1 /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
3 * Copyright © 2002 Keith Packard
4 * Copyright © 2007 Red Hat, Inc.
6 * This library is free software; you can redistribute it and/or
7 * modify it either under the terms of the GNU Lesser General Public
8 * License version 2.1 as published by the Free Software Foundation
9 * (the "LGPL") or, at your option, under the terms of the Mozilla
10 * Public License Version 1.1 (the "MPL"). If you do not alter this
11 * notice, a recipient may use your version of this file under either
12 * the MPL or the LGPL.
14 * You should have received a copy of the LGPL along with this library
15 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 * You should have received a copy of the MPL along with this library
18 * in the file COPYING-MPL-1.1
20 * The contents of this file are subject to the Mozilla Public License
21 * Version 1.1 (the "License"); you may not use this file except in
22 * compliance with the License. You may obtain a copy of the License at
23 * http://www.mozilla.org/MPL/
25 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27 * the specific language governing rights and limitations.
29 * The Original Code is the cairo graphics library.
31 * The Initial Developer of the Original Code is Keith Packard
34 * Keith R. Packard <keithp@keithp.com>
35 * Carl D. Worth <cworth@cworth.org>
37 * 2002-07-15: Converted from XRenderCompositeDoublePoly to #cairo_trap_t. Carl D. Worth
42 /* private functions */
45 _compare_point_fixed_by_y (const void *av
, const void *bv
);
48 _cairo_traps_init (cairo_traps_t
*traps
)
50 traps
->status
= CAIRO_STATUS_SUCCESS
;
54 traps
->traps_size
= ARRAY_LENGTH (traps
->traps_embedded
);
55 traps
->traps
= traps
->traps_embedded
;
56 traps
->extents
.p1
.x
= traps
->extents
.p1
.y
= INT32_MAX
;
57 traps
->extents
.p2
.x
= traps
->extents
.p2
.y
= INT32_MIN
;
59 traps
->has_limits
= FALSE
;
63 _cairo_traps_limit (cairo_traps_t
*traps
,
66 traps
->has_limits
= TRUE
;
68 traps
->limits
= *limits
;
72 _cairo_traps_get_limit (cairo_traps_t
*traps
,
75 *limits
= traps
->limits
;
76 return traps
->has_limits
;
80 _cairo_traps_clear (cairo_traps_t
*traps
)
82 traps
->status
= CAIRO_STATUS_SUCCESS
;
85 traps
->extents
.p1
.x
= traps
->extents
.p1
.y
= INT32_MAX
;
86 traps
->extents
.p2
.x
= traps
->extents
.p2
.y
= INT32_MIN
;
90 _cairo_traps_fini (cairo_traps_t
*traps
)
92 if (traps
->traps
!= traps
->traps_embedded
)
97 * _cairo_traps_init_box:
98 * @traps: a #cairo_traps_t
99 * @box: a box that will be converted to a single trapezoid
100 * to store in @traps.
