1 This is ../../../src/bfd/doc/bfd.info, produced by makeinfo version 4.2
2 from ../../../src/bfd/doc/bfd.texinfo.
5 * Bfd: (bfd). The Binary File Descriptor library.
8 This file documents the BFD library.
10 Copyright (C) 1991, 2000, 2001, 2003 Free Software Foundation, Inc.
12 Permission is granted to copy, distribute and/or modify this document
13 under the terms of the GNU Free Documentation License, Version 1.1
14 or any later version published by the Free Software Foundation;
15 with no Invariant Sections, with no Front-Cover Texts, and with no
16 Back-Cover Texts. A copy of the license is included in the
17 section entitled "GNU Free Documentation License".
20 File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir)
22 This file documents the binary file descriptor library libbfd.
26 * Overview:: Overview of BFD
27 * BFD front end:: BFD front end
28 * BFD back ends:: BFD back ends
29 * GNU Free Documentation License:: GNU Free Documentation License
33 File: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top
38 BFD is a package which allows applications to use the same routines
39 to operate on object files whatever the object file format. A new
40 object file format can be supported simply by creating a new BFD back
41 end and adding it to the library.
43 BFD is split into two parts: the front end, and the back ends (one
44 for each object file format).
45 * The front end of BFD provides the interface to the user. It manages
46 memory and various canonical data structures. The front end also
47 decides which back end to use and when to call back end routines.
49 * The back ends provide BFD its view of the real world. Each back
50 end provides a set of calls which the BFD front end can use to
51 maintain its canonical form. The back ends also may keep around
52 information for their own use, for greater efficiency.
57 * How It Works:: How It Works
58 * What BFD Version 2 Can Do:: What BFD Version 2 Can Do
61 File: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview
66 One spur behind BFD was the desire, on the part of the GNU 960 team
67 at Intel Oregon, for interoperability of applications on their COFF and
68 b.out file formats. Cygnus was providing GNU support for the team, and
69 was contracted to provide the required functionality.
71 The name came from a conversation David Wallace was having with
72 Richard Stallman about the library: RMS said that it would be quite
73 hard--David said "BFD". Stallman was right, but the name stuck.
75 At the same time, Ready Systems wanted much the same thing, but for
76 different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k
79 BFD was first implemented by members of Cygnus Support; Steve
80 Chamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K.
81 Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace
85 File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview
90 To use the library, include `bfd.h' and link with `libbfd.a'.
92 BFD provides a common interface to the parts of an object file for a
95 When an application sucessfully opens a target file (object,
96 archive, or whatever), a pointer to an internal structure is returned.
97 This pointer points to a structure called `bfd', described in `bfd.h'.
98 Our convention is to call this pointer a BFD, and instances of it
99 within code `abfd'. All operations on the target object file are
100 applied as methods to the BFD. The mapping is defined within `bfd.h'
101 in a set of macros, all beginning with `bfd_' to reduce namespace
104 For example, this sequence does what you would probably expect:
105 return the number of sections in an object file attached to a BFD
110 unsigned int number_of_sections (abfd)
113 return bfd_count_sections (abfd);
116 The abstraction used within BFD is that an object file has:
120 * a number of sections containing raw data (*note Sections::),
122 * a set of relocations (*note Relocations::), and
124 * some symbol information (*note Symbols::).
126 Also, BFDs opened for archives have the additional attribute of an index
127 and contain subordinate BFDs. This approach is fine for a.out and coff,
128 but loses efficiency when applied to formats such as S-records and
132 File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview
134 What BFD Version 2 Can Do
135 =========================
137 When an object file is opened, BFD subroutines automatically
138 determine the format of the input object file. They then build a
139 descriptor in memory with pointers to routines that will be used to
140 access elements of the object file's data structures.
142 As different information from the object files is required, BFD
143 reads from different sections of the file and processes them. For
144 example, a very common operation for the linker is processing symbol
145 tables. Each BFD back end provides a routine for converting between
146 the object file's representation of symbols and an internal canonical
147 format. When the linker asks for the symbol table of an object file, it
148 calls through a memory pointer to the routine from the relevant BFD
149 back end which reads and converts the table into a canonical form. The
150 linker then operates upon the canonical form. When the link is finished
151 and the linker writes the output file's symbol table, another BFD back
152 end routine is called to take the newly created symbol table and
153 convert it into the chosen output format.
157 * BFD information loss:: Information Loss
158 * Canonical format:: The BFD canonical object-file format
161 File: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do
166 _Information can be lost during output._ The output formats
167 supported by BFD do not provide identical facilities, and information
168 which can be described in one form has nowhere to go in another format.
169 One example of this is alignment information in `b.out'. There is
170 nowhere in an `a.out' format file to store alignment information on the
171 contained data, so when a file is linked from `b.out' and an `a.out'
172 image is produced, alignment information will not propagate to the
173 output file. (The linker will still use the alignment information
174 internally, so the link is performed correctly).
176 Another example is COFF section names. COFF files may contain an
177 unlimited number of sections, each one with a textual section name. If
178 the target of the link is a format which does not have many sections
179 (e.g., `a.out') or has sections without names (e.g., the Oasys format),
180 the link cannot be done simply. You can circumvent this problem by
181 describing the desired input-to-output section mapping with the linker
184 _Information can be lost during canonicalization._ The BFD internal
185 canonical form of the external formats is not exhaustive; there are
186 structures in input formats for which there is no direct representation
187 internally. This means that the BFD back ends cannot maintain all
188 possible data richness through the transformation between external to
189 internal and back to external formats.
191 This limitation is only a problem when an application reads one
192 format and writes another. Each BFD back end is responsible for
193 maintaining as much data as possible, and the internal BFD canonical
194 form has structures which are opaque to the BFD core, and exported only
195 to the back ends. When a file is read in one format, the canonical form
196 is generated for BFD and the application. At the same time, the back
197 end saves away any information which may otherwise be lost. If the data
198 is then written back in the same format, the back end routine will be
199 able to use the canonical form provided by the BFD core as well as the
200 information it prepared earlier. Since there is a great deal of
201 commonality between back ends, there is no information lost when
202 linking or copying big endian COFF to little endian COFF, or `a.out' to
203 `b.out'. When a mixture of formats is linked, the information is only
204 lost from the files whose format differs from the destination.
207 File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do
209 The BFD canonical object-file format
210 ------------------------------------
212 The greatest potential for loss of information occurs when there is
213 the least overlap between the information provided by the source
214 format, that stored by the canonical format, and that needed by the
215 destination format. A brief description of the canonical form may help
216 you understand which kinds of data you can count on preserving across
220 Information stored on a per-file basis includes target machine
221 architecture, particular implementation format type, a demand
222 pageable bit, and a write protected bit. Information like Unix
223 magic numbers is not stored here--only the magic numbers' meaning,
224 so a `ZMAGIC' file would have both the demand pageable bit and the
225 write protected text bit set. The byte order of the target is
226 stored on a per-file basis, so that big- and little-endian object
227 files may be used with one another.
230 Each section in the input file contains the name of the section,
231 the section's original address in the object file, size and
232 alignment information, various flags, and pointers into other BFD
236 Each symbol contains a pointer to the information for the object
237 file which originally defined it, its name, its value, and various
238 flag bits. When a BFD back end reads in a symbol table, it
239 relocates all symbols to make them relative to the base of the
240 section where they were defined. Doing this ensures that each
241 symbol points to its containing section. Each symbol also has a
242 varying amount of hidden private data for the BFD back end. Since
243 the symbol points to the original file, the private data format
244 for that symbol is accessible. `ld' can operate on a collection
245 of symbols of wildly different formats without problems.
247 Normal global and simple local symbols are maintained on output,
248 so an output file (no matter its format) will retain symbols
249 pointing to functions and to global, static, and common variables.
250 Some symbol information is not worth retaining; in `a.out', type
251 information is stored in the symbol table as long symbol names.
252 This information would be useless to most COFF debuggers; the
253 linker has command line switches to allow users to throw it away.
255 There is one word of type information within the symbol, so if the
256 format supports symbol type information within symbols (for
257 example, COFF, IEEE, Oasys) and the type is simple enough to fit
258 within one word (nearly everything but aggregates), the
259 information will be preserved.
262 Each canonical BFD relocation record contains a pointer to the
263 symbol to relocate to, the offset of the data to relocate, the
264 section the data is in, and a pointer to a relocation type
265 descriptor. Relocation is performed by passing messages through
266 the relocation type descriptor and the symbol pointer. Therefore,
267 relocations can be performed on output data using a relocation
268 method that is only available in one of the input formats. For
269 instance, Oasys provides a byte relocation format. A relocation
270 record requesting this relocation type would point indirectly to a
271 routine to perform this, so the relocation may be performed on a
272 byte being written to a 68k COFF file, even though 68k COFF has no
273 such relocation type.
276 Object formats can contain, for debugging purposes, some form of
277 mapping between symbols, source line numbers, and addresses in the
278 output file. These addresses have to be relocated along with the
279 symbol information. Each symbol with an associated list of line
280 number records points to the first record of the list. The head
281 of a line number list consists of a pointer to the symbol, which
282 allows finding out the address of the function whose line number
283 is being described. The rest of the list is made up of pairs:
284 offsets into the section and line numbers. Any format which can
285 simply derive this information can pass it successfully between
286 formats (COFF, IEEE and Oasys).
289 File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top
297 A BFD has type `bfd'; objects of this type are the cornerstone of
298 any application using BFD. Using BFD consists of making references
299 though the BFD and to data in the BFD.
301 Here is the structure that defines the type `bfd'. It contains the
302 major data about the file and pointers to the rest of the data.
307 /* A unique identifier of the BFD */
310 /* The filename the application opened the BFD with. */
311 const char *filename;
313 /* A pointer to the target jump table. */
314 const struct bfd_target *xvec;
316 /* The IOSTREAM, and corresponding IO vector that provide access
317 to the file backing the BFD. */
319 const struct bfd_iovec *iovec;
321 /* Is the file descriptor being cached? That is, can it be closed as
322 needed, and re-opened when accessed later? */
323 bfd_boolean cacheable;
325 /* Marks whether there was a default target specified when the
326 BFD was opened. This is used to select which matching algorithm
327 to use to choose the back end. */
328 bfd_boolean target_defaulted;
330 /* The caching routines use these to maintain a
331 least-recently-used list of BFDs. */
332 struct bfd *lru_prev, *lru_next;
334 /* When a file is closed by the caching routines, BFD retains
335 state information on the file here... */
338 /* ... and here: (``once'' means at least once). */
339 bfd_boolean opened_once;
341 /* Set if we have a locally maintained mtime value, rather than
342 getting it from the file each time. */
343 bfd_boolean mtime_set;
345 /* File modified time, if mtime_set is TRUE. */
348 /* Reserved for an unimplemented file locking extension. */
351 /* The format which belongs to the BFD. (object, core, etc.) */
354 /* The direction with which the BFD was opened. */
364 /* Format_specific flags. */
367 /* Currently my_archive is tested before adding origin to
368 anything. I believe that this can become always an add of
369 origin, with origin set to 0 for non archive files. */
372 /* Remember when output has begun, to stop strange things
374 bfd_boolean output_has_begun;
376 /* A hash table for section names. */
377 struct bfd_hash_table section_htab;
379 /* Pointer to linked list of sections. */
380 struct bfd_section *sections;
382 /* The last section on the section list. */
383 struct bfd_section *section_last;
385 /* The number of sections. */
386 unsigned int section_count;
388 /* Stuff only useful for object files:
389 The start address. */
390 bfd_vma start_address;
392 /* Used for input and output. */
393 unsigned int symcount;
395 /* Symbol table for output BFD (with symcount entries). */
396 struct bfd_symbol **outsymbols;
398 /* Used for slurped dynamic symbol tables. */
399 unsigned int dynsymcount;
401 /* Pointer to structure which contains architecture information. */
402 const struct bfd_arch_info *arch_info;
404 /* Flag set if symbols from this BFD should not be exported. */
405 bfd_boolean no_export;
407 /* Stuff only useful for archives. */
409 struct bfd *my_archive; /* The containing archive BFD. */
410 struct bfd *next; /* The next BFD in the archive. */
411 struct bfd *archive_head; /* The first BFD in the archive. */
412 bfd_boolean has_armap;
414 /* A chain of BFD structures involved in a link. */
415 struct bfd *link_next;
417 /* A field used by _bfd_generic_link_add_archive_symbols. This will
418 be used only for archive elements. */
421 /* Used by the back end to hold private data. */
424 struct aout_data_struct *aout_data;
425 struct artdata *aout_ar_data;
426 struct _oasys_data *oasys_obj_data;
427 struct _oasys_ar_data *oasys_ar_data;
428 struct coff_tdata *coff_obj_data;
429 struct pe_tdata *pe_obj_data;
430 struct xcoff_tdata *xcoff_obj_data;
431 struct ecoff_tdata *ecoff_obj_data;
432 struct ieee_data_struct *ieee_data;
433 struct ieee_ar_data_struct *ieee_ar_data;
434 struct srec_data_struct *srec_data;
435 struct ihex_data_struct *ihex_data;
436 struct tekhex_data_struct *tekhex_data;
437 struct elf_obj_tdata *elf_obj_data;
438 struct nlm_obj_tdata *nlm_obj_data;
439 struct bout_data_struct *bout_data;
440 struct mmo_data_struct *mmo_data;
441 struct sun_core_struct *sun_core_data;
442 struct sco5_core_struct *sco5_core_data;
443 struct trad_core_struct *trad_core_data;
444 struct som_data_struct *som_data;
445 struct hpux_core_struct *hpux_core_data;
446 struct hppabsd_core_struct *hppabsd_core_data;
447 struct sgi_core_struct *sgi_core_data;
448 struct lynx_core_struct *lynx_core_data;
449 struct osf_core_struct *osf_core_data;
450 struct cisco_core_struct *cisco_core_data;
451 struct versados_data_struct *versados_data;
452 struct netbsd_core_struct *netbsd_core_data;
453 struct mach_o_data_struct *mach_o_data;
454 struct mach_o_fat_data_struct *mach_o_fat_data;
455 struct bfd_pef_data_struct *pef_data;
456 struct bfd_pef_xlib_data_struct *pef_xlib_data;
457 struct bfd_sym_data_struct *sym_data;
462 /* Used by the application to hold private data. */
465 /* Where all the allocated stuff under this BFD goes. This is a
466 struct objalloc *, but we use void * to avoid requiring the inclusion
474 Most BFD functions return nonzero on success (check their individual
475 documentation for precise semantics). On an error, they call
476 `bfd_set_error' to set an error condition that callers can check by
477 calling `bfd_get_error'. If that returns `bfd_error_system_call', then
480 The easiest way to report a BFD error to the user is to use
483 Type `bfd_error_type'
484 ---------------------
486 The values returned by `bfd_get_error' are defined by the enumerated
487 type `bfd_error_type'.
490 typedef enum bfd_error
492 bfd_error_no_error = 0,
493 bfd_error_system_call,
494 bfd_error_invalid_target,
495 bfd_error_wrong_format,
496 bfd_error_wrong_object_format,
497 bfd_error_invalid_operation,
499 bfd_error_no_symbols,
501 bfd_error_no_more_archived_files,
502 bfd_error_malformed_archive,
503 bfd_error_file_not_recognized,
504 bfd_error_file_ambiguously_recognized,
505 bfd_error_no_contents,
506 bfd_error_nonrepresentable_section,
507 bfd_error_no_debug_section,
509 bfd_error_file_truncated,
510 bfd_error_file_too_big,
511 bfd_error_invalid_error_code
519 bfd_error_type bfd_get_error (void);
521 Return the current BFD error condition.
527 void bfd_set_error (bfd_error_type error_tag);
529 Set the BFD error condition to be ERROR_TAG.
535 const char *bfd_errmsg (bfd_error_type error_tag);
537 Return a string describing the error ERROR_TAG, or the system error if
538 ERROR_TAG is `bfd_error_system_call'.
544 void bfd_perror (const char *message);
546 Print to the standard error stream a string describing the last BFD
547 error that occurred, or the last system error if the last BFD error was
548 a system call failure. If MESSAGE is non-NULL and non-empty, the error
549 string printed is preceded by MESSAGE, a colon, and a space. It is
550 followed by a newline.
555 Some BFD functions want to print messages describing the problem.
556 They call a BFD error handler function. This function may be
557 overridden by the program.
559 The BFD error handler acts like printf.
562 typedef void (*bfd_error_handler_type) (const char *, ...);
564 `bfd_set_error_handler'
565 .......................
568 bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);
570 Set the BFD error handler function. Returns the previous function.
572 `bfd_set_error_program_name'
573 ............................
576 void bfd_set_error_program_name (const char *);
578 Set the program name to use when printing a BFD error. This is printed
579 before the error message followed by a colon and space. The string
580 must not be changed after it is passed to this function.
582 `bfd_get_error_handler'
583 .......................
586 bfd_error_handler_type bfd_get_error_handler (void);
588 Return the BFD error handler function.
593 Miscellaneous functions
594 -----------------------
596 `bfd_get_reloc_upper_bound'
597 ...........................
600 long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);
602 Return the number of bytes required to store the relocation information
603 associated with section SECT attached to bfd ABFD. If an error occurs,
606 `bfd_canonicalize_reloc'
607 ........................
610 long bfd_canonicalize_reloc
611 (bfd *abfd, asection *sec, arelent **loc, asymbol **syms);
613 Call the back end associated with the open BFD ABFD and translate the
614 external form of the relocation information attached to SEC into the
615 internal canonical form. Place the table into memory at LOC, which has
616 been preallocated, usually by a call to `bfd_get_reloc_upper_bound'.
617 Returns the number of relocs, or -1 on error.
619 The SYMS table is also needed for horrible internal magic reasons.
626 (bfd *abfd, asection *sec, arelent **rel, unsigned int count);
628 Set the relocation pointer and count within section SEC to the values
629 REL and COUNT. The argument ABFD is ignored.
635 bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);
637 Set the flag word in the BFD ABFD to the value FLAGS.
640 * `bfd_error_wrong_format' - The target bfd was not of object format.
642 * `bfd_error_invalid_operation' - The target bfd was open for
645 * `bfd_error_invalid_operation' - The flag word contained a bit
646 which was not applicable to the type of file. E.g., an attempt
647 was made to set the `D_PAGED' bit on a BFD format which does not
648 support demand paging.
654 int bfd_get_arch_size (bfd *abfd);
656 Returns the architecture address size, in bits, as determined by the
657 object file's format. For ELF, this information is included in the
661 Returns the arch size in bits if known, `-1' otherwise.
663 `bfd_get_sign_extend_vma'
664 .........................
667 int bfd_get_sign_extend_vma (bfd *abfd);
669 Indicates if the target architecture "naturally" sign extends an
670 address. Some architectures implicitly sign extend address values when
671 they are converted to types larger than the size of an address. For
672 instance, bfd_get_start_address() will return an address sign extended
673 to fill a bfd_vma when this is the case.
676 Returns `1' if the target architecture is known to sign extend
677 addresses, `0' if the target architecture is known to not sign extend
678 addresses, and `-1' otherwise.
680 `bfd_set_start_address'
681 .......................
684 bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);
686 Make VMA the entry point of output BFD ABFD.
689 Returns `TRUE' on success, `FALSE' otherwise.
695 unsigned int bfd_get_gp_size (bfd *abfd);
697 Return the maximum size of objects to be optimized using the GP
698 register under MIPS ECOFF. This is typically set by the `-G' argument
699 to the compiler, assembler or linker.
705 void bfd_set_gp_size (bfd *abfd, unsigned int i);
707 Set the maximum size of objects to be optimized using the GP register
708 under ECOFF or MIPS ELF. This is typically set by the `-G' argument to
709 the compiler, assembler or linker.
715 bfd_vma bfd_scan_vma (const char *string, const char **end, int base);
717 Convert, like `strtoul', a numerical expression STRING into a `bfd_vma'
718 integer, and return that integer. (Though without as many bells and
719 whistles as `strtoul'.) The expression is assumed to be unsigned
720 (i.e., positive). If given a BASE, it is used as the base for
721 conversion. A base of 0 causes the function to interpret the string in
722 hex if a leading "0x" or "0X" is found, otherwise in octal if a leading
723 zero is found, otherwise in decimal.
725 If the value would overflow, the maximum `bfd_vma' value is returned.
727 `bfd_copy_private_header_data'
728 ..............................
731 bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);
733 Copy private BFD header information from the BFD IBFD to the the BFD
734 OBFD. This copies information that may require sections to exist, but
735 does not require symbol tables. Return `true' on success, `false' on
736 error. Possible error returns are:
738 * `bfd_error_no_memory' - Not enough memory exists to create private
741 #define bfd_copy_private_header_data(ibfd, obfd) \
742 BFD_SEND (obfd, _bfd_copy_private_header_data, \
745 `bfd_copy_private_bfd_data'
746 ...........................
749 bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);
751 Copy private BFD information from the BFD IBFD to the the BFD OBFD.
752 Return `TRUE' on success, `FALSE' on error. Possible error returns are:
754 * `bfd_error_no_memory' - Not enough memory exists to create private
757 #define bfd_copy_private_bfd_data(ibfd, obfd) \
758 BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
761 `bfd_merge_private_bfd_data'
762 ............................
765 bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);
767 Merge private BFD information from the BFD IBFD to the the output file
768 BFD OBFD when linking. Return `TRUE' on success, `FALSE' on error.
769 Possible error returns are:
771 * `bfd_error_no_memory' - Not enough memory exists to create private
774 #define bfd_merge_private_bfd_data(ibfd, obfd) \
775 BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
778 `bfd_set_private_flags'
779 .......................
782 bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);
784 Set private BFD flag information in the BFD ABFD. Return `TRUE' on
785 success, `FALSE' on error. Possible error returns are:
787 * `bfd_error_no_memory' - Not enough memory exists to create private
790 #define bfd_set_private_flags(abfd, flags) \
791 BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))
797 The following functions exist but have not yet been documented.
798 #define bfd_sizeof_headers(abfd, reloc) \
799 BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, reloc))
801 #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
802 BFD_SEND (abfd, _bfd_find_nearest_line, \
803 (abfd, sec, syms, off, file, func, line))
805 #define bfd_find_line(abfd, syms, sym, file, line) \
806 BFD_SEND (abfd, _bfd_find_line, \
807 (abfd, syms, sym, file, line))
809 #define bfd_find_inliner_info(abfd, file, func, line) \
810 BFD_SEND (abfd, _bfd_find_inliner_info, \
811 (abfd, file, func, line))
813 #define bfd_debug_info_start(abfd) \
814 BFD_SEND (abfd, _bfd_debug_info_start, (abfd))
816 #define bfd_debug_info_end(abfd) \
817 BFD_SEND (abfd, _bfd_debug_info_end, (abfd))
819 #define bfd_debug_info_accumulate(abfd, section) \
820 BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))
822 #define bfd_stat_arch_elt(abfd, stat) \
823 BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))
825 #define bfd_update_armap_timestamp(abfd) \
826 BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))
828 #define bfd_set_arch_mach(abfd, arch, mach)\
829 BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))
831 #define bfd_relax_section(abfd, section, link_info, again) \
832 BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))
834 #define bfd_gc_sections(abfd, link_info) \
835 BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))
837 #define bfd_merge_sections(abfd, link_info) \
838 BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))
840 #define bfd_is_group_section(abfd, sec) \
841 BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))
843 #define bfd_discard_group(abfd, sec) \
844 BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))
846 #define bfd_link_hash_table_create(abfd) \
847 BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))
849 #define bfd_link_hash_table_free(abfd, hash) \
850 BFD_SEND (abfd, _bfd_link_hash_table_free, (hash))
852 #define bfd_link_add_symbols(abfd, info) \
853 BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))
855 #define bfd_link_just_syms(abfd, sec, info) \
856 BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))
858 #define bfd_final_link(abfd, info) \
859 BFD_SEND (abfd, _bfd_final_link, (abfd, info))
861 #define bfd_free_cached_info(abfd) \
862 BFD_SEND (abfd, _bfd_free_cached_info, (abfd))
864 #define bfd_get_dynamic_symtab_upper_bound(abfd) \
865 BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))
867 #define bfd_print_private_bfd_data(abfd, file)\
868 BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))
870 #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
871 BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))
873 #define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \
874 BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \
875 dyncount, dynsyms, ret))
877 #define bfd_get_dynamic_reloc_upper_bound(abfd) \
878 BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))
880 #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
881 BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))
883 extern bfd_byte *bfd_get_relocated_section_contents
884 (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
885 bfd_boolean, asymbol **);
891 bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);
893 When more than one machine code number is available for the same
894 machine type, this function can be used to switch between the preferred
895 one (alternative == 0) and any others. Currently, only ELF supports
896 this feature, with up to two alternate machine codes.
903 const struct bfd_arch_info *arch_info;
904 struct bfd_section *sections;
905 struct bfd_section *section_last;
906 unsigned int section_count;
907 struct bfd_hash_table section_htab;
914 bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *);
916 When testing an object for compatibility with a particular target
917 back-end, the back-end object_p function needs to set up certain fields
918 in the bfd on successfully recognizing the object. This typically
919 happens in a piecemeal fashion, with failures possible at many points.
920 On failure, the bfd is supposed to be restored to its initial state,
921 which is virtually impossible. However, restoring a subset of the bfd
922 state works in practice. This function stores the subset and
923 reinitializes the bfd.
925 `bfd_preserve_restore'
926 ......................
929 void bfd_preserve_restore (bfd *, struct bfd_preserve *);
931 This function restores bfd state saved by bfd_preserve_save. If MARKER
932 is non-NULL in struct bfd_preserve then that block and all subsequently
933 bfd_alloc'd memory is freed.
935 `bfd_preserve_finish'
936 .....................
939 void bfd_preserve_finish (bfd *, struct bfd_preserve *);
941 This function should be called when the bfd state saved by
942 bfd_preserve_save is no longer needed. ie. when the back-end object_p
943 function returns with success.
949 The `struct bfd_iovec' contains the internal file I/O class. Each
950 `BFD' has an instance of this class and all file I/O is routed through
951 it (it is assumed that the instance implements all methods listed
955 /* To avoid problems with macros, a "b" rather than "f"
956 prefix is prepended to each method name. */
957 /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching
958 bytes starting at PTR. Return the number of bytes actually
959 transfered (a read past end-of-file returns less than NBYTES),
960 or -1 (setting `bfd_error') if an error occurs. */
961 file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);
962 file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,
964 /* Return the current IOSTREAM file offset, or -1 (setting `bfd_error'
965 if an error occurs. */
966 file_ptr (*btell) (struct bfd *abfd);
967 /* For the following, on successful completion a value of 0 is returned.
968 Otherwise, a value of -1 is returned (and `bfd_error' is set). */
969 int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);
970 int (*bclose) (struct bfd *abfd);
971 int (*bflush) (struct bfd *abfd);
972 int (*bstat) (struct bfd *abfd, struct stat *sb);
979 long bfd_get_mtime (bfd *abfd);
981 Return the file modification time (as read from the file system, or
982 from the archive header for archive members).
