Import from 1.9a8 tarball
[mozilla-nss.git] / security / nss / lib / freebl / ecl / ec2.h
blob2ca8418b319e50c55ea35993b1e0478becef2696
1 /*
2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
15 * The Original Code is the elliptic curve math library for binary polynomial field curves.
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
22 * Contributor(s):
23 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
25 * Alternatively, the contents of this file may be used under the terms of
26 * either the GNU General Public License Version 2 or later (the "GPL"), or
27 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28 * in which case the provisions of the GPL or the LGPL are applicable instead
29 * of those above. If you wish to allow use of your version of this file only
30 * under the terms of either the GPL or the LGPL, and not to allow others to
31 * use your version of this file under the terms of the MPL, indicate your
32 * decision by deleting the provisions above and replace them with the notice
33 * and other provisions required by the GPL or the LGPL. If you do not delete
34 * the provisions above, a recipient may use your version of this file under
35 * the terms of any one of the MPL, the GPL or the LGPL.
37 * ***** END LICENSE BLOCK ***** */
39 #ifndef __ec2_h_
40 #define __ec2_h_
42 #include "ecl-priv.h"
44 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
45 mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py);
47 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
48 mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py);
50 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
51 * qy). Uses affine coordinates. */
52 mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py,
53 const mp_int *qx, const mp_int *qy, mp_int *rx,
54 mp_int *ry, const ECGroup *group);
56 /* Computes R = P - Q. Uses affine coordinates. */
57 mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py,
58 const mp_int *qx, const mp_int *qy, mp_int *rx,
59 mp_int *ry, const ECGroup *group);
61 /* Computes R = 2P. Uses affine coordinates. */
62 mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
63 mp_int *ry, const ECGroup *group);
65 /* Validates a point on a GF2m curve. */
66 mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
68 /* by default, this routine is unused and thus doesn't need to be compiled */
69 #ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
70 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
71 * a, b and p are the elliptic curve coefficients and the irreducible that
72 * determines the field GF2m. Uses affine coordinates. */
73 mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px,
74 const mp_int *py, mp_int *rx, mp_int *ry,
75 const ECGroup *group);
76 #endif
78 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
79 * a, b and p are the elliptic curve coefficients and the irreducible that
80 * determines the field GF2m. Uses Montgomery projective coordinates. */
81 mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px,
82 const mp_int *py, mp_int *rx, mp_int *ry,
83 const ECGroup *group);
85 #ifdef ECL_ENABLE_GF2M_PROJ
86 /* Converts a point P(px, py) from affine coordinates to projective
87 * coordinates R(rx, ry, rz). */
88 mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx,
89 mp_int *ry, mp_int *rz, const ECGroup *group);
91 /* Converts a point P(px, py, pz) from projective coordinates to affine
92 * coordinates R(rx, ry). */
93 mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py,
94 const mp_int *pz, mp_int *rx, mp_int *ry,
95 const ECGroup *group);
97 /* Checks if point P(px, py, pz) is at infinity. Uses projective
98 * coordinates. */
99 mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py,
100 const mp_int *pz);
102 /* Sets P(px, py, pz) to be the point at infinity. Uses projective
103 * coordinates. */
104 mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz);
106 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
107 * (qx, qy, qz). Uses projective coordinates. */
108 mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py,
109 const mp_int *pz, const mp_int *qx,
110 const mp_int *qy, mp_int *rx, mp_int *ry,
111 mp_int *rz, const ECGroup *group);
113 /* Computes R = 2P. Uses projective coordinates. */
114 mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py,
115 const mp_int *pz, mp_int *rx, mp_int *ry,
116 mp_int *rz, const ECGroup *group);
118 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
119 * a, b and p are the elliptic curve coefficients and the prime that
120 * determines the field GF2m. Uses projective coordinates. */
121 mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px,
122 const mp_int *py, mp_int *rx, mp_int *ry,
123 const ECGroup *group);
124 #endif
126 #endif /* __ec2_h_ */