perf sched: Display time in milliseconds, reorganize output
[mmotm.git] / tools / perf / builtin-sched.c
bloba084c284e198452f0913c8726469d5b6c63cf6a0
1 #include "builtin.h"
3 #include "util/util.h"
4 #include "util/cache.h"
5 #include "util/symbol.h"
6 #include "util/thread.h"
7 #include "util/header.h"
9 #include "util/parse-options.h"
11 #include "perf.h"
12 #include "util/debug.h"
14 #include "util/trace-event.h"
15 #include <sys/types.h>
18 #define MAX_CPUS 4096
20 static char const *input_name = "perf.data";
21 static int input;
22 static unsigned long page_size;
23 static unsigned long mmap_window = 32;
25 static unsigned long total_comm = 0;
27 static struct rb_root threads;
28 static struct thread *last_match;
30 static struct perf_header *header;
31 static u64 sample_type;
33 static int replay_mode;
34 static int lat_mode;
38 * Scheduler benchmarks
40 #include <sys/resource.h>
41 #include <sys/types.h>
42 #include <sys/stat.h>
43 #include <sys/time.h>
44 #include <sys/prctl.h>
46 #include <linux/unistd.h>
48 #include <semaphore.h>
49 #include <pthread.h>
50 #include <signal.h>
51 #include <values.h>
52 #include <string.h>
53 #include <unistd.h>
54 #include <stdlib.h>
55 #include <assert.h>
56 #include <fcntl.h>
57 #include <time.h>
58 #include <math.h>
60 #include <stdio.h>
62 #define PR_SET_NAME 15 /* Set process name */
64 #define BUG_ON(x) assert(!(x))
66 #define DEBUG 0
68 typedef unsigned long long nsec_t;
70 static nsec_t run_measurement_overhead;
71 static nsec_t sleep_measurement_overhead;
73 static nsec_t get_nsecs(void)
75 struct timespec ts;
77 clock_gettime(CLOCK_MONOTONIC, &ts);
79 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
82 static void burn_nsecs(nsec_t nsecs)
84 nsec_t T0 = get_nsecs(), T1;
86 do {
87 T1 = get_nsecs();
88 } while (T1 + run_measurement_overhead < T0 + nsecs);
91 static void sleep_nsecs(nsec_t nsecs)
93 struct timespec ts;
95 ts.tv_nsec = nsecs % 999999999;
96 ts.tv_sec = nsecs / 999999999;
98 nanosleep(&ts, NULL);
101 static void calibrate_run_measurement_overhead(void)
103 nsec_t T0, T1, delta, min_delta = 1000000000ULL;
104 int i;
106 for (i = 0; i < 10; i++) {
107 T0 = get_nsecs();
108 burn_nsecs(0);
109 T1 = get_nsecs();
110 delta = T1-T0;
111 min_delta = min(min_delta, delta);
113 run_measurement_overhead = min_delta;
115 printf("run measurement overhead: %Ld nsecs\n", min_delta);
118 static void calibrate_sleep_measurement_overhead(void)
120 nsec_t T0, T1, delta, min_delta = 1000000000ULL;
121 int i;
123 for (i = 0; i < 10; i++) {
124 T0 = get_nsecs();
125 sleep_nsecs(10000);
126 T1 = get_nsecs();
127 delta = T1-T0;
128 min_delta = min(min_delta, delta);
130 min_delta -= 10000;
131 sleep_measurement_overhead = min_delta;
133 printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
136 #define COMM_LEN 20
137 #define SYM_LEN 129
139 #define MAX_PID 65536
141 static unsigned long nr_tasks;
143 struct sched_event;
145 struct task_desc {
146 unsigned long nr;
147 unsigned long pid;
148 char comm[COMM_LEN];
150 unsigned long nr_events;
151 unsigned long curr_event;
152 struct sched_event **events;
154 pthread_t thread;
155 sem_t sleep_sem;
157 sem_t ready_for_work;
158 sem_t work_done_sem;
160 nsec_t cpu_usage;
163 enum sched_event_type {
164 SCHED_EVENT_RUN,
165 SCHED_EVENT_SLEEP,
166 SCHED_EVENT_WAKEUP,
169 struct sched_event {
170 enum sched_event_type type;
171 nsec_t timestamp;
172 nsec_t duration;
173 unsigned long nr;
174 int specific_wait;
175 sem_t *wait_sem;
176 struct task_desc *wakee;
179 static struct task_desc *pid_to_task[MAX_PID];
181 static struct task_desc **tasks;
183 static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
184 static nsec_t start_time;
186 static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
188 static unsigned long nr_run_events;
189 static unsigned long nr_sleep_events;
190 static unsigned long nr_wakeup_events;
192 static unsigned long nr_sleep_corrections;
193 static unsigned long nr_run_events_optimized;
195 static struct sched_event *
196 get_new_event(struct task_desc *task, nsec_t timestamp)
198 struct sched_event *event = calloc(1, sizeof(*event));
199 unsigned long idx = task->nr_events;
200 size_t size;
202 event->timestamp = timestamp;
203 event->nr = idx;
205 task->nr_events++;