988 long bfd_get_size (bfd *abfd);
990 Return the file size (as read from file system) for the file associated
993 The initial motivation for, and use of, this routine is not so we
994 can get the exact size of the object the BFD applies to, since that
995 might not be generally possible (archive members for example). It
996 would be ideal if someone could eventually modify it so that such
997 results were guaranteed.
999 Instead, we want to ask questions like "is this NNN byte sized
1000 object I'm about to try read from file offset YYY reasonable?" As as
1001 example of where we might do this, some object formats use string
1002 tables for which the first `sizeof (long)' bytes of the table contain
1003 the size of the table itself, including the size bytes. If an
1004 application tries to read what it thinks is one of these string tables,
1005 without some way to validate the size, and for some reason the size is
1006 wrong (byte swapping error, wrong location for the string table, etc.),
1007 the only clue is likely to be a read error when it tries to read the
1008 table, or a "virtual memory exhausted" error when it tries to allocate
1009 15 bazillon bytes of space for the 15 bazillon byte table it is about
1010 to read. This function at least allows us to answer the question, "is
1011 the size reasonable?".
1025 * Opening and Closing::
1028 * Linker Functions::
1032 File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: BFD front end, Up: BFD front end
1037 BFD keeps all of its internal structures in obstacks. There is one
1038 obstack per open BFD file, into which the current state is stored. When
1039 a BFD is closed, the obstack is deleted, and so everything which has
1040 been allocated by BFD for the closing file is thrown away.
1042 BFD does not free anything created by an application, but pointers
1043 into `bfd' structures become invalid on a `bfd_close'; for example,
1044 after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' is
1045 still around, since it has been allocated by the application, but the
1046 data that it pointed to are lost.
1048 The general rule is to not close a BFD until all operations dependent
1049 upon data from the BFD have been completed, or all the data from within
1050 the file has been copied. To help with the management of memory, there
1051 is a function (`bfd_alloc_size') which returns the number of bytes in
1052 obstacks associated with the supplied BFD. This could be used to select
1053 the greediest open BFD, close it to reclaim the memory, perform some
1054 operation and reopen the BFD again, to get a fresh copy of the data
1058 File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end
1063 Initialization functions
1064 ------------------------
1066 These are the functions that handle initializing a BFD.
1072 void bfd_init (void);
1074 This routine must be called before any other BFD function to initialize
1075 magical internal data structures.
1078 File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end
1083 The raw data contained within a BFD is maintained through the
1084 section abstraction. A single BFD may have any number of sections. It
1085 keeps hold of them by pointing to the first; each one points to the
1088 Sections are supported in BFD in `section.c'.
1094 * typedef asection::
1095 * section prototypes::
1098 File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections
1103 When a BFD is opened for reading, the section structures are created
1104 and attached to the BFD.
1106 Each section has a name which describes the section in the outside
1107 world--for example, `a.out' would contain at least three sections,
1108 called `.text', `.data' and `.bss'.
1110 Names need not be unique; for example a COFF file may have several
1111 sections named `.data'.
1113 Sometimes a BFD will contain more than the "natural" number of
1114 sections. A back end may attach other sections containing constructor
1115 data, or an application may add a section (using `bfd_make_section') to
1116 the sections attached to an already open BFD. For example, the linker
1117 creates an extra section `COMMON' for each input file's BFD to hold
1118 information about common storage.
1120 The raw data is not necessarily read in when the section descriptor
1121 is created. Some targets may leave the data in place until a
1122 `bfd_get_section_contents' call is made. Other back ends may read in
1123 all the data at once. For example, an S-record file has to be read
1124 once to determine the size of the data. An IEEE-695 file doesn't
1125 contain raw data in sections, but data and relocation expressions
1126 intermixed, so the data area has to be parsed to get out the data and
1130 File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections
1135 To write a new object style BFD, the various sections to be written
1136 have to be created. They are attached to the BFD in the same way as
1137 input sections; data is written to the sections using
1138 `bfd_set_section_contents'.
1140 Any program that creates or combines sections (e.g., the assembler
1141 and linker) must use the `asection' fields `output_section' and
1142 `output_offset' to indicate the file sections to which each section
1143 must be written. (If the section is being created from scratch,
1144 `output_section' should probably point to the section itself and
1145 `output_offset' should probably be zero.)
1147 The data to be written comes from input sections attached (via
1148 `output_section' pointers) to the output sections. The output section
1149 structure can be considered a filter for the input section: the output
1150 section determines the vma of the output data and the name, but the
1151 input section determines the offset into the output section of the data
1154 E.g., to create a section "O", starting at 0x100, 0x123 long,
1155 containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and
1156 "B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures would
1162 output_section -----------> section name "O"
1164 section name "B" | size 0x123
1165 output_offset 0x20 |
1167 output_section --------|
1172 The data within a section is stored in a "link_order". These are
1173 much like the fixups in `gas'. The link_order abstraction allows a
1174 section to grow and shrink within itself.
1176 A link_order knows how big it is, and which is the next link_order
1177 and where the raw data for it is; it also points to a list of
1178 relocations which apply to it.
1180 The link_order is used by the linker to perform relaxing on final
1181 code. The compiler creates code which is as big as necessary to make
1182 it work without relaxing, and the user can select whether to relax.
1183 Sometimes relaxing takes a lot of time. The linker runs around the
1184 relocations to see if any are attached to data which can be shrunk, if
1185 so it does it on a link_order by link_order basis.
1188 File: bfd.info, Node: typedef asection, Next: section prototypes, Prev: Section Output, Up: Sections
1193 Here is the section structure:
1196 typedef struct bfd_section
1198 /* The name of the section; the name isn't a copy, the pointer is
1199 the same as that passed to bfd_make_section. */
1202 /* A unique sequence number. */
1205 /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */
1208 /* The next section in the list belonging to the BFD, or NULL. */
1209 struct bfd_section *next;
1211 /* The previous section in the list belonging to the BFD, or NULL. */
1212 struct bfd_section *prev;
1214 /* The field flags contains attributes of the section. Some
1215 flags are read in from the object file, and some are
1216 synthesized from other information. */
1219 #define SEC_NO_FLAGS 0x000
1221 /* Tells the OS to allocate space for this section when loading.
1222 This is clear for a section containing debug information only. */
1223 #define SEC_ALLOC 0x001
1225 /* Tells the OS to load the section from the file when loading.
1226 This is clear for a .bss section. */
1227 #define SEC_LOAD 0x002
1229 /* The section contains data still to be relocated, so there is
1230 some relocation information too. */
1231 #define SEC_RELOC 0x004
1233 /* A signal to the OS that the section contains read only data. */
1234 #define SEC_READONLY 0x008
1236 /* The section contains code only. */
1237 #define SEC_CODE 0x010
1239 /* The section contains data only. */
1240 #define SEC_DATA 0x020
1242 /* The section will reside in ROM. */
1243 #define SEC_ROM 0x040
1245 /* The section contains constructor information. This section
1246 type is used by the linker to create lists of constructors and
1247 destructors used by `g++'. When a back end sees a symbol
1248 which should be used in a constructor list, it creates a new
1249 section for the type of name (e.g., `__CTOR_LIST__'), attaches
1250 the symbol to it, and builds a relocation. To build the lists
1251 of constructors, all the linker has to do is catenate all the
1252 sections called `__CTOR_LIST__' and relocate the data
1253 contained within - exactly the operations it would peform on
1255 #define SEC_CONSTRUCTOR 0x080
1257 /* The section has contents - a data section could be
1258 `SEC_ALLOC' | `SEC_HAS_CONTENTS'; a debug section could be
1259 `SEC_HAS_CONTENTS' */
1260 #define SEC_HAS_CONTENTS 0x100
1262 /* An instruction to the linker to not output the section
1263 even if it has information which would normally be written. */
1264 #define SEC_NEVER_LOAD 0x200
1266 /* The section contains thread local data. */
1267 #define SEC_THREAD_LOCAL 0x400
1269 /* The section has GOT references. This flag is only for the
1270 linker, and is currently only used by the elf32-hppa back end.
1271 It will be set if global offset table references were detected
1272 in this section, which indicate to the linker that the section
1273 contains PIC code, and must be handled specially when doing a
1275 #define SEC_HAS_GOT_REF 0x800
1277 /* The section contains common symbols (symbols may be defined
1278 multiple times, the value of a symbol is the amount of
1279 space it requires, and the largest symbol value is the one
1280 used). Most targets have exactly one of these (which we
1281 translate to bfd_com_section_ptr), but ECOFF has two. */
1282 #define SEC_IS_COMMON 0x1000
1284 /* The section contains only debugging information. For
1285 example, this is set for ELF .debug and .stab sections.
1286 strip tests this flag to see if a section can be
1288 #define SEC_DEBUGGING 0x2000
1290 /* The contents of this section are held in memory pointed to
1291 by the contents field. This is checked by bfd_get_section_contents,
1292 and the data is retrieved from memory if appropriate. */
1293 #define SEC_IN_MEMORY 0x4000
1295 /* The contents of this section are to be excluded by the
1296 linker for executable and shared objects unless those
1297 objects are to be further relocated. */
1298 #define SEC_EXCLUDE 0x8000
1300 /* The contents of this section are to be sorted based on the sum of
1301 the symbol and addend values specified by the associated relocation
1302 entries. Entries without associated relocation entries will be
1303 appended to the end of the section in an unspecified order. */
1304 #define SEC_SORT_ENTRIES 0x10000
1306 /* When linking, duplicate sections of the same name should be
1307 discarded, rather than being combined into a single section as
1308 is usually done. This is similar to how common symbols are
1309 handled. See SEC_LINK_DUPLICATES below. */
1310 #define SEC_LINK_ONCE 0x20000
1312 /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
1313 should handle duplicate sections. */
1314 #define SEC_LINK_DUPLICATES 0x40000
1316 /* This value for SEC_LINK_DUPLICATES means that duplicate
1317 sections with the same name should simply be discarded. */
1318 #define SEC_LINK_DUPLICATES_DISCARD 0x0
1320 /* This value for SEC_LINK_DUPLICATES means that the linker
1321 should warn if there are any duplicate sections, although
1322 it should still only link one copy. */
1323 #define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
1325 /* This value for SEC_LINK_DUPLICATES means that the linker
1326 should warn if any duplicate sections are a different size. */
1327 #define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
1329 /* This value for SEC_LINK_DUPLICATES means that the linker
1330 should warn if any duplicate sections contain different
1332 #define SEC_LINK_DUPLICATES_SAME_CONTENTS \
1333 (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
1335 /* This section was created by the linker as part of dynamic
1336 relocation or other arcane processing. It is skipped when
1337 going through the first-pass output, trusting that someone
1338 else up the line will take care of it later. */
1339 #define SEC_LINKER_CREATED 0x200000
1341 /* This section should not be subject to garbage collection. */
1342 #define SEC_KEEP 0x400000
1344 /* This section contains "short" data, and should be placed
1346 #define SEC_SMALL_DATA 0x800000
1348 /* Attempt to merge identical entities in the section.
1349 Entity size is given in the entsize field. */
1350 #define SEC_MERGE 0x1000000
1352 /* If given with SEC_MERGE, entities to merge are zero terminated
1353 strings where entsize specifies character size instead of fixed
1355 #define SEC_STRINGS 0x2000000
1357 /* This section contains data about section groups. */
1358 #define SEC_GROUP 0x4000000
1360 /* The section is a COFF shared library section. This flag is
1361 only for the linker. If this type of section appears in
1362 the input file, the linker must copy it to the output file
1363 without changing the vma or size. FIXME: Although this
1364 was originally intended to be general, it really is COFF
1365 specific (and the flag was renamed to indicate this). It
1366 might be cleaner to have some more general mechanism to
1367 allow the back end to control what the linker does with
1369 #define SEC_COFF_SHARED_LIBRARY 0x10000000
1371 /* This section contains data which may be shared with other
1372 executables or shared objects. This is for COFF only. */
1373 #define SEC_COFF_SHARED 0x20000000
1375 /* When a section with this flag is being linked, then if the size of
1376 the input section is less than a page, it should not cross a page
1377 boundary. If the size of the input section is one page or more,
1378 it should be aligned on a page boundary. This is for TI
1380 #define SEC_TIC54X_BLOCK 0x40000000
1382 /* Conditionally link this section; do not link if there are no
1383 references found to any symbol in the section. This is for TI
1385 #define SEC_TIC54X_CLINK 0x80000000
1387 /* End of section flags. */
1389 /* Some internal packed boolean fields. */
1391 /* See the vma field. */
1392 unsigned int user_set_vma : 1;
1394 /* A mark flag used by some of the linker backends. */
1395 unsigned int linker_mark : 1;
1397 /* Another mark flag used by some of the linker backends. Set for
1398 output sections that have an input section. */
1399 unsigned int linker_has_input : 1;
1401 /* Mark flags used by some linker backends for garbage collection. */
1402 unsigned int gc_mark : 1;
1403 unsigned int gc_mark_from_eh : 1;
1405 /* The following flags are used by the ELF linker. */
1407 /* Mark sections which have been allocated to segments. */
1408 unsigned int segment_mark : 1;
1410 /* Type of sec_info information. */
1411 unsigned int sec_info_type:3;
1412 #define ELF_INFO_TYPE_NONE 0
1413 #define ELF_INFO_TYPE_STABS 1
1414 #define ELF_INFO_TYPE_MERGE 2
1415 #define ELF_INFO_TYPE_EH_FRAME 3
1416 #define ELF_INFO_TYPE_JUST_SYMS 4
1418 /* Nonzero if this section uses RELA relocations, rather than REL. */
1419 unsigned int use_rela_p:1;
1421 /* Bits used by various backends. The generic code doesn't touch
1424 /* Nonzero if this section has TLS related relocations. */
1425 unsigned int has_tls_reloc:1;
1427 /* Nonzero if this section has a gp reloc. */
1428 unsigned int has_gp_reloc:1;
1430 /* Nonzero if this section needs the relax finalize pass. */
1431 unsigned int need_finalize_relax:1;
1433 /* Whether relocations have been processed. */
1434 unsigned int reloc_done : 1;
1436 /* End of internal packed boolean fields. */
1438 /* The virtual memory address of the section - where it will be
1439 at run time. The symbols are relocated against this. The
1440 user_set_vma flag is maintained by bfd; if it's not set, the
1441 backend can assign addresses (for example, in `a.out', where
1442 the default address for `.data' is dependent on the specific
1443 target and various flags). */
1446 /* The load address of the section - where it would be in a
1447 rom image; really only used for writing section header
1451 /* The size of the section in octets, as it will be output.
1452 Contains a value even if the section has no contents (e.g., the
1456 /* For input sections, the original size on disk of the section, in
1457 octets. This field is used by the linker relaxation code. It is
1458 currently only set for sections where the linker relaxation scheme
1459 doesn't cache altered section and reloc contents (stabs, eh_frame,
1460 SEC_MERGE, some coff relaxing targets), and thus the original size
1461 needs to be kept to read the section multiple times.
1462 For output sections, rawsize holds the section size calculated on
1463 a previous linker relaxation pass. */
1464 bfd_size_type rawsize;
1466 /* If this section is going to be output, then this value is the
1467 offset in *bytes* into the output section of the first byte in the
1468 input section (byte ==> smallest addressable unit on the
1469 target). In most cases, if this was going to start at the
1470 100th octet (8-bit quantity) in the output section, this value
1471 would be 100. However, if the target byte size is 16 bits
1472 (bfd_octets_per_byte is "2"), this value would be 50. */
1473 bfd_vma output_offset;
1475 /* The output section through which to map on output. */
1476 struct bfd_section *output_section;
1478 /* The alignment requirement of the section, as an exponent of 2 -
1479 e.g., 3 aligns to 2^3 (or 8). */
1480 unsigned int alignment_power;
1482 /* If an input section, a pointer to a vector of relocation
1483 records for the data in this section. */
1484 struct reloc_cache_entry *relocation;
1486 /* If an output section, a pointer to a vector of pointers to
1487 relocation records for the data in this section. */
1488 struct reloc_cache_entry **orelocation;
1490 /* The number of relocation records in one of the above. */
1491 unsigned reloc_count;
1493 /* Information below is back end specific - and not always used
1496 /* File position of section data. */
1499 /* File position of relocation info. */
1500 file_ptr rel_filepos;
1502 /* File position of line data. */
1503 file_ptr line_filepos;
1505 /* Pointer to data for applications. */
1508 /* If the SEC_IN_MEMORY flag is set, this points to the actual
1510 unsigned char *contents;
1512 /* Attached line number information. */
1515 /* Number of line number records. */
1516 unsigned int lineno_count;
1518 /* Entity size for merging purposes. */
1519 unsigned int entsize;
1521 /* Points to the kept section if this section is a link-once section,
1522 and is discarded. */
1523 struct bfd_section *kept_section;
1525 /* When a section is being output, this value changes as more
1526 linenumbers are written out. */
1527 file_ptr moving_line_filepos;
1529 /* What the section number is in the target world. */
1534 /* If this is a constructor section then here is a list of the
1535 relocations created to relocate items within it. */
1536 struct relent_chain *constructor_chain;
1538 /* The BFD which owns the section. */
1541 /* A symbol which points at this section only. */
1542 struct bfd_symbol *symbol;
1543 struct bfd_symbol **symbol_ptr_ptr;
1545 /* Early in the link process, map_head and map_tail are used to build
1546 a list of input sections attached to an output section. Later,
1547 output sections use these fields for a list of bfd_link_order
1550 struct bfd_link_order *link_order;
1551 struct bfd_section *s;
1552 } map_head, map_tail;
1555 /* These sections are global, and are managed by BFD. The application
1556 and target back end are not permitted to change the values in
1557 these sections. New code should use the section_ptr macros rather
1558 than referring directly to the const sections. The const sections
1559 may eventually vanish. */
1560 #define BFD_ABS_SECTION_NAME "*ABS*"
1561 #define BFD_UND_SECTION_NAME "*UND*"
1562 #define BFD_COM_SECTION_NAME "*COM*"
1563 #define BFD_IND_SECTION_NAME "*IND*"
1565 /* The absolute section. */
1566 extern asection bfd_abs_section;
1567 #define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
1568 #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
1569 /* Pointer to the undefined section. */
1570 extern asection bfd_und_section;
1571 #define bfd_und_section_ptr ((asection *) &bfd_und_section)
1572 #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
1573 /* Pointer to the common section. */
1574 extern asection bfd_com_section;
1575 #define bfd_com_section_ptr ((asection *) &bfd_com_section)
1576 /* Pointer to the indirect section. */
1577 extern asection bfd_ind_section;
1578 #define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
1579 #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
1581 #define bfd_is_const_section(SEC) \
1582 ( ((SEC) == bfd_abs_section_ptr) \
1583 || ((SEC) == bfd_und_section_ptr) \
1584 || ((SEC) == bfd_com_section_ptr) \
1585 || ((SEC) == bfd_ind_section_ptr))
1587 extern const struct bfd_symbol * const bfd_abs_symbol;
1588 extern const struct bfd_symbol * const bfd_com_symbol;
1589 extern const struct bfd_symbol * const bfd_und_symbol;
1590 extern const struct bfd_symbol * const bfd_ind_symbol;
1592 /* Macros to handle insertion and deletion of a bfd's sections. These
1593 only handle the list pointers, ie. do not adjust section_count,
1594 target_index etc. */
1595 #define bfd_section_list_remove(ABFD, S) \
1599 asection *_next = _s->next; \
1600 asection *_prev = _s->prev; \
1602 _prev->next = _next; \
1604 (ABFD)->sections = _next; \
1606 _next->prev = _prev; \
1608 (ABFD)->section_last = _prev; \
1611 #define bfd_section_list_append(ABFD, S) \
1615 bfd *_abfd = ABFD; \
1617 if (_abfd->section_last) \
1619 _s->prev = _abfd->section_last; \
1620 _abfd->section_last->next = _s; \
1625 _abfd->sections = _s; \
1627 _abfd->section_last = _s; \
1630 #define bfd_section_list_prepend(ABFD, S) \
1634 bfd *_abfd = ABFD; \
1636 if (_abfd->sections) \
1638 _s->next = _abfd->sections; \
1639 _abfd->sections->prev = _s; \
1644 _abfd->section_last = _s; \
1646 _abfd->sections = _s; \
1649 #define bfd_section_list_insert_after(ABFD, A, S) \
1654 asection *_next = _a->next; \
1661 (ABFD)->section_last = _s; \
1664 #define bfd_section_list_insert_before(ABFD, B, S) \
1669 asection *_prev = _b->prev; \
1676 (ABFD)->sections = _s; \
1679 #define bfd_section_removed_from_list(ABFD, S) \
1680 ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
1682 #define BFD_FAKE_SECTION(SEC, FLAGS, SYM, SYM_PTR, NAME, IDX) \
1683 /* name, id, index, next, prev, flags, user_set_vma, */ \
1684 { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
1686 /* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh, */ \
1689 /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, */ \
1692 /* has_gp_reloc, need_finalize_relax, reloc_done, */ \
1695 /* vma, lma, size, rawsize */ \
1698 /* output_offset, output_section, alignment_power, */ \
1699 0, (struct bfd_section *) &SEC, 0, \
1701 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
1702 NULL, NULL, 0, 0, 0, \
1704 /* line_filepos, userdata, contents, lineno, lineno_count, */ \
1705 0, NULL, NULL, NULL, 0, \
1707 /* entsize, kept_section, moving_line_filepos, */ \
1710 /* target_index, used_by_bfd, constructor_chain, owner, */ \
1711 0, NULL, NULL, NULL, \
1714 (struct bfd_symbol *) SYM, \
1716 /* symbol_ptr_ptr, */ \
1717 (struct bfd_symbol **) SYM_PTR, \
1719 /* map_head, map_tail */ \
1720 { NULL }, { NULL } \
1724 File: bfd.info, Node: section prototypes, Prev: typedef asection, Up: Sections
1729 These are the functions exported by the section handling part of BFD.
1731 `bfd_section_list_clear'
1732 ........................
1735 void bfd_section_list_clear (bfd *);
1737 Clears the section list, and also resets the section count and hash
1740 `bfd_get_section_by_name'
1741 .........................
1744 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
1746 Run through ABFD and return the one of the `asection's whose name
1747 matches NAME, otherwise `NULL'. *Note Sections::, for more information.
1749 This should only be used in special cases; the normal way to process
1750 all sections of a given name is to use `bfd_map_over_sections' and
1751 `strcmp' on the name (or better yet, base it on the section flags or
1752 something else) for each section.
1754 `bfd_get_section_by_name_if'
1755 ............................
1758 asection *bfd_get_section_by_name_if
1761 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
1764 Call the provided function FUNC for each section attached to the BFD
1765 ABFD whose name matches NAME, passing OBJ as an argument. The function
1766 will be called as if by
1768 func (abfd, the_section, obj);
1770 It returns the first section for which FUNC returns true, otherwise
1773 `bfd_get_unique_section_name'
1774 .............................
1777 char *bfd_get_unique_section_name
1778 (bfd *abfd, const char *templat, int *count);
1780 Invent a section name that is unique in ABFD by tacking a dot and a
1781 digit suffix onto the original TEMPLAT. If COUNT is non-NULL, then it
1782 specifies the first number tried as a suffix to generate a unique name.
1783 The value pointed to by COUNT will be incremented in this case.
1785 `bfd_make_section_old_way'
1786 ..........................
1789 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1791 Create a new empty section called NAME and attach it to the end of the
1792 chain of sections for the BFD ABFD. An attempt to create a section with
1793 a name which is already in use returns its pointer without changing the
1796 It has the funny name since this is the way it used to be before it
1799 Possible errors are:
1800 * `bfd_error_invalid_operation' - If output has already started for
1803 * `bfd_error_no_memory' - If memory allocation fails.
1805 `bfd_make_section_anyway_with_flags'
1806 ....................................
1809 asection *bfd_make_section_anyway_with_flags
1810 (bfd *abfd, const char *name, flagword flags);
1812 Create a new empty section called NAME and attach it to the end of the
1813 chain of sections for ABFD. Create a new section even if there is
1814 already a section with that name. Also set the attributes of the new
1815 section to the value FLAGS.
1817 Return `NULL' and set `bfd_error' on error; possible errors are:
1818 * `bfd_error_invalid_operation' - If output has already started for
1821 * `bfd_error_no_memory' - If memory allocation fails.
1823 `bfd_make_section_anyway'
1824 .........................
1827 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1829 Create a new empty section called NAME and attach it to the end of the
1830 chain of sections for ABFD. Create a new section even if there is
1831 already a section with that name.
1833 Return `NULL' and set `bfd_error' on error; possible errors are:
1834 * `bfd_error_invalid_operation' - If output has already started for
1837 * `bfd_error_no_memory' - If memory allocation fails.
1839 `bfd_make_section_with_flags'
1840 .............................
1843 asection *bfd_make_section_with_flags
1844 (bfd *, const char *name, flagword flags);
1846 Like `bfd_make_section_anyway', but return `NULL' (without calling
1847 bfd_set_error ()) without changing the section chain if there is
1848 already a section named NAME. Also set the attributes of the new
1849 section to the value FLAGS. If there is an error, return `NULL' and set
1856 asection *bfd_make_section (bfd *, const char *name);
1858 Like `bfd_make_section_anyway', but return `NULL' (without calling
1859 bfd_set_error ()) without changing the section chain if there is
1860 already a section named NAME. If there is an error, return `NULL' and
1863 `bfd_set_section_flags'
1864 .......................
1867 bfd_boolean bfd_set_section_flags
1868 (bfd *abfd, asection *sec, flagword flags);
1870 Set the attributes of the section SEC in the BFD ABFD to the value
1871 FLAGS. Return `TRUE' on success, `FALSE' on error. Possible error
1874 * `bfd_error_invalid_operation' - The section cannot have one or
1875 more of the attributes requested. For example, a .bss section in
1876 `a.out' may not have the `SEC_HAS_CONTENTS' field set.
1878 `bfd_map_over_sections'
1879 .......................
1882 void bfd_map_over_sections
1884 void (*func) (bfd *abfd, asection *sect, void *obj),
1887 Call the provided function FUNC for each section attached to the BFD
1888 ABFD, passing OBJ as an argument. The function will be called as if by
1890 func (abfd, the_section, obj);
1892 This is the preferred method for iterating over sections; an
1893 alternative would be to use a loop:
1896 for (p = abfd->sections; p != NULL; p = p->next)
1899 `bfd_sections_find_if'
1900 ......................
1903 asection *bfd_sections_find_if
1905 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1908 Call the provided function OPERATION for each section attached to the
1909 BFD ABFD, passing OBJ as an argument. The function will be called as if
1912 operation (abfd, the_section, obj);
1914 It returns the first section for which OPERATION returns true.
1916 `bfd_set_section_size'
1917 ......................
1920 bfd_boolean bfd_set_section_size
1921 (bfd *abfd, asection *sec, bfd_size_type val);
1923 Set SEC to the size VAL. If the operation is ok, then `TRUE' is
1924 returned, else `FALSE'.
