CLOSED TREE: TraceMonkey merge head. (a=blockers)
[mozilla-central.git] / js / src / jsnum.cpp
blob67f2d6e9925651e106662c91ef6c337c565f16dd
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
3 * ***** BEGIN LICENSE BLOCK *****
4 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
6 * The contents of this file are subject to the Mozilla Public License Version
7 * 1.1 (the "License"); you may not use this file except in compliance with
8 * the License. You may obtain a copy of the License at
9 * http://www.mozilla.org/MPL/
11 * Software distributed under the License is distributed on an "AS IS" basis,
12 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13 * for the specific language governing rights and limitations under the
14 * License.
16 * The Original Code is Mozilla Communicator client code, released
17 * March 31, 1998.
19 * The Initial Developer of the Original Code is
20 * Netscape Communications Corporation.
21 * Portions created by the Initial Developer are Copyright (C) 1998
22 * the Initial Developer. All Rights Reserved.
24 * Contributor(s):
25 * IBM Corp.
27 * Alternatively, the contents of this file may be used under the terms of
28 * either of the GNU General Public License Version 2 or later (the "GPL"),
29 * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
30 * in which case the provisions of the GPL or the LGPL are applicable instead
31 * of those above. If you wish to allow use of your version of this file only
32 * under the terms of either the GPL or the LGPL, and not to allow others to
33 * use your version of this file under the terms of the MPL, indicate your
34 * decision by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL or the LGPL. If you do not delete
36 * the provisions above, a recipient may use your version of this file under
37 * the terms of any one of the MPL, the GPL or the LGPL.
39 * ***** END LICENSE BLOCK ***** */
42 * JS number type and wrapper class.
44 #ifdef XP_OS2
45 #define _PC_53 PC_53
46 #define _MCW_EM MCW_EM
47 #define _MCW_PC MCW_PC
48 #endif
49 #include <locale.h>
50 #include <limits.h>
51 #include <math.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include "jstypes.h"
55 #include "jsstdint.h"
56 #include "jsutil.h"
57 #include "jsapi.h"
58 #include "jsatom.h"
59 #include "jsbuiltins.h"
60 #include "jscntxt.h"
61 #include "jsversion.h"
62 #include "jsdtoa.h"
63 #include "jsgc.h"
64 #include "jsinterp.h"
65 #include "jsnum.h"
66 #include "jsobj.h"
67 #include "jsopcode.h"
68 #include "jsprf.h"
69 #include "jsscope.h"
70 #include "jsstr.h"
71 #include "jstracer.h"
72 #include "jsvector.h"
74 #include "jsinterpinlines.h"
75 #include "jsobjinlines.h"
76 #include "jsstrinlines.h"
78 using namespace js;
80 #ifndef JS_HAVE_STDINT_H /* Native support is innocent until proven guilty. */
82 JS_STATIC_ASSERT(uint8_t(-1) == UINT8_MAX);
83 JS_STATIC_ASSERT(uint16_t(-1) == UINT16_MAX);
84 JS_STATIC_ASSERT(uint32_t(-1) == UINT32_MAX);
85 JS_STATIC_ASSERT(uint64_t(-1) == UINT64_MAX);
87 JS_STATIC_ASSERT(INT8_MAX > INT8_MIN);
88 JS_STATIC_ASSERT(uint8_t(INT8_MAX) + uint8_t(1) == uint8_t(INT8_MIN));
89 JS_STATIC_ASSERT(INT16_MAX > INT16_MIN);
90 JS_STATIC_ASSERT(uint16_t(INT16_MAX) + uint16_t(1) == uint16_t(INT16_MIN));
91 JS_STATIC_ASSERT(INT32_MAX > INT32_MIN);
92 JS_STATIC_ASSERT(uint32_t(INT32_MAX) + uint32_t(1) == uint32_t(INT32_MIN));
93 JS_STATIC_ASSERT(INT64_MAX > INT64_MIN);
94 JS_STATIC_ASSERT(uint64_t(INT64_MAX) + uint64_t(1) == uint64_t(INT64_MIN));
96 JS_STATIC_ASSERT(INTPTR_MAX > INTPTR_MIN);
97 JS_STATIC_ASSERT(uintptr_t(INTPTR_MAX) + uintptr_t(1) == uintptr_t(INTPTR_MIN));
98 JS_STATIC_ASSERT(uintptr_t(-1) == UINTPTR_MAX);
99 JS_STATIC_ASSERT(size_t(-1) == SIZE_MAX);
100 JS_STATIC_ASSERT(PTRDIFF_MAX > PTRDIFF_MIN);
101 JS_STATIC_ASSERT(ptrdiff_t(PTRDIFF_MAX) == PTRDIFF_MAX);
102 JS_STATIC_ASSERT(ptrdiff_t(PTRDIFF_MIN) == PTRDIFF_MIN);
103 JS_STATIC_ASSERT(uintptr_t(PTRDIFF_MAX) + uintptr_t(1) == uintptr_t(PTRDIFF_MIN));
105 #endif /* JS_HAVE_STDINT_H */
108 * If we're accumulating a decimal number and the number is >= 2^53, then the
109 * fast result from the loop in GetPrefixInteger may be inaccurate. Call
110 * js_strtod_harder to get the correct answer.