206 size = sizeof(struct sched_event *) * task->nr_events;
207 task->events = realloc(task->events, size);
208 BUG_ON(!task->events);
210 task->events[idx] = event;
212 return event;
215 static struct sched_event *last_event(struct task_desc *task)
217 if (!task->nr_events)
218 return NULL;
220 return task->events[task->nr_events - 1];
223 static void
224 add_sched_event_run(struct task_desc *task, nsec_t timestamp, u64 duration)
226 struct sched_event *event, *curr_event = last_event(task);
229 * optimize an existing RUN event by merging this one
230 * to it:
232 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
233 nr_run_events_optimized++;
234 curr_event->duration += duration;
235 return;
238 event = get_new_event(task, timestamp);
240 event->type = SCHED_EVENT_RUN;
241 event->duration = duration;
243 nr_run_events++;
246 static unsigned long targetless_wakeups;
247 static unsigned long multitarget_wakeups;
249 static void
250 add_sched_event_wakeup(struct task_desc *task, nsec_t timestamp,
251 struct task_desc *wakee)
253 struct sched_event *event, *wakee_event;
255 event = get_new_event(task, timestamp);
256 event->type = SCHED_EVENT_WAKEUP;
257 event->wakee = wakee;
259 wakee_event = last_event(wakee);
260 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
261 targetless_wakeups++;
262 return;
264 if (wakee_event->wait_sem) {
265 multitarget_wakeups++;
266 return;
269 wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
270 sem_init(wakee_event->wait_sem, 0, 0);
271 wakee_event->specific_wait = 1;
272 event->wait_sem = wakee_event->wait_sem;
274 nr_wakeup_events++;
277 static void
278 add_sched_event_sleep(struct task_desc *task, nsec_t timestamp,
279 u64 task_state __used)
281 struct sched_event *event = get_new_event(task, timestamp);
283 event->type = SCHED_EVENT_SLEEP;
285 nr_sleep_events++;
288 static struct task_desc *register_pid(unsigned long pid, const char *comm)
290 struct task_desc *task;
292 BUG_ON(pid >= MAX_PID);
294 task = pid_to_task[pid];
296 if (task)
297 return task;
299 task = calloc(1, sizeof(*task));
300 task->pid = pid;
301 task->nr = nr_tasks;
302 strcpy(task->comm, comm);
304 * every task starts in sleeping state - this gets ignored
305 * if there's no wakeup pointing to this sleep state:
307 add_sched_event_sleep(task, 0, 0);
309 pid_to_task[pid] = task;
310 nr_tasks++;
311 tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
312 BUG_ON(!tasks);
313 tasks[task->nr] = task;
315 if (verbose)
316 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
318 return task;
322 static void print_task_traces(void)
324 struct task_desc *task;
325 unsigned long i;
327 for (i = 0; i < nr_tasks; i++) {
328 task = tasks[i];
329 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
330 task->nr, task->comm, task->pid, task->nr_events);
334 static void add_cross_task_wakeups(void)
336 struct task_desc *task1, *task2;
337 unsigned long i, j;
339 for (i = 0; i < nr_tasks; i++) {
340 task1 = tasks[i];
341 j = i + 1;
342 if (j == nr_tasks)
343 j = 0;
344 task2 = tasks[j];
345 add_sched_event_wakeup(task1, 0, task2);
349 static void
350 process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
352 int ret = 0;
353 nsec_t now;
354 long long delta;
356 now = get_nsecs();
357 delta = start_time + event->timestamp - now;
359 switch (event->type) {
360 case SCHED_EVENT_RUN:
361 burn_nsecs(event->duration);
362 break;
363 case SCHED_EVENT_SLEEP:
364 if (event->wait_sem)
365 ret = sem_wait(event->wait_sem);
366 BUG_ON(ret);
367 break;
368 case SCHED_EVENT_WAKEUP:
369 if (event->wait_sem)
370 ret = sem_post(event->wait_sem);
371 BUG_ON(ret);
372 break;
373 default:
374 BUG_ON(1);
378 static nsec_t get_cpu_usage_nsec_parent(void)
380 struct rusage ru;
381 nsec_t sum;
382 int err;
384 err = getrusage(RUSAGE_SELF, &ru);
385 BUG_ON(err);
387 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
388 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
390 return sum;
393 static nsec_t get_cpu_usage_nsec_self(void)
395 char filename [] = "/proc/1234567890/sched";
396 unsigned long msecs, nsecs;
397 char *line = NULL;
398 nsec_t total = 0;
399 size_t len = 0;
400 ssize_t chars;
401 FILE *file;
402 int ret;
404 sprintf(filename, "/proc/%d/sched", getpid());
405 file = fopen(filename, "r");
