2056 * mm->mmap_sem is required to protect against another thread
2057 * changing the mappings in case we sleep.
2059 verify_mm_writelocked(mm
);
2062 * Clear old maps. this also does some error checking for us
2065 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2066 if (vma
&& vma
->vm_start
< addr
+ len
) {
2067 if (do_munmap(mm
, addr
, len
))
2072 /* Check against address space limits *after* clearing old maps... */
2073 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2076 if (mm
->map_count
> sysctl_max_map_count
)
2079 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2082 /* Can we just expand an old private anonymous mapping? */
2083 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2084 NULL
, NULL
, pgoff
, NULL
);
2089 * create a vma struct for an anonymous mapping
2091 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2093 vm_unacct_memory(len
>> PAGE_SHIFT
);
2098 vma
->vm_start
= addr
;
2099 vma
->vm_end
= addr
+ len
;
2100 vma
->vm_pgoff
= pgoff
;
2101 vma
->vm_flags
= flags
;
2102 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2103 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2105 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2106 if (flags
& VM_LOCKED
) {
2107 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2108 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2113 EXPORT_SYMBOL(do_brk
);
2115 /* Release all mmaps. */
2116 void exit_mmap(struct mm_struct
*mm
)
2118 struct mmu_gather
*tlb
;
2119 struct vm_area_struct
*vma
;
2120 unsigned long nr_accounted
= 0;
2123 /* mm's last user has gone, and its about to be pulled down */
2124 mmu_notifier_release(mm
);
2126 if (mm
->locked_vm
) {
2129 if (vma
->vm_flags
& VM_LOCKED
)
2130 munlock_vma_pages_all(vma
);
2138 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2143 tlb
= tlb_gather_mmu(mm
, 1);
2144 /* update_hiwater_rss(mm) here? but nobody should be looking */
2145 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2146 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2147 vm_unacct_memory(nr_accounted
);
2149 free_pgtables(tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2150 tlb_finish_mmu(tlb
, 0, end
);
2153 * Walk the list again, actually closing and freeing it,
2154 * with preemption enabled, without holding any MM locks.
2157 vma
= remove_vma(vma
);
2159 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2162 /* Insert vm structure into process list sorted by address
2163 * and into the inode's i_mmap tree. If vm_file is non-NULL
2164 * then i_mmap_lock is taken here.
2166 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2168 struct vm_area_struct
* __vma
, * prev
;
2169 struct rb_node
** rb_link
, * rb_parent
;
2172 * The vm_pgoff of a purely anonymous vma should be irrelevant
2173 * until its first write fault, when page's anon_vma and index
2174 * are set. But now set the vm_pgoff it will almost certainly
2175 * end up with (unless mremap moves it elsewhere before that
2176 * first wfault), so /proc/pid/maps tells a consistent story.
2178 * By setting it to reflect the virtual start address of the
2179 * vma, merges and splits can happen in a seamless way, just
2180 * using the existing file pgoff checks and manipulations.
2181 * Similarly in do_mmap_pgoff and in do_brk.
2183 if (!vma
->vm_file
) {
2184 BUG_ON(vma
->anon_vma
);
2185 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2187 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2188 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2190 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2191 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2193 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2198 * Copy the vma structure to a new location in the same mm,
2199 * prior to moving page table entries, to effect an mremap move.
2201 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2202 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2204 struct vm_area_struct
*vma
= *vmap
;
2205 unsigned long vma_start
= vma
->vm_start
;
2206 struct mm_struct
*mm
= vma
->vm_mm
;
2207 struct vm_area_struct
*new_vma
, *prev
;
2208 struct rb_node
**rb_link
, *rb_parent
;
2209 struct mempolicy
*pol
;
2212 * If anonymous vma has not yet been faulted, update new pgoff
2213 * to match new location, to increase its chance of merging.
2215 if (!vma
->vm_file
&& !vma
->anon_vma
)
2216 pgoff
= addr
>> PAGE_SHIFT
;
2218 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2219 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2220 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2223 * Source vma may have been merged into new_vma
2225 if (vma_start
>= new_vma
->vm_start
&&
2226 vma_start
< new_vma
->vm_end
)
2229 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2232 pol
= mpol_dup(vma_policy(vma
));
2234 kmem_cache_free(vm_area_cachep
, new_vma
);
2237 vma_set_policy(new_vma
, pol
);
2238 new_vma
->vm_start
= addr
;
2239 new_vma
->vm_end
= addr
+ len
;
2240 new_vma
->vm_pgoff
= pgoff
;
2241 if (new_vma
->vm_file
) {
2242 get_file(new_vma
->vm_file
);
2243 if (vma
->vm_flags
& VM_EXECUTABLE
)
2244 added_exe_file_vma(mm
);
2246 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2247 new_vma
->vm_ops
->open(new_vma
);
2248 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2255 * Return true if the calling process may expand its vm space by the passed
2258 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2260 unsigned long cur
= mm
->total_vm
; /* pages */
2263 lim
= current
->signal
->rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
2265 if (cur
+ npages
> lim
)
2271 static int special_mapping_fault(struct vm_area_struct
*vma
,
2272 struct vm_fault
*vmf
)
2275 struct page
**pages
;
2278 * special mappings have no vm_file, and in that case, the mm
2279 * uses vm_pgoff internally. So we have to subtract it from here.
2280 * We are allowed to do this because we are the mm; do not copy
2281 * this code into drivers!
2283 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2285 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2289 struct page
*page
= *pages
;
2295 return VM_FAULT_SIGBUS
;
2299 * Having a close hook prevents vma merging regardless of flags.