1926 Possible error returns:
1927 * `bfd_error_invalid_operation' - Writing has started to the BFD, so
1928 setting the size is invalid.
1930 `bfd_set_section_contents'
1931 ..........................
1934 bfd_boolean bfd_set_section_contents
1935 (bfd *abfd, asection *section, const void *data,
1936 file_ptr offset, bfd_size_type count);
1938 Sets the contents of the section SECTION in BFD ABFD to the data
1939 starting in memory at DATA. The data is written to the output section
1940 starting at offset OFFSET for COUNT octets.
1942 Normally `TRUE' is returned, else `FALSE'. Possible error returns
1944 * `bfd_error_no_contents' - The output section does not have the
1945 `SEC_HAS_CONTENTS' attribute, so nothing can be written to it.
1948 This routine is front end to the back end function
1949 `_bfd_set_section_contents'.
1951 `bfd_get_section_contents'
1952 ..........................
1955 bfd_boolean bfd_get_section_contents
1956 (bfd *abfd, asection *section, void *location, file_ptr offset,
1957 bfd_size_type count);
1959 Read data from SECTION in BFD ABFD into memory starting at LOCATION.
1960 The data is read at an offset of OFFSET from the start of the input
1961 section, and is read for COUNT bytes.
1963 If the contents of a constructor with the `SEC_CONSTRUCTOR' flag set
1964 are requested or if the section does not have the `SEC_HAS_CONTENTS'
1965 flag set, then the LOCATION is filled with zeroes. If no errors occur,
1966 `TRUE' is returned, else `FALSE'.
1968 `bfd_malloc_and_get_section'
1969 ............................
1972 bfd_boolean bfd_malloc_and_get_section
1973 (bfd *abfd, asection *section, bfd_byte **buf);
1975 Read all data from SECTION in BFD ABFD into a buffer, *BUF, malloc'd by
1978 `bfd_copy_private_section_data'
1979 ...............................
1982 bfd_boolean bfd_copy_private_section_data
1983 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1985 Copy private section information from ISEC in the BFD IBFD to the
1986 section OSEC in the BFD OBFD. Return `TRUE' on success, `FALSE' on
1987 error. Possible error returns are:
1989 * `bfd_error_no_memory' - Not enough memory exists to create private
1992 #define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1993 BFD_SEND (obfd, _bfd_copy_private_section_data, \
1994 (ibfd, isection, obfd, osection))
1996 `bfd_generic_is_group_section'
1997 ..............................
2000 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
2002 Returns TRUE if SEC is a member of a group.
2004 `bfd_generic_discard_group'
2005 ...........................
2008 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
2010 Remove all members of GROUP from the output.
2013 File: bfd.info, Node: Symbols, Next: Archives, Prev: Sections, Up: BFD front end
2018 BFD tries to maintain as much symbol information as it can when it
2019 moves information from file to file. BFD passes information to
2020 applications though the `asymbol' structure. When the application
2021 requests the symbol table, BFD reads the table in the native form and
2022 translates parts of it into the internal format. To maintain more than
2023 the information passed to applications, some targets keep some
2024 information "behind the scenes" in a structure only the particular back
2025 end knows about. For example, the coff back end keeps the original
2026 symbol table structure as well as the canonical structure when a BFD is
2027 read in. On output, the coff back end can reconstruct the output symbol
2028 table so that no information is lost, even information unique to coff
2029 which BFD doesn't know or understand. If a coff symbol table were read,
2030 but were written through an a.out back end, all the coff specific
2031 information would be lost. The symbol table of a BFD is not necessarily
2032 read in until a canonicalize request is made. Then the BFD back end
2033 fills in a table provided by the application with pointers to the
2034 canonical information. To output symbols, the application provides BFD
2035 with a table of pointers to pointers to `asymbol's. This allows
2036 applications like the linker to output a symbol as it was read, since
2037 the "behind the scenes" information will be still available.
2045 * symbol handling functions::
2048 File: bfd.info, Node: Reading Symbols, Next: Writing Symbols, Prev: Symbols, Up: Symbols
2053 There are two stages to reading a symbol table from a BFD:
2054 allocating storage, and the actual reading process. This is an excerpt
2055 from an application which reads the symbol table:
2057 long storage_needed;
2058 asymbol **symbol_table;
2059 long number_of_symbols;
2062 storage_needed = bfd_get_symtab_upper_bound (abfd);
2064 if (storage_needed < 0)
2067 if (storage_needed == 0)
2070 symbol_table = xmalloc (storage_needed);
2073 bfd_canonicalize_symtab (abfd, symbol_table);
2075 if (number_of_symbols < 0)
2078 for (i = 0; i < number_of_symbols; i++)
2079 process_symbol (symbol_table[i]);
2081 All storage for the symbols themselves is in an objalloc connected
2082 to the BFD; it is freed when the BFD is closed.
2085 File: bfd.info, Node: Writing Symbols, Next: Mini Symbols, Prev: Reading Symbols, Up: Symbols
2090 Writing of a symbol table is automatic when a BFD open for writing
2091 is closed. The application attaches a vector of pointers to pointers to
2092 symbols to the BFD being written, and fills in the symbol count. The
2093 close and cleanup code reads through the table provided and performs
2094 all the necessary operations. The BFD output code must always be
2095 provided with an "owned" symbol: one which has come from another BFD,
2096 or one which has been created using `bfd_make_empty_symbol'. Here is an
2097 example showing the creation of a symbol table with only one element:
2106 abfd = bfd_openw ("foo","a.out-sunos-big");
2107 bfd_set_format (abfd, bfd_object);
2108 new = bfd_make_empty_symbol (abfd);
2109 new->name = "dummy_symbol";
2110 new->section = bfd_make_section_old_way (abfd, ".text");
2111 new->flags = BSF_GLOBAL;
2112 new->value = 0x12345;
2117 bfd_set_symtab (abfd, ptrs, 1);
2124 00012345 A dummy_symbol
2126 Many formats cannot represent arbitrary symbol information; for
2127 instance, the `a.out' object format does not allow an arbitrary number
2128 of sections. A symbol pointing to a section which is not one of
2129 `.text', `.data' or `.bss' cannot be described.
2132 File: bfd.info, Node: Mini Symbols, Next: typedef asymbol, Prev: Writing Symbols, Up: Symbols
2137 Mini symbols provide read-only access to the symbol table. They use
2138 less memory space, but require more time to access. They can be useful
2139 for tools like nm or objdump, which may have to handle symbol tables of
2140 extremely large executables.
2142 The `bfd_read_minisymbols' function will read the symbols into
2143 memory in an internal form. It will return a `void *' pointer to a
2144 block of memory, a symbol count, and the size of each symbol. The
2145 pointer is allocated using `malloc', and should be freed by the caller
2146 when it is no longer needed.
2148 The function `bfd_minisymbol_to_symbol' will take a pointer to a
2149 minisymbol, and a pointer to a structure returned by
2150 `bfd_make_empty_symbol', and return a `asymbol' structure. The return
2151 value may or may not be the same as the value from
2152 `bfd_make_empty_symbol' which was passed in.
2155 File: bfd.info, Node: typedef asymbol, Next: symbol handling functions, Prev: Mini Symbols, Up: Symbols
2160 An `asymbol' has the form:
2163 typedef struct bfd_symbol
2165 /* A pointer to the BFD which owns the symbol. This information
2166 is necessary so that a back end can work out what additional
2167 information (invisible to the application writer) is carried
2170 This field is *almost* redundant, since you can use section->owner
2171 instead, except that some symbols point to the global sections
2172 bfd_{abs,com,und}_section. This could be fixed by making
2173 these globals be per-bfd (or per-target-flavor). FIXME. */
2174 struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */
2176 /* The text of the symbol. The name is left alone, and not copied; the
2177 application may not alter it. */
2180 /* The value of the symbol. This really should be a union of a
2181 numeric value with a pointer, since some flags indicate that
2182 a pointer to another symbol is stored here. */
2185 /* Attributes of a symbol. */
2186 #define BSF_NO_FLAGS 0x00
2188 /* The symbol has local scope; `static' in `C'. The value
2189 is the offset into the section of the data. */
2190 #define BSF_LOCAL 0x01
2192 /* The symbol has global scope; initialized data in `C'. The
2193 value is the offset into the section of the data. */
2194 #define BSF_GLOBAL 0x02
2196 /* The symbol has global scope and is exported. The value is
2197 the offset into the section of the data. */
2198 #define BSF_EXPORT BSF_GLOBAL /* No real difference. */
2200 /* A normal C symbol would be one of:
2201 `BSF_LOCAL', `BSF_FORT_COMM', `BSF_UNDEFINED' or
2204 /* The symbol is a debugging record. The value has an arbitrary
2205 meaning, unless BSF_DEBUGGING_RELOC is also set. */
2206 #define BSF_DEBUGGING 0x08
2208 /* The symbol denotes a function entry point. Used in ELF,
2209 perhaps others someday. */
2210 #define BSF_FUNCTION 0x10
2212 /* Used by the linker. */
2213 #define BSF_KEEP 0x20
2214 #define BSF_KEEP_G 0x40
2216 /* A weak global symbol, overridable without warnings by
2217 a regular global symbol of the same name. */
2218 #define BSF_WEAK 0x80
2220 /* This symbol was created to point to a section, e.g. ELF's
2221 STT_SECTION symbols. */
2222 #define BSF_SECTION_SYM 0x100
2224 /* The symbol used to be a common symbol, but now it is
2226 #define BSF_OLD_COMMON 0x200
2228 /* The default value for common data. */
2229 #define BFD_FORT_COMM_DEFAULT_VALUE 0
2231 /* In some files the type of a symbol sometimes alters its
2232 location in an output file - ie in coff a `ISFCN' symbol
2233 which is also `C_EXT' symbol appears where it was
2234 declared and not at the end of a section. This bit is set
2235 by the target BFD part to convey this information. */
2236 #define BSF_NOT_AT_END 0x400
2238 /* Signal that the symbol is the label of constructor section. */
2239 #define BSF_CONSTRUCTOR 0x800
2241 /* Signal that the symbol is a warning symbol. The name is a
2242 warning. The name of the next symbol is the one to warn about;
2243 if a reference is made to a symbol with the same name as the next
2244 symbol, a warning is issued by the linker. */
2245 #define BSF_WARNING 0x1000
2247 /* Signal that the symbol is indirect. This symbol is an indirect
2248 pointer to the symbol with the same name as the next symbol. */
2249 #define BSF_INDIRECT 0x2000
2251 /* BSF_FILE marks symbols that contain a file name. This is used
2252 for ELF STT_FILE symbols. */
2253 #define BSF_FILE 0x4000
2255 /* Symbol is from dynamic linking information. */
2256 #define BSF_DYNAMIC 0x8000
2258 /* The symbol denotes a data object. Used in ELF, and perhaps
2260 #define BSF_OBJECT 0x10000
2262 /* This symbol is a debugging symbol. The value is the offset
2263 into the section of the data. BSF_DEBUGGING should be set
2265 #define BSF_DEBUGGING_RELOC 0x20000
2267 /* This symbol is thread local. Used in ELF. */
2268 #define BSF_THREAD_LOCAL 0x40000
2272 /* A pointer to the section to which this symbol is
2273 relative. This will always be non NULL, there are special
2274 sections for undefined and absolute symbols. */
2275 struct bfd_section *section;
2277 /* Back end special data. */
2288 File: bfd.info, Node: symbol handling functions, Prev: typedef asymbol, Up: Symbols
2290 Symbol handling functions
2291 -------------------------
2293 `bfd_get_symtab_upper_bound'
2294 ............................
2297 Return the number of bytes required to store a vector of pointers to
2298 `asymbols' for all the symbols in the BFD ABFD, including a terminal
2299 NULL pointer. If there are no symbols in the BFD, then return 0. If an
2300 error occurs, return -1.
2301 #define bfd_get_symtab_upper_bound(abfd) \
2302 BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
2304 `bfd_is_local_label'
2305 ....................
2308 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
2310 Return TRUE if the given symbol SYM in the BFD ABFD is a compiler
2311 generated local label, else return FALSE.
2313 `bfd_is_local_label_name'
2314 .........................
2317 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
2319 Return TRUE if a symbol with the name NAME in the BFD ABFD is a
2320 compiler generated local label, else return FALSE. This just checks
2321 whether the name has the form of a local label.
2322 #define bfd_is_local_label_name(abfd, name) \
2323 BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
2325 `bfd_is_target_special_symbol'
2326 ..............................
2329 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
2331 Return TRUE iff a symbol SYM in the BFD ABFD is something special to
2332 the particular target represented by the BFD. Such symbols should
2333 normally not be mentioned to the user.
2334 #define bfd_is_target_special_symbol(abfd, sym) \
2335 BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
2337 `bfd_canonicalize_symtab'
2338 .........................
2341 Read the symbols from the BFD ABFD, and fills in the vector LOCATION
2342 with pointers to the symbols and a trailing NULL. Return the actual
2343 number of symbol pointers, not including the NULL.
2344 #define bfd_canonicalize_symtab(abfd, location) \
2345 BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
2351 bfd_boolean bfd_set_symtab
2352 (bfd *abfd, asymbol **location, unsigned int count);
2354 Arrange that when the output BFD ABFD is closed, the table LOCATION of
2355 COUNT pointers to symbols will be written.
2357 `bfd_print_symbol_vandf'
2358 ........................
2361 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
2363 Print the value and flags of the SYMBOL supplied to the stream FILE.
2365 `bfd_make_empty_symbol'
2366 .......................
2369 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2372 This routine is necessary because each back end has private
2373 information surrounding the `asymbol'. Building your own `asymbol' and
2374 pointing to it will not create the private information, and will cause
2376 #define bfd_make_empty_symbol(abfd) \
2377 BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
2379 `_bfd_generic_make_empty_symbol'
2380 ................................
2383 asymbol *_bfd_generic_make_empty_symbol (bfd *);
2385 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2386 to it. Used by core file routines, binary back-end and anywhere else
2387 where no private info is needed.
2389 `bfd_make_debug_symbol'
2390 .......................
2393 Create a new `asymbol' structure for the BFD ABFD, to be used as a
2394 debugging symbol. Further details of its use have yet to be worked out.
2395 #define bfd_make_debug_symbol(abfd,ptr,size) \
2396 BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
2398 `bfd_decode_symclass'
2399 .....................
2402 Return a character corresponding to the symbol class of SYMBOL, or '?'
2403 for an unknown class.
2406 int bfd_decode_symclass (asymbol *symbol);
2408 `bfd_is_undefined_symclass'
2409 ...........................
2412 Returns non-zero if the class symbol returned by bfd_decode_symclass
2413 represents an undefined symbol. Returns zero otherwise.
2416 bfd_boolean bfd_is_undefined_symclass (int symclass);
2422 Fill in the basic info about symbol that nm needs. Additional info may
2423 be added by the back-ends after calling this function.
2426 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
2428 `bfd_copy_private_symbol_data'
2429 ..............................
2432 bfd_boolean bfd_copy_private_symbol_data
2433 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
2435 Copy private symbol information from ISYM in the BFD IBFD to the symbol
2436 OSYM in the BFD OBFD. Return `TRUE' on success, `FALSE' on error.
2437 Possible error returns are:
2439 * `bfd_error_no_memory' - Not enough memory exists to create private
2442 #define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
2443 BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
2444 (ibfd, isymbol, obfd, osymbol))
2447 File: bfd.info, Node: Archives, Next: Formats, Prev: Symbols, Up: BFD front end
2453 An archive (or library) is just another BFD. It has a symbol table,
2454 although there's not much a user program will do with it.
2456 The big difference between an archive BFD and an ordinary BFD is
2457 that the archive doesn't have sections. Instead it has a chain of BFDs
2458 that are considered its contents. These BFDs can be manipulated like
2459 any other. The BFDs contained in an archive opened for reading will
2460 all be opened for reading. You may put either input or output BFDs
2461 into an archive opened for output; they will be handled correctly when
2462 the archive is closed.
2464 Use `bfd_openr_next_archived_file' to step through the contents of
2465 an archive opened for input. You don't have to read the entire archive
2466 if you don't want to! Read it until you find what you want.
2468 Archive contents of output BFDs are chained through the `next'
2469 pointer in a BFD. The first one is findable through the `archive_head'
2470 slot of the archive. Set it with `bfd_set_archive_head' (q.v.). A
2471 given BFD may be in only one open output archive at a time.
2473 As expected, the BFD archive code is more general than the archive
2474 code of any given environment. BFD archives may contain files of
2475 different formats (e.g., a.out and coff) and even different
2476 architectures. You may even place archives recursively into archives!
2478 This can cause unexpected confusion, since some archive formats are
2479 more expressive than others. For instance, Intel COFF archives can
2480 preserve long filenames; SunOS a.out archives cannot. If you move a
2481 file from the first to the second format and back again, the filename
2482 may be truncated. Likewise, different a.out environments have different
2483 conventions as to how they truncate filenames, whether they preserve
2484 directory names in filenames, etc. When interoperating with native
2485 tools, be sure your files are homogeneous.
2487 Beware: most of these formats do not react well to the presence of
2488 spaces in filenames. We do the best we can, but can't always handle
2489 this case due to restrictions in the format of archives. Many Unix
2490 utilities are braindead in regards to spaces and such in filenames
2491 anyway, so this shouldn't be much of a restriction.
2493 Archives are supported in BFD in `archive.c'.
2498 `bfd_get_next_mapent'
2499 .....................
2502 symindex bfd_get_next_mapent
2503 (bfd *abfd, symindex previous, carsym **sym);
2505 Step through archive ABFD's symbol table (if it has one). Successively
2506 update SYM with the next symbol's information, returning that symbol's
2507 (internal) index into the symbol table.
2509 Supply `BFD_NO_MORE_SYMBOLS' as the PREVIOUS entry to get the first
2510 one; returns `BFD_NO_MORE_SYMBOLS' when you've already got the last one.
2512 A `carsym' is a canonical archive symbol. The only user-visible
2513 element is its name, a null-terminated string.
2515 `bfd_set_archive_head'
2516 ......................
2519 bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head);
2521 Set the head of the chain of BFDs contained in the archive OUTPUT to
2524 `bfd_openr_next_archived_file'
2525 ..............................
2528 bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);
2530 Provided a BFD, ARCHIVE, containing an archive and NULL, open an input
2531 BFD on the first contained element and returns that. Subsequent calls
2532 should pass the archive and the previous return value to return a
2533 created BFD to the next contained element. NULL is returned when there
2537 File: bfd.info, Node: Formats, Next: Relocations, Prev: Archives, Up: BFD front end
2542 A format is a BFD concept of high level file contents type. The
2543 formats supported by BFD are:
2546 The BFD may contain data, symbols, relocations and debug info.
2549 The BFD contains other BFDs and an optional index.
2552 The BFD contains the result of an executable core dump.
2554 File format functions
2555 ---------------------
2561 bfd_boolean bfd_check_format (bfd *abfd, bfd_format format);
2563 Verify if the file attached to the BFD ABFD is compatible with the
2564 format FORMAT (i.e., one of `bfd_object', `bfd_archive' or `bfd_core').
2566 If the BFD has been set to a specific target before the call, only
2567 the named target and format combination is checked. If the target has
2568 not been set, or has been set to `default', then all the known target
2569 backends is interrogated to determine a match. If the default target
2570 matches, it is used. If not, exactly one target must recognize the
2571 file, or an error results.
2573 The function returns `TRUE' on success, otherwise `FALSE' with one
2574 of the following error codes:
2576 * `bfd_error_invalid_operation' - if `format' is not one of
2577 `bfd_object', `bfd_archive' or `bfd_core'.
2579 * `bfd_error_system_call' - if an error occured during a read - even
2580 some file mismatches can cause bfd_error_system_calls.
2582 * `file_not_recognised' - none of the backends recognised the file
2585 * `bfd_error_file_ambiguously_recognized' - more than one backend
2586 recognised the file format.
2588 `bfd_check_format_matches'
2589 ..........................
2592 bfd_boolean bfd_check_format_matches
2593 (bfd *abfd, bfd_format format, char ***matching);
2595 Like `bfd_check_format', except when it returns FALSE with `bfd_errno'
2596 set to `bfd_error_file_ambiguously_recognized'. In that case, if
2597 MATCHING is not NULL, it will be filled in with a NULL-terminated list
2598 of the names of the formats that matched, allocated with `malloc'.
2599 Then the user may choose a format and try again.
2601 When done with the list that MATCHING points to, the caller should
2608 bfd_boolean bfd_set_format (bfd *abfd, bfd_format format);
2610 This function sets the file format of the BFD ABFD to the format
2611 FORMAT. If the target set in the BFD does not support the format
2612 requested, the format is invalid, or the BFD is not open for writing,
2613 then an error occurs.
2619 const char *bfd_format_string (bfd_format format);
2621 Return a pointer to a const string `invalid', `object', `archive',
2622 `core', or `unknown', depending upon the value of FORMAT.
2625 File: bfd.info, Node: Relocations, Next: Core Files, Prev: Formats, Up: BFD front end
2630 BFD maintains relocations in much the same way it maintains symbols:
2631 they are left alone until required, then read in en-masse and
2632 translated into an internal form. A common routine
2633 `bfd_perform_relocation' acts upon the canonical form to do the fixup.
2635 Relocations are maintained on a per section basis, while symbols are
2636 maintained on a per BFD basis.
2638 All that a back end has to do to fit the BFD interface is to create
2639 a `struct reloc_cache_entry' for each relocation in a particular
2640 section, and fill in the right bits of the structures.
2648 File: bfd.info, Node: typedef arelent, Next: howto manager, Prev: Relocations, Up: Relocations
2653 This is the structure of a relocation entry:
2656 typedef enum bfd_reloc_status
2658 /* No errors detected. */
2661 /* The relocation was performed, but there was an overflow. */
2664 /* The address to relocate was not within the section supplied. */
2665 bfd_reloc_outofrange,
2667 /* Used by special functions. */
2670 /* Unsupported relocation size requested. */
2671 bfd_reloc_notsupported,
2676 /* The symbol to relocate against was undefined. */
2677 bfd_reloc_undefined,
2679 /* The relocation was performed, but may not be ok - presently
2680 generated only when linking i960 coff files with i960 b.out
2681 symbols. If this type is returned, the error_message argument
2682 to bfd_perform_relocation will be set. */
2685 bfd_reloc_status_type;
2688 typedef struct reloc_cache_entry
2690 /* A pointer into the canonical table of pointers. */
2691 struct bfd_symbol **sym_ptr_ptr;
2693 /* offset in section. */
2694 bfd_size_type address;
2696 /* addend for relocation value. */
2699 /* Pointer to how to perform the required relocation. */
2700 reloc_howto_type *howto;
2705 Here is a description of each of the fields within an `arelent':
2708 The symbol table pointer points to a pointer to the symbol
2709 associated with the relocation request. It is the pointer into the
2710 table returned by the back end's `canonicalize_symtab' action. *Note
2711 Symbols::. The symbol is referenced through a pointer to a pointer so
2712 that tools like the linker can fix up all the symbols of the same name
2713 by modifying only one pointer. The relocation routine looks in the
2714 symbol and uses the base of the section the symbol is attached to and
2715 the value of the symbol as the initial relocation offset. If the symbol
2716 pointer is zero, then the section provided is looked up.
2719 The `address' field gives the offset in bytes from the base of the
2720 section data which owns the relocation record to the first byte of
2721 relocatable information. The actual data relocated will be relative to
2722 this point; for example, a relocation type which modifies the bottom
2723 two bytes of a four byte word would not touch the first byte pointed to
2724 in a big endian world.
2727 The `addend' is a value provided by the back end to be added (!) to
2728 the relocation offset. Its interpretation is dependent upon the howto.
2729 For example, on the 68k the code:
2734 return foo[0x12345678];
2737 Could be compiled into:
2745 This could create a reloc pointing to `foo', but leave the offset in
2746 the data, something like:
2748 RELOCATION RECORDS FOR [.text]:
2752 00000000 4e56 fffc ; linkw fp,#-4
2753 00000004 1039 1234 5678 ; moveb @#12345678,d0
2754 0000000a 49c0 ; extbl d0
2755 0000000c 4e5e ; unlk fp
2758 Using coff and an 88k, some instructions don't have enough space in
2759 them to represent the full address range, and pointers have to be
2760 loaded in two parts. So you'd get something like:
2762 or.u r13,r0,hi16(_foo+0x12345678)
2763 ld.b r2,r13,lo16(_foo+0x12345678)
2766 This should create two relocs, both pointing to `_foo', and with
2767 0x12340000 in their addend field. The data would consist of:
2769 RELOCATION RECORDS FOR [.text]:
2771 00000002 HVRT16 _foo+0x12340000
2772 00000006 LVRT16 _foo+0x12340000
2774 00000000 5da05678 ; or.u r13,r0,0x5678
2775 00000004 1c4d5678 ; ld.b r2,r13,0x5678
2776 00000008 f400c001 ; jmp r1
2778 The relocation routine digs out the value from the data, adds it to
2779 the addend to get the original offset, and then adds the value of
2780 `_foo'. Note that all 32 bits have to be kept around somewhere, to cope
2781 with carry from bit 15 to bit 16.
2783 One further example is the sparc and the a.out format. The sparc has
2784 a similar problem to the 88k, in that some instructions don't have room
2785 for an entire offset, but on the sparc the parts are created in odd
2786 sized lumps. The designers of the a.out format chose to not use the
2787 data within the section for storing part of the offset; all the offset
2788 is kept within the reloc. Anything in the data should be ignored.
2791 sethi %hi(_foo+0x12345678),%g2
2792 ldsb [%g2+%lo(_foo+0x12345678)],%i0
2796 Both relocs contain a pointer to `foo', and the offsets contain junk.
2798 RELOCATION RECORDS FOR [.text]:
2800 00000004 HI22 _foo+0x12345678
2801 00000008 LO10 _foo+0x12345678
2803 00000000 9de3bf90 ; save %sp,-112,%sp
2804 00000004 05000000 ; sethi %hi(_foo+0),%g2
2805 00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
2806 0000000c 81c7e008 ; ret
2807 00000010 81e80000 ; restore
2810 The `howto' field can be imagined as a relocation instruction. It is
2811 a pointer to a structure which contains information on what to do with
2812 all of the other information in the reloc record and data section. A
2813 back end would normally have a relocation instruction set and turn
2814 relocations into pointers to the correct structure on input - but it
2815 would be possible to create each howto field on demand.
2817 `enum complain_overflow'
2818 ........................
2820 Indicates what sort of overflow checking should be done when
2821 performing a relocation.
2824 enum complain_overflow
2826 /* Do not complain on overflow. */
2827 complain_overflow_dont,
2829 /* Complain if the value overflows when considered as a signed
2830 number one bit larger than the field. ie. A bitfield of N bits
2831 is allowed to represent -2**n to 2**n-1. */
2832 complain_overflow_bitfield,
2834 /* Complain if the value overflows when considered as a signed
2836 complain_overflow_signed,
2838 /* Complain if the value overflows when considered as an
2840 complain_overflow_unsigned
2846 The `reloc_howto_type' is a structure which contains all the
2847 information that libbfd needs to know to tie up a back end's data.