406 BUG_ON(!file);
408 while ((chars = getline(&line, &len, file)) != -1) {
409 ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
410 &msecs, &nsecs);
411 if (ret == 2) {
412 total = msecs*1e6 + nsecs;
413 break;
416 if (line)
417 free(line);
418 fclose(file);
420 return total;
423 static void *thread_func(void *ctx)
425 struct task_desc *this_task = ctx;
426 nsec_t cpu_usage_0, cpu_usage_1;
427 unsigned long i, ret;
428 char comm2[22];
430 sprintf(comm2, ":%s", this_task->comm);
431 prctl(PR_SET_NAME, comm2);
433 again:
434 ret = sem_post(&this_task->ready_for_work);
435 BUG_ON(ret);
436 ret = pthread_mutex_lock(&start_work_mutex);
437 BUG_ON(ret);
438 ret = pthread_mutex_unlock(&start_work_mutex);
439 BUG_ON(ret);
441 cpu_usage_0 = get_cpu_usage_nsec_self();
443 for (i = 0; i < this_task->nr_events; i++) {
444 this_task->curr_event = i;
445 process_sched_event(this_task, this_task->events[i]);
448 cpu_usage_1 = get_cpu_usage_nsec_self();
449 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
451 ret = sem_post(&this_task->work_done_sem);
452 BUG_ON(ret);
454 ret = pthread_mutex_lock(&work_done_wait_mutex);
455 BUG_ON(ret);
456 ret = pthread_mutex_unlock(&work_done_wait_mutex);
457 BUG_ON(ret);
459 goto again;
462 static void create_tasks(void)
464 struct task_desc *task;
465 pthread_attr_t attr;
466 unsigned long i;
467 int err;
469 err = pthread_attr_init(&attr);
470 BUG_ON(err);
471 err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
472 BUG_ON(err);
473 err = pthread_mutex_lock(&start_work_mutex);
474 BUG_ON(err);
475 err = pthread_mutex_lock(&work_done_wait_mutex);
476 BUG_ON(err);
477 for (i = 0; i < nr_tasks; i++) {
478 task = tasks[i];
479 sem_init(&task->sleep_sem, 0, 0);
480 sem_init(&task->ready_for_work, 0, 0);
481 sem_init(&task->work_done_sem, 0, 0);
482 task->curr_event = 0;
483 err = pthread_create(&task->thread, &attr, thread_func, task);
484 BUG_ON(err);
488 static nsec_t cpu_usage;
489 static nsec_t runavg_cpu_usage;
490 static nsec_t parent_cpu_usage;
491 static nsec_t runavg_parent_cpu_usage;
493 static void wait_for_tasks(void)
495 nsec_t cpu_usage_0, cpu_usage_1;
496 struct task_desc *task;
497 unsigned long i, ret;
499 start_time = get_nsecs();
500 cpu_usage = 0;
501 pthread_mutex_unlock(&work_done_wait_mutex);
503 for (i = 0; i < nr_tasks; i++) {
504 task = tasks[i];
505 ret = sem_wait(&task->ready_for_work);
506 BUG_ON(ret);
507 sem_init(&task->ready_for_work, 0, 0);
509 ret = pthread_mutex_lock(&work_done_wait_mutex);
510 BUG_ON(ret);
512 cpu_usage_0 = get_cpu_usage_nsec_parent();
514 pthread_mutex_unlock(&start_work_mutex);
516 for (i = 0; i < nr_tasks; i++) {
517 task = tasks[i];
518 ret = sem_wait(&task->work_done_sem);
519 BUG_ON(ret);
520 sem_init(&task->work_done_sem, 0, 0);
521 cpu_usage += task->cpu_usage;
522 task->cpu_usage = 0;
525 cpu_usage_1 = get_cpu_usage_nsec_parent();
526 if (!runavg_cpu_usage)
527 runavg_cpu_usage = cpu_usage;
528 runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
530 parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
531 if (!runavg_parent_cpu_usage)
532 runavg_parent_cpu_usage = parent_cpu_usage;
533 runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
534 parent_cpu_usage)/10;
536 ret = pthread_mutex_lock(&start_work_mutex);
537 BUG_ON(ret);
539 for (i = 0; i < nr_tasks; i++) {
540 task = tasks[i];
541 sem_init(&task->sleep_sem, 0, 0);
542 task->curr_event = 0;
546 static int read_events(void);
548 static unsigned long nr_runs;
549 static nsec_t sum_runtime;
550 static nsec_t sum_fluct;
551 static nsec_t run_avg;
553 static void run_one_test(void)
555 nsec_t T0, T1, delta, avg_delta, fluct, std_dev;
557 T0 = get_nsecs();
558 wait_for_tasks();
559 T1 = get_nsecs();
561 delta = T1 - T0;
562 sum_runtime += delta;
563 nr_runs++;
565 avg_delta = sum_runtime / nr_runs;
566 if (delta < avg_delta)
567 fluct = avg_delta - delta;
568 else
569 fluct = delta - avg_delta;
570 sum_fluct += fluct;
571 std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
572 if (!run_avg)
573 run_avg = delta;
574 run_avg = (run_avg*9 + delta)/10;
576 printf("#%-3ld: %0.3f, ",
577 nr_runs, (double)delta/1000000.0);
579 #if 0
580 printf("%0.2f +- %0.2f, ",
581 (double)avg_delta/1e6, (double)std_dev/1e6);
582 #endif
583 printf("ravg: %0.2f, ",