112 static bool
113 ComputeAccurateDecimalInteger(JSContext *cx, const jschar *start, const jschar *end, jsdouble *dp)
115 size_t length = end - start;
116 char *cstr = static_cast<char *>(cx->malloc(length + 1));
117 if (!cstr)
118 return false;
120 for (size_t i = 0; i < length; i++) {
121 char c = char(start[i]);
122 JS_ASSERT(('0' <= c && c <= '9') || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z'));
123 cstr[i] = c;
125 cstr[length] = 0;
127 char *estr;
128 int err = 0;
129 *dp = js_strtod_harder(JS_THREAD_DATA(cx)->dtoaState, cstr, &estr, &err);
130 if (err == JS_DTOA_ENOMEM) {
131 JS_ReportOutOfMemory(cx);
132 cx->free(cstr);
133 return false;
135 if (err == JS_DTOA_ERANGE && *dp == HUGE_VAL)
136 *dp = js_PositiveInfinity;
137 cx->free(cstr);
138 return true;
141 class BinaryDigitReader
143 const int base; /* Base of number; must be a power of 2 */
144 int digit; /* Current digit value in radix given by base */
145 int digitMask; /* Mask to extract the next bit from digit */
146 const jschar *start; /* Pointer to the remaining digits */
147 const jschar *end; /* Pointer to first non-digit */
149 public:
150 BinaryDigitReader(int base, const jschar *start, const jschar *end)
151 : base(base), digit(0), digitMask(0), start(start), end(end)
155 /* Return the next binary digit from the number, or -1 if done. */
156 int nextDigit() {
157 if (digitMask == 0) {
158 if (start == end)
159 return -1;
161 int c = *start++;
162 JS_ASSERT(('0' <= c && c <= '9') || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z'));
163 if ('0' <= c && c <= '9')
164 digit = c - '0';
165 else if ('a' <= c && c <= 'z')
166 digit = c - 'a' + 10;
167 else
168 digit = c - 'A' + 10;
169 digitMask = base >> 1;
172 int bit = (digit & digitMask) != 0;
173 digitMask >>= 1;
174 return bit;
179 * The fast result might also have been inaccurate for power-of-two bases. This
180 * happens if the addition in value * 2 + digit causes a round-down to an even
181 * least significant mantissa bit when the first dropped bit is a one. If any
182 * of the following digits in the number (which haven't been added in yet) are
183 * nonzero, then the correct action would have been to round up instead of
184 * down. An example occurs when reading the number 0x1000000000000081, which
185 * rounds to 0x1000000000000000 instead of 0x1000000000000100.
187 static jsdouble
188 ComputeAccurateBinaryBaseInteger(JSContext *cx, const jschar *start, const jschar *end, int base)
190 BinaryDigitReader bdr(base, start, end);
192 /* Skip leading zeroes. */
193 int bit;
194 do {
195 bit = bdr.nextDigit();
196 } while (bit == 0);
198 JS_ASSERT(bit == 1); // guaranteed by GetPrefixInteger
200 /* Gather the 53 significant bits (including the leading 1). */
201 jsdouble value = 1.0;
202 for (int j = 52; j > 0; j--) {
203 bit = bdr.nextDigit();
204 if (bit < 0)
205 return value;
206 value = value * 2 + bit;
209 /* bit2 is the 54th bit (the first dropped from the mantissa). */
210 int bit2 = bdr.nextDigit();
211 if (bit2 >= 0) {
212 jsdouble factor = 2.0;
213 int sticky = 0; /* sticky is 1 if any bit beyond the 54th is 1 */
214 int bit3;
216 while ((bit3 = bdr.nextDigit()) >= 0) {
217 sticky |= bit3;
218 factor *= 2;
220 value += bit2 & (bit | sticky);
221 value *= factor;
224 return value;
227 namespace js {
229 bool
230 GetPrefixInteger(JSContext *cx, const jschar *start, const jschar *end, int base,
231 const jschar **endp, jsdouble *dp)
233 JS_ASSERT(start <= end);
234 JS_ASSERT(2 <= base && base <= 36);
236 const jschar *s = start;
237 jsdouble d = 0.0;
238 for (; s < end; s++) {
239 int digit;
240 jschar c = *s;
241 if ('0' <= c && c <= '9')
242 digit = c - '0';
243 else if ('a' <= c && c <= 'z')
244 digit = c - 'a' + 10;
245 else if ('A' <= c && c <= 'Z')
246 digit = c - 'A' + 10;
247 else
248 break;
249 if (digit >= base)
250 break;
251 d = d * base + digit;
254 *endp = s;
255 *dp = d;
257 /* If we haven't reached the limit of integer precision, we're done. */
258 if (d < DOUBLE_INTEGRAL_PRECISION_LIMIT)
259 return true;
262 * Otherwise compute the correct integer from the prefix of valid digits
263 * if we're computing for base ten or a power of two. Don't worry about
264 * other bases; see 15.1.2.2 step 13.
266 if (base == 10)
267 return ComputeAccurateDecimalInteger(cx, start, s, dp);
268 if ((base & (base - 1)) == 0)
269 *dp = ComputeAccurateBinaryBaseInteger(cx, start, s, base);
271 return true;
274 } // namespace js
276 static JSBool
277 num_isNaN(JSContext *cx, uintN argc, Value *vp)
279 if (argc == 0) {
280 vp->setBoolean(true);
281 return JS_TRUE;
283 jsdouble x;
284 if (!ValueToNumber(cx, vp[2], &x))
285 return false;
286 vp->setBoolean(JSDOUBLE_IS_NaN(x));
287 return JS_TRUE;
290 static JSBool
291 num_isFinite(JSContext *cx, uintN argc, Value *vp)
293 if (argc == 0) {
294 vp->setBoolean(false);
295 return JS_TRUE;
297 jsdouble x;
298 if (!ValueToNumber(cx, vp[2], &x))
299 return JS_FALSE;
300 vp->setBoolean(JSDOUBLE_IS_FINITE(x));
301 return JS_TRUE;
304 static JSBool
305 num_parseFloat(JSContext *cx, uintN argc, Value *vp)
307 JSString *str;
308 jsdouble d;
309 const jschar *bp, *end, *ep;
311 if (argc == 0) {
312 vp->setDouble(js_NaN);
313 return JS_TRUE;
315 str = js_ValueToString(cx, vp[2]);
316 if (!str)
317 return JS_FALSE;
318 bp = str->getChars(cx);
319 if (!bp)
320 return JS_FALSE;
321 end = bp + str->length();
322 if (!js_strtod(cx, bp, end, &ep, &d))
323 return JS_FALSE;
324 if (ep == bp) {
325 vp->setDouble(js_NaN);
326 return JS_TRUE;
328 vp->setNumber(d);
329 return JS_TRUE;
332 #ifdef JS_TRACER
333 static jsdouble FASTCALL
334 ParseFloat(JSContext* cx, JSString* str)
336 TraceMonitor *tm = JS_TRACE_MONITOR_ON_TRACE(cx);
338 const jschar *bp = str->getChars(cx);
339 if (!bp) {
340 SetBuiltinError(tm);
341 return js_NaN;
343 const jschar *end = bp + str->length();
345 const jschar *ep;
346 double d;
347 if (!js_strtod(cx, bp, end, &ep, &d) || ep == bp)
348 return js_NaN;
349 return d;
351 #endif
353 static bool
354 ParseIntStringHelper(JSContext *cx, const jschar *ws, const jschar *end, int maybeRadix,
355 bool stripPrefix, jsdouble *dp)
357 JS_ASSERT(maybeRadix == 0 || (2 <= maybeRadix && maybeRadix <= 36));
358 JS_ASSERT(ws <= end);
360 const jschar *s = js_SkipWhiteSpace(ws, end);
361 JS_ASSERT(ws <= s);
362 JS_ASSERT(s <= end);
364 /* 15.1.2.2 steps 3-4. */
365 bool negative = (s != end && s[0] == '-');
367 /* 15.1.2.2 step 5. */
368 if (s != end && (s[0] == '-' || s[0] == '+'))
369 s++;
371 /* 15.1.2.2 step 9. */
372 int radix = maybeRadix;
373 if (radix == 0) {
374 if (end - s >= 2 && s[0] == '0' && (s[1] != 'x' && s[1] != 'X')) {
376 * Non-standard: ES5 requires that parseInt interpret leading-zero
377 * strings not starting with "0x" or "0X" as decimal (absent an
378 * explicitly specified non-zero radix), but we continue to
379 * interpret such strings as octal, as per ES3 and web practice.