102 * Initializes a #cairo_traps_t to contain a single rectangular
106 _cairo_traps_init_box (cairo_traps_t
*traps
,
107 const cairo_box_t
*box
)
109 _cairo_traps_init (traps
);
111 assert (traps
->traps_size
>= 1);
113 traps
->num_traps
= 1;
115 traps
->traps
[0].top
= box
->p1
.y
;
116 traps
->traps
[0].bottom
= box
->p2
.y
;
117 traps
->traps
[0].left
.p1
= box
->p1
;
118 traps
->traps
[0].left
.p2
.x
= box
->p1
.x
;
119 traps
->traps
[0].left
.p2
.y
= box
->p2
.y
;
120 traps
->traps
[0].right
.p1
.x
= box
->p2
.x
;
121 traps
->traps
[0].right
.p1
.y
= box
->p1
.y
;
122 traps
->traps
[0].right
.p2
= box
->p2
;
124 traps
->extents
= *box
;
127 /* make room for at least one more trap */
129 _cairo_traps_grow (cairo_traps_t
*traps
)
131 cairo_trapezoid_t
*new_traps
;
132 int new_size
= 2 * MAX (traps
->traps_size
, 16);
134 if (traps
->traps
== traps
->traps_embedded
) {
135 new_traps
= _cairo_malloc_ab (new_size
, sizeof (cairo_trapezoid_t
));
136 if (new_traps
!= NULL
)
137 memcpy (new_traps
, traps
->traps
, sizeof (traps
->traps_embedded
));
139 new_traps
= _cairo_realloc_ab (traps
->traps
,
140 new_size
, sizeof (cairo_trapezoid_t
));
143 if (new_traps
== NULL
) {
144 traps
->status
= _cairo_error (CAIRO_STATUS_NO_MEMORY
);
148 traps
->traps
= new_traps
;
149 traps
->traps_size
= new_size
;
154 _cairo_traps_add_trap (cairo_traps_t
*traps
,
155 cairo_fixed_t top
, cairo_fixed_t bottom
,
156 cairo_line_t
*left
, cairo_line_t
*right
)
158 cairo_trapezoid_t
*trap
;
160 /* Note: With the goofy trapezoid specification, (where an
161 * arbitrary two points on the lines can specified for the left
162 * and right edges), these limit checks would not work in
163 * general. For example, one can imagine a trapezoid entirely
164 * within the limits, but with two points used to specify the left
165 * edge entirely to the right of the limits. Fortunately, for our
166 * purposes, cairo will never generate such a crazy
167 * trapezoid. Instead, cairo always uses for its points the
168 * extreme positions of the edge that are visible on at least some
169 * trapezoid. With this constraint, it's impossible for both
170 * points to be outside the limits while the relevant edge is
171 * entirely inside the limits.
173 if (traps
->has_limits
) {
174 /* Trivially reject if trapezoid is entirely to the right or
175 * to the left of the limits. */
176 if (left
->p1
.x
>= traps
->limits
.p2
.x
&&
177 left
->p2
.x
>= traps
->limits
.p2
.x
)
182 if (right
->p1
.x
<= traps
->limits
.p1
.x
&&
183 right
->p2
.x
<= traps
->limits
.p1
.x
)
188 /* And reject if the trapezoid is entirely above or below */
189 if (top
> traps
->limits
.p2
.y
|| bottom
< traps
->limits
.p1
.y
)
192 /* Otherwise, clip the trapezoid to the limits. We only clip
193 * where an edge is entirely outside the limits. If we wanted
194 * to be more clever, we could handle cases where a trapezoid
195 * edge intersects the edge of the limits, but that would
196 * require slicing this trapezoid into multiple trapezoids,
197 * and I'm not sure the effort would be worth it. */
198 if (top
< traps
->limits
.p1
.y
)
199 top
= traps
->limits
.p1
.y
;
201 if (bottom