2849 struct bfd_symbol; /* Forward declaration. */
2851 struct reloc_howto_struct
2853 /* The type field has mainly a documentary use - the back end can
2854 do what it wants with it, though normally the back end's
2855 external idea of what a reloc number is stored
2856 in this field. For example, a PC relative word relocation
2857 in a coff environment has the type 023 - because that's
2858 what the outside world calls a R_PCRWORD reloc. */
2861 /* The value the final relocation is shifted right by. This drops
2862 unwanted data from the relocation. */
2863 unsigned int rightshift;
2865 /* The size of the item to be relocated. This is *not* a
2866 power-of-two measure. To get the number of bytes operated
2867 on by a type of relocation, use bfd_get_reloc_size. */
2870 /* The number of bits in the item to be relocated. This is used
2871 when doing overflow checking. */
2872 unsigned int bitsize;
2874 /* Notes that the relocation is relative to the location in the
2875 data section of the addend. The relocation function will
2876 subtract from the relocation value the address of the location
2878 bfd_boolean pc_relative;
2880 /* The bit position of the reloc value in the destination.
2881 The relocated value is left shifted by this amount. */
2882 unsigned int bitpos;
2884 /* What type of overflow error should be checked for when
2886 enum complain_overflow complain_on_overflow;
2888 /* If this field is non null, then the supplied function is
2889 called rather than the normal function. This allows really
2890 strange relocation methods to be accommodated (e.g., i960 callj
2892 bfd_reloc_status_type (*special_function)
2893 (bfd *, arelent *, struct bfd_symbol *, void *, asection *,
2896 /* The textual name of the relocation type. */
2899 /* Some formats record a relocation addend in the section contents
2900 rather than with the relocation. For ELF formats this is the
2901 distinction between USE_REL and USE_RELA (though the code checks
2902 for USE_REL == 1/0). The value of this field is TRUE if the
2903 addend is recorded with the section contents; when performing a
2904 partial link (ld -r) the section contents (the data) will be
2905 modified. The value of this field is FALSE if addends are
2906 recorded with the relocation (in arelent.addend); when performing
2907 a partial link the relocation will be modified.
2908 All relocations for all ELF USE_RELA targets should set this field
2909 to FALSE (values of TRUE should be looked on with suspicion).
2910 However, the converse is not true: not all relocations of all ELF
2911 USE_REL targets set this field to TRUE. Why this is so is peculiar
2912 to each particular target. For relocs that aren't used in partial
2913 links (e.g. GOT stuff) it doesn't matter what this is set to. */
2914 bfd_boolean partial_inplace;
2916 /* src_mask selects the part of the instruction (or data) to be used
2917 in the relocation sum. If the target relocations don't have an
2918 addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
2919 dst_mask to extract the addend from the section contents. If
2920 relocations do have an addend in the reloc, eg. ELF USE_RELA, this
2921 field should be zero. Non-zero values for ELF USE_RELA targets are
2922 bogus as in those cases the value in the dst_mask part of the
2923 section contents should be treated as garbage. */
2926 /* dst_mask selects which parts of the instruction (or data) are
2927 replaced with a relocated value. */
2930 /* When some formats create PC relative instructions, they leave
2931 the value of the pc of the place being relocated in the offset
2932 slot of the instruction, so that a PC relative relocation can
2933 be made just by adding in an ordinary offset (e.g., sun3 a.out).
2934 Some formats leave the displacement part of an instruction
2935 empty (e.g., m88k bcs); this flag signals the fact. */
2936 bfd_boolean pcrel_offset;
2943 The HOWTO define is horrible and will go away.
2944 #define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
2945 { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
2948 And will be replaced with the totally magic way. But for the moment, we
2949 are compatible, so do it this way.
2950 #define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
2951 HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
2952 NAME, FALSE, 0, 0, IN)
2955 This is used to fill in an empty howto entry in an array.
2956 #define EMPTY_HOWTO(C) \
2957 HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
2958 NULL, FALSE, 0, 0, FALSE)
2961 Helper routine to turn a symbol into a relocation value.
2962 #define HOWTO_PREPARE(relocation, symbol) \
2964 if (symbol != NULL) \
2966 if (bfd_is_com_section (symbol->section)) \
2972 relocation = symbol->value; \
2977 `bfd_get_reloc_size'
2978 ....................
2981 unsigned int bfd_get_reloc_size (reloc_howto_type *);
2983 For a reloc_howto_type that operates on a fixed number of bytes, this
2984 returns the number of bytes operated on.
2990 How relocs are tied together in an `asection':
2991 typedef struct relent_chain
2994 struct relent_chain *next;
2998 `bfd_check_overflow'
2999 ....................
3002 bfd_reloc_status_type bfd_check_overflow
3003 (enum complain_overflow how,
3004 unsigned int bitsize,
3005 unsigned int rightshift,
3006 unsigned int addrsize,
3007 bfd_vma relocation);
3009 Perform overflow checking on RELOCATION which has BITSIZE significant
3010 bits and will be shifted right by RIGHTSHIFT bits, on a machine with
3011 addresses containing ADDRSIZE significant bits. The result is either of
3012 `bfd_reloc_ok' or `bfd_reloc_overflow'.
3014 `bfd_perform_relocation'
3015 ........................
3018 bfd_reloc_status_type bfd_perform_relocation
3020 arelent *reloc_entry,
3022 asection *input_section,
3024 char **error_message);
3026 If OUTPUT_BFD is supplied to this function, the generated image will be
3027 relocatable; the relocations are copied to the output file after they
3028 have been changed to reflect the new state of the world. There are two
3029 ways of reflecting the results of partial linkage in an output file: by
3030 modifying the output data in place, and by modifying the relocation
3031 record. Some native formats (e.g., basic a.out and basic coff) have no
3032 way of specifying an addend in the relocation type, so the addend has
3033 to go in the output data. This is no big deal since in these formats
3034 the output data slot will always be big enough for the addend. Complex
3035 reloc types with addends were invented to solve just this problem. The
3036 ERROR_MESSAGE argument is set to an error message if this return
3037 `bfd_reloc_dangerous'.
3039 `bfd_install_relocation'
3040 ........................
3043 bfd_reloc_status_type bfd_install_relocation
3045 arelent *reloc_entry,
3046 void *data, bfd_vma data_start,
3047 asection *input_section,
3048 char **error_message);
3050 This looks remarkably like `bfd_perform_relocation', except it does not
3051 expect that the section contents have been filled in. I.e., it's
3052 suitable for use when creating, rather than applying a relocation.
3054 For now, this function should be considered reserved for the
3058 File: bfd.info, Node: howto manager, Prev: typedef arelent, Up: Relocations
3063 When an application wants to create a relocation, but doesn't know
3064 what the target machine might call it, it can find out by using this
3067 `bfd_reloc_code_type'
3068 .....................
3071 The insides of a reloc code. The idea is that, eventually, there will
3072 be one enumerator for every type of relocation we ever do. Pass one of
3073 these values to `bfd_reloc_type_lookup', and it'll return a howto
3076 This does mean that the application must determine the correct
3077 enumerator value; you can't get a howto pointer from a random set of
3080 Here are the possible values for `enum bfd_reloc_code_real':
3089 Basic absolute relocations of N bits.
3091 - : BFD_RELOC_64_PCREL
3092 - : BFD_RELOC_32_PCREL
3093 - : BFD_RELOC_24_PCREL
3094 - : BFD_RELOC_16_PCREL
3095 - : BFD_RELOC_12_PCREL
3096 - : BFD_RELOC_8_PCREL
3097 PC-relative relocations. Sometimes these are relative to the
3098 address of the relocation itself; sometimes they are relative to
3099 the start of the section containing the relocation. It depends on
3100 the specific target.
3102 The 24-bit relocation is used in some Intel 960 configurations.
3104 - : BFD_RELOC_32_SECREL
3105 Section relative relocations. Some targets need this for DWARF2.
3107 - : BFD_RELOC_32_GOT_PCREL
3108 - : BFD_RELOC_16_GOT_PCREL
3109 - : BFD_RELOC_8_GOT_PCREL
3110 - : BFD_RELOC_32_GOTOFF
3111 - : BFD_RELOC_16_GOTOFF
3112 - : BFD_RELOC_LO16_GOTOFF
3113 - : BFD_RELOC_HI16_GOTOFF
3114 - : BFD_RELOC_HI16_S_GOTOFF
3115 - : BFD_RELOC_8_GOTOFF
3116 - : BFD_RELOC_64_PLT_PCREL
3117 - : BFD_RELOC_32_PLT_PCREL
3118 - : BFD_RELOC_24_PLT_PCREL
3119 - : BFD_RELOC_16_PLT_PCREL
3120 - : BFD_RELOC_8_PLT_PCREL
3121 - : BFD_RELOC_64_PLTOFF
3122 - : BFD_RELOC_32_PLTOFF
3123 - : BFD_RELOC_16_PLTOFF
3124 - : BFD_RELOC_LO16_PLTOFF
3125 - : BFD_RELOC_HI16_PLTOFF
3126 - : BFD_RELOC_HI16_S_PLTOFF
3127 - : BFD_RELOC_8_PLTOFF
3130 - : BFD_RELOC_68K_GLOB_DAT
3131 - : BFD_RELOC_68K_JMP_SLOT
3132 - : BFD_RELOC_68K_RELATIVE
3133 Relocations used by 68K ELF.
3135 - : BFD_RELOC_32_BASEREL
3136 - : BFD_RELOC_16_BASEREL
3137 - : BFD_RELOC_LO16_BASEREL
3138 - : BFD_RELOC_HI16_BASEREL
3139 - : BFD_RELOC_HI16_S_BASEREL
3140 - : BFD_RELOC_8_BASEREL
3142 Linkage-table relative.
3144 - : BFD_RELOC_8_FFnn
3145 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
3147 - : BFD_RELOC_32_PCREL_S2
3148 - : BFD_RELOC_16_PCREL_S2
3149 - : BFD_RELOC_23_PCREL_S2
3150 These PC-relative relocations are stored as word displacements -
3151 i.e., byte displacements shifted right two bits. The 30-bit word
3152 displacement (<<32_PCREL_S2>> - 32 bits, shifted 2) is used on the
3153 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
3154 signed 16-bit displacement is used on the MIPS, and the 23-bit
3155 displacement is used on the Alpha.
3159 High 22 bits and low 10 bits of 32-bit value, placed into lower
3160 bits of the target word. These are used on the SPARC.
3162 - : BFD_RELOC_GPREL16
3163 - : BFD_RELOC_GPREL32
3164 For systems that allocate a Global Pointer register, these are
3165 displacements off that register. These relocation types are
3166 handled specially, because the value the register will have is
3167 decided relatively late.
3169 - : BFD_RELOC_I960_CALLJ
3170 Reloc types used for i960/b.out.
3173 - : BFD_RELOC_SPARC_WDISP22
3174 - : BFD_RELOC_SPARC22
3175 - : BFD_RELOC_SPARC13
3176 - : BFD_RELOC_SPARC_GOT10
3177 - : BFD_RELOC_SPARC_GOT13
3178 - : BFD_RELOC_SPARC_GOT22
3179 - : BFD_RELOC_SPARC_PC10
3180 - : BFD_RELOC_SPARC_PC22
3181 - : BFD_RELOC_SPARC_WPLT30
3182 - : BFD_RELOC_SPARC_COPY
3183 - : BFD_RELOC_SPARC_GLOB_DAT
3184 - : BFD_RELOC_SPARC_JMP_SLOT
3185 - : BFD_RELOC_SPARC_RELATIVE
3186 - : BFD_RELOC_SPARC_UA16
3187 - : BFD_RELOC_SPARC_UA32
3188 - : BFD_RELOC_SPARC_UA64
3189 SPARC ELF relocations. There is probably some overlap with other
3190 relocation types already defined.
3192 - : BFD_RELOC_SPARC_BASE13
3193 - : BFD_RELOC_SPARC_BASE22
3194 I think these are specific to SPARC a.out (e.g., Sun 4).
3196 - : BFD_RELOC_SPARC_64
3197 - : BFD_RELOC_SPARC_10
3198 - : BFD_RELOC_SPARC_11
3199 - : BFD_RELOC_SPARC_OLO10
3200 - : BFD_RELOC_SPARC_HH22
3201 - : BFD_RELOC_SPARC_HM10
3202 - : BFD_RELOC_SPARC_LM22
3203 - : BFD_RELOC_SPARC_PC_HH22
3204 - : BFD_RELOC_SPARC_PC_HM10
3205 - : BFD_RELOC_SPARC_PC_LM22
3206 - : BFD_RELOC_SPARC_WDISP16
3207 - : BFD_RELOC_SPARC_WDISP19
3208 - : BFD_RELOC_SPARC_7
3209 - : BFD_RELOC_SPARC_6
3210 - : BFD_RELOC_SPARC_5
3211 - : BFD_RELOC_SPARC_DISP64
3212 - : BFD_RELOC_SPARC_PLT32
3213 - : BFD_RELOC_SPARC_PLT64
3214 - : BFD_RELOC_SPARC_HIX22
3215 - : BFD_RELOC_SPARC_LOX10
3216 - : BFD_RELOC_SPARC_H44
3217 - : BFD_RELOC_SPARC_M44
3218 - : BFD_RELOC_SPARC_L44
3219 - : BFD_RELOC_SPARC_REGISTER
3222 - : BFD_RELOC_SPARC_REV32
3223 SPARC little endian relocation
3225 - : BFD_RELOC_SPARC_TLS_GD_HI22
3226 - : BFD_RELOC_SPARC_TLS_GD_LO10
3227 - : BFD_RELOC_SPARC_TLS_GD_ADD
3228 - : BFD_RELOC_SPARC_TLS_GD_CALL
3229 - : BFD_RELOC_SPARC_TLS_LDM_HI22
3230 - : BFD_RELOC_SPARC_TLS_LDM_LO10
3231 - : BFD_RELOC_SPARC_TLS_LDM_ADD
3232 - : BFD_RELOC_SPARC_TLS_LDM_CALL
3233 - : BFD_RELOC_SPARC_TLS_LDO_HIX22
3234 - : BFD_RELOC_SPARC_TLS_LDO_LOX10
3235 - : BFD_RELOC_SPARC_TLS_LDO_ADD
3236 - : BFD_RELOC_SPARC_TLS_IE_HI22
3237 - : BFD_RELOC_SPARC_TLS_IE_LO10
3238 - : BFD_RELOC_SPARC_TLS_IE_LD
3239 - : BFD_RELOC_SPARC_TLS_IE_LDX
3240 - : BFD_RELOC_SPARC_TLS_IE_ADD
3241 - : BFD_RELOC_SPARC_TLS_LE_HIX22
3242 - : BFD_RELOC_SPARC_TLS_LE_LOX10
3243 - : BFD_RELOC_SPARC_TLS_DTPMOD32
3244 - : BFD_RELOC_SPARC_TLS_DTPMOD64
3245 - : BFD_RELOC_SPARC_TLS_DTPOFF32
3246 - : BFD_RELOC_SPARC_TLS_DTPOFF64
3247 - : BFD_RELOC_SPARC_TLS_TPOFF32
3248 - : BFD_RELOC_SPARC_TLS_TPOFF64
3249 SPARC TLS relocations
3251 - : BFD_RELOC_ALPHA_GPDISP_HI16
3252 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
3253 "addend" in some special way. For GPDISP_HI16 ("gpdisp")
3254 relocations, the symbol is ignored when writing; when reading, it
3255 will be the absolute section symbol. The addend is the
3256 displacement in bytes of the "lda" instruction from the "ldah"
3257 instruction (which is at the address of this reloc).
3259 - : BFD_RELOC_ALPHA_GPDISP_LO16
3260 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
3261 with GPDISP_HI16 relocs. The addend is ignored when writing the
3262 relocations out, and is filled in with the file's GP value on
3263 reading, for convenience.
3265 - : BFD_RELOC_ALPHA_GPDISP
3266 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
3267 relocation except that there is no accompanying GPDISP_LO16
3270 - : BFD_RELOC_ALPHA_LITERAL
3271 - : BFD_RELOC_ALPHA_ELF_LITERAL
3272 - : BFD_RELOC_ALPHA_LITUSE
3273 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
3274 the assembler turns it into a LDQ instruction to load the address
3275 of the symbol, and then fills in a register in the real
3278 The LITERAL reloc, at the LDQ instruction, refers to the .lita
3279 section symbol. The addend is ignored when writing, but is filled
3280 in with the file's GP value on reading, for convenience, as with
3281 the GPDISP_LO16 reloc.
3283 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and
3284 GPDISP_LO16. It should refer to the symbol to be referenced, as
3285 with 16_GOTOFF, but it generates output not based on the position
3286 within the .got section, but relative to the GP value chosen for
3287 the file during the final link stage.
3289 The LITUSE reloc, on the instruction using the loaded address,
3290 gives information to the linker that it might be able to use to
3291 optimize away some literal section references. The symbol is
3292 ignored (read as the absolute section symbol), and the "addend"
3293 indicates the type of instruction using the register: 1 - "memory"
3294 fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target
3297 - : BFD_RELOC_ALPHA_HINT
3298 The HINT relocation indicates a value that should be filled into
3299 the "hint" field of a jmp/jsr/ret instruction, for possible branch-
3300 prediction logic which may be provided on some processors.
3302 - : BFD_RELOC_ALPHA_LINKAGE
3303 The LINKAGE relocation outputs a linkage pair in the object file,
3304 which is filled by the linker.
3306 - : BFD_RELOC_ALPHA_CODEADDR
3307 The CODEADDR relocation outputs a STO_CA in the object file, which
3308 is filled by the linker.
3310 - : BFD_RELOC_ALPHA_GPREL_HI16
3311 - : BFD_RELOC_ALPHA_GPREL_LO16
3312 The GPREL_HI/LO relocations together form a 32-bit offset from the
3315 - : BFD_RELOC_ALPHA_BRSGP
3316 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
3317 share a common GP, and the target address is adjusted for
3318 STO_ALPHA_STD_GPLOAD.
3320 - : BFD_RELOC_ALPHA_TLSGD
3321 - : BFD_RELOC_ALPHA_TLSLDM
3322 - : BFD_RELOC_ALPHA_DTPMOD64
3323 - : BFD_RELOC_ALPHA_GOTDTPREL16
3324 - : BFD_RELOC_ALPHA_DTPREL64
3325 - : BFD_RELOC_ALPHA_DTPREL_HI16
3326 - : BFD_RELOC_ALPHA_DTPREL_LO16
3327 - : BFD_RELOC_ALPHA_DTPREL16
3328 - : BFD_RELOC_ALPHA_GOTTPREL16
3329 - : BFD_RELOC_ALPHA_TPREL64
3330 - : BFD_RELOC_ALPHA_TPREL_HI16
3331 - : BFD_RELOC_ALPHA_TPREL_LO16
3332 - : BFD_RELOC_ALPHA_TPREL16
3333 Alpha thread-local storage relocations.
3335 - : BFD_RELOC_MIPS_JMP
3336 Bits 27..2 of the relocation address shifted right 2 bits; simple
3339 - : BFD_RELOC_MIPS16_JMP
3340 The MIPS16 jump instruction.
3342 - : BFD_RELOC_MIPS16_GPREL
3343 MIPS16 GP relative reloc.
3346 High 16 bits of 32-bit value; simple reloc.
3348 - : BFD_RELOC_HI16_S
3349 High 16 bits of 32-bit value but the low 16 bits will be sign
3350 extended and added to form the final result. If the low 16 bits
3351 form a negative number, we need to add one to the high value to
3352 compensate for the borrow when the low bits are added.
3357 - : BFD_RELOC_HI16_PCREL
3358 High 16 bits of 32-bit pc-relative value
3360 - : BFD_RELOC_HI16_S_PCREL
3361 High 16 bits of 32-bit pc-relative value, adjusted
3363 - : BFD_RELOC_LO16_PCREL
3364 Low 16 bits of pc-relative value
3366 - : BFD_RELOC_MIPS16_HI16
3367 MIPS16 high 16 bits of 32-bit value.
3369 - : BFD_RELOC_MIPS16_HI16_S
3370 MIPS16 high 16 bits of 32-bit value but the low 16 bits will be
3371 sign extended and added to form the final result. If the low 16
3372 bits form a negative number, we need to add one to the high value
3373 to compensate for the borrow when the low bits are added.
3375 - : BFD_RELOC_MIPS16_LO16
3378 - : BFD_RELOC_MIPS_LITERAL
3379 Relocation against a MIPS literal section.
3381 - : BFD_RELOC_MIPS_GOT16
3382 - : BFD_RELOC_MIPS_CALL16
3383 - : BFD_RELOC_MIPS_GOT_HI16
3384 - : BFD_RELOC_MIPS_GOT_LO16
3385 - : BFD_RELOC_MIPS_CALL_HI16
3386 - : BFD_RELOC_MIPS_CALL_LO16
3387 - : BFD_RELOC_MIPS_SUB
3388 - : BFD_RELOC_MIPS_GOT_PAGE
3389 - : BFD_RELOC_MIPS_GOT_OFST
3390 - : BFD_RELOC_MIPS_GOT_DISP
3391 - : BFD_RELOC_MIPS_SHIFT5
3392 - : BFD_RELOC_MIPS_SHIFT6
3393 - : BFD_RELOC_MIPS_INSERT_A
3394 - : BFD_RELOC_MIPS_INSERT_B
3395 - : BFD_RELOC_MIPS_DELETE
3396 - : BFD_RELOC_MIPS_HIGHEST
3397 - : BFD_RELOC_MIPS_HIGHER
3398 - : BFD_RELOC_MIPS_SCN_DISP
3399 - : BFD_RELOC_MIPS_REL16
3400 - : BFD_RELOC_MIPS_RELGOT
3401 - : BFD_RELOC_MIPS_JALR
3402 - : BFD_RELOC_MIPS_TLS_DTPMOD32
3403 - : BFD_RELOC_MIPS_TLS_DTPREL32
3404 - : BFD_RELOC_MIPS_TLS_DTPMOD64
3405 - : BFD_RELOC_MIPS_TLS_DTPREL64
3406 - : BFD_RELOC_MIPS_TLS_GD
3407 - : BFD_RELOC_MIPS_TLS_LDM
3408 - : BFD_RELOC_MIPS_TLS_DTPREL_HI16
3409 - : BFD_RELOC_MIPS_TLS_DTPREL_LO16
3410 - : BFD_RELOC_MIPS_TLS_GOTTPREL
3411 - : BFD_RELOC_MIPS_TLS_TPREL32
3412 - : BFD_RELOC_MIPS_TLS_TPREL64
3413 - : BFD_RELOC_MIPS_TLS_TPREL_HI16
3414 - : BFD_RELOC_MIPS_TLS_TPREL_LO16
3415 MIPS ELF relocations.
3417 - : BFD_RELOC_FRV_LABEL16
3418 - : BFD_RELOC_FRV_LABEL24
3419 - : BFD_RELOC_FRV_LO16
3420 - : BFD_RELOC_FRV_HI16
3421 - : BFD_RELOC_FRV_GPREL12
3422 - : BFD_RELOC_FRV_GPRELU12
3423 - : BFD_RELOC_FRV_GPREL32
3424 - : BFD_RELOC_FRV_GPRELHI
3425 - : BFD_RELOC_FRV_GPRELLO
3426 - : BFD_RELOC_FRV_GOT12
3427 - : BFD_RELOC_FRV_GOTHI
3428 - : BFD_RELOC_FRV_GOTLO
3429 - : BFD_RELOC_FRV_FUNCDESC
3430 - : BFD_RELOC_FRV_FUNCDESC_GOT12
3431 - : BFD_RELOC_FRV_FUNCDESC_GOTHI
3432 - : BFD_RELOC_FRV_FUNCDESC_GOTLO
3433 - : BFD_RELOC_FRV_FUNCDESC_VALUE
3434 - : BFD_RELOC_FRV_FUNCDESC_GOTOFF12
3435 - : BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
3436 - : BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
3437 - : BFD_RELOC_FRV_GOTOFF12
3438 - : BFD_RELOC_FRV_GOTOFFHI
3439 - : BFD_RELOC_FRV_GOTOFFLO
3440 - : BFD_RELOC_FRV_GETTLSOFF
3441 - : BFD_RELOC_FRV_TLSDESC_VALUE
3442 - : BFD_RELOC_FRV_GOTTLSDESC12
3443 - : BFD_RELOC_FRV_GOTTLSDESCHI
3444 - : BFD_RELOC_FRV_GOTTLSDESCLO
3445 - : BFD_RELOC_FRV_TLSMOFF12
3446 - : BFD_RELOC_FRV_TLSMOFFHI
3447 - : BFD_RELOC_FRV_TLSMOFFLO
3448 - : BFD_RELOC_FRV_GOTTLSOFF12
3449 - : BFD_RELOC_FRV_GOTTLSOFFHI
3450 - : BFD_RELOC_FRV_GOTTLSOFFLO
3451 - : BFD_RELOC_FRV_TLSOFF
3452 - : BFD_RELOC_FRV_TLSDESC_RELAX
3453 - : BFD_RELOC_FRV_GETTLSOFF_RELAX
3454 - : BFD_RELOC_FRV_TLSOFF_RELAX
3455 - : BFD_RELOC_FRV_TLSMOFF
3456 Fujitsu Frv Relocations.
3458 - : BFD_RELOC_MN10300_GOTOFF24
3459 This is a 24bit GOT-relative reloc for the mn10300.
3461 - : BFD_RELOC_MN10300_GOT32
3462 This is a 32bit GOT-relative reloc for the mn10300, offset by two
3463 bytes in the instruction.
3465 - : BFD_RELOC_MN10300_GOT24
3466 This is a 24bit GOT-relative reloc for the mn10300, offset by two
3467 bytes in the instruction.
3469 - : BFD_RELOC_MN10300_GOT16
3470 This is a 16bit GOT-relative reloc for the mn10300, offset by two
3471 bytes in the instruction.
