Import from 1.9a8 tarball
[mozilla-nss.git] / security / nss / lib / freebl / ecl / ecp_aff.c
blobcda04ed22587b43d35062ec439d3e139096c2101
1 /*
2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
15 * The Original Code is the elliptic curve math library for prime field curves.
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
22 * Contributor(s):
23 * Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24 * Stephen Fung <fungstep@hotmail.com>, and
25 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
26 * Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
27 * Nils Larsch <nla@trustcenter.de>, and
28 * Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
30 * Alternatively, the contents of this file may be used under the terms of
31 * either the GNU General Public License Version 2 or later (the "GPL"), or
32 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
33 * in which case the provisions of the GPL or the LGPL are applicable instead
34 * of those above. If you wish to allow use of your version of this file only
35 * under the terms of either the GPL or the LGPL, and not to allow others to
36 * use your version of this file under the terms of the MPL, indicate your
37 * decision by deleting the provisions above and replace them with the notice
38 * and other provisions required by the GPL or the LGPL. If you do not delete
39 * the provisions above, a recipient may use your version of this file under
40 * the terms of any one of the MPL, the GPL or the LGPL.
42 * ***** END LICENSE BLOCK ***** */
44 #include "ecp.h"
45 #include "mplogic.h"
46 #include <stdlib.h>
48 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
49 mp_err
50 ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
53 if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
54 return MP_YES;
55 } else {
56 return MP_NO;
61 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
62 mp_err
63 ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
65 mp_zero(px);
66 mp_zero(py);
67 return MP_OKAY;
70 /* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
71 * Q, and R can all be identical. Uses affine coordinates. Assumes input
72 * is already field-encoded using field_enc, and returns output that is
73 * still field-encoded. */
74 mp_err
75 ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
76 const mp_int *qy, mp_int *rx, mp_int *ry,
77 const ECGroup *group)
79 mp_err res = MP_OKAY;
80 mp_int lambda, temp, tempx, tempy;
82 MP_DIGITS(&lambda) = 0;
83 MP_DIGITS(&temp) = 0;
84 MP_DIGITS(&tempx) = 0;
85 MP_DIGITS(&tempy) = 0;
86 MP_CHECKOK(mp_init(&lambda));
87 MP_CHECKOK(mp_init(&temp));
88 MP_CHECKOK(mp_init(&tempx));
89 MP_CHECKOK(mp_init(&tempy));
90 /* if P = inf, then R = Q */
91 if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
92 MP_CHECKOK(mp_copy(qx, rx));
93 MP_CHECKOK(mp_copy(qy, ry));
94 res = MP_OKAY;
95 goto CLEANUP;
97 /* if Q = inf, then R = P */
98 if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
99 MP_CHECKOK(mp_copy(px, rx));
100 MP_CHECKOK(mp_copy(py, ry));
101 res = MP_OKAY;
102 goto CLEANUP;
104 /* if px != qx, then lambda = (py-qy) / (px-qx) */
105 if (mp_cmp(px, qx) != 0) {
106 MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
107 MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
108 MP_CHECKOK(group->meth->
109 field_div(&tempy, &tempx, &lambda, group->meth));
110 } else {
111 /* if py != qy or qy = 0, then R = inf */
112 if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
113 mp_zero(rx);
114 mp_zero(ry);
115 res = MP_OKAY;
116 goto CLEANUP;
118 /* lambda = (3qx^2+a) / (2qy) */
119 MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
120 MP_CHECKOK(mp_set_int(&temp, 3));
121 if (group->meth->field_enc) {
122 MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
124 MP_CHECKOK(group->meth->
125 field_mul(&tempx, &temp, &tempx, group->meth));
126 MP_CHECKOK(group->meth->
127 field_add(&tempx, &group->curvea, &tempx, group->meth));
128 MP_CHECKOK(mp_set_int(&temp, 2));
129 if (group->meth->field_enc) {
130 MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
132 MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
133 MP_CHECKOK(group->meth->
134 field_div(&tempx, &tempy, &lambda, group->meth));
136 /* rx = lambda^2 - px - qx */
137 MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
138 MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
139 MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
140 /* ry = (x1-x2) * lambda - y1 */
141 MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
142 MP_CHECKOK(group->meth->
143 field_mul(&tempy, &lambda, &tempy, group->meth));
144 MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
145 MP_CHECKOK(mp_copy(&tempx, rx));
146 MP_CHECKOK(mp_copy(&tempy, ry));
148 CLEANUP:
149 mp_clear(&lambda);
150 mp_clear(&temp);
151 mp_clear(&tempx);
152 mp_clear(&tempy);
153 return res;
156 /* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
157 * identical. Uses affine coordinates. Assumes input is already
158 * field-encoded using field_enc, and returns output that is still
159 * field-encoded. */
160 mp_err
161 ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
162 const mp_int *qy, mp_int *rx, mp_int *ry,
163 const ECGroup *group)
165 mp_err res = MP_OKAY;
166 mp_int nqy;
168 MP_DIGITS(&nqy) = 0;
169 MP_CHECKOK(mp_init(&nqy));
170 /* nqy = -qy */
171 MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
172 res = group->point_add(px, py, qx, &nqy, rx, ry, group);