> traps
->limits
.p2
.y
)
202 bottom
= traps
->limits
.p2
.y
;
204 if (left
->p1
.x
<= traps
->limits
.p1
.x
&&
205 left
->p2
.x
<= traps
->limits
.p1
.x
)
207 left
->p1
.x
= traps
->limits
.p1
.x
;
208 left
->p2
.x
= traps
->limits
.p1
.x
;
211 if (right
->p1
.x
>= traps
->limits
.p2
.x
&&
212 right
->p2
.x
>= traps
->limits
.p2
.x
)
214 right
->p1
.x
= traps
->limits
.p2
.x
;
215 right
->p2
.x
= traps
->limits
.p2
.x
;
219 /* Trivial discards for empty trapezoids that are likely to be produced
220 * by our tessellators (most notably convex_quad when given a simple
225 /* cheap colinearity check */
226 if (right
->p1
.x
<= left
->p1
.x
&& right
->p1
.y
== left
->p1
.y
&&
227 right
->p2
.x
<= left
->p2
.x
&& right
->p2
.y
== left
->p2
.y
)
230 if (traps
->num_traps
== traps
->traps_size
) {
231 if (! _cairo_traps_grow (traps
))
235 trap
= &traps
->traps
[traps
->num_traps
];
237 trap
->bottom
= bottom
;
239 trap
->right
= *right
;
241 if (top
< traps
->extents
.p1
.y
)
242 traps
->extents
.p1
.y
= top
;
243 if (bottom
> traps
->extents
.p2
.y
)
244 traps
->extents
.p2
.y
= bottom
;
246 * This isn't generally accurate, but it is close enough for
247 * this purpose. Assuming that the left and right segments always
248 * contain the trapezoid vertical extents, these compares will
249 * yield a containing box. Assuming that the points all come from
250 * the same figure which will eventually be completely drawn, then
251 * the compares will yield the correct overall extents
253 if (left
->p1
.x
< traps
->extents
.p1
.x
)
254 traps
->extents
.p1
.x
= left
->p1
.x
;
255 if (left
->p2
.x
< traps
->extents
.p1
.x
)
256 traps
->extents
.p1
.x
= left
->p2
.x
;
258 if (right
->p1
.x
> traps
->extents
.p2
.x
)
259 traps
->extents
.p2
.x
= right
->p1
.x
;
260 if (right
->p2
.x
> traps
->extents
.p2
.x
)
261 traps
->extents
.p2
.x
= right
->p2
.x
;
267 _compare_point_fixed_by_y (const void *av
, const void *bv
)
269 const cairo_point_t
*a
= av
, *b
= bv
;
271 int ret
= a
->y
- b
->y
;
279 _cairo_traps_translate (cairo_traps_t
*traps
, int x
, int y
)
281 cairo_fixed_t xoff
, yoff
;
282 cairo_trapezoid_t
*t
;
285 /* Ugh. The cairo_composite/(Render) interface doesn't allow
286 an offset for the trapezoids. Need to manually shift all
287 the coordinates to align with the offset origin of the
288 intermediate surface. */
290 xoff
= _cairo_fixed_from_int (x
);
291 yoff
= _cairo_fixed_from_int (y
);
293 for (i
= 0, t
= traps
->traps
; i
< traps
->num_traps
; i
++, t
++) {
296 t
->left
.p1
.x
+= xoff
;
297 t
->left
.p1
.y
+= yoff
;
298 t
->left
.p2
.x
+= xoff
;
299 t
->left
.p2
.y
+= yoff
;
300 t
->right
.p1
.x
+= xoff
;
301 t
->right
.p1
.y
+= yoff
;
302 t
->right
.p2
.x
+= xoff
;
303 t
->right
.p2
.y
+= yoff
;
308 _cairo_trapezoid_array_translate_and_scale (cairo_trapezoid_t
*offset_traps
,
309 cairo_trapezoid_t
*src_traps
,
311 double tx
, double ty
,
312 double sx
, double sy
)
315 cairo_fixed_t xoff
= _cairo_fixed_from_double (tx
);
316 cairo_fixed_t yoff
= _cairo_fixed_from_double (ty
);
318 if (sx
== 1.0 && sy
== 1.0) {
319 for (i
= 0; i
< num_traps
; i
++) {
320 offset_traps
[i
].top
= src_traps
[i
].top