3473 - : BFD_RELOC_MN10300_COPY
3474 Copy symbol at runtime.
3476 - : BFD_RELOC_MN10300_GLOB_DAT
3479 - : BFD_RELOC_MN10300_JMP_SLOT
3482 - : BFD_RELOC_MN10300_RELATIVE
3483 Adjust by program base.
3485 - : BFD_RELOC_386_GOT32
3486 - : BFD_RELOC_386_PLT32
3487 - : BFD_RELOC_386_COPY
3488 - : BFD_RELOC_386_GLOB_DAT
3489 - : BFD_RELOC_386_JUMP_SLOT
3490 - : BFD_RELOC_386_RELATIVE
3491 - : BFD_RELOC_386_GOTOFF
3492 - : BFD_RELOC_386_GOTPC
3493 - : BFD_RELOC_386_TLS_TPOFF
3494 - : BFD_RELOC_386_TLS_IE
3495 - : BFD_RELOC_386_TLS_GOTIE
3496 - : BFD_RELOC_386_TLS_LE
3497 - : BFD_RELOC_386_TLS_GD
3498 - : BFD_RELOC_386_TLS_LDM
3499 - : BFD_RELOC_386_TLS_LDO_32
3500 - : BFD_RELOC_386_TLS_IE_32
3501 - : BFD_RELOC_386_TLS_LE_32
3502 - : BFD_RELOC_386_TLS_DTPMOD32
3503 - : BFD_RELOC_386_TLS_DTPOFF32
3504 - : BFD_RELOC_386_TLS_TPOFF32
3505 - : BFD_RELOC_386_TLS_GOTDESC
3506 - : BFD_RELOC_386_TLS_DESC_CALL
3507 - : BFD_RELOC_386_TLS_DESC
3508 i386/elf relocations
3510 - : BFD_RELOC_X86_64_GOT32
3511 - : BFD_RELOC_X86_64_PLT32
3512 - : BFD_RELOC_X86_64_COPY
3513 - : BFD_RELOC_X86_64_GLOB_DAT
3514 - : BFD_RELOC_X86_64_JUMP_SLOT
3515 - : BFD_RELOC_X86_64_RELATIVE
3516 - : BFD_RELOC_X86_64_GOTPCREL
3517 - : BFD_RELOC_X86_64_32S
3518 - : BFD_RELOC_X86_64_DTPMOD64
3519 - : BFD_RELOC_X86_64_DTPOFF64
3520 - : BFD_RELOC_X86_64_TPOFF64
3521 - : BFD_RELOC_X86_64_TLSGD
3522 - : BFD_RELOC_X86_64_TLSLD
3523 - : BFD_RELOC_X86_64_DTPOFF32
3524 - : BFD_RELOC_X86_64_GOTTPOFF
3525 - : BFD_RELOC_X86_64_TPOFF32
3526 - : BFD_RELOC_X86_64_GOTOFF64
3527 - : BFD_RELOC_X86_64_GOTPC32
3528 - : BFD_RELOC_X86_64_GOTPC32_TLSDESC
3529 - : BFD_RELOC_X86_64_TLSDESC_CALL
3530 - : BFD_RELOC_X86_64_TLSDESC
3531 x86-64/elf relocations
3533 - : BFD_RELOC_NS32K_IMM_8
3534 - : BFD_RELOC_NS32K_IMM_16
3535 - : BFD_RELOC_NS32K_IMM_32
3536 - : BFD_RELOC_NS32K_IMM_8_PCREL
3537 - : BFD_RELOC_NS32K_IMM_16_PCREL
3538 - : BFD_RELOC_NS32K_IMM_32_PCREL
3539 - : BFD_RELOC_NS32K_DISP_8
3540 - : BFD_RELOC_NS32K_DISP_16
3541 - : BFD_RELOC_NS32K_DISP_32
3542 - : BFD_RELOC_NS32K_DISP_8_PCREL
3543 - : BFD_RELOC_NS32K_DISP_16_PCREL
3544 - : BFD_RELOC_NS32K_DISP_32_PCREL
3547 - : BFD_RELOC_PDP11_DISP_8_PCREL
3548 - : BFD_RELOC_PDP11_DISP_6_PCREL
3551 - : BFD_RELOC_PJ_CODE_HI16
3552 - : BFD_RELOC_PJ_CODE_LO16
3553 - : BFD_RELOC_PJ_CODE_DIR16
3554 - : BFD_RELOC_PJ_CODE_DIR32
3555 - : BFD_RELOC_PJ_CODE_REL16
3556 - : BFD_RELOC_PJ_CODE_REL32
3557 Picojava relocs. Not all of these appear in object files.
3559 - : BFD_RELOC_PPC_B26
3560 - : BFD_RELOC_PPC_BA26
3561 - : BFD_RELOC_PPC_TOC16
3562 - : BFD_RELOC_PPC_B16
3563 - : BFD_RELOC_PPC_B16_BRTAKEN
3564 - : BFD_RELOC_PPC_B16_BRNTAKEN
3565 - : BFD_RELOC_PPC_BA16
3566 - : BFD_RELOC_PPC_BA16_BRTAKEN
3567 - : BFD_RELOC_PPC_BA16_BRNTAKEN
3568 - : BFD_RELOC_PPC_COPY
3569 - : BFD_RELOC_PPC_GLOB_DAT
3570 - : BFD_RELOC_PPC_JMP_SLOT
3571 - : BFD_RELOC_PPC_RELATIVE
3572 - : BFD_RELOC_PPC_LOCAL24PC
3573 - : BFD_RELOC_PPC_EMB_NADDR32
3574 - : BFD_RELOC_PPC_EMB_NADDR16
3575 - : BFD_RELOC_PPC_EMB_NADDR16_LO
3576 - : BFD_RELOC_PPC_EMB_NADDR16_HI
3577 - : BFD_RELOC_PPC_EMB_NADDR16_HA
3578 - : BFD_RELOC_PPC_EMB_SDAI16
3579 - : BFD_RELOC_PPC_EMB_SDA2I16
3580 - : BFD_RELOC_PPC_EMB_SDA2REL
3581 - : BFD_RELOC_PPC_EMB_SDA21
3582 - : BFD_RELOC_PPC_EMB_MRKREF
3583 - : BFD_RELOC_PPC_EMB_RELSEC16
3584 - : BFD_RELOC_PPC_EMB_RELST_LO
3585 - : BFD_RELOC_PPC_EMB_RELST_HI
3586 - : BFD_RELOC_PPC_EMB_RELST_HA
3587 - : BFD_RELOC_PPC_EMB_BIT_FLD
3588 - : BFD_RELOC_PPC_EMB_RELSDA
3589 - : BFD_RELOC_PPC64_HIGHER
3590 - : BFD_RELOC_PPC64_HIGHER_S
3591 - : BFD_RELOC_PPC64_HIGHEST
3592 - : BFD_RELOC_PPC64_HIGHEST_S
3593 - : BFD_RELOC_PPC64_TOC16_LO
3594 - : BFD_RELOC_PPC64_TOC16_HI
3595 - : BFD_RELOC_PPC64_TOC16_HA
3596 - : BFD_RELOC_PPC64_TOC
3597 - : BFD_RELOC_PPC64_PLTGOT16
3598 - : BFD_RELOC_PPC64_PLTGOT16_LO
3599 - : BFD_RELOC_PPC64_PLTGOT16_HI
3600 - : BFD_RELOC_PPC64_PLTGOT16_HA
3601 - : BFD_RELOC_PPC64_ADDR16_DS
3602 - : BFD_RELOC_PPC64_ADDR16_LO_DS
3603 - : BFD_RELOC_PPC64_GOT16_DS
3604 - : BFD_RELOC_PPC64_GOT16_LO_DS
3605 - : BFD_RELOC_PPC64_PLT16_LO_DS
3606 - : BFD_RELOC_PPC64_SECTOFF_DS
3607 - : BFD_RELOC_PPC64_SECTOFF_LO_DS
3608 - : BFD_RELOC_PPC64_TOC16_DS
3609 - : BFD_RELOC_PPC64_TOC16_LO_DS
3610 - : BFD_RELOC_PPC64_PLTGOT16_DS
3611 - : BFD_RELOC_PPC64_PLTGOT16_LO_DS
3612 Power(rs6000) and PowerPC relocations.
3614 - : BFD_RELOC_PPC_TLS
3615 - : BFD_RELOC_PPC_DTPMOD
3616 - : BFD_RELOC_PPC_TPREL16
3617 - : BFD_RELOC_PPC_TPREL16_LO
3618 - : BFD_RELOC_PPC_TPREL16_HI
3619 - : BFD_RELOC_PPC_TPREL16_HA
3620 - : BFD_RELOC_PPC_TPREL
3621 - : BFD_RELOC_PPC_DTPREL16
3622 - : BFD_RELOC_PPC_DTPREL16_LO
3623 - : BFD_RELOC_PPC_DTPREL16_HI
3624 - : BFD_RELOC_PPC_DTPREL16_HA
3625 - : BFD_RELOC_PPC_DTPREL
3626 - : BFD_RELOC_PPC_GOT_TLSGD16
3627 - : BFD_RELOC_PPC_GOT_TLSGD16_LO
3628 - : BFD_RELOC_PPC_GOT_TLSGD16_HI
3629 - : BFD_RELOC_PPC_GOT_TLSGD16_HA
3630 - : BFD_RELOC_PPC_GOT_TLSLD16
3631 - : BFD_RELOC_PPC_GOT_TLSLD16_LO
3632 - : BFD_RELOC_PPC_GOT_TLSLD16_HI
3633 - : BFD_RELOC_PPC_GOT_TLSLD16_HA
3634 - : BFD_RELOC_PPC_GOT_TPREL16
3635 - : BFD_RELOC_PPC_GOT_TPREL16_LO
3636 - : BFD_RELOC_PPC_GOT_TPREL16_HI
3637 - : BFD_RELOC_PPC_GOT_TPREL16_HA
3638 - : BFD_RELOC_PPC_GOT_DTPREL16
3639 - : BFD_RELOC_PPC_GOT_DTPREL16_LO
3640 - : BFD_RELOC_PPC_GOT_DTPREL16_HI
3641 - : BFD_RELOC_PPC_GOT_DTPREL16_HA
3642 - : BFD_RELOC_PPC64_TPREL16_DS
3643 - : BFD_RELOC_PPC64_TPREL16_LO_DS
3644 - : BFD_RELOC_PPC64_TPREL16_HIGHER
3645 - : BFD_RELOC_PPC64_TPREL16_HIGHERA
3646 - : BFD_RELOC_PPC64_TPREL16_HIGHEST
3647 - : BFD_RELOC_PPC64_TPREL16_HIGHESTA
3648 - : BFD_RELOC_PPC64_DTPREL16_DS
3649 - : BFD_RELOC_PPC64_DTPREL16_LO_DS
3650 - : BFD_RELOC_PPC64_DTPREL16_HIGHER
3651 - : BFD_RELOC_PPC64_DTPREL16_HIGHERA
3652 - : BFD_RELOC_PPC64_DTPREL16_HIGHEST
3653 - : BFD_RELOC_PPC64_DTPREL16_HIGHESTA
3654 PowerPC and PowerPC64 thread-local storage relocations.
3656 - : BFD_RELOC_I370_D12
3657 IBM 370/390 relocations
3660 The type of reloc used to build a constructor table - at the moment
3661 probably a 32 bit wide absolute relocation, but the target can
3662 choose. It generally does map to one of the other relocation
3665 - : BFD_RELOC_ARM_PCREL_BRANCH
3666 ARM 26 bit pc-relative branch. The lowest two bits must be zero
3667 and are not stored in the instruction.
3669 - : BFD_RELOC_ARM_PCREL_BLX
3670 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
3671 not stored in the instruction. The 2nd lowest bit comes from a 1
3672 bit field in the instruction.
3674 - : BFD_RELOC_THUMB_PCREL_BLX
3675 Thumb 22 bit pc-relative branch. The lowest bit must be zero and
3676 is not stored in the instruction. The 2nd lowest bit comes from a
3677 1 bit field in the instruction.
3679 - : BFD_RELOC_ARM_PCREL_CALL
3680 ARM 26-bit pc-relative branch for an unconditional BL or BLX
3683 - : BFD_RELOC_ARM_PCREL_JUMP
3684 ARM 26-bit pc-relative branch for B or conditional BL instruction.
3686 - : BFD_RELOC_THUMB_PCREL_BRANCH7
3687 - : BFD_RELOC_THUMB_PCREL_BRANCH9
3688 - : BFD_RELOC_THUMB_PCREL_BRANCH12
3689 - : BFD_RELOC_THUMB_PCREL_BRANCH20
3690 - : BFD_RELOC_THUMB_PCREL_BRANCH23
3691 - : BFD_RELOC_THUMB_PCREL_BRANCH25
3692 Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The
3693 lowest bit must be zero and is not stored in the instruction.
3694 Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an
3695 "nn" one smaller in all cases. Note further that BRANCH23
3696 corresponds to R_ARM_THM_CALL.
3698 - : BFD_RELOC_ARM_OFFSET_IMM
3699 12-bit immediate offset, used in ARM-format ldr and str
3702 - : BFD_RELOC_ARM_THUMB_OFFSET
3703 5-bit immediate offset, used in Thumb-format ldr and str
3706 - : BFD_RELOC_ARM_TARGET1
3707 Pc-relative or absolute relocation depending on target. Used for
3708 entries in .init_array sections.
3710 - : BFD_RELOC_ARM_ROSEGREL32
3711 Read-only segment base relative address.
3713 - : BFD_RELOC_ARM_SBREL32
3714 Data segment base relative address.
3716 - : BFD_RELOC_ARM_TARGET2
3717 This reloc is used for references to RTTI data from exception
3718 handling tables. The actual definition depends on the target. It
3719 may be a pc-relative or some form of GOT-indirect relocation.
3721 - : BFD_RELOC_ARM_PREL31
3722 31-bit PC relative address.
3724 - : BFD_RELOC_ARM_JUMP_SLOT
3725 - : BFD_RELOC_ARM_GLOB_DAT
3726 - : BFD_RELOC_ARM_GOT32
3727 - : BFD_RELOC_ARM_PLT32
3728 - : BFD_RELOC_ARM_RELATIVE
3729 - : BFD_RELOC_ARM_GOTOFF
3730 - : BFD_RELOC_ARM_GOTPC
3731 Relocations for setting up GOTs and PLTs for shared libraries.
3733 - : BFD_RELOC_ARM_TLS_GD32
3734 - : BFD_RELOC_ARM_TLS_LDO32
3735 - : BFD_RELOC_ARM_TLS_LDM32
3736 - : BFD_RELOC_ARM_TLS_DTPOFF32
3737 - : BFD_RELOC_ARM_TLS_DTPMOD32
3738 - : BFD_RELOC_ARM_TLS_TPOFF32
3739 - : BFD_RELOC_ARM_TLS_IE32
3740 - : BFD_RELOC_ARM_TLS_LE32
3741 ARM thread-local storage relocations.
3743 - : BFD_RELOC_ARM_IMMEDIATE
3744 - : BFD_RELOC_ARM_ADRL_IMMEDIATE
3745 - : BFD_RELOC_ARM_T32_IMMEDIATE
3746 - : BFD_RELOC_ARM_T32_IMM12
3747 - : BFD_RELOC_ARM_T32_ADD_PC12
3748 - : BFD_RELOC_ARM_SHIFT_IMM
3749 - : BFD_RELOC_ARM_SMC
3750 - : BFD_RELOC_ARM_SWI
3751 - : BFD_RELOC_ARM_MULTI
3752 - : BFD_RELOC_ARM_CP_OFF_IMM
3753 - : BFD_RELOC_ARM_CP_OFF_IMM_S2
3754 - : BFD_RELOC_ARM_T32_CP_OFF_IMM
3755 - : BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
3756 - : BFD_RELOC_ARM_ADR_IMM
3757 - : BFD_RELOC_ARM_LDR_IMM
3758 - : BFD_RELOC_ARM_LITERAL
3759 - : BFD_RELOC_ARM_IN_POOL
3760 - : BFD_RELOC_ARM_OFFSET_IMM8
3761 - : BFD_RELOC_ARM_T32_OFFSET_U8
3762 - : BFD_RELOC_ARM_T32_OFFSET_IMM
3763 - : BFD_RELOC_ARM_HWLITERAL
3764 - : BFD_RELOC_ARM_THUMB_ADD
3765 - : BFD_RELOC_ARM_THUMB_IMM
3766 - : BFD_RELOC_ARM_THUMB_SHIFT
3767 These relocs are only used within the ARM assembler. They are not
3768 (at present) written to any object files.
3770 - : BFD_RELOC_SH_PCDISP8BY2
3771 - : BFD_RELOC_SH_PCDISP12BY2
3772 - : BFD_RELOC_SH_IMM3
3773 - : BFD_RELOC_SH_IMM3U
3774 - : BFD_RELOC_SH_DISP12
3775 - : BFD_RELOC_SH_DISP12BY2
3776 - : BFD_RELOC_SH_DISP12BY4
3777 - : BFD_RELOC_SH_DISP12BY8
3778 - : BFD_RELOC_SH_DISP20
3779 - : BFD_RELOC_SH_DISP20BY8
3780 - : BFD_RELOC_SH_IMM4
3781 - : BFD_RELOC_SH_IMM4BY2
3782 - : BFD_RELOC_SH_IMM4BY4
3783 - : BFD_RELOC_SH_IMM8
3784 - : BFD_RELOC_SH_IMM8BY2
3785 - : BFD_RELOC_SH_IMM8BY4
3786 - : BFD_RELOC_SH_PCRELIMM8BY2
3787 - : BFD_RELOC_SH_PCRELIMM8BY4
3788 - : BFD_RELOC_SH_SWITCH16
3789 - : BFD_RELOC_SH_SWITCH32
3790 - : BFD_RELOC_SH_USES
3791 - : BFD_RELOC_SH_COUNT
3792 - : BFD_RELOC_SH_ALIGN
3793 - : BFD_RELOC_SH_CODE
3794 - : BFD_RELOC_SH_DATA
3795 - : BFD_RELOC_SH_LABEL
3796 - : BFD_RELOC_SH_LOOP_START
3797 - : BFD_RELOC_SH_LOOP_END
3798 - : BFD_RELOC_SH_COPY
3799 - : BFD_RELOC_SH_GLOB_DAT
3800 - : BFD_RELOC_SH_JMP_SLOT
3801 - : BFD_RELOC_SH_RELATIVE
3802 - : BFD_RELOC_SH_GOTPC
3803 - : BFD_RELOC_SH_GOT_LOW16
3804 - : BFD_RELOC_SH_GOT_MEDLOW16
3805 - : BFD_RELOC_SH_GOT_MEDHI16
3806 - : BFD_RELOC_SH_GOT_HI16
3807 - : BFD_RELOC_SH_GOTPLT_LOW16
3808 - : BFD_RELOC_SH_GOTPLT_MEDLOW16
3809 - : BFD_RELOC_SH_GOTPLT_MEDHI16
3810 - : BFD_RELOC_SH_GOTPLT_HI16
3811 - : BFD_RELOC_SH_PLT_LOW16
3812 - : BFD_RELOC_SH_PLT_MEDLOW16
3813 - : BFD_RELOC_SH_PLT_MEDHI16
3814 - : BFD_RELOC_SH_PLT_HI16
3815 - : BFD_RELOC_SH_GOTOFF_LOW16
3816 - : BFD_RELOC_SH_GOTOFF_MEDLOW16
3817 - : BFD_RELOC_SH_GOTOFF_MEDHI16
3818 - : BFD_RELOC_SH_GOTOFF_HI16
3819 - : BFD_RELOC_SH_GOTPC_LOW16
3820 - : BFD_RELOC_SH_GOTPC_MEDLOW16
3821 - : BFD_RELOC_SH_GOTPC_MEDHI16
3822 - : BFD_RELOC_SH_GOTPC_HI16
3823 - : BFD_RELOC_SH_COPY64
3824 - : BFD_RELOC_SH_GLOB_DAT64
3825 - : BFD_RELOC_SH_JMP_SLOT64
3826 - : BFD_RELOC_SH_RELATIVE64
3827 - : BFD_RELOC_SH_GOT10BY4
3828 - : BFD_RELOC_SH_GOT10BY8
3829 - : BFD_RELOC_SH_GOTPLT10BY4
3830 - : BFD_RELOC_SH_GOTPLT10BY8
3831 - : BFD_RELOC_SH_GOTPLT32
3832 - : BFD_RELOC_SH_SHMEDIA_CODE
3833 - : BFD_RELOC_SH_IMMU5
3834 - : BFD_RELOC_SH_IMMS6
3835 - : BFD_RELOC_SH_IMMS6BY32
3836 - : BFD_RELOC_SH_IMMU6
3837 - : BFD_RELOC_SH_IMMS10
3838 - : BFD_RELOC_SH_IMMS10BY2
3839 - : BFD_RELOC_SH_IMMS10BY4
3840 - : BFD_RELOC_SH_IMMS10BY8
3841 - : BFD_RELOC_SH_IMMS16
3842 - : BFD_RELOC_SH_IMMU16
3843 - : BFD_RELOC_SH_IMM_LOW16
3844 - : BFD_RELOC_SH_IMM_LOW16_PCREL
3845 - : BFD_RELOC_SH_IMM_MEDLOW16
3846 - : BFD_RELOC_SH_IMM_MEDLOW16_PCREL
3847 - : BFD_RELOC_SH_IMM_MEDHI16
3848 - : BFD_RELOC_SH_IMM_MEDHI16_PCREL
3849 - : BFD_RELOC_SH_IMM_HI16
3850 - : BFD_RELOC_SH_IMM_HI16_PCREL
3851 - : BFD_RELOC_SH_PT_16
3852 - : BFD_RELOC_SH_TLS_GD_32
3853 - : BFD_RELOC_SH_TLS_LD_32
3854 - : BFD_RELOC_SH_TLS_LDO_32
3855 - : BFD_RELOC_SH_TLS_IE_32
3856 - : BFD_RELOC_SH_TLS_LE_32
3857 - : BFD_RELOC_SH_TLS_DTPMOD32
3858 - : BFD_RELOC_SH_TLS_DTPOFF32
3859 - : BFD_RELOC_SH_TLS_TPOFF32
3860 Renesas / SuperH SH relocs. Not all of these appear in object
3863 - : BFD_RELOC_ARC_B22_PCREL
3864 ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two
3865 bits must be zero and are not stored in the instruction. The high
3866 20 bits are installed in bits 26 through 7 of the instruction.
3868 - : BFD_RELOC_ARC_B26
3869 ARC 26 bit absolute branch. The lowest two bits must be zero and
3870 are not stored in the instruction. The high 24 bits are installed
3871 in bits 23 through 0.
3873 - : BFD_RELOC_BFIN_16_IMM
3874 ADI Blackfin 16 bit immediate absolute reloc.
3876 - : BFD_RELOC_BFIN_16_HIGH
3877 ADI Blackfin 16 bit immediate absolute reloc higher 16 bits.
3879 - : BFD_RELOC_BFIN_4_PCREL
3880 ADI Blackfin 'a' part of LSETUP.
3882 - : BFD_RELOC_BFIN_5_PCREL
3885 - : BFD_RELOC_BFIN_16_LOW
3886 ADI Blackfin 16 bit immediate absolute reloc lower 16 bits.
3888 - : BFD_RELOC_BFIN_10_PCREL
3891 - : BFD_RELOC_BFIN_11_PCREL
3892 ADI Blackfin 'b' part of LSETUP.
3894 - : BFD_RELOC_BFIN_12_PCREL_JUMP
3897 - : BFD_RELOC_BFIN_12_PCREL_JUMP_S
3898 ADI Blackfin Short jump, pcrel.
3900 - : BFD_RELOC_BFIN_24_PCREL_CALL_X
3901 ADI Blackfin Call.x not implemented.
3903 - : BFD_RELOC_BFIN_24_PCREL_JUMP_L
3904 ADI Blackfin Long Jump pcrel.
3906 - : BFD_RELOC_BFIN_GOT
3907 ADI Blackfin GOT relocation.
3909 - : BFD_RELOC_BFIN_PLTPC
3910 ADI Blackfin PLTPC relocation.
3912 - : BFD_ARELOC_BFIN_PUSH
3913 ADI Blackfin arithmetic relocation.
3915 - : BFD_ARELOC_BFIN_CONST
3916 ADI Blackfin arithmetic relocation.
3918 - : BFD_ARELOC_BFIN_ADD
3919 ADI Blackfin arithmetic relocation.
3921 - : BFD_ARELOC_BFIN_SUB
3922 ADI Blackfin arithmetic relocation.
3924 - : BFD_ARELOC_BFIN_MULT
3925 ADI Blackfin arithmetic relocation.
3927 - : BFD_ARELOC_BFIN_DIV
3928 ADI Blackfin arithmetic relocation.
3930 - : BFD_ARELOC_BFIN_MOD
3931 ADI Blackfin arithmetic relocation.
3933 - : BFD_ARELOC_BFIN_LSHIFT
3934 ADI Blackfin arithmetic relocation.
3936 - : BFD_ARELOC_BFIN_RSHIFT
3937 ADI Blackfin arithmetic relocation.
3939 - : BFD_ARELOC_BFIN_AND
3940 ADI Blackfin arithmetic relocation.
3942 - : BFD_ARELOC_BFIN_OR
3943 ADI Blackfin arithmetic relocation.
3945 - : BFD_ARELOC_BFIN_XOR
3946 ADI Blackfin arithmetic relocation.
3948 - : BFD_ARELOC_BFIN_LAND
3949 ADI Blackfin arithmetic relocation.
3951 - : BFD_ARELOC_BFIN_LOR
3952 ADI Blackfin arithmetic relocation.
3954 - : BFD_ARELOC_BFIN_LEN
3955 ADI Blackfin arithmetic relocation.
3957 - : BFD_ARELOC_BFIN_NEG
3958 ADI Blackfin arithmetic relocation.
3960 - : BFD_ARELOC_BFIN_COMP
3961 ADI Blackfin arithmetic relocation.
3963 - : BFD_ARELOC_BFIN_PAGE
3964 ADI Blackfin arithmetic relocation.
3966 - : BFD_ARELOC_BFIN_HWPAGE
3967 ADI Blackfin arithmetic relocation.
3969 - : BFD_ARELOC_BFIN_ADDR
3970 ADI Blackfin arithmetic relocation.
3972 - : BFD_RELOC_D10V_10_PCREL_R
3973 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
3974 bits assumed to be 0.
3976 - : BFD_RELOC_D10V_10_PCREL_L
3977 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
3978 bits assumed to be 0. This is the same as the previous reloc
3979 except it is in the left container, i.e., shifted left 15 bits.
3981 - : BFD_RELOC_D10V_18
3982 This is an 18-bit reloc with the right 2 bits assumed to be 0.
3984 - : BFD_RELOC_D10V_18_PCREL
3985 This is an 18-bit reloc with the right 2 bits assumed to be 0.
3987 - : BFD_RELOC_D30V_6
3988 Mitsubishi D30V relocs. This is a 6-bit absolute reloc.
3990 - : BFD_RELOC_D30V_9_PCREL
3991 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
3994 - : BFD_RELOC_D30V_9_PCREL_R
3995 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
3996 be 0. Same as the previous reloc but on the right side of the
3999 - : BFD_RELOC_D30V_15
4000 This is a 12-bit absolute reloc with the right 3 bitsassumed to be
4003 - : BFD_RELOC_D30V_15_PCREL
4004 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4007 - : BFD_RELOC_D30V_15_PCREL_R
4008 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4009 to be 0. Same as the previous reloc but on the right side of the
4012 - : BFD_RELOC_D30V_21
4013 This is an 18-bit absolute reloc with the right 3 bits assumed to
4016 - : BFD_RELOC_D30V_21_PCREL
4017 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4020 - : BFD_RELOC_D30V_21_PCREL_R
4021 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4022 to be 0. Same as the previous reloc but on the right side of the
4025 - : BFD_RELOC_D30V_32
4026 This is a 32-bit absolute reloc.
4028 - : BFD_RELOC_D30V_32_PCREL
4029 This is a 32-bit pc-relative reloc.
4031 - : BFD_RELOC_DLX_HI16_S
4034 - : BFD_RELOC_DLX_LO16
4037 - : BFD_RELOC_DLX_JMP26
4040 - : BFD_RELOC_M32C_HI8
4041 Renesas M16C/M32C Relocations.
4043 - : BFD_RELOC_M32R_24
4044 Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit
4047 - : BFD_RELOC_M32R_10_PCREL
4048 This is a 10-bit pc-relative reloc with the right 2 bits assumed
4051 - : BFD_RELOC_M32R_18_PCREL
4052 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4054 - : BFD_RELOC_M32R_26_PCREL
4055 This is a 26-bit reloc with the right 2 bits assumed to be 0.
4057 - : BFD_RELOC_M32R_HI16_ULO
4058 This is a 16-bit reloc containing the high 16 bits of an address
4059 used when the lower 16 bits are treated as unsigned.