584 (double)run_avg/1e6);
586 printf("cpu: %0.2f / %0.2f",
587 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
589 #if 0
591 * rusage statistics done by the parent, these are less
592 * accurate than the sum_exec_runtime based statistics:
594 printf(" [%0.2f / %0.2f]",
595 (double)parent_cpu_usage/1e6,
596 (double)runavg_parent_cpu_usage/1e6);
597 #endif
599 printf("\n");
601 if (nr_sleep_corrections)
602 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
603 nr_sleep_corrections = 0;
606 static void test_calibrations(void)
608 nsec_t T0, T1;
610 T0 = get_nsecs();
611 burn_nsecs(1e6);
612 T1 = get_nsecs();
614 printf("the run test took %Ld nsecs\n", T1-T0);
616 T0 = get_nsecs();
617 sleep_nsecs(1e6);
618 T1 = get_nsecs();
620 printf("the sleep test took %Ld nsecs\n", T1-T0);
623 static void __cmd_replay(void)
625 long nr_iterations = 10, i;
627 calibrate_run_measurement_overhead();
628 calibrate_sleep_measurement_overhead();
630 test_calibrations();
632 read_events();
634 printf("nr_run_events: %ld\n", nr_run_events);
635 printf("nr_sleep_events: %ld\n", nr_sleep_events);
636 printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
638 if (targetless_wakeups)
639 printf("target-less wakeups: %ld\n", targetless_wakeups);
640 if (multitarget_wakeups)
641 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
642 if (nr_run_events_optimized)
643 printf("run events optimized: %ld\n",
644 nr_run_events_optimized);
646 print_task_traces();
647 add_cross_task_wakeups();
649 create_tasks();
650 printf("------------------------------------------------------------\n");
651 for (i = 0; i < nr_iterations; i++)
652 run_one_test();
655 static int
656 process_comm_event(event_t *event, unsigned long offset, unsigned long head)
658 struct thread *thread;
660 thread = threads__findnew(event->comm.pid, &threads, &last_match);
662 dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
663 (void *)(offset + head),
664 (void *)(long)(event->header.size),
665 event->comm.comm, event->comm.pid);
667 if (thread == NULL ||
668 thread__set_comm(thread, event->comm.comm)) {
669 dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
670 return -1;
672 total_comm++;
674 return 0;
678 struct raw_event_sample {
679 u32 size;
680 char data[0];
683 #define FILL_FIELD(ptr, field, event, data) \
684 ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
686 #define FILL_ARRAY(ptr, array, event, data) \
687 do { \
688 void *__array = raw_field_ptr(event, #array, data); \
689 memcpy(ptr.array, __array, sizeof(ptr.array)); \
690 } while(0)
692 #define FILL_COMMON_FIELDS(ptr, event, data) \
693 do { \
694 FILL_FIELD(ptr, common_type, event, data); \
695 FILL_FIELD(ptr, common_flags, event, data); \
696 FILL_FIELD(ptr, common_preempt_count, event, data); \
697 FILL_FIELD(ptr, common_pid, event, data); \
698 FILL_FIELD(ptr, common_tgid, event, data); \
699 } while (0)
703 struct trace_switch_event {
704 u32 size;
706 u16 common_type;
707 u8 common_flags;
708 u8 common_preempt_count;
709 u32 common_pid;
710 u32 common_tgid;
712 char prev_comm[16];
713 u32 prev_pid;
714 u32 prev_prio;
715 u64 prev_state;
716 char next_comm[16];
717 u32 next_pid;
718 u32 next_prio;
722 struct trace_wakeup_event {
723 u32 size;
725 u16 common_type;
726 u8 common_flags;
727 u8 common_preempt_count;
728 u32 common_pid;
729 u32 common_tgid;
731 char comm[16];
732 u32 pid;
734 u32 prio;
735 u32 success;
736 u32 cpu;
739 struct trace_fork_event {
740 u32 size;
742 u16 common_type;
743 u8 common_flags;
744 u8 common_preempt_count;
745 u32 common_pid;
746 u32 common_tgid;
748 char parent_comm[16];
749 u32 parent_pid;
750 char child_comm[16];
751 u32 child_pid;
754 struct trace_sched_handler {
755 void (*switch_event)(struct trace_switch_event *,
756 struct event *,
757 int cpu,
758 u64 timestamp,
759 struct thread *thread);
761 void (*wakeup_event)(struct trace_wakeup_event *,
762 struct event *,
763 int cpu,
764 u64 timestamp,
765 struct thread *thread);
767 void (*fork_event)(struct trace_fork_event *,
768 struct event *,
769 int cpu,
770 u64 timestamp,
771 struct thread *thread);
775 static void
776 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
777 struct event *event,
778 int cpu __used,
779 u64 timestamp __used,
780 struct thread *thread __used)