2301 static void special_mapping_close(struct vm_area_struct
*vma
)
2305 static const struct vm_operations_struct special_mapping_vmops
= {
2306 .close
= special_mapping_close
,
2307 .fault
= special_mapping_fault
,
2311 * Called with mm->mmap_sem held for writing.
2312 * Insert a new vma covering the given region, with the given flags.
2313 * Its pages are supplied by the given array of struct page *.
2314 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2315 * The region past the last page supplied will always produce SIGBUS.
2316 * The array pointer and the pages it points to are assumed to stay alive
2317 * for as long as this mapping might exist.
2319 int install_special_mapping(struct mm_struct
*mm
,
2320 unsigned long addr
, unsigned long len
,
2321 unsigned long vm_flags
, struct page
**pages
)
2323 struct vm_area_struct
*vma
;
2325 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2326 if (unlikely(vma
== NULL
))
2330 vma
->vm_start
= addr
;
2331 vma
->vm_end
= addr
+ len
;
2333 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2334 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2336 vma
->vm_ops
= &special_mapping_vmops
;
2337 vma
->vm_private_data
= pages
;
2339 if (unlikely(insert_vm_struct(mm
, vma
))) {
2340 kmem_cache_free(vm_area_cachep
, vma
);
2344 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2346 perf_event_mmap(vma
);
2351 static DEFINE_MUTEX(mm_all_locks_mutex
);
2353 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2355 if (!test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2357 * The LSB of head.next can't change from under us
2358 * because we hold the mm_all_locks_mutex.
2360 spin_lock_nest_lock(&anon_vma
->lock
, &mm
->mmap_sem
);
2362 * We can safely modify head.next after taking the
2363 * anon_vma->lock. If some other vma in this mm shares
2364 * the same anon_vma we won't take it again.
2366 * No need of atomic instructions here, head.next
2367 * can't change from under us thanks to the
2370 if (__test_and_set_bit(0, (unsigned long *)
2371 &anon_vma
->head
.next
))
2376 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2378 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2380 * AS_MM_ALL_LOCKS can't change from under us because
2381 * we hold the mm_all_locks_mutex.
2383 * Operations on ->flags have to be atomic because
2384 * even if AS_MM_ALL_LOCKS is stable thanks to the
2385 * mm_all_locks_mutex, there may be other cpus
2386 * changing other bitflags in parallel to us.
2388 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2390 spin_lock_nest_lock(&mapping
->i_mmap_lock
, &mm
->mmap_sem
);
2395 * This operation locks against the VM for all pte/vma/mm related
2396 * operations that could ever happen on a certain mm. This includes
2397 * vmtruncate, try_to_unmap, and all page faults.
2399 * The caller must take the mmap_sem in write mode before calling
2400 * mm_take_all_locks(). The caller isn't allowed to release the
2401 * mmap_sem until mm_drop_all_locks() returns.
2403 * mmap_sem in write mode is required in order to block all operations
2404 * that could modify pagetables and free pages without need of
2405 * altering the vma layout (for example populate_range() with
2406 * nonlinear vmas). It's also needed in write mode to avoid new
2407 * anon_vmas to be associated with existing vmas.
2409 * A single task can't take more than one mm_take_all_locks() in a row
2410 * or it would deadlock.
2412 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2413 * mapping->flags avoid to take the same lock twice, if more than one
2414 * vma in this mm is backed by the same anon_vma or address_space.
2416 * We can take all the locks in random order because the VM code
2417 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2418 * takes more than one of them in a row. Secondly we're protected
2419 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2421 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2422 * that may have to take thousand of locks.
2424 * mm_take_all_locks() can fail if it's interrupted by signals.
2426 int mm_take_all_locks(struct mm_struct
*mm
)
2428 struct vm_area_struct
*vma
;
2431 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2433 mutex_lock(&mm_all_locks_mutex
);
2435 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2436 if (signal_pending(current
))
2438 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2439 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2442 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2443 if (signal_pending(current
))
2446 vm_lock_anon_vma(mm
, vma
->anon_vma
);
2453 mm_drop_all_locks(mm
);
2458 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2460 if (test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2462 * The LSB of head.next can't change to 0 from under
2463 * us because we hold the mm_all_locks_mutex.
2465 * We must however clear the bitflag before unlocking
2466 * the vma so the users using the anon_vma->head will
2467 * never see our bitflag.
2469 * No need of atomic instructions here, head.next
2470 * can't change from under us until we release the
2473 if (!__test_and_clear_bit(0, (unsigned long *)
2474 &anon_vma
->head
.next
))
2476 spin_unlock(&anon_vma
->lock
);
2480 static void vm_unlock_mapping(struct address_space
*mapping
)
2482 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2484 * AS_MM_ALL_LOCKS can't change to 0 from under us
2485 * because we hold the mm_all_locks_mutex.
2487 spin_unlock(&mapping
->i_mmap_lock
);
2488 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2495 * The mmap_sem cannot be released by the caller until
2496 * mm_drop_all_locks() returns.
2498 void mm_drop_all_locks(struct mm_struct
*mm
)
2500 struct vm_area_struct
*vma
;
2502 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2503 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2505 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2507 vm_unlock_anon_vma(vma
->anon_vma
);
2508 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2509 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2512 mutex_unlock(&mm_all_locks_mutex
);
2516 * initialise the VMA slab
2518 void __init
mmap_init(void)
2522 ret
= percpu_counter_init(&vm_committed_as
, 0);