4061 - : BFD_RELOC_M32R_HI16_SLO
4062 This is a 16-bit reloc containing the high 16 bits of an address
4063 used when the lower 16 bits are treated as signed.
4065 - : BFD_RELOC_M32R_LO16
4066 This is a 16-bit reloc containing the lower 16 bits of an address.
4068 - : BFD_RELOC_M32R_SDA16
4069 This is a 16-bit reloc containing the small data area offset for
4070 use in add3, load, and store instructions.
4072 - : BFD_RELOC_M32R_GOT24
4073 - : BFD_RELOC_M32R_26_PLTREL
4074 - : BFD_RELOC_M32R_COPY
4075 - : BFD_RELOC_M32R_GLOB_DAT
4076 - : BFD_RELOC_M32R_JMP_SLOT
4077 - : BFD_RELOC_M32R_RELATIVE
4078 - : BFD_RELOC_M32R_GOTOFF
4079 - : BFD_RELOC_M32R_GOTOFF_HI_ULO
4080 - : BFD_RELOC_M32R_GOTOFF_HI_SLO
4081 - : BFD_RELOC_M32R_GOTOFF_LO
4082 - : BFD_RELOC_M32R_GOTPC24
4083 - : BFD_RELOC_M32R_GOT16_HI_ULO
4084 - : BFD_RELOC_M32R_GOT16_HI_SLO
4085 - : BFD_RELOC_M32R_GOT16_LO
4086 - : BFD_RELOC_M32R_GOTPC_HI_ULO
4087 - : BFD_RELOC_M32R_GOTPC_HI_SLO
4088 - : BFD_RELOC_M32R_GOTPC_LO
4091 - : BFD_RELOC_V850_9_PCREL
4092 This is a 9-bit reloc
4094 - : BFD_RELOC_V850_22_PCREL
4095 This is a 22-bit reloc
4097 - : BFD_RELOC_V850_SDA_16_16_OFFSET
4098 This is a 16 bit offset from the short data area pointer.
4100 - : BFD_RELOC_V850_SDA_15_16_OFFSET
4101 This is a 16 bit offset (of which only 15 bits are used) from the
4102 short data area pointer.
4104 - : BFD_RELOC_V850_ZDA_16_16_OFFSET
4105 This is a 16 bit offset from the zero data area pointer.
4107 - : BFD_RELOC_V850_ZDA_15_16_OFFSET
4108 This is a 16 bit offset (of which only 15 bits are used) from the
4109 zero data area pointer.
4111 - : BFD_RELOC_V850_TDA_6_8_OFFSET
4112 This is an 8 bit offset (of which only 6 bits are used) from the
4113 tiny data area pointer.
4115 - : BFD_RELOC_V850_TDA_7_8_OFFSET
4116 This is an 8bit offset (of which only 7 bits are used) from the
4117 tiny data area pointer.
4119 - : BFD_RELOC_V850_TDA_7_7_OFFSET
4120 This is a 7 bit offset from the tiny data area pointer.
4122 - : BFD_RELOC_V850_TDA_16_16_OFFSET
4123 This is a 16 bit offset from the tiny data area pointer.
4125 - : BFD_RELOC_V850_TDA_4_5_OFFSET
4126 This is a 5 bit offset (of which only 4 bits are used) from the
4127 tiny data area pointer.
4129 - : BFD_RELOC_V850_TDA_4_4_OFFSET
4130 This is a 4 bit offset from the tiny data area pointer.
4132 - : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
4133 This is a 16 bit offset from the short data area pointer, with the
4134 bits placed non-contiguously in the instruction.
4136 - : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
4137 This is a 16 bit offset from the zero data area pointer, with the
4138 bits placed non-contiguously in the instruction.
4140 - : BFD_RELOC_V850_CALLT_6_7_OFFSET
4141 This is a 6 bit offset from the call table base pointer.
4143 - : BFD_RELOC_V850_CALLT_16_16_OFFSET
4144 This is a 16 bit offset from the call table base pointer.
4146 - : BFD_RELOC_V850_LONGCALL
4147 Used for relaxing indirect function calls.
4149 - : BFD_RELOC_V850_LONGJUMP
4150 Used for relaxing indirect jumps.
4152 - : BFD_RELOC_V850_ALIGN
4153 Used to maintain alignment whilst relaxing.
4155 - : BFD_RELOC_V850_LO16_SPLIT_OFFSET
4156 This is a variation of BFD_RELOC_LO16 that can be used in v850e
4159 - : BFD_RELOC_MN10300_32_PCREL
4160 This is a 32bit pcrel reloc for the mn10300, offset by two bytes
4163 - : BFD_RELOC_MN10300_16_PCREL
4164 This is a 16bit pcrel reloc for the mn10300, offset by two bytes
4167 - : BFD_RELOC_TIC30_LDP
4168 This is a 8bit DP reloc for the tms320c30, where the most
4169 significant 8 bits of a 24 bit word are placed into the least
4170 significant 8 bits of the opcode.
4172 - : BFD_RELOC_TIC54X_PARTLS7
4173 This is a 7bit reloc for the tms320c54x, where the least
4174 significant 7 bits of a 16 bit word are placed into the least
4175 significant 7 bits of the opcode.
4177 - : BFD_RELOC_TIC54X_PARTMS9
4178 This is a 9bit DP reloc for the tms320c54x, where the most
4179 significant 9 bits of a 16 bit word are placed into the least
4180 significant 9 bits of the opcode.
4182 - : BFD_RELOC_TIC54X_23
4183 This is an extended address 23-bit reloc for the tms320c54x.
4185 - : BFD_RELOC_TIC54X_16_OF_23
4186 This is a 16-bit reloc for the tms320c54x, where the least
4187 significant 16 bits of a 23-bit extended address are placed into
4190 - : BFD_RELOC_TIC54X_MS7_OF_23
4191 This is a reloc for the tms320c54x, where the most significant 7
4192 bits of a 23-bit extended address are placed into the opcode.
4194 - : BFD_RELOC_FR30_48
4195 This is a 48 bit reloc for the FR30 that stores 32 bits.
4197 - : BFD_RELOC_FR30_20
4198 This is a 32 bit reloc for the FR30 that stores 20 bits split up
4201 - : BFD_RELOC_FR30_6_IN_4
4202 This is a 16 bit reloc for the FR30 that stores a 6 bit word
4205 - : BFD_RELOC_FR30_8_IN_8
4206 This is a 16 bit reloc for the FR30 that stores an 8 bit byte
4209 - : BFD_RELOC_FR30_9_IN_8
4210 This is a 16 bit reloc for the FR30 that stores a 9 bit short
4213 - : BFD_RELOC_FR30_10_IN_8
4214 This is a 16 bit reloc for the FR30 that stores a 10 bit word
4217 - : BFD_RELOC_FR30_9_PCREL
4218 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
4219 short offset into 8 bits.
4221 - : BFD_RELOC_FR30_12_PCREL
4222 This is a 16 bit reloc for the FR30 that stores a 12 bit pc
4223 relative short offset into 11 bits.
4225 - : BFD_RELOC_MCORE_PCREL_IMM8BY4
4226 - : BFD_RELOC_MCORE_PCREL_IMM11BY2
4227 - : BFD_RELOC_MCORE_PCREL_IMM4BY2
4228 - : BFD_RELOC_MCORE_PCREL_32
4229 - : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
4230 - : BFD_RELOC_MCORE_RVA
4231 Motorola Mcore relocations.
4233 - : BFD_RELOC_MMIX_GETA
4234 - : BFD_RELOC_MMIX_GETA_1
4235 - : BFD_RELOC_MMIX_GETA_2
4236 - : BFD_RELOC_MMIX_GETA_3
4237 These are relocations for the GETA instruction.
4239 - : BFD_RELOC_MMIX_CBRANCH
4240 - : BFD_RELOC_MMIX_CBRANCH_J
4241 - : BFD_RELOC_MMIX_CBRANCH_1
4242 - : BFD_RELOC_MMIX_CBRANCH_2
4243 - : BFD_RELOC_MMIX_CBRANCH_3
4244 These are relocations for a conditional branch instruction.
4246 - : BFD_RELOC_MMIX_PUSHJ
4247 - : BFD_RELOC_MMIX_PUSHJ_1
4248 - : BFD_RELOC_MMIX_PUSHJ_2
4249 - : BFD_RELOC_MMIX_PUSHJ_3
4250 - : BFD_RELOC_MMIX_PUSHJ_STUBBABLE
4251 These are relocations for the PUSHJ instruction.
4253 - : BFD_RELOC_MMIX_JMP
4254 - : BFD_RELOC_MMIX_JMP_1
4255 - : BFD_RELOC_MMIX_JMP_2
4256 - : BFD_RELOC_MMIX_JMP_3
4257 These are relocations for the JMP instruction.
4259 - : BFD_RELOC_MMIX_ADDR19
4260 This is a relocation for a relative address as in a GETA
4261 instruction or a branch.
4263 - : BFD_RELOC_MMIX_ADDR27
4264 This is a relocation for a relative address as in a JMP
4267 - : BFD_RELOC_MMIX_REG_OR_BYTE
4268 This is a relocation for an instruction field that may be a general
4269 register or a value 0..255.
4271 - : BFD_RELOC_MMIX_REG
4272 This is a relocation for an instruction field that may be a general
4275 - : BFD_RELOC_MMIX_BASE_PLUS_OFFSET
4276 This is a relocation for two instruction fields holding a register
4277 and an offset, the equivalent of the relocation.
4279 - : BFD_RELOC_MMIX_LOCAL
4280 This relocation is an assertion that the expression is not
4281 allocated as a global register. It does not modify contents.
4283 - : BFD_RELOC_AVR_7_PCREL
4284 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
4285 short offset into 7 bits.
4287 - : BFD_RELOC_AVR_13_PCREL
4288 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
4289 short offset into 12 bits.
4291 - : BFD_RELOC_AVR_16_PM
4292 This is a 16 bit reloc for the AVR that stores 17 bit value
4293 (usually program memory address) into 16 bits.
4295 - : BFD_RELOC_AVR_LO8_LDI
4296 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4297 data memory address) into 8 bit immediate value of LDI insn.
4299 - : BFD_RELOC_AVR_HI8_LDI
4300 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4301 bit of data memory address) into 8 bit immediate value of LDI insn.
4303 - : BFD_RELOC_AVR_HH8_LDI
4304 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4305 high 8 bit of program memory address) into 8 bit immediate value
4308 - : BFD_RELOC_AVR_LO8_LDI_NEG
4309 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4310 (usually data memory address) into 8 bit immediate value of SUBI
4313 - : BFD_RELOC_AVR_HI8_LDI_NEG
4314 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4315 (high 8 bit of data memory address) into 8 bit immediate value of
4318 - : BFD_RELOC_AVR_HH8_LDI_NEG
4319 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4320 (most high 8 bit of program memory address) into 8 bit immediate
4321 value of LDI or SUBI insn.
4323 - : BFD_RELOC_AVR_LO8_LDI_PM
4324 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4325 command address) into 8 bit immediate value of LDI insn.
4327 - : BFD_RELOC_AVR_HI8_LDI_PM
4328 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4329 bit of command address) into 8 bit immediate value of LDI insn.
4331 - : BFD_RELOC_AVR_HH8_LDI_PM
4332 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4333 high 8 bit of command address) into 8 bit immediate value of LDI
4336 - : BFD_RELOC_AVR_LO8_LDI_PM_NEG
4337 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4338 (usually command address) into 8 bit immediate value of SUBI insn.
4340 - : BFD_RELOC_AVR_HI8_LDI_PM_NEG
4341 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4342 (high 8 bit of 16 bit command address) into 8 bit immediate value
4345 - : BFD_RELOC_AVR_HH8_LDI_PM_NEG
4346 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4347 (high 6 bit of 22 bit command address) into 8 bit immediate value
4350 - : BFD_RELOC_AVR_CALL
4351 This is a 32 bit reloc for the AVR that stores 23 bit value into
4354 - : BFD_RELOC_AVR_LDI
4355 This is a 16 bit reloc for the AVR that stores all needed bits for
4356 absolute addressing with ldi with overflow check to linktime
4359 This is a 6 bit reloc for the AVR that stores offset for ldd/std
4362 - : BFD_RELOC_AVR_6_ADIW
4363 This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw
4366 - : BFD_RELOC_390_12
4369 - : BFD_RELOC_390_GOT12
4372 - : BFD_RELOC_390_PLT32
4373 32 bit PC relative PLT address.
4375 - : BFD_RELOC_390_COPY
4376 Copy symbol at runtime.
4378 - : BFD_RELOC_390_GLOB_DAT
4381 - : BFD_RELOC_390_JMP_SLOT
4384 - : BFD_RELOC_390_RELATIVE
4385 Adjust by program base.
4387 - : BFD_RELOC_390_GOTPC
4388 32 bit PC relative offset to GOT.
4390 - : BFD_RELOC_390_GOT16
4393 - : BFD_RELOC_390_PC16DBL
4394 PC relative 16 bit shifted by 1.
4396 - : BFD_RELOC_390_PLT16DBL
4397 16 bit PC rel. PLT shifted by 1.
4399 - : BFD_RELOC_390_PC32DBL
4400 PC relative 32 bit shifted by 1.
4402 - : BFD_RELOC_390_PLT32DBL
4403 32 bit PC rel. PLT shifted by 1.
4405 - : BFD_RELOC_390_GOTPCDBL
4406 32 bit PC rel. GOT shifted by 1.
4408 - : BFD_RELOC_390_GOT64
4411 - : BFD_RELOC_390_PLT64
4412 64 bit PC relative PLT address.
4414 - : BFD_RELOC_390_GOTENT
4415 32 bit rel. offset to GOT entry.
4417 - : BFD_RELOC_390_GOTOFF64
4418 64 bit offset to GOT.
4420 - : BFD_RELOC_390_GOTPLT12
4421 12-bit offset to symbol-entry within GOT, with PLT handling.
4423 - : BFD_RELOC_390_GOTPLT16
4424 16-bit offset to symbol-entry within GOT, with PLT handling.
4426 - : BFD_RELOC_390_GOTPLT32
4427 32-bit offset to symbol-entry within GOT, with PLT handling.
4429 - : BFD_RELOC_390_GOTPLT64
4430 64-bit offset to symbol-entry within GOT, with PLT handling.
4432 - : BFD_RELOC_390_GOTPLTENT
4433 32-bit rel. offset to symbol-entry within GOT, with PLT handling.
4435 - : BFD_RELOC_390_PLTOFF16
4436 16-bit rel. offset from the GOT to a PLT entry.
4438 - : BFD_RELOC_390_PLTOFF32
4439 32-bit rel. offset from the GOT to a PLT entry.
4441 - : BFD_RELOC_390_PLTOFF64
4442 64-bit rel. offset from the GOT to a PLT entry.
4444 - : BFD_RELOC_390_TLS_LOAD
4445 - : BFD_RELOC_390_TLS_GDCALL
4446 - : BFD_RELOC_390_TLS_LDCALL
4447 - : BFD_RELOC_390_TLS_GD32
4448 - : BFD_RELOC_390_TLS_GD64
4449 - : BFD_RELOC_390_TLS_GOTIE12
4450 - : BFD_RELOC_390_TLS_GOTIE32
4451 - : BFD_RELOC_390_TLS_GOTIE64
4452 - : BFD_RELOC_390_TLS_LDM32
4453 - : BFD_RELOC_390_TLS_LDM64
4454 - : BFD_RELOC_390_TLS_IE32
4455 - : BFD_RELOC_390_TLS_IE64
4456 - : BFD_RELOC_390_TLS_IEENT
4457 - : BFD_RELOC_390_TLS_LE32
4458 - : BFD_RELOC_390_TLS_LE64
4459 - : BFD_RELOC_390_TLS_LDO32
4460 - : BFD_RELOC_390_TLS_LDO64
4461 - : BFD_RELOC_390_TLS_DTPMOD
4462 - : BFD_RELOC_390_TLS_DTPOFF
4463 - : BFD_RELOC_390_TLS_TPOFF
4464 s390 tls relocations.
4466 - : BFD_RELOC_390_20
4467 - : BFD_RELOC_390_GOT20
4468 - : BFD_RELOC_390_GOTPLT20
4469 - : BFD_RELOC_390_TLS_GOTIE20
4470 Long displacement extension.
4472 - : BFD_RELOC_IP2K_FR9
4473 Scenix IP2K - 9-bit register number / data address
4475 - : BFD_RELOC_IP2K_BANK
4476 Scenix IP2K - 4-bit register/data bank number
4478 - : BFD_RELOC_IP2K_ADDR16CJP
4479 Scenix IP2K - low 13 bits of instruction word address
4481 - : BFD_RELOC_IP2K_PAGE3
4482 Scenix IP2K - high 3 bits of instruction word address
4484 - : BFD_RELOC_IP2K_LO8DATA
4485 - : BFD_RELOC_IP2K_HI8DATA
4486 - : BFD_RELOC_IP2K_EX8DATA
4487 Scenix IP2K - ext/low/high 8 bits of data address
4489 - : BFD_RELOC_IP2K_LO8INSN
4490 - : BFD_RELOC_IP2K_HI8INSN
4491 Scenix IP2K - low/high 8 bits of instruction word address
4493 - : BFD_RELOC_IP2K_PC_SKIP
4494 Scenix IP2K - even/odd PC modifier to modify snb pcl.0
4496 - : BFD_RELOC_IP2K_TEXT
4497 Scenix IP2K - 16 bit word address in text section.
4499 - : BFD_RELOC_IP2K_FR_OFFSET
4500 Scenix IP2K - 7-bit sp or dp offset
4502 - : BFD_RELOC_VPE4KMATH_DATA
4503 - : BFD_RELOC_VPE4KMATH_INSN
4504 Scenix VPE4K coprocessor - data/insn-space addressing
4506 - : BFD_RELOC_VTABLE_INHERIT
4507 - : BFD_RELOC_VTABLE_ENTRY
4508 These two relocations are used by the linker to determine which of
4509 the entries in a C++ virtual function table are actually used.
4510 When the -gc-sections option is given, the linker will zero out
4511 the entries that are not used, so that the code for those
4512 functions need not be included in the output.
4514 VTABLE_INHERIT is a zero-space relocation used to describe to the
4515 linker the inheritance tree of a C++ virtual function table. The
4516 relocation's symbol should be the parent class' vtable, and the
4517 relocation should be located at the child vtable.
4519 VTABLE_ENTRY is a zero-space relocation that describes the use of a
4520 virtual function table entry. The reloc's symbol should refer to
4521 the table of the class mentioned in the code. Off of that base,
4522 an offset describes the entry that is being used. For Rela hosts,
4523 this offset is stored in the reloc's addend. For Rel hosts, we
4524 are forced to put this offset in the reloc's section offset.
4526 - : BFD_RELOC_IA64_IMM14
4527 - : BFD_RELOC_IA64_IMM22
4528 - : BFD_RELOC_IA64_IMM64
4529 - : BFD_RELOC_IA64_DIR32MSB
4530 - : BFD_RELOC_IA64_DIR32LSB
4531 - : BFD_RELOC_IA64_DIR64MSB
4532 - : BFD_RELOC_IA64_DIR64LSB
4533 - : BFD_RELOC_IA64_GPREL22
4534 - : BFD_RELOC_IA64_GPREL64I
4535 - : BFD_RELOC_IA64_GPREL32MSB
4536 - : BFD_RELOC_IA64_GPREL32LSB
4537 - : BFD_RELOC_IA64_GPREL64MSB
4538 - : BFD_RELOC_IA64_GPREL64LSB
4539 - : BFD_RELOC_IA64_LTOFF22
4540 - : BFD_RELOC_IA64_LTOFF64I
4541 - : BFD_RELOC_IA64_PLTOFF22
4542 - : BFD_RELOC_IA64_PLTOFF64I
4543 - : BFD_RELOC_IA64_PLTOFF64MSB
4544 - : BFD_RELOC_IA64_PLTOFF64LSB
4545 - : BFD_RELOC_IA64_FPTR64I
4546 - : BFD_RELOC_IA64_FPTR32MSB
4547 - : BFD_RELOC_IA64_FPTR32LSB
4548 - : BFD_RELOC_IA64_FPTR64MSB
4549 - : BFD_RELOC_IA64_FPTR64LSB
4550 - : BFD_RELOC_IA64_PCREL21B
4551 - : BFD_RELOC_IA64_PCREL21BI
4552 - : BFD_RELOC_IA64_PCREL21M
4553 - : BFD_RELOC_IA64_PCREL21F
4554 - : BFD_RELOC_IA64_PCREL22
4555 - : BFD_RELOC_IA64_PCREL60B
4556 - : BFD_RELOC_IA64_PCREL64I
4557 - : BFD_RELOC_IA64_PCREL32MSB
4558 - : BFD_RELOC_IA64_PCREL32LSB
4559 - : BFD_RELOC_IA64_PCREL64MSB
4560 - : BFD_RELOC_IA64_PCREL64LSB
4561 - : BFD_RELOC_IA64_LTOFF_FPTR22
4562 - : BFD_RELOC_IA64_LTOFF_FPTR64I
4563 - : BFD_RELOC_IA64_LTOFF_FPTR32MSB
4564 - : BFD_RELOC_IA64_LTOFF_FPTR32LSB
4565 - : BFD_RELOC_IA64_LTOFF_FPTR64MSB
4566 - : BFD_RELOC_IA64_LTOFF_FPTR64LSB
4567 - : BFD_RELOC_IA64_SEGREL32MSB
4568 - : BFD_RELOC_IA64_SEGREL32LSB
4569 - : BFD_RELOC_IA64_SEGREL64MSB
4570 - : BFD_RELOC_IA64_SEGREL64LSB
4571 - : BFD_RELOC_IA64_SECREL32MSB
4572 - : BFD_RELOC_IA64_SECREL32LSB
4573 - : BFD_RELOC_IA64_SECREL64MSB
4574 - : BFD_RELOC_IA64_SECREL64LSB
4575 - : BFD_RELOC_IA64_REL32MSB
4576 - : BFD_RELOC_IA64_REL32LSB
4577 - : BFD_RELOC_IA64_REL64MSB
4578 - : BFD_RELOC_IA64_REL64LSB
4579 - : BFD_RELOC_IA64_LTV32MSB
4580 - : BFD_RELOC_IA64_LTV32LSB
4581 - : BFD_RELOC_IA64_LTV64MSB
4582 - : BFD_RELOC_IA64_LTV64LSB
4583 - : BFD_RELOC_IA64_IPLTMSB
4584 - : BFD_RELOC_IA64_IPLTLSB
4585 - : BFD_RELOC_IA64_COPY
4586 - : BFD_RELOC_IA64_LTOFF22X
4587 - : BFD_RELOC_IA64_LDXMOV
4588 - : BFD_RELOC_IA64_TPREL14
4589 - : BFD_RELOC_IA64_TPREL22
4590 - : BFD_RELOC_IA64_TPREL64I
4591 - : BFD_RELOC_IA64_TPREL64MSB
4592 - : BFD_RELOC_IA64_TPREL64LSB
4593 - : BFD_RELOC_IA64_LTOFF_TPREL22
4594 - : BFD_RELOC_IA64_DTPMOD64MSB
4595 - : BFD_RELOC_IA64_DTPMOD64LSB
4596 - : BFD_RELOC_IA64_LTOFF_DTPMOD22
4597 - : BFD_RELOC_IA64_DTPREL14
4598 - : BFD_RELOC_IA64_DTPREL22
4599 - : BFD_RELOC_IA64_DTPREL64I
4600 - : BFD_RELOC_IA64_DTPREL32MSB
4601 - : BFD_RELOC_IA64_DTPREL32LSB
4602 - : BFD_RELOC_IA64_DTPREL64MSB
4603 - : BFD_RELOC_IA64_DTPREL64LSB
4604 - : BFD_RELOC_IA64_LTOFF_DTPREL22
4605 Intel IA64 Relocations.
4607 - : BFD_RELOC_M68HC11_HI8
4608 Motorola 68HC11 reloc. This is the 8 bit high part of an absolute
4611 - : BFD_RELOC_M68HC11_LO8
4612 Motorola 68HC11 reloc. This is the 8 bit low part of an absolute
4615 - : BFD_RELOC_M68HC11_3B
4616 Motorola 68HC11 reloc. This is the 3 bit of a value.
4618 - : BFD_RELOC_M68HC11_RL_JUMP
4619 Motorola 68HC11 reloc. This reloc marks the beginning of a
4620 jump/call instruction. It is used for linker relaxation to
4621 correctly identify beginning of instruction and change some
4622 branches to use PC-relative addressing mode.
4624 - : BFD_RELOC_M68HC11_RL_GROUP
4625 Motorola 68HC11 reloc. This reloc marks a group of several
4626 instructions that gcc generates and for which the linker
4627 relaxation pass can modify and/or remove some of them.
4629 - : BFD_RELOC_M68HC11_LO16
4630 Motorola 68HC11 reloc. This is the 16-bit lower part of an
4631 address. It is used for 'call' instruction to specify the symbol
4632 address without any special transformation (due to memory bank
4635 - : BFD_RELOC_M68HC11_PAGE
4636 Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the
4637 page number of an address. It is used by 'call' instruction to
4638 specify the page number of the symbol.
4640 - : BFD_RELOC_M68HC11_24
4641 Motorola 68HC11 reloc. This is a 24-bit reloc that represents the
4642 address with a 16-bit value and a 8-bit page number. The symbol
4643 address is transformed to follow the 16K memory bank of 68HC12
4644 (seen as mapped in the window).