782 struct task_desc *waker, *wakee;
784 if (verbose) {
785 printf("sched_wakeup event %p\n", event);
787 printf(" ... pid %d woke up %s/%d\n",
788 wakeup_event->common_pid,
789 wakeup_event->comm,
790 wakeup_event->pid);
793 waker = register_pid(wakeup_event->common_pid, "<unknown>");
794 wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
796 add_sched_event_wakeup(waker, timestamp, wakee);
799 static unsigned long cpu_last_switched[MAX_CPUS];
801 static void
802 replay_switch_event(struct trace_switch_event *switch_event,
803 struct event *event,
804 int cpu,
805 u64 timestamp,
806 struct thread *thread __used)
808 struct task_desc *prev, *next;
809 u64 timestamp0;
810 s64 delta;
812 if (verbose)
813 printf("sched_switch event %p\n", event);
815 if (cpu >= MAX_CPUS || cpu < 0)
816 return;
818 timestamp0 = cpu_last_switched[cpu];
819 if (timestamp0)
820 delta = timestamp - timestamp0;
821 else
822 delta = 0;
824 if (delta < 0)
825 die("hm, delta: %Ld < 0 ?\n", delta);
827 if (verbose) {
828 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
829 switch_event->prev_comm, switch_event->prev_pid,
830 switch_event->next_comm, switch_event->next_pid,
831 delta);
834 prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
835 next = register_pid(switch_event->next_pid, switch_event->next_comm);
837 cpu_last_switched[cpu] = timestamp;
839 add_sched_event_run(prev, timestamp, delta);
840 add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
844 static void
845 replay_fork_event(struct trace_fork_event *fork_event,
846 struct event *event,
847 int cpu __used,
848 u64 timestamp __used,
849 struct thread *thread __used)
851 if (verbose) {
852 printf("sched_fork event %p\n", event);
853 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
854 printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
856 register_pid(fork_event->parent_pid, fork_event->parent_comm);
857 register_pid(fork_event->child_pid, fork_event->child_comm);
860 static struct trace_sched_handler replay_ops = {
861 .wakeup_event = replay_wakeup_event,
862 .switch_event = replay_switch_event,
863 .fork_event = replay_fork_event,
866 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
868 enum thread_state {
869 THREAD_SLEEPING,
870 THREAD_WAKED_UP,
871 THREAD_SCHED_IN,
872 THREAD_IGNORE
875 struct lat_snapshot {
876 struct list_head list;
877 enum thread_state state;
878 u64 wake_up_time;
879 u64 sched_in_time;
882 struct thread_latency {
883 struct list_head snapshot_list;
884 struct thread *thread;
885 struct rb_node node;
888 static struct rb_root lat_snapshot_root;
890 static struct thread_latency *
891 thread_latency_search(struct rb_root *root, struct thread *thread)
893 struct rb_node *node = root->rb_node;
895 while (node) {
896 struct thread_latency *lat;
898 lat = container_of(node, struct thread_latency, node);
899 if (thread->pid < lat->thread->pid)
900 node = node->rb_left;
901 else if (thread->pid > lat->thread->pid)
902 node = node->rb_right;
903 else {
904 return lat;
907 return NULL;
910 static void
911 __thread_latency_insert(struct rb_root *root, struct thread_latency *data)
913 struct rb_node **new = &(root->rb_node), *parent = NULL;
915 while (*new) {
916 struct thread_latency *this;
918 this = container_of(*new, struct thread_latency, node);
919 parent = *new;
920 if (data->thread->pid < this->thread->pid)
921 new = &((*new)->rb_left);
922 else if (data->thread->pid > this->thread->pid)
923 new = &((*new)->rb_right);
924 else
925 die("Double thread insertion\n");
928 rb_link_node(&data->node, parent, new);
929 rb_insert_color(&data->node, root);
932 static void thread_latency_insert(struct thread *thread)
934 struct thread_latency *lat;
935 lat = calloc(sizeof(*lat), 1);
936 if (!lat)
937 die("No memory");
939 lat->thread = thread;
940 INIT_LIST_HEAD(&lat->snapshot_list);
941 __thread_latency_insert(&lat_snapshot_root, lat);
944 static void
945 latency_fork_event(struct trace_fork_event *fork_event __used,
946 struct event *event __used,
947 int cpu __used,
948 u64 timestamp __used,
949 struct thread *thread __used)
951 /* should insert the newcomer */
954 static char sched_out_state(struct trace_switch_event *switch_event)
956 const char *str = TASK_STATE_TO_CHAR_STR;