381 radix = 8;
382 } else {
383 radix = 10;
387 /* 15.1.2.2 step 10. */
388 if (stripPrefix) {
389 if (end - s >= 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
390 s += 2;
391 radix = 16;
395 /* 15.1.2.2 steps 11-14. */
396 const jschar *actualEnd;
397 if (!GetPrefixInteger(cx, s, end, radix, &actualEnd, dp))
398 return false;
399 if (s == actualEnd)
400 *dp = js_NaN;
401 else if (negative)
402 *dp = -*dp;
403 return true;
406 static jsdouble
407 ParseIntDoubleHelper(jsdouble d)
409 if (!JSDOUBLE_IS_FINITE(d))
410 return js_NaN;
411 if (d > 0)
412 return floor(d);
413 if (d < 0)
414 return -floor(-d);
415 return 0;
418 /* See ECMA 15.1.2.2. */
419 static JSBool
420 num_parseInt(JSContext *cx, uintN argc, Value *vp)
422 /* Fast paths and exceptional cases. */
423 if (argc == 0) {
424 vp->setDouble(js_NaN);
425 return true;
428 if (argc == 1 || (vp[3].isInt32() && (vp[3].toInt32() == 0 || vp[3].toInt32() == 10))) {
429 if (vp[2].isInt32()) {
430 *vp = vp[2];
431 return true;
433 if (vp[2].isDouble()) {
434 vp->setDouble(ParseIntDoubleHelper(vp[2].toDouble()));
435 return true;
439 /* Step 1. */
440 JSString *inputString = js_ValueToString(cx, vp[2]);
441 if (!inputString)
442 return false;
443 vp[2].setString(inputString);
445 /* 15.1.2.2 steps 6-8. */
446 bool stripPrefix = true;
447 int32_t radix = 0;
448 if (argc > 1) {
449 if (!ValueToECMAInt32(cx, vp[3], &radix))
450 return false;
451 if (radix != 0) {
452 if (radix < 2 || radix > 36) {
453 vp->setDouble(js_NaN);
454 return true;
456 if (radix != 16)
457 stripPrefix = false;
461 /* Steps 2-5, 9-14. */
462 const jschar *ws = inputString->getChars(cx);
463 if (!ws)
464 return false;
465 const jschar *end = ws + inputString->length();
467 jsdouble number;
468 if (!ParseIntStringHelper(cx, ws, end, radix, stripPrefix, &number))
469 return false;
471 /* Step 15. */
472 vp->setNumber(number);
473 return true;
476 #ifdef JS_TRACER
477 static jsdouble FASTCALL
478 ParseInt(JSContext* cx, JSString* str)
480 TraceMonitor *tm = JS_TRACE_MONITOR_ON_TRACE(cx);
482 const jschar *start = str->getChars(cx);
483 if (!start) {
484 SetBuiltinError(tm);
485 return js_NaN;
487 const jschar *end = start + str->length();
489 jsdouble d;
490 if (!ParseIntStringHelper(cx, start, end, 0, true, &d)) {
491 SetBuiltinError(tm);
492 return js_NaN;
494 return d;
497 static jsdouble FASTCALL
498 ParseIntDouble(jsdouble d)
500 return ParseIntDoubleHelper(d);
502 #endif
504 const char js_Infinity_str[] = "Infinity";
505 const char js_NaN_str[] = "NaN";
506 const char js_isNaN_str[] = "isNaN";
507 const char js_isFinite_str[] = "isFinite";
508 const char js_parseFloat_str[] = "parseFloat";
509 const char js_parseInt_str[] = "parseInt";
511 #ifdef JS_TRACER
513 JS_DEFINE_TRCINFO_2(num_parseInt,
514 (2, (static, DOUBLE_FAIL, ParseInt, CONTEXT, STRING,1, nanojit::ACCSET_NONE)),
515 (1, (static, DOUBLE, ParseIntDouble, DOUBLE, 1, nanojit::ACCSET_NONE)))
517 JS_DEFINE_TRCINFO_1(num_parseFloat,
518 (2, (static, DOUBLE_FAIL, ParseFloat, CONTEXT, STRING, 1, nanojit::ACCSET_NONE)))
520 #endif /* JS_TRACER */
522 static JSFunctionSpec number_functions[] = {
523 JS_FN(js_isNaN_str, num_isNaN, 1,0),
524 JS_FN(js_isFinite_str, num_isFinite, 1,0),
525 JS_TN(js_parseFloat_str, num_parseFloat, 1,0, &num_parseFloat_trcinfo),
526 JS_TN(js_parseInt_str, num_parseInt, 2,0, &num_parseInt_trcinfo),
527 JS_FS_END
530 Class js_NumberClass = {
531 js_Number_str,
532 JSCLASS_HAS_RESERVED_SLOTS(1) | JSCLASS_HAS_CACHED_PROTO(JSProto_Number),
533 PropertyStub, /* addProperty */
534 PropertyStub, /* delProperty */
535 PropertyStub, /* getProperty */
536 StrictPropertyStub, /* setProperty */
537 EnumerateStub,
538 ResolveStub,
539 ConvertStub
542 static JSBool
543 Number(JSContext *cx, uintN argc, Value *vp)
545 /* Sample JS_CALLEE before clobbering. */
546 bool isConstructing = IsConstructing(vp);
548 if (argc > 0) {
549 if (!ValueToNumber(cx, &vp[2]))
550 return false;
551 vp[0] = vp[2];
552 } else {
553 vp[0].setInt32(0);
556 if (!isConstructing)
557 return true;
559 JSObject *obj = NewBuiltinClassInstance(cx, &js_NumberClass);
560 if (!obj)
561 return false;
562 obj->setPrimitiveThis(vp[0]);