4646 - : BFD_RELOC_M68HC12_5B
4647 Motorola 68HC12 reloc. This is the 5 bits of a value.
4649 - : BFD_RELOC_16C_NUM08
4650 - : BFD_RELOC_16C_NUM08_C
4651 - : BFD_RELOC_16C_NUM16
4652 - : BFD_RELOC_16C_NUM16_C
4653 - : BFD_RELOC_16C_NUM32
4654 - : BFD_RELOC_16C_NUM32_C
4655 - : BFD_RELOC_16C_DISP04
4656 - : BFD_RELOC_16C_DISP04_C
4657 - : BFD_RELOC_16C_DISP08
4658 - : BFD_RELOC_16C_DISP08_C
4659 - : BFD_RELOC_16C_DISP16
4660 - : BFD_RELOC_16C_DISP16_C
4661 - : BFD_RELOC_16C_DISP24
4662 - : BFD_RELOC_16C_DISP24_C
4663 - : BFD_RELOC_16C_DISP24a
4664 - : BFD_RELOC_16C_DISP24a_C
4665 - : BFD_RELOC_16C_REG04
4666 - : BFD_RELOC_16C_REG04_C
4667 - : BFD_RELOC_16C_REG04a
4668 - : BFD_RELOC_16C_REG04a_C
4669 - : BFD_RELOC_16C_REG14
4670 - : BFD_RELOC_16C_REG14_C
4671 - : BFD_RELOC_16C_REG16
4672 - : BFD_RELOC_16C_REG16_C
4673 - : BFD_RELOC_16C_REG20
4674 - : BFD_RELOC_16C_REG20_C
4675 - : BFD_RELOC_16C_ABS20
4676 - : BFD_RELOC_16C_ABS20_C
4677 - : BFD_RELOC_16C_ABS24
4678 - : BFD_RELOC_16C_ABS24_C
4679 - : BFD_RELOC_16C_IMM04
4680 - : BFD_RELOC_16C_IMM04_C
4681 - : BFD_RELOC_16C_IMM16
4682 - : BFD_RELOC_16C_IMM16_C
4683 - : BFD_RELOC_16C_IMM20
4684 - : BFD_RELOC_16C_IMM20_C
4685 - : BFD_RELOC_16C_IMM24
4686 - : BFD_RELOC_16C_IMM24_C
4687 - : BFD_RELOC_16C_IMM32
4688 - : BFD_RELOC_16C_IMM32_C
4689 NS CR16C Relocations.
4691 - : BFD_RELOC_CRX_REL4
4692 - : BFD_RELOC_CRX_REL8
4693 - : BFD_RELOC_CRX_REL8_CMP
4694 - : BFD_RELOC_CRX_REL16
4695 - : BFD_RELOC_CRX_REL24
4696 - : BFD_RELOC_CRX_REL32
4697 - : BFD_RELOC_CRX_REGREL12
4698 - : BFD_RELOC_CRX_REGREL22
4699 - : BFD_RELOC_CRX_REGREL28
4700 - : BFD_RELOC_CRX_REGREL32
4701 - : BFD_RELOC_CRX_ABS16
4702 - : BFD_RELOC_CRX_ABS32
4703 - : BFD_RELOC_CRX_NUM8
4704 - : BFD_RELOC_CRX_NUM16
4705 - : BFD_RELOC_CRX_NUM32
4706 - : BFD_RELOC_CRX_IMM16
4707 - : BFD_RELOC_CRX_IMM32
4708 - : BFD_RELOC_CRX_SWITCH8
4709 - : BFD_RELOC_CRX_SWITCH16
4710 - : BFD_RELOC_CRX_SWITCH32
4713 - : BFD_RELOC_CRIS_BDISP8
4714 - : BFD_RELOC_CRIS_UNSIGNED_5
4715 - : BFD_RELOC_CRIS_SIGNED_6
4716 - : BFD_RELOC_CRIS_UNSIGNED_6
4717 - : BFD_RELOC_CRIS_SIGNED_8
4718 - : BFD_RELOC_CRIS_UNSIGNED_8
4719 - : BFD_RELOC_CRIS_SIGNED_16
4720 - : BFD_RELOC_CRIS_UNSIGNED_16
4721 - : BFD_RELOC_CRIS_LAPCQ_OFFSET
4722 - : BFD_RELOC_CRIS_UNSIGNED_4
4723 These relocs are only used within the CRIS assembler. They are not
4724 (at present) written to any object files.
4726 - : BFD_RELOC_CRIS_COPY
4727 - : BFD_RELOC_CRIS_GLOB_DAT
4728 - : BFD_RELOC_CRIS_JUMP_SLOT
4729 - : BFD_RELOC_CRIS_RELATIVE
4730 Relocs used in ELF shared libraries for CRIS.
4732 - : BFD_RELOC_CRIS_32_GOT
4733 32-bit offset to symbol-entry within GOT.
4735 - : BFD_RELOC_CRIS_16_GOT
4736 16-bit offset to symbol-entry within GOT.
4738 - : BFD_RELOC_CRIS_32_GOTPLT
4739 32-bit offset to symbol-entry within GOT, with PLT handling.
4741 - : BFD_RELOC_CRIS_16_GOTPLT
4742 16-bit offset to symbol-entry within GOT, with PLT handling.
4744 - : BFD_RELOC_CRIS_32_GOTREL
4745 32-bit offset to symbol, relative to GOT.
4747 - : BFD_RELOC_CRIS_32_PLT_GOTREL
4748 32-bit offset to symbol with PLT entry, relative to GOT.
4750 - : BFD_RELOC_CRIS_32_PLT_PCREL
4751 32-bit offset to symbol with PLT entry, relative to this
4754 - : BFD_RELOC_860_COPY
4755 - : BFD_RELOC_860_GLOB_DAT
4756 - : BFD_RELOC_860_JUMP_SLOT
4757 - : BFD_RELOC_860_RELATIVE
4758 - : BFD_RELOC_860_PC26
4759 - : BFD_RELOC_860_PLT26
4760 - : BFD_RELOC_860_PC16
4761 - : BFD_RELOC_860_LOW0
4762 - : BFD_RELOC_860_SPLIT0
4763 - : BFD_RELOC_860_LOW1
4764 - : BFD_RELOC_860_SPLIT1
4765 - : BFD_RELOC_860_LOW2
4766 - : BFD_RELOC_860_SPLIT2
4767 - : BFD_RELOC_860_LOW3
4768 - : BFD_RELOC_860_LOGOT0
4769 - : BFD_RELOC_860_SPGOT0
4770 - : BFD_RELOC_860_LOGOT1
4771 - : BFD_RELOC_860_SPGOT1
4772 - : BFD_RELOC_860_LOGOTOFF0
4773 - : BFD_RELOC_860_SPGOTOFF0
4774 - : BFD_RELOC_860_LOGOTOFF1
4775 - : BFD_RELOC_860_SPGOTOFF1
4776 - : BFD_RELOC_860_LOGOTOFF2
4777 - : BFD_RELOC_860_LOGOTOFF3
4778 - : BFD_RELOC_860_LOPC
4779 - : BFD_RELOC_860_HIGHADJ
4780 - : BFD_RELOC_860_HAGOT
4781 - : BFD_RELOC_860_HAGOTOFF
4782 - : BFD_RELOC_860_HAPC
4783 - : BFD_RELOC_860_HIGH
4784 - : BFD_RELOC_860_HIGOT
4785 - : BFD_RELOC_860_HIGOTOFF
4786 Intel i860 Relocations.
4788 - : BFD_RELOC_OPENRISC_ABS_26
4789 - : BFD_RELOC_OPENRISC_REL_26
4790 OpenRISC Relocations.
4792 - : BFD_RELOC_H8_DIR16A8
4793 - : BFD_RELOC_H8_DIR16R8
4794 - : BFD_RELOC_H8_DIR24A8
4795 - : BFD_RELOC_H8_DIR24R8
4796 - : BFD_RELOC_H8_DIR32A16
4799 - : BFD_RELOC_XSTORMY16_REL_12
4800 - : BFD_RELOC_XSTORMY16_12
4801 - : BFD_RELOC_XSTORMY16_24
4802 - : BFD_RELOC_XSTORMY16_FPTR16
4803 Sony Xstormy16 Relocations.
4805 - : BFD_RELOC_VAX_GLOB_DAT
4806 - : BFD_RELOC_VAX_JMP_SLOT
4807 - : BFD_RELOC_VAX_RELATIVE
4808 Relocations used by VAX ELF.
4810 - : BFD_RELOC_MT_PC16
4811 Morpho MT - 16 bit immediate relocation.
4813 - : BFD_RELOC_MT_HI16
4814 Morpho MT - Hi 16 bits of an address.
4816 - : BFD_RELOC_MT_LO16
4817 Morpho MT - Low 16 bits of an address.
4819 - : BFD_RELOC_MT_GNU_VTINHERIT
4820 Morpho MT - Used to tell the linker which vtable entries are used.
4822 - : BFD_RELOC_MT_GNU_VTENTRY
4823 Morpho MT - Used to tell the linker which vtable entries are used.
4825 - : BFD_RELOC_MT_PCINSN8
4826 Morpho MT - 8 bit immediate relocation.
4828 - : BFD_RELOC_MSP430_10_PCREL
4829 - : BFD_RELOC_MSP430_16_PCREL
4830 - : BFD_RELOC_MSP430_16
4831 - : BFD_RELOC_MSP430_16_PCREL_BYTE
4832 - : BFD_RELOC_MSP430_16_BYTE
4833 - : BFD_RELOC_MSP430_2X_PCREL
4834 - : BFD_RELOC_MSP430_RL_PCREL
4835 msp430 specific relocation codes
4837 - : BFD_RELOC_IQ2000_OFFSET_16
4838 - : BFD_RELOC_IQ2000_OFFSET_21
4839 - : BFD_RELOC_IQ2000_UHI16
4842 - : BFD_RELOC_XTENSA_RTLD
4843 Special Xtensa relocation used only by PLT entries in ELF shared
4844 objects to indicate that the runtime linker should set the value
4845 to one of its own internal functions or data structures.
4847 - : BFD_RELOC_XTENSA_GLOB_DAT
4848 - : BFD_RELOC_XTENSA_JMP_SLOT
4849 - : BFD_RELOC_XTENSA_RELATIVE
4850 Xtensa relocations for ELF shared objects.
4852 - : BFD_RELOC_XTENSA_PLT
4853 Xtensa relocation used in ELF object files for symbols that may
4854 require PLT entries. Otherwise, this is just a generic 32-bit
4857 - : BFD_RELOC_XTENSA_DIFF8
4858 - : BFD_RELOC_XTENSA_DIFF16
4859 - : BFD_RELOC_XTENSA_DIFF32
4860 Xtensa relocations to mark the difference of two local symbols.
4861 These are only needed to support linker relaxation and can be
4862 ignored when not relaxing. The field is set to the value of the
4863 difference assuming no relaxation. The relocation encodes the
4864 position of the first symbol so the linker can determine whether
4865 to adjust the field value.
4867 - : BFD_RELOC_XTENSA_SLOT0_OP
4868 - : BFD_RELOC_XTENSA_SLOT1_OP
4869 - : BFD_RELOC_XTENSA_SLOT2_OP
4870 - : BFD_RELOC_XTENSA_SLOT3_OP
4871 - : BFD_RELOC_XTENSA_SLOT4_OP
4872 - : BFD_RELOC_XTENSA_SLOT5_OP
4873 - : BFD_RELOC_XTENSA_SLOT6_OP
4874 - : BFD_RELOC_XTENSA_SLOT7_OP
4875 - : BFD_RELOC_XTENSA_SLOT8_OP
4876 - : BFD_RELOC_XTENSA_SLOT9_OP
4877 - : BFD_RELOC_XTENSA_SLOT10_OP
4878 - : BFD_RELOC_XTENSA_SLOT11_OP
4879 - : BFD_RELOC_XTENSA_SLOT12_OP
4880 - : BFD_RELOC_XTENSA_SLOT13_OP
4881 - : BFD_RELOC_XTENSA_SLOT14_OP
4882 Generic Xtensa relocations for instruction operands. Only the slot
4883 number is encoded in the relocation. The relocation applies to the
4884 last PC-relative immediate operand, or if there are no PC-relative
4885 immediates, to the last immediate operand.
4887 - : BFD_RELOC_XTENSA_SLOT0_ALT
4888 - : BFD_RELOC_XTENSA_SLOT1_ALT
4889 - : BFD_RELOC_XTENSA_SLOT2_ALT
4890 - : BFD_RELOC_XTENSA_SLOT3_ALT
4891 - : BFD_RELOC_XTENSA_SLOT4_ALT
4892 - : BFD_RELOC_XTENSA_SLOT5_ALT
4893 - : BFD_RELOC_XTENSA_SLOT6_ALT
4894 - : BFD_RELOC_XTENSA_SLOT7_ALT
4895 - : BFD_RELOC_XTENSA_SLOT8_ALT
4896 - : BFD_RELOC_XTENSA_SLOT9_ALT
4897 - : BFD_RELOC_XTENSA_SLOT10_ALT
4898 - : BFD_RELOC_XTENSA_SLOT11_ALT
4899 - : BFD_RELOC_XTENSA_SLOT12_ALT
4900 - : BFD_RELOC_XTENSA_SLOT13_ALT
4901 - : BFD_RELOC_XTENSA_SLOT14_ALT
4902 Alternate Xtensa relocations. Only the slot is encoded in the
4903 relocation. The meaning of these relocations is opcode-specific.
4905 - : BFD_RELOC_XTENSA_OP0
4906 - : BFD_RELOC_XTENSA_OP1
4907 - : BFD_RELOC_XTENSA_OP2
4908 Xtensa relocations for backward compatibility. These have all been
4909 replaced by BFD_RELOC_XTENSA_SLOT0_OP.
4911 - : BFD_RELOC_XTENSA_ASM_EXPAND
4912 Xtensa relocation to mark that the assembler expanded the
4913 instructions from an original target. The expansion size is
4914 encoded in the reloc size.
4916 - : BFD_RELOC_XTENSA_ASM_SIMPLIFY
4917 Xtensa relocation to mark that the linker should simplify
4918 assembler-expanded instructions. This is commonly used internally
4919 by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND.
4921 - : BFD_RELOC_Z80_DISP8
4922 8 bit signed offset in (ix+d) or (iy+d).
4924 - : BFD_RELOC_Z8K_DISP7
4927 - : BFD_RELOC_Z8K_CALLR
4930 - : BFD_RELOC_Z8K_IMM4L
4934 typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
4936 `bfd_reloc_type_lookup'
4937 .......................
4940 reloc_howto_type *bfd_reloc_type_lookup
4941 (bfd *abfd, bfd_reloc_code_real_type code);
4943 Return a pointer to a howto structure which, when invoked, will perform
4944 the relocation CODE on data from the architecture noted.
4946 `bfd_default_reloc_type_lookup'
4947 ...............................
4950 reloc_howto_type *bfd_default_reloc_type_lookup
4951 (bfd *abfd, bfd_reloc_code_real_type code);
4953 Provides a default relocation lookup routine for any architecture.
4955 `bfd_get_reloc_code_name'
4956 .........................
4959 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
4961 Provides a printable name for the supplied relocation code. Useful
4962 mainly for printing error messages.
4964 `bfd_generic_relax_section'
4965 ...........................
4968 bfd_boolean bfd_generic_relax_section
4971 struct bfd_link_info *,
4974 Provides default handling for relaxing for back ends which don't do
4977 `bfd_generic_gc_sections'
4978 .........................
4981 bfd_boolean bfd_generic_gc_sections
4982 (bfd *, struct bfd_link_info *);
4984 Provides default handling for relaxing for back ends which don't do
4985 section gc - i.e., does nothing.
4987 `bfd_generic_merge_sections'
4988 ............................
4991 bfd_boolean bfd_generic_merge_sections
4992 (bfd *, struct bfd_link_info *);
4994 Provides default handling for SEC_MERGE section merging for back ends
4995 which don't have SEC_MERGE support - i.e., does nothing.
4997 `bfd_generic_get_relocated_section_contents'
4998 ............................................
5001 bfd_byte *bfd_generic_get_relocated_section_contents
5003 struct bfd_link_info *link_info,
5004 struct bfd_link_order *link_order,
5006 bfd_boolean relocatable,
5009 Provides default handling of relocation effort for back ends which
5010 can't be bothered to do it efficiently.
5013 File: bfd.info, Node: Core Files, Next: Targets, Prev: Relocations, Up: BFD front end
5022 These are functions pertaining to core files.
5024 `bfd_core_file_failing_command'
5025 ...............................
5028 const char *bfd_core_file_failing_command (bfd *abfd);
5030 Return a read-only string explaining which program was running when it
5031 failed and produced the core file ABFD.
5033 `bfd_core_file_failing_signal'
5034 ..............................
5037 int bfd_core_file_failing_signal (bfd *abfd);
5039 Returns the signal number which caused the core dump which generated
5040 the file the BFD ABFD is attached to.
5042 `core_file_matches_executable_p'
5043 ................................
5046 bfd_boolean core_file_matches_executable_p
5047 (bfd *core_bfd, bfd *exec_bfd);
5049 Return `TRUE' if the core file attached to CORE_BFD was generated by a
5050 run of the executable file attached to EXEC_BFD, `FALSE' otherwise.
5052 `generic_core_file_matches_executable_p'
5053 ........................................
5056 bfd_boolean generic_core_file_matches_executable_p
5057 (bfd *core_bfd, bfd *exec_bfd);
5059 Return TRUE if the core file attached to CORE_BFD was generated by a
5060 run of the executable file attached to EXEC_BFD. The match is based on
5061 executable basenames only.
5063 Note: When not able to determine the core file failing command or
5064 the executable name, we still return TRUE even though we're not sure
5065 that core file and executable match. This is to avoid generating a
5066 false warning in situations where we really don't know whether they
5070 File: bfd.info, Node: Targets, Next: Architectures, Prev: Core Files, Up: BFD front end
5076 Each port of BFD to a different machine requires the creation of a
5077 target back end. All the back end provides to the root part of BFD is a
5078 structure containing pointers to functions which perform certain low
5079 level operations on files. BFD translates the applications's requests
5080 through a pointer into calls to the back end routines.
5082 When a file is opened with `bfd_openr', its format and target are
5083 unknown. BFD uses various mechanisms to determine how to interpret the
5084 file. The operations performed are:
5086 * Create a BFD by calling the internal routine `_bfd_new_bfd', then
5087 call `bfd_find_target' with the target string supplied to
5088 `bfd_openr' and the new BFD pointer.
5090 * If a null target string was provided to `bfd_find_target', look up
5091 the environment variable `GNUTARGET' and use that as the target
5094 * If the target string is still `NULL', or the target string is
5095 `default', then use the first item in the target vector as the
5096 target type, and set `target_defaulted' in the BFD to cause
5097 `bfd_check_format' to loop through all the targets. *Note
5098 bfd_target::. *Note Formats::.
5100 * Otherwise, inspect the elements in the target vector one by one,
5101 until a match on target name is found. When found, use it.
5103 * Otherwise return the error `bfd_error_invalid_target' to
5106 * `bfd_openr' attempts to open the file using `bfd_open_file', and
5108 Once the BFD has been opened and the target selected, the file
5109 format may be determined. This is done by calling `bfd_check_format' on
5110 the BFD with a suggested format. If `target_defaulted' has been set,
5111 each possible target type is tried to see if it recognizes the
5112 specified format. `bfd_check_format' returns `TRUE' when the caller
5120 File: bfd.info, Node: bfd_target, Prev: Targets, Up: Targets
5126 This structure contains everything that BFD knows about a target. It
5127 includes things like its byte order, name, and which routines to call
5128 to do various operations.
5130 Every BFD points to a target structure with its `xvec' member.
5132 The macros below are used to dispatch to functions through the
5133 `bfd_target' vector. They are used in a number of macros further down
5134 in `bfd.h', and are also used when calling various routines by hand
5135 inside the BFD implementation. The ARGLIST argument must be
5136 parenthesized; it contains all the arguments to the called function.
5138 They make the documentation (more) unpleasant to read, so if someone
5139 wants to fix this and not break the above, please do.
5140 #define BFD_SEND(bfd, message, arglist) \
5141 ((*((bfd)->xvec->message)) arglist)
5143 #ifdef DEBUG_BFD_SEND
5145 #define BFD_SEND(bfd, message, arglist) \
5146 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5147 ((*((bfd)->xvec->message)) arglist) : \
5148 (bfd_assert (__FILE__,__LINE__), NULL))
5150 For operations which index on the BFD format:
5151 #define BFD_SEND_FMT(bfd, message, arglist) \
5152 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)
5154 #ifdef DEBUG_BFD_SEND
5156 #define BFD_SEND_FMT(bfd, message, arglist) \
5157 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5158 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \
5159 (bfd_assert (__FILE__,__LINE__), NULL))
5161 This is the structure which defines the type of BFD this is. The
5162 `xvec' member of the struct `bfd' itself points here. Each module that
5163 implements access to a different target under BFD, defines one of these.
5165 FIXME, these names should be rationalised with the names of the
5166 entry points which call them. Too bad we can't have one macro to define
5170 bfd_target_unknown_flavour,
5171 bfd_target_aout_flavour,
5172 bfd_target_coff_flavour,
5173 bfd_target_ecoff_flavour,
5174 bfd_target_xcoff_flavour,
5175 bfd_target_elf_flavour,
5176 bfd_target_ieee_flavour,
5177 bfd_target_nlm_flavour,
5178 bfd_target_oasys_flavour,
5179 bfd_target_tekhex_flavour,
5180 bfd_target_srec_flavour,
5181 bfd_target_ihex_flavour,
5182 bfd_target_som_flavour,
5183 bfd_target_os9k_flavour,
5184 bfd_target_versados_flavour,
5185 bfd_target_msdos_flavour,
5186 bfd_target_ovax_flavour,
5187 bfd_target_evax_flavour,
5188 bfd_target_mmo_flavour,
5189 bfd_target_mach_o_flavour,
5190 bfd_target_pef_flavour,
5191 bfd_target_pef_xlib_flavour,
5192 bfd_target_sym_flavour
5195 enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };
5197 /* Forward declaration. */
5198 typedef struct bfd_link_info _bfd_link_info;
5200 typedef struct bfd_target
5202 /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */
5205 /* The "flavour" of a back end is a general indication about
5206 the contents of a file. */
5207 enum bfd_flavour flavour;
5209 /* The order of bytes within the data area of a file. */
5210 enum bfd_endian byteorder;
5212 /* The order of bytes within the header parts of a file. */
5213 enum bfd_endian header_byteorder;
5215 /* A mask of all the flags which an executable may have set -
5216 from the set `BFD_NO_FLAGS', `HAS_RELOC', ...`D_PAGED'. */
5217 flagword object_flags;
5219 /* A mask of all the flags which a section may have set - from
5220 the set `SEC_NO_FLAGS', `SEC_ALLOC', ...`SET_NEVER_LOAD'. */
5221 flagword section_flags;
5223 /* The character normally found at the front of a symbol.
5224 (if any), perhaps `_'. */
5225 char symbol_leading_char;
5227 /* The pad character for file names within an archive header. */
5230 /* The maximum number of characters in an archive header. */
5231 unsigned short ar_max_namelen;
5233 /* Entries for byte swapping for data. These are different from the
5234 other entry points, since they don't take a BFD as the first argument.
5235 Certain other handlers could do the same. */
5236 bfd_uint64_t (*bfd_getx64) (const void *);
5237 bfd_int64_t (*bfd_getx_signed_64) (const void *);
5238 void (*bfd_putx64) (bfd_uint64_t, void *);
5239 bfd_vma (*bfd_getx32) (const void *);
5240 bfd_signed_vma (*bfd_getx_signed_32) (const void *);
5241 void (*bfd_putx32) (bfd_vma, void *);
5242 bfd_vma (*bfd_getx16) (const void *);
5243 bfd_signed_vma (*bfd_getx_signed_16) (const void *);
5244 void (*bfd_putx16) (bfd_vma, void *);
5246 /* Byte swapping for the headers. */
5247 bfd_uint64_t (*bfd_h_getx64) (const void *);
5248 bfd_int64_t (*bfd_h_getx_signed_64) (const void *);
5249 void (*bfd_h_putx64) (bfd_uint64_t, void *);
5250 bfd_vma (*bfd_h_getx32) (const void *);
5251 bfd_signed_vma (*bfd_h_getx_signed_32) (const void *);
5252 void (*bfd_h_putx32) (bfd_vma, void *);
5253 bfd_vma (*bfd_h_getx16) (const void *);
5254 bfd_signed_vma (*bfd_h_getx_signed_16) (const void *);
5255 void (*bfd_h_putx16) (bfd_vma, void *);
5257 /* Format dependent routines: these are vectors of entry points
5258 within the target vector structure, one for each format to check. */
5260 /* Check the format of a file being read. Return a `bfd_target *' or zero. */
5261 const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *);
5263 /* Set the format of a file being written. */
5264 bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *);
5266 /* Write cached information into a file being written, at `bfd_close'. */
5267 bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *);