+ yoff
;
321 offset_traps
[i
].bottom
= src_traps
[i
].bottom
+ yoff
;
322 offset_traps
[i
].left
.p1
.x
= src_traps
[i
].left
.p1
.x
+ xoff
;
323 offset_traps
[i
].left
.p1
.y
= src_traps
[i
].left
.p1
.y
+ yoff
;
324 offset_traps
[i
].left
.p2
.x
= src_traps
[i
].left
.p2
.x
+ xoff
;
325 offset_traps
[i
].left
.p2
.y
= src_traps
[i
].left
.p2
.y
+ yoff
;
326 offset_traps
[i
].right
.p1
.x
= src_traps
[i
].right
.p1
.x
+ xoff
;
327 offset_traps
[i
].right
.p1
.y
= src_traps
[i
].right
.p1
.y
+ yoff
;
328 offset_traps
[i
].right
.p2
.x
= src_traps
[i
].right
.p2
.x
+ xoff
;
329 offset_traps
[i
].right
.p2
.y
= src_traps
[i
].right
.p2
.y
+ yoff
;
332 cairo_fixed_t xsc
= _cairo_fixed_from_double (sx
);
333 cairo_fixed_t ysc
= _cairo_fixed_from_double (sy
);
335 for (i
= 0; i
< num_traps
; i
++) {
336 offset_traps
[i
].top
= _cairo_fixed_mul (src_traps
[i
].top
+ yoff
, ysc
);
337 offset_traps
[i
].bottom
= _cairo_fixed_mul (src_traps
[i
].bottom
+ yoff
, ysc
);
338 offset_traps
[i
].left
.p1
.x
= _cairo_fixed_mul (src_traps
[i
].left
.p1
.x
+ xoff
, xsc
);
339 offset_traps
[i
].left
.p1
.y
= _cairo_fixed_mul (src_traps
[i
].left
.p1
.y
+ yoff
, ysc
);
340 offset_traps
[i
].left
.p2
.x
= _cairo_fixed_mul (src_traps
[i
].left
.p2
.x
+ xoff
, xsc
);
341 offset_traps
[i
].left
.p2
.y
= _cairo_fixed_mul (src_traps
[i
].left
.p2
.y
+ yoff
, ysc
);
342 offset_traps
[i
].right
.p1
.x
= _cairo_fixed_mul (src_traps
[i
].right
.p1
.x
+ xoff
, xsc
);
343 offset_traps
[i
].right
.p1
.y
= _cairo_fixed_mul (src_traps
[i
].right
.p1
.y
+ yoff
, ysc
);
344 offset_traps
[i
].right
.p2
.x
= _cairo_fixed_mul (src_traps
[i
].right
.p2
.x
+ xoff
, xsc
);
345 offset_traps
[i
].right
.p2
.y
= _cairo_fixed_mul (src_traps
[i
].right
.p2
.y
+ yoff
, ysc
);
350 /* A triangle is simply a degenerate case of a convex
351 * quadrilateral. We would not benefit from having any distinct
352 * implementation of triangle vs. quadrilateral tessellation here. */
354 _cairo_traps_tessellate_triangle (cairo_traps_t
*traps
,
355 const cairo_point_t t
[3])
357 cairo_point_t quad
[4];
364 return _cairo_traps_tessellate_convex_quad (traps
, quad
);
368 _cairo_traps_tessellate_rectangle (cairo_traps_t
*traps
,
369 const cairo_point_t
*top_left
,
370 const cairo_point_t
*bottom_right
)
375 left
.p1
.x
= left
.p2
.x
= top_left
->x
;
376 left
.p1
.y
= right
.p1
.y
= top_left
->y
;
377 right
.p1
.x
= right
.p2
.x
= bottom_right
->x
;
378 left
.p2
.y
= right
.p2
.y
= bottom_right
->y
;
380 _cairo_traps_add_trap (traps
, top_left
->y
, bottom_right
->y
, &left
, &right
);
382 return traps
->status
;
386 _cairo_traps_tessellate_convex_quad (cairo_traps_t
*traps
,
387 const cairo_point_t q
[4])
391 cairo_slope_t ab
, ad
;
392 cairo_bool_t b_left_of_d
;
396 /* Choose a as a point with minimal y */
398 for (i
= 1; i
< 4; i
++)
399 if (_compare_point_fixed_by_y (&q
[i
], &q
[a
]) < 0)
402 /* b and d are adjacent to a, while c is opposite */
407 /* Choose between b and d so that b.y is less than d.y */
408 if (_compare_point_fixed_by_y (&q
[d
], &q
[b
]) < 0) {
413 /* Without freedom left to choose anything else, we have four
414 * cases to tessellate.