958 return str[switch_event->prev_state];
961 static void
962 lat_sched_out(struct thread_latency *lat,
963 struct trace_switch_event *switch_event)
965 struct lat_snapshot *snapshot;
967 if (sched_out_state(switch_event) == 'R')
968 return;
970 snapshot = calloc(sizeof(*snapshot), 1);
971 if (!snapshot)
972 die("Non memory");
974 list_add_tail(&snapshot->list, &lat->snapshot_list);
977 static void
978 lat_sched_in(struct thread_latency *lat, u64 timestamp)
980 struct lat_snapshot *snapshot;
982 if (list_empty(&lat->snapshot_list))
983 return;
985 snapshot = list_entry(lat->snapshot_list.prev, struct lat_snapshot,
986 list);
988 if (snapshot->state != THREAD_WAKED_UP)
989 return;
991 if (timestamp < snapshot->wake_up_time) {
992 snapshot->state = THREAD_IGNORE;
993 return;
996 snapshot->state = THREAD_SCHED_IN;
997 snapshot->sched_in_time = timestamp;
1001 static void
1002 latency_switch_event(struct trace_switch_event *switch_event,
1003 struct event *event __used,
1004 int cpu __used,
1005 u64 timestamp,
1006 struct thread *thread __used)
1008 struct thread_latency *out_lat, *in_lat;
1009 struct thread *sched_out, *sched_in;
1011 sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
1012 sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
1014 in_lat = thread_latency_search(&lat_snapshot_root, sched_in);
1015 if (!in_lat) {
1016 thread_latency_insert(sched_in);
1017 in_lat = thread_latency_search(&lat_snapshot_root, sched_in);
1018 if (!in_lat)
1019 die("Internal latency tree error");
1022 out_lat = thread_latency_search(&lat_snapshot_root, sched_out);
1023 if (!out_lat) {
1024 thread_latency_insert(sched_out);
1025 out_lat = thread_latency_search(&lat_snapshot_root, sched_out);
1026 if (!out_lat)
1027 die("Internal latency tree error");
1030 lat_sched_in(in_lat, timestamp);
1031 lat_sched_out(out_lat, switch_event);
1034 static void
1035 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1036 struct event *event __used,
1037 int cpu __used,
1038 u64 timestamp,
1039 struct thread *thread __used)
1041 struct thread_latency *lat;
1042 struct lat_snapshot *snapshot;
1043 struct thread *wakee;
1045 /* Note for later, it may be interesting to observe the failing cases */
1046 if (!wakeup_event->success)
1047 return;
1049 wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
1050 lat = thread_latency_search(&lat_snapshot_root, wakee);
1051 if (!lat) {
1052 thread_latency_insert(wakee);
1053 return;
1056 if (list_empty(&lat->snapshot_list))
1057 return;
1059 snapshot = list_entry(lat->snapshot_list.prev, struct lat_snapshot,
1060 list);
1062 if (snapshot->state != THREAD_SLEEPING)
1063 return;
1065 snapshot->state = THREAD_WAKED_UP;
1066 snapshot->wake_up_time = timestamp;
1069 static struct trace_sched_handler lat_ops = {
1070 .wakeup_event = latency_wakeup_event,
1071 .switch_event = latency_switch_event,
1072 .fork_event = latency_fork_event,
1075 static void output_lat_thread(struct thread_latency *lat)
1077 struct lat_snapshot *shot;
1078 int count = 0;
1079 int i;
1080 int ret;
1081 u64 max = 0, avg;
1082 u64 total = 0, delta;
1084 list_for_each_entry(shot, &lat->snapshot_list, list) {
1085 if (shot->state != THREAD_SCHED_IN)
1086 continue;
1088 count++;
1090 delta = shot->sched_in_time - shot->wake_up_time;
1091 if (delta > max)
1092 max = delta;
1093 total += delta;
1096 if (!count)
1097 return;
1099 ret = printf(" %s ", lat->thread->comm);
1101 for (i = 0; i < 19 - ret; i++)
1102 printf(" ");
1104 avg = total / count;
1106 printf("|%9.3f ms |%9d | avg:%9.3f ms | max:%9.3f ms |\n",
1107 0.0, count, (double)avg/1e9, (double)max/1e9);
1110 static void __cmd_lat(void)
1112 struct rb_node *next;
1114 setup_pager();
1115 read_events();
1117 printf("-----------------------------------------------------------------------------------\n");
1118 printf(" Task | runtime ms | switches | average delay ms | maximum delay ms |\n");
1119 printf("-----------------------------------------------------------------------------------\n");
1121 next = rb_first(&lat_snapshot_root);
1123 while (next) {
1124 struct thread_latency *lat;
1126 lat = rb_entry(next, struct thread_latency, node);
1127 output_lat_thread(lat);
1128 next = rb_next(next);
1131 printf("-----------------------------------------------------------------------------------\n");