563 vp->setObject(*obj);
564 return true;
567 #if JS_HAS_TOSOURCE
568 static JSBool
569 num_toSource(JSContext *cx, uintN argc, Value *vp)
571 double d;
572 if (!GetPrimitiveThis(cx, vp, &d))
573 return false;
575 ToCStringBuf cbuf;
576 char *numStr = NumberToCString(cx, &cbuf, d);
577 if (!numStr) {
578 JS_ReportOutOfMemory(cx);
579 return false;
582 char buf[64];
583 JS_snprintf(buf, sizeof buf, "(new %s(%s))", js_NumberClass.name, numStr);
584 JSString *str = js_NewStringCopyZ(cx, buf);
585 if (!str)
586 return false;
587 vp->setString(str);
588 return true;
590 #endif
592 ToCStringBuf::ToCStringBuf() :dbuf(NULL)
594 JS_STATIC_ASSERT(sbufSize >= DTOSTR_STANDARD_BUFFER_SIZE);
597 ToCStringBuf::~ToCStringBuf()
599 if (dbuf)
600 js_free(dbuf);
603 JSString * JS_FASTCALL
604 js_IntToString(JSContext *cx, int32 si)
606 uint32 ui;
607 if (si >= 0) {
608 if (si < INT_STRING_LIMIT)
609 return JSString::intString(si);
610 ui = si;
611 } else {
612 ui = uint32(-si);
613 JS_ASSERT_IF(si == INT32_MIN, ui == uint32(INT32_MAX) + 1);
616 JSCompartment *c = cx->compartment;
617 if (JSString *str = c->dtoaCache.lookup(10, si))
618 return str;
620 JSShortString *str = js_NewGCShortString(cx);
621 if (!str)
622 return NULL;
624 /* +1, since MAX_SHORT_STRING_LENGTH does not count the null char. */
625 JS_STATIC_ASSERT(JSShortString::MAX_SHORT_STRING_LENGTH + 1 >= sizeof("-2147483648"));
627 jschar *end = str->getInlineStorageBeforeInit() + JSShortString::MAX_SHORT_STRING_LENGTH;
628 jschar *cp = end;
629 *cp = 0;
631 do {
632 jsuint newui = ui / 10, digit = ui % 10; /* optimizers are our friends */
633 *--cp = '0' + digit;
634 ui = newui;
635 } while (ui != 0);
637 if (si < 0)
638 *--cp = '-';
640 str->initAtOffsetInBuffer(cp, end - cp);
642 JSString *ret = str->header();
643 c->dtoaCache.cache(10, si, ret);
644 return ret;
647 /* Returns a non-NULL pointer to inside cbuf. */
648 static char *
649 IntToCString(ToCStringBuf *cbuf, jsint i, jsint base = 10)
651 char *cp;
652 jsuint u;
654 u = (i < 0) ? -i : i;
656 cp = cbuf->sbuf + cbuf->sbufSize; /* one past last buffer cell */
657 *--cp = '\0'; /* null terminate the string to be */
660 * Build the string from behind. We use multiply and subtraction
661 * instead of modulus because that's much faster.
663 switch (base) {
664 case 10:
665 do {
666 jsuint newu = u / 10;
667 *--cp = (char)(u - newu * 10) + '0';
668 u = newu;
669 } while (u != 0);
670 break;
671 case 16:
672 do {
673 jsuint newu = u / 16;
674 *--cp = "0123456789abcdef"[u - newu * 16];
675 u = newu;
676 } while (u != 0);
677 break;
678 default:
679 JS_ASSERT(base >= 2 && base <= 36);
680 do {
681 jsuint newu = u / base;
682 *--cp = "0123456789abcdefghijklmnopqrstuvwxyz"[u - newu * base];
683 u = newu;
684 } while (u != 0);
685 break;
687 if (i < 0)
688 *--cp = '-';
690 JS_ASSERT(cp >= cbuf->sbuf);
691 return cp;
694 static JSString * JS_FASTCALL
695 js_NumberToStringWithBase(JSContext *cx, jsdouble d, jsint base);
697 static JSBool
698 num_toString(JSContext *cx, uintN argc, Value *vp)
700 double d;
701 if (!GetPrimitiveThis(cx, vp, &d))
702 return false;
704 int32_t base = 10;
705 if (argc != 0 && !vp[2].isUndefined()) {
706 if (!ValueToECMAInt32(cx, vp[2], &base))
707 return JS_FALSE;
709 if (base < 2 || base > 36) {
710 ToCStringBuf cbuf;
711 char *numStr = IntToCString(&cbuf, base); /* convert the base itself to a string */
712 JS_ASSERT(numStr);
713 JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_RADIX,
714 numStr);
715 return JS_FALSE;
718 JSString *str = js_NumberToStringWithBase(cx, d, base);
719 if (!str) {
720 JS_ReportOutOfMemory(cx);
721 return JS_FALSE;
723 vp->setString(str);
724 return JS_TRUE;
727 static JSBool
728 num_toLocaleString(JSContext *cx, uintN argc, Value *vp)
730 size_t thousandsLength, decimalLength;
731 const char *numGrouping, *tmpGroup;
732 JSRuntime *rt;
733 JSString *str;
734 const char *num, *end, *tmpSrc;
735 char *buf, *tmpDest;
736 const char *nint;
737 int digits, buflen, remainder, nrepeat;
740 * Create the string, move back to bytes to make string twiddling
741 * a bit easier and so we can insert platform charset seperators.