416 * First, we have to determine the Y-axis sort of the four
417 * vertices, (either abcd or abdc). After that we need to detemine
418 * which edges will be "left" and which will be "right" in the
419 * resulting trapezoids. This can be determined by computing a
420 * slope comparison of ab and ad to determine if b is left of d or
423 * Note that "left of" here is in the sense of which edges should
424 * be the left vs. right edges of the trapezoid. In particular, b
425 * left of d does *not* mean that b.x is less than d.x.
427 * This should hopefully be made clear in the lame ASCII art
428 * below. Since the same slope comparison is used in all cases, we
429 * compute it before testing for the Y-value sort. */
431 /* Note: If a == b then the ab slope doesn't give us any
432 * information. In that case, we can replace it with the ac (or
433 * equivalenly the bc) slope which gives us exactly the same
434 * information we need. At worst the names of the identifiers ab
435 * and b_left_of_d are inaccurate in this case, (would be ac, and
437 if (q
[a
].x
== q
[b
].x
&& q
[a
].y
== q
[b
].y
)
438 _cairo_slope_init (&ab
, &q
[a
], &q
[c
]);
440 _cairo_slope_init (&ab
, &q
[a
], &q
[b
]);
442 _cairo_slope_init (&ad
, &q
[a
], &q
[d
]);
444 b_left_of_d
= (_cairo_slope_compare (&ab
, &ad
) > 0);
446 if (q
[c
].y
<= q
[d
].y
) {
448 /* Y-sort is abcd and b is left of d, (slope(ab) > slope (ad))
452 * / / /| |\ a.y b.y ab ad
454 * / / | | \ \ b.y c.y bc ad
456 * | / \| \ \ c.y d.y cd ad
459 left
.p1
= q
[a
]; left
.p2
= q
[b
];
460 right
.p1
= q
[a
]; right
.p2
= q
[d
];
461 _cairo_traps_add_trap (traps
, q
[a
].y
, q
[b
].y
, &left
, &right
);
462 left
.p1
= q
[b
]; left
.p2
= q
[c
];
463 _cairo_traps_add_trap (traps
, q
[b
].y
, q
[c
].y
, &left
, &right
);
464 left
.p1
= q
[c
]; left
.p2
= q
[d
];
465 _cairo_traps_add_trap (traps
, q
[c
].y
, q
[d
].y
, &left
, &right
);
467 /* Y-sort is abcd and b is right of d, (slope(ab) <= slope (ad))
470 * /| |\ \ \ a.y b.y ad ab
472 * / / | | \ \ b.y c.y ad bc
474 * / / |/ \ | c.y d.y ad cd
477 left
.p1
= q
[a
]; left
.p2
= q
[d
];
478 right
.p1
= q
[a
]; right
.p2
= q
[b
];
479 _cairo_traps_add_trap (traps
, q
[a
].y
, q
[b
].y
, &left
, &right
);
480 right
.p1
= q
[b
]; right
.p2
= q
[c
];
481 _cairo_traps_add_trap (traps
, q
[b
].y
, q
[c
].y
, &left
, &right
);
482 right
.p1
= q
[c
]; right
.p2
= q
[d
];
483 _cairo_traps_add_trap (traps
, q
[c
].y
, q
[d
].y
, &left
, &right
);
487 /* Y-sort is abdc and b is left of d, (slope (ab) > slope (ad))
490 * // / \ |\ a.y b.y ab ad
492 * / / \ \ \ \ b.y d.y bc ad
494 * // \ / \| d.y c.y bc dc
497 left
.p1
= q
[a
]; left
.p2
= q
[b
];
498 right
.p1
= q
[a
]; right
.p2
= q
[d
];
499 _cairo_traps_add_trap (traps
, q
[a
].y
, q
[b
].y
, &left
, &right
);
500 left
.p1
= q
[b
]; left
.p2
= q
[c
];
501 _cairo_traps_add_trap (traps