173 CLEANUP:
174 mp_clear(&nqy);
175 return res;
178 /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
179 * affine coordinates. Assumes input is already field-encoded using
180 * field_enc, and returns output that is still field-encoded. */
181 mp_err
182 ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
183 mp_int *ry, const ECGroup *group)
185 return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
188 /* by default, this routine is unused and thus doesn't need to be compiled */
189 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
190 /* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
191 * R can be identical. Uses affine coordinates. Assumes input is already
192 * field-encoded using field_enc, and returns output that is still
193 * field-encoded. */
194 mp_err
195 ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
196 mp_int *rx, mp_int *ry, const ECGroup *group)
198 mp_err res = MP_OKAY;
199 mp_int k, k3, qx, qy, sx, sy;
200 int b1, b3, i, l;
202 MP_DIGITS(&k) = 0;
203 MP_DIGITS(&k3) = 0;
204 MP_DIGITS(&qx) = 0;
205 MP_DIGITS(&qy) = 0;
206 MP_DIGITS(&sx) = 0;
207 MP_DIGITS(&sy) = 0;
208 MP_CHECKOK(mp_init(&k));
209 MP_CHECKOK(mp_init(&k3));
210 MP_CHECKOK(mp_init(&qx));
211 MP_CHECKOK(mp_init(&qy));
212 MP_CHECKOK(mp_init(&sx));
213 MP_CHECKOK(mp_init(&sy));
215 /* if n = 0 then r = inf */
216 if (mp_cmp_z(n) == 0) {
217 mp_zero(rx);
218 mp_zero(ry);
219 res = MP_OKAY;
220 goto CLEANUP;
222 /* Q = P, k = n */
223 MP_CHECKOK(mp_copy(px, &qx));
224 MP_CHECKOK(mp_copy(py, &qy));
225 MP_CHECKOK(mp_copy(n, &k));
226 /* if n < 0 then Q = -Q, k = -k */
227 if (mp_cmp_z(n) < 0) {
228 MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
229 MP_CHECKOK(mp_neg(&k, &k));
231 #ifdef ECL_DEBUG /* basic double and add method */
232 l = mpl_significant_bits(&k) - 1;
233 MP_CHECKOK(mp_copy(&qx, &sx));
234 MP_CHECKOK(mp_copy(&qy, &sy));
235 for (i = l - 1; i >= 0; i--) {
236 /* S = 2S */
237 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
238 /* if k_i = 1, then S = S + Q */
239 if (mpl_get_bit(&k, i) != 0) {
240 MP_CHECKOK(group->
241 point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
244 #else /* double and add/subtract method from
245 * standard */
246 /* k3 = 3 * k */
247 MP_CHECKOK(mp_set_int(&k3, 3));
248 MP_CHECKOK(mp_mul(&k, &k3, &k3));
249 /* S = Q */
250 MP_CHECKOK(mp_copy(&qx, &sx));
251 MP_CHECKOK(mp_copy(&qy, &sy));
252 /* l = index of high order bit in binary representation of 3*k */
253 l = mpl_significant_bits(&k3) - 1;
254 /* for i = l-1 downto 1 */
255 for (i = l - 1; i >= 1; i--) {
256 /* S = 2S */
257 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
258 b3 = MP_GET_BIT(&k3, i);
259 b1 = MP_GET_BIT(&k, i);
260 /* if k3_i = 1 and k_i = 0, then S = S + Q */
261 if ((b3 == 1) && (b1 == 0)) {
262 MP_CHECKOK(group->
263 point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
264 /* if k3_i = 0 and k_i = 1, then S = S - Q */
265 } else if ((b3 == 0) && (b1 == 1)) {
266 MP_CHECKOK(group->
267 point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
270 #endif
271 /* output S */
272 MP_CHECKOK(mp_copy(&sx, rx));
273 MP_CHECKOK(mp_copy(&sy, ry));
275 CLEANUP:
276 mp_clear(&k);
277 mp_clear(&k3);
278 mp_clear(&qx);
279 mp_clear(&qy);
280 mp_clear(&sx);
281 mp_clear(&sy);
282 return res;
284 #endif
286 /* Validates a point on a GFp curve. */
287 mp_err
288 ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
290 mp_err res = MP_NO;
291 mp_int accl, accr, tmp, pxt, pyt;
293 MP_DIGITS(&accl) = 0;
294 MP_DIGITS(&accr) = 0;
295 MP_DIGITS(&tmp) = 0;
296 MP_DIGITS(&pxt) = 0;
297 MP_DIGITS(&pyt) = 0;
298 MP_CHECKOK(mp_init(&accl));
299 MP_CHECKOK(mp_init(&accr));
300 MP_CHECKOK(mp_init(&tmp));
301 MP_CHECKOK(mp_init(&pxt));
302 MP_CHECKOK(mp_init(&pyt));
304 /* 1: Verify that publicValue is not the point at infinity */
305 if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
306 res = MP_NO;
307 goto CLEANUP;
309 /* 2: Verify that the coordinates of publicValue are elements
310 * of the field.
312 if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
313 (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
314 res = MP_NO;
315 goto CLEANUP;
317 /* 3: Verify that publicValue is on the curve. */
318 if (group->meth->field_enc) {
319 group->meth->field_enc(px, &pxt, group->meth);
320 group->meth->field_enc(py, &pyt, group->meth);
321 } else {
322 mp_copy(px, &pxt);
323 mp_copy(py, &pyt);
325 /* left-hand side: y^2 */
326 MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
327 /* right-hand side: x^3 + a*x + b */
328 MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
329 MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
330 MP_CHECKOK( group->meth->field_mul(&group->curvea, &pxt, &tmp, group->meth) );
331 MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
332 MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
333 /* check LHS - RHS == 0 */
334 MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
335 if (mp_cmp_z(&accr) != 0) {
336 res = MP_NO;
337 goto CLEANUP;
339 /* 4: Verify that the order of the curve times the publicValue
340 * is the point at infinity.
342 MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
343 if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
344 res = MP_NO;
345 goto CLEANUP;
348 res = MP_YES;
350 CLEANUP:
351 mp_clear(&accl);
352 mp_clear(&accr);
353 mp_clear(&tmp);
354 mp_clear(&pxt);
355 mp_clear(&pyt);
356 return res;