743 if (!num_toString(cx, 0, vp))
744 return JS_FALSE;
745 JS_ASSERT(vp->isString());
746 JSAutoByteString numBytes(cx, vp->toString());
747 if (!numBytes)
748 return JS_FALSE;
749 num = numBytes.ptr();
750 if (!num)
751 return JS_FALSE;
754 * Find the first non-integer value, whether it be a letter as in
755 * 'Infinity', a decimal point, or an 'e' from exponential notation.
757 nint = num;
758 if (*nint == '-')
759 nint++;
760 while (*nint >= '0' && *nint <= '9')
761 nint++;
762 digits = nint - num;
763 end = num + digits;
764 if (!digits)
765 return JS_TRUE;
767 rt = cx->runtime;
768 thousandsLength = strlen(rt->thousandsSeparator);
769 decimalLength = strlen(rt->decimalSeparator);
771 /* Figure out how long resulting string will be. */
772 buflen = strlen(num);
773 if (*nint == '.')
774 buflen += decimalLength - 1; /* -1 to account for existing '.' */
776 numGrouping = tmpGroup = rt->numGrouping;
777 remainder = digits;
778 if (*num == '-')
779 remainder--;
781 while (*tmpGroup != CHAR_MAX && *tmpGroup != '\0') {
782 if (*tmpGroup >= remainder)
783 break;
784 buflen += thousandsLength;
785 remainder -= *tmpGroup;
786 tmpGroup++;
788 if (*tmpGroup == '\0' && *numGrouping != '\0') {
789 nrepeat = (remainder - 1) / tmpGroup[-1];
790 buflen += thousandsLength * nrepeat;
791 remainder -= nrepeat * tmpGroup[-1];
792 } else {
793 nrepeat = 0;
795 tmpGroup--;
797 buf = (char *)cx->malloc(buflen + 1);
798 if (!buf)
799 return JS_FALSE;
801 tmpDest = buf;
802 tmpSrc = num;
804 while (*tmpSrc == '-' || remainder--) {
805 JS_ASSERT(tmpDest - buf < buflen);
806 *tmpDest++ = *tmpSrc++;
808 while (tmpSrc < end) {
809 JS_ASSERT(tmpDest - buf + ptrdiff_t(thousandsLength) <= buflen);
810 strcpy(tmpDest, rt->thousandsSeparator);
811 tmpDest += thousandsLength;
812 JS_ASSERT(tmpDest - buf + *tmpGroup <= buflen);
813 memcpy(tmpDest, tmpSrc, *tmpGroup);
814 tmpDest += *tmpGroup;
815 tmpSrc += *tmpGroup;
816 if (--nrepeat < 0)
817 tmpGroup--;
820 if (*nint == '.') {
821 JS_ASSERT(tmpDest - buf + ptrdiff_t(decimalLength) <= buflen);
822 strcpy(tmpDest, rt->decimalSeparator);
823 tmpDest += decimalLength;
824 JS_ASSERT(tmpDest - buf + ptrdiff_t(strlen(nint + 1)) <= buflen);
825 strcpy(tmpDest, nint + 1);
826 } else {
827 JS_ASSERT(tmpDest - buf + ptrdiff_t(strlen(nint)) <= buflen);
828 strcpy(tmpDest, nint);
831 if (cx->localeCallbacks && cx->localeCallbacks->localeToUnicode) {
832 JSBool ok = cx->localeCallbacks->localeToUnicode(cx, buf, Jsvalify(vp));
833 cx->free(buf);
834 return ok;
837 str = js_NewStringCopyN(cx, buf, buflen);
838 cx->free(buf);
839 if (!str)
840 return JS_FALSE;
842 vp->setString(str);
843 return JS_TRUE;
846 JSBool
847 js_num_valueOf(JSContext *cx, uintN argc, Value *vp)
849 double d;
850 if (!GetPrimitiveThis(cx, vp, &d))
851 return false;
853 vp->setNumber(d);
854 return true;
858 #define MAX_PRECISION 100
860 static JSBool
861 num_to(JSContext *cx, JSDToStrMode zeroArgMode, JSDToStrMode oneArgMode,
862 jsint precisionMin, jsint precisionMax, jsint precisionOffset,
863 uintN argc, Value *vp)
865 /* Use MAX_PRECISION+1 because precisionOffset can be 1. */
866 char buf[DTOSTR_VARIABLE_BUFFER_SIZE(MAX_PRECISION+1)];
867 char *numStr;
869 double d;
870 if (!GetPrimitiveThis(cx, vp, &d))
871 return false;
873 double precision;
874 if (argc == 0) {
875 precision = 0.0;
876 oneArgMode = zeroArgMode;
877 } else {
878 if (!ValueToNumber(cx, vp[2], &precision))
879 return JS_FALSE;
880 precision = js_DoubleToInteger(precision);
881 if (precision < precisionMin || precision > precisionMax) {
882 ToCStringBuf cbuf;
883 numStr = IntToCString(&cbuf, jsint(precision));
884 JS_ASSERT(numStr);
885 JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_PRECISION_RANGE, numStr);
886 return JS_FALSE;
890 numStr = js_dtostr(JS_THREAD_DATA(cx)->dtoaState, buf, sizeof buf,
891 oneArgMode, (jsint)precision + precisionOffset, d);
892 if (!numStr) {
893 JS_ReportOutOfMemory(cx);
894 return JS_FALSE;
896 JSString *str = js_NewStringCopyZ(cx, numStr);
897 if (!str)
898 return JS_FALSE;
899 vp->setString(str);
900 return JS_TRUE;
904 * In the following three implementations, we allow a larger range of precision
905 * than ECMA requires; this is permitted by ECMA-262.