, q
[b
].y
, q
[d
].y
, &left
, &right
);
502 right
.p1
= q
[d
]; right
.p2
= q
[c
];
503 _cairo_traps_add_trap (traps
, q
[d
].y
, q
[c
].y
, &left
, &right
);
505 /* Y-sort is abdc and b is right of d, (slope (ab) <= slope (ad))
508 * /| / \ \\ a.y b.y ad ab
510 * / / / / \ \ b.y d.y ad bc
512 * |/ \ / \\ d.y c.y dc bc
515 left
.p1
= q
[a
]; left
.p2
= q
[d
];
516 right
.p1
= q
[a
]; right
.p2
= q
[b
];
517 _cairo_traps_add_trap (traps
, q
[a
].y
, q
[b
].y
, &left
, &right
);
518 right
.p1
= q
[b
]; right
.p2
= q
[c
];
519 _cairo_traps_add_trap (traps
, q
[b
].y
, q
[d
].y
, &left
, &right
);
520 left
.p1
= q
[d
]; left
.p2
= q
[c
];
521 _cairo_traps_add_trap (traps
, q
[d
].y
, q
[c
].y
, &left
, &right
);
525 return traps
->status
;
529 _cairo_trap_contains (cairo_trapezoid_t
*t
, cairo_point_t
*pt
)
531 cairo_slope_t slope_left
, slope_pt
, slope_right
;
535 if (t
->bottom
< pt
->y
)
538 _cairo_slope_init (&slope_left
, &t
->left
.p1
, &t
->left
.p2
);
539 _cairo_slope_init (&slope_pt
, &t
->left
.p1
, pt
);
541 if (_cairo_slope_compare (&slope_left
, &slope_pt
) < 0)
544 _cairo_slope_init (&slope_right
, &t
->right
.p1
, &t
->right
.p2
);
545 _cairo_slope_init (&slope_pt
, &t
->right
.p1
, pt
);
547 if (_cairo_slope_compare (&slope_pt
, &slope_right
) < 0)
554 _cairo_traps_contain (const cairo_traps_t
*traps
,
560 point
.x
= _cairo_fixed_from_double (x
);
561 point
.y
= _cairo_fixed_from_double (y
);
563 for (i
= 0; i
< traps
->num_traps
; i
++) {
564 if (_cairo_trap_contains (&traps
->traps
[i
], &point
))
572 _cairo_traps_extents (const cairo_traps_t
*traps
,
573 cairo_box_t
*extents
)
575 if (traps
->num_traps
== 0) {
576 extents
->p1
.x
= extents
->p1
.y
= _cairo_fixed_from_int (0);
577 extents
->p2
.x
= extents
->p2
.y
= _cairo_fixed_from_int (0);
579 *extents
= traps
->extents
;
580 if (traps
->has_limits
) {
581 /* clip the traps to the imposed limits */
582 if (extents
->p1
.x
< traps
->limits
.p1
.x
)
583 extents
->p1
.x
= traps
->limits
.p1
.x
;
584 if (extents
->p2
.x
> traps
->limits
.p2
.x
)
585 extents
->p2
.x
= traps
->limits
.p2
.x
;
587 if (extents
->p1
.y
< traps
->limits
.p1
.y
)
588 extents
->p1
.y
= traps
->limits
.p1
.y
;
589 if (extents
->p2
.y
> traps
->limits
.p2
.y
)
590 extents
->p2
.y
= traps
->limits
.p2
.y
;
596 * _cairo_traps_extract_region:
597 * @traps: a #cairo_traps_t
598 * @region: a #cairo_region_t
600 * Determines if a set of trapezoids are exactly representable as a
601 * cairo region. If so, the passed-in region is initialized to
602 * the area representing the given traps. It should be finalized
603 * with _cairo_region_fini(). If not, %CAIRO_INT_STATUS_UNSUPPORTED
606 * Return value: %CAIRO_STATUS_SUCCESS, %CAIRO_INT_STATUS_UNSUPPORTED
607 * or %CAIRO_STATUS_NO_MEMORY
610 _cairo_traps_extract_region (const cairo_traps_t
*traps
,
611 cairo_region_t
*region