1134 static struct trace_sched_handler *trace_handler;
1136 static void
1137 process_sched_wakeup_event(struct raw_event_sample *raw,
1138 struct event *event,
1139 int cpu __used,
1140 u64 timestamp __used,
1141 struct thread *thread __used)
1143 struct trace_wakeup_event wakeup_event;
1145 FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
1147 FILL_ARRAY(wakeup_event, comm, event, raw->data);
1148 FILL_FIELD(wakeup_event, pid, event, raw->data);
1149 FILL_FIELD(wakeup_event, prio, event, raw->data);
1150 FILL_FIELD(wakeup_event, success, event, raw->data);
1151 FILL_FIELD(wakeup_event, cpu, event, raw->data);
1153 trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1156 static void
1157 process_sched_switch_event(struct raw_event_sample *raw,
1158 struct event *event,
1159 int cpu __used,
1160 u64 timestamp __used,
1161 struct thread *thread __used)
1163 struct trace_switch_event switch_event;
1165 FILL_COMMON_FIELDS(switch_event, event, raw->data);
1167 FILL_ARRAY(switch_event, prev_comm, event, raw->data);
1168 FILL_FIELD(switch_event, prev_pid, event, raw->data);
1169 FILL_FIELD(switch_event, prev_prio, event, raw->data);
1170 FILL_FIELD(switch_event, prev_state, event, raw->data);
1171 FILL_ARRAY(switch_event, next_comm, event, raw->data);
1172 FILL_FIELD(switch_event, next_pid, event, raw->data);
1173 FILL_FIELD(switch_event, next_prio, event, raw->data);
1175 trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
1178 static void
1179 process_sched_fork_event(struct raw_event_sample *raw,
1180 struct event *event,
1181 int cpu __used,
1182 u64 timestamp __used,
1183 struct thread *thread __used)
1185 struct trace_fork_event fork_event;
1187 FILL_COMMON_FIELDS(fork_event, event, raw->data);
1189 FILL_ARRAY(fork_event, parent_comm, event, raw->data);
1190 FILL_FIELD(fork_event, parent_pid, event, raw->data);
1191 FILL_ARRAY(fork_event, child_comm, event, raw->data);
1192 FILL_FIELD(fork_event, child_pid, event, raw->data);
1194 trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1197 static void
1198 process_sched_exit_event(struct event *event,
1199 int cpu __used,
1200 u64 timestamp __used,
1201 struct thread *thread __used)
1203 if (verbose)
1204 printf("sched_exit event %p\n", event);
1207 static void
1208 process_raw_event(event_t *raw_event __used, void *more_data,
1209 int cpu, u64 timestamp, struct thread *thread)
1211 struct raw_event_sample *raw = more_data;
1212 struct event *event;
1213 int type;
1215 type = trace_parse_common_type(raw->data);
1216 event = trace_find_event(type);
1218 if (!strcmp(event->name, "sched_switch"))
1219 process_sched_switch_event(raw, event, cpu, timestamp, thread);
1220 if (!strcmp(event->name, "sched_wakeup"))
1221 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1222 if (!strcmp(event->name, "sched_wakeup_new"))
1223 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1224 if (!strcmp(event->name, "sched_process_fork"))
1225 process_sched_fork_event(raw, event, cpu, timestamp, thread);
1226 if (!strcmp(event->name, "sched_process_exit"))
1227 process_sched_exit_event(event, cpu, timestamp, thread);
1230 static int
1231 process_sample_event(event_t *event, unsigned long offset, unsigned long head)
1233 char level;
1234 int show = 0;
1235 struct dso *dso = NULL;
1236 struct thread *thread;
1237 u64 ip = event->ip.ip;
1238 u64 timestamp = -1;
1239 u32 cpu = -1;
1240 u64 period = 1;
1241 void *more_data = event->ip.__more_data;
1242 int cpumode;
1244 thread = threads__findnew(event->ip.pid, &threads, &last_match);
1246 if (sample_type & PERF_SAMPLE_TIME) {
1247 timestamp = *(u64 *)more_data;
1248 more_data += sizeof(u64);
1251 if (sample_type & PERF_SAMPLE_CPU) {
1252 cpu = *(u32 *)more_data;
1253 more_data += sizeof(u32);
1254 more_data += sizeof(u32); /* reserved */
1257 if (sample_type & PERF_SAMPLE_PERIOD) {
1258 period = *(u64 *)more_data;
1259 more_data += sizeof(u64);
1262 dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
1263 (void *)(offset + head),
1264 (void *)(long)(event->header.size),
1265 event->header.misc,
1266 event->ip.pid, event->ip.tid,
1267 (void *)(long)ip,
1268 (long long)period);
1270 dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1272 if (thread == NULL) {