907 static JSBool
908 num_toFixed(JSContext *cx, uintN argc, Value *vp)
910 return num_to(cx, DTOSTR_FIXED, DTOSTR_FIXED, -20, MAX_PRECISION, 0,
911 argc, vp);
914 static JSBool
915 num_toExponential(JSContext *cx, uintN argc, Value *vp)
917 return num_to(cx, DTOSTR_STANDARD_EXPONENTIAL, DTOSTR_EXPONENTIAL, 0, MAX_PRECISION, 1,
918 argc, vp);
921 static JSBool
922 num_toPrecision(JSContext *cx, uintN argc, Value *vp)
924 if (argc == 0 || vp[2].isUndefined())
925 return num_toString(cx, 0, vp);
926 return num_to(cx, DTOSTR_STANDARD, DTOSTR_PRECISION, 1, MAX_PRECISION, 0,
927 argc, vp);
930 #ifdef JS_TRACER
932 JS_DEFINE_TRCINFO_2(num_toString,
933 (2, (extern, STRING_RETRY, js_NumberToString, CONTEXT, THIS_DOUBLE,
934 1, nanojit::ACCSET_NONE)),
935 (3, (static, STRING_RETRY, js_NumberToStringWithBase, CONTEXT, THIS_DOUBLE, INT32,
936 1, nanojit::ACCSET_NONE)))
938 #endif /* JS_TRACER */
940 static JSFunctionSpec number_methods[] = {
941 #if JS_HAS_TOSOURCE
942 JS_FN(js_toSource_str, num_toSource, 0, 0),
943 #endif
944 JS_TN(js_toString_str, num_toString, 1, 0, &num_toString_trcinfo),
945 JS_FN(js_toLocaleString_str, num_toLocaleString, 0, 0),
946 JS_FN(js_valueOf_str, js_num_valueOf, 0, 0),
947 JS_FN(js_toJSON_str, js_num_valueOf, 0, 0),
948 JS_FN("toFixed", num_toFixed, 1, 0),
949 JS_FN("toExponential", num_toExponential, 1, 0),
950 JS_FN("toPrecision", num_toPrecision, 1, 0),
951 JS_FS_END
954 /* NB: Keep this in synch with number_constants[]. */
955 enum nc_slot {
956 NC_NaN,
957 NC_POSITIVE_INFINITY,
958 NC_NEGATIVE_INFINITY,
959 NC_MAX_VALUE,
960 NC_MIN_VALUE,
961 NC_LIMIT
965 * Some to most C compilers forbid spelling these at compile time, or barf
966 * if you try, so all but MAX_VALUE are set up by js_InitRuntimeNumberState
967 * using union jsdpun.
969 static JSConstDoubleSpec number_constants[] = {
970 {0, js_NaN_str, 0,{0,0,0}},
971 {0, "POSITIVE_INFINITY", 0,{0,0,0}},
972 {0, "NEGATIVE_INFINITY", 0,{0,0,0}},
973 {1.7976931348623157E+308, "MAX_VALUE", 0,{0,0,0}},
974 {0, "MIN_VALUE", 0,{0,0,0}},
975 {0,0,0,{0,0,0}}
978 jsdouble js_NaN;
979 jsdouble js_PositiveInfinity;
980 jsdouble js_NegativeInfinity;
982 #if (defined __GNUC__ && defined __i386__) || \
983 (defined __SUNPRO_CC && defined __i386)
986 * Set the exception mask to mask all exceptions and set the FPU precision
987 * to 53 bit mantissa (64 bit doubles).
989 inline void FIX_FPU() {
990 short control;
991 asm("fstcw %0" : "=m" (control) : );
992 control &= ~0x300; // Lower bits 8 and 9 (precision control).
993 control |= 0x2f3; // Raise bits 0-5 (exception masks) and 9 (64-bit precision).
994 asm("fldcw %0" : : "m" (control) );
997 #else
999 #define FIX_FPU() ((void)0)
1001 #endif
1003 JSBool
1004 js_InitRuntimeNumberState(JSContext *cx)
1006 JSRuntime *rt = cx->runtime;
1008 FIX_FPU();
1010 jsdpun u;
1011 u.s.hi = JSDOUBLE_HI32_NAN;
1012 u.s.lo = JSDOUBLE_LO32_NAN;
1013 number_constants[NC_NaN].dval = js_NaN = u.d;
1014 rt->NaNValue.setDouble(u.d);
1016 u.s.hi = JSDOUBLE_HI32_EXPMASK;
1017 u.s.lo = 0x00000000;
1018 number_constants[NC_POSITIVE_INFINITY].dval = js_PositiveInfinity = u.d;
1019 rt->positiveInfinityValue.setDouble(u.d);
1021 u.s.hi = JSDOUBLE_HI32_SIGNBIT | JSDOUBLE_HI32_EXPMASK;
1022 u.s.lo = 0x00000000;
1023 number_constants[NC_NEGATIVE_INFINITY].dval = js_NegativeInfinity = u.d;
1024 rt->negativeInfinityValue.setDouble(u.d);
1026 u.s.hi = 0;
1027 u.s.lo = 1;
1028 number_constants[NC_MIN_VALUE].dval = u.d;
1030 #ifndef HAVE_LOCALECONV
1031 const char* thousands_sep = getenv("LOCALE_THOUSANDS_SEP");
1032 const char* decimal_point = getenv("LOCALE_DECIMAL_POINT");
1033 const char* grouping = getenv("LOCALE_GROUPING");
1035 rt->thousandsSeparator =
1036 JS_strdup(cx, thousands_sep ? thousands_sep : "'");
1037 rt->decimalSeparator =
1038 JS_strdup(cx, decimal_point ? decimal_point : ".");
1039 rt->numGrouping =
1040 JS_strdup(cx, grouping ? grouping : "\3\0");
1041 #else
1042 struct lconv *locale = localeconv();
1043 rt->thousandsSeparator =
1044 JS_strdup(cx, locale->thousands_sep ? locale->thousands_sep : "'");
1045 rt->decimalSeparator =
1046 JS_strdup(cx, locale->decimal_point ? locale->decimal_point : ".");
1047 rt->numGrouping =
1048 JS_strdup(cx, locale->grouping ? locale->grouping : "\3\0");
1049 #endif
1051 return rt->thousandsSeparator && rt->decimalSeparator && rt->numGrouping;
1054 void
1055 js_FinishRuntimeNumberState(JSContext *cx)
1057 JSRuntime *rt = cx->runtime;
1059 cx->free((void *) rt->thousandsSeparator);
1060 cx->free((void *) rt->decimalSeparator);
1061 cx->free((void *) rt->numGrouping);
1062 rt->thousandsSeparator = rt->decimalSeparator = rt->numGrouping = NULL;