)
613 cairo_box_int_t stack_boxes
[CAIRO_STACK_ARRAY_LENGTH (cairo_box_int_t
)];
614 cairo_box_int_t
*boxes
= stack_boxes
;
616 cairo_int_status_t status
;
618 for (i
= 0; i
< traps
->num_traps
; i
++)
619 if (!(traps
->traps
[i
].left
.p1
.x
== traps
->traps
[i
].left
.p2
.x
620 && traps
->traps
[i
].right
.p1
.x
== traps
->traps
[i
].right
.p2
.x
621 && _cairo_fixed_is_integer(traps
->traps
[i
].top
)
622 && _cairo_fixed_is_integer(traps
->traps
[i
].bottom
)
623 && _cairo_fixed_is_integer(traps
->traps
[i
].left
.p1
.x
)
624 && _cairo_fixed_is_integer(traps
->traps
[i
].right
.p1
.x
))) {
625 return CAIRO_INT_STATUS_UNSUPPORTED
;
628 if (traps
->num_traps
> ARRAY_LENGTH(stack_boxes
)) {
629 boxes
= _cairo_malloc_ab (traps
->num_traps
, sizeof(cairo_box_int_t
));
632 return _cairo_error (CAIRO_STATUS_NO_MEMORY
);
637 for (i
= 0; i
< traps
->num_traps
; i
++) {
638 int x1
= _cairo_fixed_integer_part(traps
->traps
[i
].left
.p1
.x
);
639 int y1
= _cairo_fixed_integer_part(traps
->traps
[i
].top
);
640 int x2
= _cairo_fixed_integer_part(traps
->traps
[i
].right
.p1
.x
);
641 int y2
= _cairo_fixed_integer_part(traps
->traps
[i
].bottom
);
643 /* XXX: Sometimes we get degenerate trapezoids from the tesellator;
646 if (x1
== x2
|| y1
== y2
)
649 boxes
[box_count
].p1
.x
= x1
;
650 boxes
[box_count
].p1
.y
= y1
;
651 boxes
[box_count
].p2
.x
= x2
;
652 boxes
[box_count
].p2
.y
= y2
;
657 status
= _cairo_region_init_boxes (region
, boxes
, box_count
);
659 if (boxes
!= stack_boxes
)
663 _cairo_region_fini (region
);
668 /* moves trap points such that they become the actual corners of the trapezoid */
670 _sanitize_trap (cairo_trapezoid_t
*t
)
672 cairo_trapezoid_t s
= *t
;
674 #define FIX(lr, tb, p) \
675 if (t->lr.p.y != t->tb) { \
676 t->lr.p.x = s.lr.p2.x + _cairo_fixed_mul_div (s.lr.p1.x - s.lr.p2.x, s.tb - s.lr.p2.y, s.lr.p1.y - s.lr.p2.y); \
680 FIX (left
, bottom
, p2
);
681 FIX (right
, top
, p1
);
682 FIX (right
, bottom
, p2
);
685 cairo_private cairo_status_t
686 _cairo_traps_path (const cairo_traps_t
*traps
,
687 cairo_path_fixed_t
*path
)
691 for (i
= 0; i
< traps
->num_traps
; i
++) {
692 cairo_status_t status
;
693 cairo_trapezoid_t trap
= traps
->traps
[i
];
695 if (trap
.top
== trap
.bottom
)
698 _sanitize_trap (&trap
);
700 status
= _cairo_path_fixed_move_to (path
, trap
.left
.p1
.x
, trap
.top
);
701 if (status
) return status
;
702 status
= _cairo_path_fixed_line_to (path
, trap
.right
.p1
.x
, trap
.top
);
703 if (status
) return status
;
704 status
= _cairo_path_fixed_line_to (path
, trap
.right
.p2
.x
, trap
.bottom
);
705 if (status
) return status
;
706 status
= _cairo_path_fixed_line_to (path
, trap
.left
.p2
.x
, trap
.bottom
);
707 if (status
) return status
;
708 status
= _cairo_path_fixed_close_path (path
);
709 if (status
) return status
;
712 return CAIRO_STATUS_SUCCESS
;