1273 eprintf("problem processing %d event, skipping it.\n",
1274 event->header.type);
1275 return -1;
1278 cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
1280 if (cpumode == PERF_EVENT_MISC_KERNEL) {
1281 show = SHOW_KERNEL;
1282 level = 'k';
1284 dso = kernel_dso;
1286 dump_printf(" ...... dso: %s\n", dso->name);
1288 } else if (cpumode == PERF_EVENT_MISC_USER) {
1290 show = SHOW_USER;
1291 level = '.';
1293 } else {
1294 show = SHOW_HV;
1295 level = 'H';
1297 dso = hypervisor_dso;
1299 dump_printf(" ...... dso: [hypervisor]\n");
1302 if (sample_type & PERF_SAMPLE_RAW)
1303 process_raw_event(event, more_data, cpu, timestamp, thread);
1305 return 0;
1308 static int
1309 process_event(event_t *event, unsigned long offset, unsigned long head)
1311 trace_event(event);
1313 switch (event->header.type) {
1314 case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
1315 return 0;
1317 case PERF_EVENT_COMM:
1318 return process_comm_event(event, offset, head);
1320 case PERF_EVENT_EXIT ... PERF_EVENT_READ:
1321 return 0;
1323 case PERF_EVENT_SAMPLE:
1324 return process_sample_event(event, offset, head);
1326 case PERF_EVENT_MAX:
1327 default:
1328 return -1;
1331 return 0;
1334 static int read_events(void)
1336 int ret, rc = EXIT_FAILURE;
1337 unsigned long offset = 0;
1338 unsigned long head = 0;
1339 struct stat perf_stat;
1340 event_t *event;
1341 uint32_t size;
1342 char *buf;
1344 trace_report();
1345 register_idle_thread(&threads, &last_match);
1347 input = open(input_name, O_RDONLY);
1348 if (input < 0) {
1349 perror("failed to open file");
1350 exit(-1);
1353 ret = fstat(input, &perf_stat);
1354 if (ret < 0) {
1355 perror("failed to stat file");
1356 exit(-1);
1359 if (!perf_stat.st_size) {
1360 fprintf(stderr, "zero-sized file, nothing to do!\n");
1361 exit(0);
1363 header = perf_header__read(input);
1364 head = header->data_offset;
1365 sample_type = perf_header__sample_type(header);
1367 if (!(sample_type & PERF_SAMPLE_RAW))
1368 die("No trace sample to read. Did you call perf record "
1369 "without -R?");
1371 if (load_kernel() < 0) {
1372 perror("failed to load kernel symbols");
1373 return EXIT_FAILURE;
1376 remap:
1377 buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1378 MAP_SHARED, input, offset);
1379 if (buf == MAP_FAILED) {
1380 perror("failed to mmap file");
1381 exit(-1);
1384 more:
1385 event = (event_t *)(buf + head);
1387 size = event->header.size;
1388 if (!size)
1389 size = 8;
1391 if (head + event->header.size >= page_size * mmap_window) {
1392 unsigned long shift = page_size * (head / page_size);
1393 int res;
1395 res = munmap(buf, page_size * mmap_window);
1396 assert(res == 0);
1398 offset += shift;
1399 head -= shift;
1400 goto remap;
1403 size = event->header.size;
1406 if (!size || process_event(event, offset, head) < 0) {
1409 * assume we lost track of the stream, check alignment, and
1410 * increment a single u64 in the hope to catch on again 'soon'.
1413 if (unlikely(head & 7))
1414 head &= ~7ULL;
1416 size = 8;
1419 head += size;
1421 if (offset + head < (unsigned long)perf_stat.st_size)
1422 goto more;
1424 rc = EXIT_SUCCESS;
1425 close(input);
1427 return rc;
1430 static const char * const sched_usage[] = {
1431 "perf sched [<options>] <command>",
1432 NULL
1435 static const struct option options[] = {
1436 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1437 "dump raw trace in ASCII"),
1438 OPT_BOOLEAN('r', "replay", &replay_mode,
1439 "replay sched behaviour from traces"),
1440 OPT_BOOLEAN('l', "latency", &lat_mode,
1441 "measure various latencies"),
1442 OPT_BOOLEAN('v', "verbose", &verbose,
1443 "be more verbose (show symbol address, etc)"),
1444 OPT_END()
1447 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1449 symbol__init();
1450 page_size = getpagesize();
1452 argc = parse_options(argc, argv, options, sched_usage, 0);
1453 if (argc) {
1455 * Special case: if there's an argument left then assume tha
1456 * it's a symbol filter:
1458 if (argc > 1)
1459 usage_with_options(sched_usage, options);
1462 if (replay_mode)
1463 trace_handler = &replay_ops;
1464 else if (lat_mode)
1465 trace_handler = &lat_ops;
1466 else
1467 usage_with_options(sched_usage, options);
1469 if (replay_mode)
1470 __cmd_replay();
1471 else if (lat_mode)
1472 __cmd_lat();
1474 return 0;