1065 JSObject *
1066 js_InitNumberClass(JSContext *cx, JSObject *obj)
1068 JSObject *proto, *ctor;
1069 JSRuntime *rt;
1071 /* XXX must do at least once per new thread, so do it per JSContext... */
1072 FIX_FPU();
1074 if (!JS_DefineFunctions(cx, obj, number_functions))
1075 return NULL;
1077 proto = js_InitClass(cx, obj, NULL, &js_NumberClass, Number, 1,
1078 NULL, number_methods, NULL, NULL);
1079 if (!proto || !(ctor = JS_GetConstructor(cx, proto)))
1080 return NULL;
1081 proto->setPrimitiveThis(Int32Value(0));
1082 if (!JS_DefineConstDoubles(cx, ctor, number_constants))
1083 return NULL;
1085 /* ECMA 15.1.1.1 */
1086 rt = cx->runtime;
1087 if (!JS_DefineProperty(cx, obj, js_NaN_str, Jsvalify(rt->NaNValue),
1088 JS_PropertyStub, JS_StrictPropertyStub,
1089 JSPROP_PERMANENT | JSPROP_READONLY)) {
1090 return NULL;
1093 /* ECMA 15.1.1.2 */
1094 if (!JS_DefineProperty(cx, obj, js_Infinity_str, Jsvalify(rt->positiveInfinityValue),
1095 JS_PropertyStub, JS_StrictPropertyStub,
1096 JSPROP_PERMANENT | JSPROP_READONLY)) {
1097 return NULL;
1099 return proto;
1102 namespace v8 {
1103 namespace internal {
1104 extern char* DoubleToCString(double v, char* buffer, int buflen);
1108 namespace js {
1110 static char *
1111 FracNumberToCString(JSContext *cx, ToCStringBuf *cbuf, jsdouble d, jsint base = 10)
1113 #ifdef DEBUG
1115 int32_t _;
1116 JS_ASSERT(!JSDOUBLE_IS_INT32(d, &_));
1118 #endif
1120 char* numStr;
1121 if (base == 10) {
1123 * This is V8's implementation of the algorithm described in the
1124 * following paper:
1126 * Printing floating-point numbers quickly and accurately with integers.
1127 * Florian Loitsch, PLDI 2010.
1129 * It fails on a small number of cases, whereupon we fall back to
1130 * js_dtostr() (which uses David Gay's dtoa).
1132 numStr = v8::internal::DoubleToCString(d, cbuf->sbuf, cbuf->sbufSize);
1133 if (!numStr)
1134 numStr = js_dtostr(JS_THREAD_DATA(cx)->dtoaState, cbuf->sbuf, cbuf->sbufSize,
1135 DTOSTR_STANDARD, 0, d);
1136 } else {
1137 numStr = cbuf->dbuf = js_dtobasestr(JS_THREAD_DATA(cx)->dtoaState, base, d);
1139 return numStr;
1142 char *
1143 NumberToCString(JSContext *cx, ToCStringBuf *cbuf, jsdouble d, jsint base/* = 10*/)
1145 int32_t i;
1146 return (JSDOUBLE_IS_INT32(d, &i))
1147 ? IntToCString(cbuf, i, base)
1148 : FracNumberToCString(cx, cbuf, d, base);
1153 static JSString * JS_FASTCALL
1154 js_NumberToStringWithBase(JSContext *cx, jsdouble d, jsint base)
1156 ToCStringBuf cbuf;
1157 char *numStr;
1158 JSString *s;
1161 * Caller is responsible for error reporting. When called from trace,
1162 * returning NULL here will cause us to fall of trace and then retry
1163 * from the interpreter (which will report the error).
1165 if (base < 2 || base > 36)
1166 return NULL;
1168 JSCompartment *c = cx->compartment;
1170 int32_t i;
1171 if (JSDOUBLE_IS_INT32(d, &i)) {
1172 if (base == 10 && jsuint(i) < INT_STRING_LIMIT)
1173 return JSString::intString(i);
1174 if (jsuint(i) < jsuint(base)) {
1175 if (i < 10)
1176 return JSString::intString(i);
1177 return JSString::unitString(jschar('a' + i - 10));
1180 if (JSString *str = c->dtoaCache.lookup(base, d))
1181 return str;
1183 numStr = IntToCString(&cbuf, i, base);
1184 JS_ASSERT(!cbuf.dbuf && numStr >= cbuf.sbuf && numStr < cbuf.sbuf + cbuf.sbufSize);
1185 } else {
1186 if (JSString *str = c->dtoaCache.lookup(base, d))
1187 return str;
1189 numStr = FracNumberToCString(cx, &cbuf, d, base);
1190 if (!numStr) {
1191 JS_ReportOutOfMemory(cx);
1192 return NULL;
1194 JS_ASSERT_IF(base == 10,
1195 !cbuf.dbuf && numStr >= cbuf.sbuf && numStr < cbuf.sbuf + cbuf.sbufSize);
1196 JS_ASSERT_IF(base != 10,
1197 cbuf.dbuf && cbuf.dbuf == numStr);
1200 s = js_NewStringCopyZ(cx, numStr);
1202 c->dtoaCache.cache(base, d, s);
1203 return s;
1206 JSString * JS_FASTCALL
1207 js_NumberToString(JSContext *cx, jsdouble d)
1209 return js_NumberToStringWithBase(cx, d, 10);
1212 namespace js {
1214 JSFlatString *
1215 NumberToString(JSContext *cx, jsdouble d)
1217 if (JSString *str = js_NumberToStringWithBase(cx, d, 10))
1218 return str->assertIsFlat();
1219 return NULL;
1222 bool JS_FASTCALL
1223 NumberValueToStringBuffer(JSContext *cx, const Value &v, StringBuffer &sb)
1225 /* Convert to C-string. */
1226 ToCStringBuf cbuf;
1227 const char *cstr;
1228 if (v.isInt32()) {
1229 cstr = IntToCString(&cbuf, v.toInt32());
1230 } else {
1231 cstr = NumberToCString(cx, &cbuf, v.toDouble());
1232 if (!cstr) {
1233 JS_ReportOutOfMemory(cx);
1234 return JS_FALSE;
1239 * Inflate to jschar string. The input C-string characters are < 127, so
1240 * even if jschars are UTF-8, all chars should map to one jschar.
1242 size_t cstrlen = strlen(cstr);
1243 JS_ASSERT(!cbuf.dbuf && cstrlen < cbuf.sbufSize);
1244 return sb.appendInflated(cstr, cstrlen);
1247 bool
1248 ValueToNumberSlow(JSContext *cx, Value v, double *out)
1250 JS_ASSERT(!v.isNumber());
1251 goto skip_int_double;
1252 for (;;) {
1253 if (v.isNumber()) {
1254 *out = v.toNumber();
1255 return true;
1257 skip_int_double:
1258 if (v.isString())
1259 return StringToNumberType<jsdouble>(cx, v.toString(), out);
1260 if (v.isBoolean()) {
1261 if (v.toBoolean()) {
1262 *out = 1.0;
1263 return true;
1265 *out = 0.0;
1266 return true;
1268 if (v.isNull()) {
1269 *out = 0.0;
1270 return true;
1272 if (v.isUndefined())
1273 break;
1275 JS_ASSERT(v.isObject());
1276 if (!DefaultValue(cx, &v.toObject(), JSTYPE_NUMBER, &v))
1277 return false;
1278 if (v.isObject())
1279 break;
1282 *out = js_NaN;
1283 return true;
1286 bool
1287 ValueToECMAInt32Slow(JSContext *cx, const Value &v, int32_t *out)
1289 JS_ASSERT(!v.isInt32());
1290 jsdouble d;
1291 if (v.isDouble()) {
1292 d = v.toDouble();
1293 } else {
1294 if (!ValueToNumberSlow(cx, v, &d))
1295 return false;
1297 *out = js_DoubleToECMAInt32(d);
1298 return true;
1301 bool
1302 ValueToECMAUint32Slow(JSContext *cx, const Value &v, uint32_t *out)
1304 JS_ASSERT(!v.isInt32());
1305 jsdouble d;
1306 if (v.isDouble()) {
1307 d = v.toDouble();
1308 } else {
1309 if (!ValueToNumberSlow(cx, v, &d))
1310 return false;
1312 *out = js_DoubleToECMAUint32(d);
1313 return true;
1316 } /* namespace js */
1318 uint32
1319 js_DoubleToECMAUint32(jsdouble d)
1321 int32 i;
1322 JSBool neg;
1323 jsdouble two32;
1325 if (!JSDOUBLE_IS_FINITE(d))
1326 return 0;
1329 * We check whether d fits int32, not uint32, as all but the ">>>" bit
1330 * manipulation bytecode stores the result as int, not uint. When the
1331 * result does not fit int Value, it will be stored as a negative double.
1333 i = (int32) d;
1334 if ((jsdouble) i == d)
1335 return (int32)i;
1337 neg = (d < 0);
1338 d = floor(neg ? -d : d);
1339 d = neg ? -d : d;
1341 two32 = 4294967296.0;
1342 d = fmod(d, two32);
1344 return (uint32) (d >= 0 ? d : d + two32);
1347 namespace js {
1349 bool
1350 ValueToInt32Slow(JSContext *cx, const Value &v, int32_t *out)
1352 JS_ASSERT(!v.isInt32());
1353 jsdouble d;
1354 if (v.isDouble()) {
1355 d = v.toDouble();
1356 } else if (!ValueToNumberSlow(cx, v, &d)) {
1357 return false;
1360 if (JSDOUBLE_IS_NaN(d) || d <= -2147483649.0 || 2147483648.0 <= d) {
1361 js_ReportValueError(cx, JSMSG_CANT_CONVERT,
1362 JSDVG_SEARCH_STACK, v, NULL);
1363 return false;
1365 *out = (int32) floor(d + 0.5); /* Round to nearest */
1366 return true;
1369 bool
1370 ValueToUint16Slow(JSContext *cx, const Value &v, uint16_t *out)
1372 JS_ASSERT(!v.isInt32());
1373 jsdouble d;
1374 if (v.isDouble()) {
1375 d = v.toDouble();
1376 } else if (!ValueToNumberSlow(cx, v, &d)) {
1377 return false;
1380 if (d == 0 || !JSDOUBLE_IS_FINITE(d)) {
1381 *out = 0;
1382 return true;
1385 uint16 u = (uint16) d;
1386 if ((jsdouble)u == d) {
1387 *out = u;
1388 return true;
1391 bool neg = (d < 0);
1392 d = floor(neg ? -d : d);
1393 d = neg ? -d : d;
1394 jsuint m = JS_BIT(16);
1395 d = fmod(d, (double) m);
1396 if (d < 0)
1397 d += m;
1398 *out = (uint16_t) d;
1399 return true;
1402 } /* namespace js */
1404 JSBool
1405 js_strtod(JSContext *cx, const jschar *s, const jschar *send,
1406 const jschar **ep, jsdouble *dp)
1408 const jschar *s1;
1409 size_t length, i;
1410 char cbuf[32];
1411 char *cstr, *istr, *estr;
1412 JSBool negative;
1413 jsdouble d;
1415 s1 = js_SkipWhiteSpace(s, send);
1416 length = send - s1;
1418 /* Use cbuf to avoid malloc */
1419 if (length >= sizeof cbuf) {
1420 cstr = (char *) cx->malloc(length + 1);
1421 if (!cstr)
1422 return JS_FALSE;
1423 } else {
1424 cstr = cbuf;
1427 for (i = 0; i != length; i++) {
1428 if (s1[i] >> 8)
1429 break;
1430 cstr[i] = (char)s1[i];
1432 cstr[i] = 0;
1434 istr = cstr;
1435 if ((negative = (*istr == '-')) != 0 || *istr == '+')
1436 istr++;
1437 if (*istr == 'I' && !strncmp(istr, js_Infinity_str, sizeof js_Infinity_str - 1)) {
1438 d = negative ? js_NegativeInfinity : js_PositiveInfinity;
1439 estr = istr + 8;
1440 } else {
1441 int err;
1442 d = js_strtod_harder(JS_THREAD_DATA(cx)->dtoaState, cstr, &estr, &err);
1443 if (d == HUGE_VAL)
1444 d = js_PositiveInfinity;
1445 else if (d == -HUGE_VAL)
1446 d = js_NegativeInfinity;
1449 i = estr - cstr;
1450 if (cstr != cbuf)
1451 cx->free(cstr);
1452 *ep = i ? s1 + i : s;
1453 *dp = d;
1454 return JS_TRUE;