5268 The general target vector. These vectors are initialized using the
5269 BFD_JUMP_TABLE macros.
5271 /* Generic entry points. */
5272 #define BFD_JUMP_TABLE_GENERIC(NAME) \
5273 NAME##_close_and_cleanup, \
5274 NAME##_bfd_free_cached_info, \
5275 NAME##_new_section_hook, \
5276 NAME##_get_section_contents, \
5277 NAME##_get_section_contents_in_window
5279 /* Called when the BFD is being closed to do any necessary cleanup. */
5280 bfd_boolean (*_close_and_cleanup) (bfd *);
5281 /* Ask the BFD to free all cached information. */
5282 bfd_boolean (*_bfd_free_cached_info) (bfd *);
5283 /* Called when a new section is created. */
5284 bfd_boolean (*_new_section_hook) (bfd *, sec_ptr);
5285 /* Read the contents of a section. */
5286 bfd_boolean (*_bfd_get_section_contents)
5287 (bfd *, sec_ptr, void *, file_ptr, bfd_size_type);
5288 bfd_boolean (*_bfd_get_section_contents_in_window)
5289 (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type);
5291 /* Entry points to copy private data. */
5292 #define BFD_JUMP_TABLE_COPY(NAME) \
5293 NAME##_bfd_copy_private_bfd_data, \
5294 NAME##_bfd_merge_private_bfd_data, \
5295 _bfd_generic_init_private_section_data, \
5296 NAME##_bfd_copy_private_section_data, \
5297 NAME##_bfd_copy_private_symbol_data, \
5298 NAME##_bfd_copy_private_header_data, \
5299 NAME##_bfd_set_private_flags, \
5300 NAME##_bfd_print_private_bfd_data
5302 /* Called to copy BFD general private data from one object file
5304 bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *);
5305 /* Called to merge BFD general private data from one object file
5306 to a common output file when linking. */
5307 bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *);
5308 /* Called to initialize BFD private section data from one object file
5310 #define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \
5311 BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info))
5312 bfd_boolean (*_bfd_init_private_section_data)
5313 (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *);
5314 /* Called to copy BFD private section data from one object file
5316 bfd_boolean (*_bfd_copy_private_section_data)
5317 (bfd *, sec_ptr, bfd *, sec_ptr);
5318 /* Called to copy BFD private symbol data from one symbol
5320 bfd_boolean (*_bfd_copy_private_symbol_data)
5321 (bfd *, asymbol *, bfd *, asymbol *);
5322 /* Called to copy BFD private header data from one object file
5324 bfd_boolean (*_bfd_copy_private_header_data)
5326 /* Called to set private backend flags. */
5327 bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword);
5329 /* Called to print private BFD data. */
5330 bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *);
5332 /* Core file entry points. */
5333 #define BFD_JUMP_TABLE_CORE(NAME) \
5334 NAME##_core_file_failing_command, \
5335 NAME##_core_file_failing_signal, \
5336 NAME##_core_file_matches_executable_p
5338 char * (*_core_file_failing_command) (bfd *);
5339 int (*_core_file_failing_signal) (bfd *);
5340 bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *);
5342 /* Archive entry points. */
5343 #define BFD_JUMP_TABLE_ARCHIVE(NAME) \
5344 NAME##_slurp_armap, \
5345 NAME##_slurp_extended_name_table, \
5346 NAME##_construct_extended_name_table, \
5347 NAME##_truncate_arname, \
5348 NAME##_write_armap, \
5349 NAME##_read_ar_hdr, \
5350 NAME##_openr_next_archived_file, \
5351 NAME##_get_elt_at_index, \
5352 NAME##_generic_stat_arch_elt, \
5353 NAME##_update_armap_timestamp
5355 bfd_boolean (*_bfd_slurp_armap) (bfd *);
5356 bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *);
5357 bfd_boolean (*_bfd_construct_extended_name_table)
5358 (bfd *, char **, bfd_size_type *, const char **);
5359 void (*_bfd_truncate_arname) (bfd *, const char *, char *);
5360 bfd_boolean (*write_armap)
5361 (bfd *, unsigned int, struct orl *, unsigned int, int);
5362 void * (*_bfd_read_ar_hdr_fn) (bfd *);
5363 bfd * (*openr_next_archived_file) (bfd *, bfd *);
5364 #define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i))
5365 bfd * (*_bfd_get_elt_at_index) (bfd *, symindex);
5366 int (*_bfd_stat_arch_elt) (bfd *, struct stat *);
5367 bfd_boolean (*_bfd_update_armap_timestamp) (bfd *);
5369 /* Entry points used for symbols. */
5370 #define BFD_JUMP_TABLE_SYMBOLS(NAME) \
5371 NAME##_get_symtab_upper_bound, \
5372 NAME##_canonicalize_symtab, \
5373 NAME##_make_empty_symbol, \
5374 NAME##_print_symbol, \
5375 NAME##_get_symbol_info, \
5376 NAME##_bfd_is_local_label_name, \
5377 NAME##_bfd_is_target_special_symbol, \
5378 NAME##_get_lineno, \
5379 NAME##_find_nearest_line, \
5380 _bfd_generic_find_line, \
5381 NAME##_find_inliner_info, \
5382 NAME##_bfd_make_debug_symbol, \
5383 NAME##_read_minisymbols, \
5384 NAME##_minisymbol_to_symbol
5386 long (*_bfd_get_symtab_upper_bound) (bfd *);
5387 long (*_bfd_canonicalize_symtab)
5388 (bfd *, struct bfd_symbol **);
5390 (*_bfd_make_empty_symbol) (bfd *);
5391 void (*_bfd_print_symbol)
5392 (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type);
5393 #define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e))
5394 void (*_bfd_get_symbol_info)
5395 (bfd *, struct bfd_symbol *, symbol_info *);
5396 #define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e))
5397 bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *);
5398 bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *);
5399 alent * (*_get_lineno) (bfd *, struct bfd_symbol *);
5400 bfd_boolean (*_bfd_find_nearest_line)
5401 (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma,
5402 const char **, const char **, unsigned int *);
5403 bfd_boolean (*_bfd_find_line)
5404 (bfd *, struct bfd_symbol **, struct bfd_symbol *,
5405 const char **, unsigned int *);
5406 bfd_boolean (*_bfd_find_inliner_info)
5407 (bfd *, const char **, const char **, unsigned int *);
5408 /* Back-door to allow format-aware applications to create debug symbols
5409 while using BFD for everything else. Currently used by the assembler
5410 when creating COFF files. */
5411 asymbol * (*_bfd_make_debug_symbol)
5412 (bfd *, void *, unsigned long size);
5413 #define bfd_read_minisymbols(b, d, m, s) \
5414 BFD_SEND (b, _read_minisymbols, (b, d, m, s))
5415 long (*_read_minisymbols)
5416 (bfd *, bfd_boolean, void **, unsigned int *);
5417 #define bfd_minisymbol_to_symbol(b, d, m, f) \
5418 BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))
5419 asymbol * (*_minisymbol_to_symbol)
5420 (bfd *, bfd_boolean, const void *, asymbol *);
5422 /* Routines for relocs. */
5423 #define BFD_JUMP_TABLE_RELOCS(NAME) \
5424 NAME##_get_reloc_upper_bound, \
5425 NAME##_canonicalize_reloc, \
5426 NAME##_bfd_reloc_type_lookup
5428 long (*_get_reloc_upper_bound) (bfd *, sec_ptr);
5429 long (*_bfd_canonicalize_reloc)
5430 (bfd *, sec_ptr, arelent **, struct bfd_symbol **);
5431 /* See documentation on reloc types. */
5433 (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type);
5435 /* Routines used when writing an object file. */
5436 #define BFD_JUMP_TABLE_WRITE(NAME) \
5437 NAME##_set_arch_mach, \
5438 NAME##_set_section_contents
5440 bfd_boolean (*_bfd_set_arch_mach)
5441 (bfd *, enum bfd_architecture, unsigned long);
5442 bfd_boolean (*_bfd_set_section_contents)
5443 (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type);
5445 /* Routines used by the linker. */
5446 #define BFD_JUMP_TABLE_LINK(NAME) \
5447 NAME##_sizeof_headers, \
5448 NAME##_bfd_get_relocated_section_contents, \
5449 NAME##_bfd_relax_section, \
5450 NAME##_bfd_link_hash_table_create, \
5451 NAME##_bfd_link_hash_table_free, \
5452 NAME##_bfd_link_add_symbols, \
5453 NAME##_bfd_link_just_syms, \
5454 NAME##_bfd_final_link, \
5455 NAME##_bfd_link_split_section, \
5456 NAME##_bfd_gc_sections, \
5457 NAME##_bfd_merge_sections, \
5458 NAME##_bfd_is_group_section, \
5459 NAME##_bfd_discard_group, \
5460 NAME##_section_already_linked \
5462 int (*_bfd_sizeof_headers) (bfd *, bfd_boolean);
5463 bfd_byte * (*_bfd_get_relocated_section_contents)
5464 (bfd *, struct bfd_link_info *, struct bfd_link_order *,
5465 bfd_byte *, bfd_boolean, struct bfd_symbol **);
5467 bfd_boolean (*_bfd_relax_section)
5468 (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *);
5470 /* Create a hash table for the linker. Different backends store
5471 different information in this table. */
5472 struct bfd_link_hash_table *
5473 (*_bfd_link_hash_table_create) (bfd *);
5475 /* Release the memory associated with the linker hash table. */
5476 void (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *);
5478 /* Add symbols from this object file into the hash table. */
5479 bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *);
5481 /* Indicate that we are only retrieving symbol values from this section. */
5482 void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *);
5484 /* Do a link based on the link_order structures attached to each
5485 section of the BFD. */
5486 bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *);
5488 /* Should this section be split up into smaller pieces during linking. */
5489 bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *);
5491 /* Remove sections that are not referenced from the output. */
5492 bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *);
5494 /* Attempt to merge SEC_MERGE sections. */
5495 bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *);
5497 /* Is this section a member of a group? */
5498 bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *);
5500 /* Discard members of a group. */
5501 bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *);
5503 /* Check if SEC has been already linked during a reloceatable or
5505 void (*_section_already_linked) (bfd *, struct bfd_section *);
5507 /* Routines to handle dynamic symbols and relocs. */
5508 #define BFD_JUMP_TABLE_DYNAMIC(NAME) \
5509 NAME##_get_dynamic_symtab_upper_bound, \
5510 NAME##_canonicalize_dynamic_symtab, \
5511 NAME##_get_synthetic_symtab, \
5512 NAME##_get_dynamic_reloc_upper_bound, \
5513 NAME##_canonicalize_dynamic_reloc
5515 /* Get the amount of memory required to hold the dynamic symbols. */
5516 long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *);
5517 /* Read in the dynamic symbols. */
5518 long (*_bfd_canonicalize_dynamic_symtab)
5519 (bfd *, struct bfd_symbol **);
5520 /* Create synthetized symbols. */
5521 long (*_bfd_get_synthetic_symtab)
5522 (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **,
5523 struct bfd_symbol **);
5524 /* Get the amount of memory required to hold the dynamic relocs. */
5525 long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *);
5526 /* Read in the dynamic relocs. */
5527 long (*_bfd_canonicalize_dynamic_reloc)
5528 (bfd *, arelent **, struct bfd_symbol **);
5529 A pointer to an alternative bfd_target in case the current one is not
5530 satisfactory. This can happen when the target cpu supports both big
5531 and little endian code, and target chosen by the linker has the wrong
5532 endianness. The function open_output() in ld/ldlang.c uses this field
5533 to find an alternative output format that is suitable.
5534 /* Opposite endian version of this target. */
5535 const struct bfd_target * alternative_target;
5537 /* Data for use by back-end routines, which isn't
5538 generic enough to belong in this structure. */
5539 const void *backend_data;
5543 `bfd_set_default_target'
5544 ........................
5547 bfd_boolean bfd_set_default_target (const char *name);
5549 Set the default target vector to use when recognizing a BFD. This
5550 takes the name of the target, which may be a BFD target name or a
5551 configuration triplet.
5557 const bfd_target *bfd_find_target (const char *target_name, bfd *abfd);
5559 Return a pointer to the transfer vector for the object target named
5560 TARGET_NAME. If TARGET_NAME is `NULL', choose the one in the
5561 environment variable `GNUTARGET'; if that is null or not defined, then
5562 choose the first entry in the target list. Passing in the string
5563 "default" or setting the environment variable to "default" will cause
5564 the first entry in the target list to be returned, and
5565 "target_defaulted" will be set in the BFD. This causes
5566 `bfd_check_format' to loop over all the targets to find the one that
5567 matches the file being read.
5573 const char ** bfd_target_list (void);
5575 Return a freshly malloced NULL-terminated vector of the names of all
5576 the valid BFD targets. Do not modify the names.
5578 `bfd_seach_for_target'
5579 ......................
5582 const bfd_target *bfd_search_for_target
5583 (int (*search_func) (const bfd_target *, void *),
5586 Return a pointer to the first transfer vector in the list of transfer
5587 vectors maintained by BFD that produces a non-zero result when passed
5588 to the function SEARCH_FUNC. The parameter DATA is passed, unexamined,
5589 to the search function.
5592 File: bfd.info, Node: Architectures, Next: Opening and Closing, Prev: Targets, Up: BFD front end
5597 BFD keeps one atom in a BFD describing the architecture of the data
5598 attached to the BFD: a pointer to a `bfd_arch_info_type'.
5600 Pointers to structures can be requested independently of a BFD so
5601 that an architecture's information can be interrogated without access
5604 The architecture information is provided by each architecture
5605 package. The set of default architectures is selected by the macro
5606 `SELECT_ARCHITECTURES'. This is normally set up in the
5607 `config/TARGET.mt' file of your choice. If the name is not defined,
5608 then all the architectures supported are included.
5610 When BFD starts up, all the architectures are called with an
5611 initialize method. It is up to the architecture back end to insert as
5612 many items into the list of architectures as it wants to; generally
5613 this would be one for each machine and one for the default case (an
5614 item with a machine field of 0).
5616 BFD's idea of an architecture is implemented in `archures.c'.
5622 This enum gives the object file's CPU architecture, in a global
5623 sense--i.e., what processor family does it belong to? Another field
5624 indicates which processor within the family is in use. The machine
5625 gives a number which distinguishes different versions of the
5626 architecture, containing, for example, 2 and 3 for Intel i960 KA and
5627 i960 KB, and 68020 and 68030 for Motorola 68020 and 68030.
5628 enum bfd_architecture
5630 bfd_arch_unknown, /* File arch not known. */
5631 bfd_arch_obscure, /* Arch known, not one of these. */
5632 bfd_arch_m68k, /* Motorola 68xxx */
5633 #define bfd_mach_m68000 1
5634 #define bfd_mach_m68008 2
5635 #define bfd_mach_m68010 3
5636 #define bfd_mach_m68020 4
5637 #define bfd_mach_m68030 5
5638 #define bfd_mach_m68040 6
5639 #define bfd_mach_m68060 7
5640 #define bfd_mach_cpu32 8
5641 #define bfd_mach_mcf5200 9
5642 #define bfd_mach_mcf5206e 10
5643 #define bfd_mach_mcf5307 11
5644 #define bfd_mach_mcf5407 12
5645 #define bfd_mach_mcf528x 13
5646 #define bfd_mach_mcfv4e 14
5647 #define bfd_mach_mcf521x 15
5648 #define bfd_mach_mcf5249 16
5649 #define bfd_mach_mcf547x 17
5650 #define bfd_mach_mcf548x 18
5651 bfd_arch_vax, /* DEC Vax */
5652 bfd_arch_i960, /* Intel 960 */
5653 /* The order of the following is important.
5654 lower number indicates a machine type that
5655 only accepts a subset of the instructions
5656 available to machines with higher numbers.
5657 The exception is the "ca", which is
5658 incompatible with all other machines except
5661 #define bfd_mach_i960_core 1
5662 #define bfd_mach_i960_ka_sa 2
5663 #define bfd_mach_i960_kb_sb 3
5664 #define bfd_mach_i960_mc 4
5665 #define bfd_mach_i960_xa 5
5666 #define bfd_mach_i960_ca 6
5667 #define bfd_mach_i960_jx 7
5668 #define bfd_mach_i960_hx 8
5670 bfd_arch_or32, /* OpenRISC 32 */
5672 bfd_arch_sparc, /* SPARC */
5673 #define bfd_mach_sparc 1
5674 /* The difference between v8plus and v9 is that v9 is a true 64 bit env. */
5675 #define bfd_mach_sparc_sparclet 2
5676 #define bfd_mach_sparc_sparclite 3
5677 #define bfd_mach_sparc_v8plus 4
5678 #define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */
5679 #define bfd_mach_sparc_sparclite_le 6
5680 #define bfd_mach_sparc_v9 7
5681 #define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */
5682 #define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */
5683 #define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */
5684 /* Nonzero if MACH has the v9 instruction set. */
5685 #define bfd_mach_sparc_v9_p(mach) \
5686 ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \
5687 && (mach) != bfd_mach_sparc_sparclite_le)
5688 /* Nonzero if MACH is a 64 bit sparc architecture. */
5689 #define bfd_mach_sparc_64bit_p(mach) \
5690 ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb)
5691 bfd_arch_mips, /* MIPS Rxxxx */
5692 #define bfd_mach_mips3000 3000
5693 #define bfd_mach_mips3900 3900
5694 #define bfd_mach_mips4000 4000
5695 #define bfd_mach_mips4010 4010
5696 #define bfd_mach_mips4100 4100
5697 #define bfd_mach_mips4111 4111
5698 #define bfd_mach_mips4120 4120
5699 #define bfd_mach_mips4300 4300
5700 #define bfd_mach_mips4400 4400
5701 #define bfd_mach_mips4600 4600
5702 #define bfd_mach_mips4650 4650
5703 #define bfd_mach_mips5000 5000
5704 #define bfd_mach_mips5400 5400
5705 #define bfd_mach_mips5500 5500
5706 #define bfd_mach_mips6000 6000
5707 #define bfd_mach_mips7000 7000
5708 #define bfd_mach_mips8000 8000
5709 #define bfd_mach_mips9000 9000
5710 #define bfd_mach_mips10000 10000
5711 #define bfd_mach_mips12000 12000
5712 #define bfd_mach_mips16 16
5713 #define bfd_mach_mips5 5
5714 #define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */
5715 #define bfd_mach_mipsisa32 32
5716 #define bfd_mach_mipsisa32r2 33
5717 #define bfd_mach_mipsisa64 64
5718 #define bfd_mach_mipsisa64r2 65
5719 bfd_arch_i386, /* Intel 386 */
5720 #define bfd_mach_i386_i386 1
5721 #define bfd_mach_i386_i8086 2
5722 #define bfd_mach_i386_i386_intel_syntax 3
5723 #define bfd_mach_x86_64 64
5724 #define bfd_mach_x86_64_intel_syntax 65
5725 bfd_arch_we32k, /* AT&T WE32xxx */
5726 bfd_arch_tahoe, /* CCI/Harris Tahoe */
5727 bfd_arch_i860, /* Intel 860 */
5728 bfd_arch_i370, /* IBM 360/370 Mainframes */
5729 bfd_arch_romp, /* IBM ROMP PC/RT */
5730 bfd_arch_convex, /* Convex */
5731 bfd_arch_m88k, /* Motorola 88xxx */
5732 bfd_arch_m98k, /* Motorola 98xxx */
5733 bfd_arch_pyramid, /* Pyramid Technology */
5734 bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */
5735 #define bfd_mach_h8300 1
5736 #define bfd_mach_h8300h 2
5737 #define bfd_mach_h8300s 3
5738 #define bfd_mach_h8300hn 4
5739 #define bfd_mach_h8300sn 5
5740 #define bfd_mach_h8300sx 6
5741 #define bfd_mach_h8300sxn 7
5742 bfd_arch_pdp11, /* DEC PDP-11 */
5743 bfd_arch_powerpc, /* PowerPC */
5744 #define bfd_mach_ppc 32
5745 #define bfd_mach_ppc64 64
5746 #define bfd_mach_ppc_403 403
5747 #define bfd_mach_ppc_403gc 4030
5748 #define bfd_mach_ppc_505 505
5749 #define bfd_mach_ppc_601 601
5750 #define bfd_mach_ppc_602 602
5751 #define bfd_mach_ppc_603 603
5752 #define bfd_mach_ppc_ec603e 6031
5753 #define bfd_mach_ppc_604 604
5754 #define bfd_mach_ppc_620 620
5755 #define bfd_mach_ppc_630 630
5756 #define bfd_mach_ppc_750 750
5757 #define bfd_mach_ppc_860 860
5758 #define bfd_mach_ppc_a35 35
5759 #define bfd_mach_ppc_rs64ii 642
5760 #define bfd_mach_ppc_rs64iii 643
5761 #define bfd_mach_ppc_7400 7400
5762 #define bfd_mach_ppc_e500 500
5763 bfd_arch_rs6000, /* IBM RS/6000 */
5764 #define bfd_mach_rs6k 6000
5765 #define bfd_mach_rs6k_rs1 6001
5766 #define bfd_mach_rs6k_rsc 6003
5767 #define bfd_mach_rs6k_rs2 6002
5768 bfd_arch_hppa, /* HP PA RISC */
5769 #define bfd_mach_hppa10 10
5770 #define bfd_mach_hppa11 11
5771 #define bfd_mach_hppa20 20
5772 #define bfd_mach_hppa20w 25
5773 bfd_arch_d10v, /* Mitsubishi D10V */
5774 #define bfd_mach_d10v 1
5775 #define bfd_mach_d10v_ts2 2
5776 #define bfd_mach_d10v_ts3 3
5777 bfd_arch_d30v, /* Mitsubishi D30V */
5778 bfd_arch_dlx, /* DLX */
5779 bfd_arch_m68hc11, /* Motorola 68HC11 */
5780 bfd_arch_m68hc12, /* Motorola 68HC12 */
5781 #define bfd_mach_m6812_default 0
5782 #define bfd_mach_m6812 1
5783 #define bfd_mach_m6812s 2
5784 bfd_arch_z8k, /* Zilog Z8000 */
5785 #define bfd_mach_z8001 1
5786 #define bfd_mach_z8002 2
5787 bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */
5788 bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */
5789 #define bfd_mach_sh 1
5790 #define bfd_mach_sh2 0x20
5791 #define bfd_mach_sh_dsp 0x2d
5792 #define bfd_mach_sh2a 0x2a
5793 #define bfd_mach_sh2a_nofpu 0x2b
5794 #define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1
5795 #define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2
5796 #define bfd_mach_sh2a_or_sh4 0x2a3
5797 #define bfd_mach_sh2a_or_sh3e 0x2a4
5798 #define bfd_mach_sh2e 0x2e
5799 #define bfd_mach_sh3 0x30
5800 #define bfd_mach_sh3_nommu 0x31
5801 #define bfd_mach_sh3_dsp 0x3d
5802 #define bfd_mach_sh3e 0x3e
5803 #define bfd_mach_sh4 0x40
5804 #define bfd_mach_sh4_nofpu 0x41
5805 #define bfd_mach_sh4_nommu_nofpu 0x42
5806 #define bfd_mach_sh4a 0x4a
5807 #define bfd_mach_sh4a_nofpu 0x4b
5808 #define bfd_mach_sh4al_dsp 0x4d
5809 #define bfd_mach_sh5 0x50
5810 bfd_arch_alpha, /* Dec Alpha */
5811 #define bfd_mach_alpha_ev4 0x10
5812 #define bfd_mach_alpha_ev5 0x20
5813 #define bfd_mach_alpha_ev6 0x30
5814 bfd_arch_arm, /* Advanced Risc Machines ARM. */
5815 #define bfd_mach_arm_unknown 0
5816 #define bfd_mach_arm_2 1
5817 #define bfd_mach_arm_2a 2
5818 #define bfd_mach_arm_3 3
5819 #define bfd_mach_arm_3M 4
5820 #define bfd_mach_arm_4 5
5821 #define bfd_mach_arm_4T 6
5822 #define bfd_mach_arm_5 7
5823 #define bfd_mach_arm_5T 8
5824 #define bfd_mach_arm_5TE 9
5825 #define bfd_mach_arm_XScale 10
5826 #define bfd_mach_arm_ep9312 11
5827 #define bfd_mach_arm_iWMMXt 12
5828 bfd_arch_ns32k, /* National Semiconductors ns32000 */
5829 bfd_arch_w65, /* WDC 65816 */
5830 bfd_arch_tic30, /* Texas Instruments TMS320C30 */
5831 bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */
5832 #define bfd_mach_tic3x 30
5833 #define bfd_mach_tic4x 40
5834 bfd_arch_tic54x, /* Texas Instruments TMS320C54X */
5835 bfd_arch_tic80, /* TI TMS320c80 (MVP) */
5836 bfd_arch_v850, /* NEC V850 */
5837 #define bfd_mach_v850 1
5838 #define bfd_mach_v850e 'E'
5839 #define bfd_mach_v850e1 '1'
5840 bfd_arch_arc, /* ARC Cores */
5841 #define bfd_mach_arc_5 5
5842 #define bfd_mach_arc_6 6
5843 #define bfd_mach_arc_7 7
5844 #define bfd_mach_arc_8 8
5845 bfd_arch_m32c, /* Renesas M16C/M32C. */
5846 #define bfd_mach_m16c 0x75
5847 #define bfd_mach_m32c 0x78
5848 bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */
5849 #define bfd_mach_m32r 1 /* For backwards compatibility. */
5850 #define bfd_mach_m32rx 'x'
5851 #define bfd_mach_m32r2 '2'
5852 bfd_arch_mn10200, /* Matsushita MN10200 */
5853 bfd_arch_mn10300, /* Matsushita MN10300 */
5854 #define bfd_mach_mn10300 300
5855 #define bfd_mach_am33 330
5856 #define bfd_mach_am33_2 332
5858 #define bfd_mach_fr30 0x46523330
5860 #define bfd_mach_frv 1
5861 #define bfd_mach_frvsimple 2
5862 #define bfd_mach_fr300 300
5863 #define bfd_mach_fr400 400
5864 #define bfd_mach_fr450 450
5865 #define bfd_mach_frvtomcat 499 /* fr500 prototype */
5866 #define bfd_mach_fr500 500
5867 #define bfd_mach_fr550 550
5869 bfd_arch_ia64, /* HP/Intel ia64 */
5870 #define bfd_mach_ia64_elf64 64
5871 #define bfd_mach_ia64_elf32 32
5872 bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */
5873 #define bfd_mach_ip2022 1
5874 #define bfd_mach_ip2022ext 2
5875 bfd_arch_iq2000, /* Vitesse IQ2000. */
5876 #define bfd_mach_iq2000 1
5877 #define bfd_mach_iq10 2
5879 #define bfd_mach_ms1 1
5880 #define bfd_mach_mrisc2 2
5881 #define bfd_mach_ms2 3
5883 bfd_arch_avr, /* Atmel AVR microcontrollers. */
5884 #define bfd_mach_avr1 1
5885 #define bfd_mach_avr2 2
5886 #define bfd_mach_avr3 3
5887 #define bfd_mach_avr4 4
5888 #define bfd_mach_avr5 5
5889 bfd_arch_bfin, /* ADI Blackfin */
5890 #define bfd_mach_bfin 1
5891 bfd_arch_cr16c, /* National Semiconductor CompactRISC. */
5892 #define bfd_mach_cr16c 1
5893 bfd_arch_crx, /* National Semiconductor CRX. */
5894 #define bfd_mach_crx 1
5895 bfd_arch_cris, /* Axis CRIS */
5896 #define bfd_mach_cris_v0_v10 255
5897 #define bfd_mach_cris_v32 32
5898 #define bfd_mach_cris_v10_v32 1032
5899 bfd_arch_s390, /* IBM s390 */
5900 #define bfd_mach_s390_31 31
5901 #define bfd_mach_s390_64 64
5902 bfd_arch_openrisc, /* OpenRISC */
5903 bfd_arch_mmix, /* Donald Knuth's educational processor. */
5905 #define bfd_mach_xstormy16 1
5906 bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */
5907 #define bfd_mach_msp11 11
5908 #define bfd_mach_msp110 110
5909 #define bfd_mach_msp12 12
5910 #define bfd_mach_msp13 13
5911 #define bfd_mach_msp14 14
5912 #define bfd_mach_msp15 15
5913 #define bfd_mach_msp16 16
5914 #define bfd_mach_msp21 21
5915 #define bfd_mach_msp31 31
5916 #define bfd_mach_msp32 32
5917 #define bfd_mach_msp33 33
5918 #define bfd_mach_msp41 41
5919 #define bfd_mach_msp42 42
5920 #define bfd_mach_msp43 43
5921 #define bfd_mach_msp44 44
5922 bfd_arch_xtensa, /* Tensilica's Xtensa cores. */
5923 #define bfd_mach_xtensa 1
5924 bfd_arch_maxq, /* Dallas MAXQ 10/20 */
5925 #define bfd_mach_maxq10 10
5926 #define bfd_mach_maxq20 20
5928 #define bfd_mach_z80strict 1 /* No undocumented opcodes. */
5929 #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */
5930 #define bfd_mach_z80full 7 /* All undocumented instructions. */
5931 #define bfd_mach_r800 11 /* R800: successor with multiplication. */
5939 This structure contains information on architectures for use within BFD.
5941 typedef struct bfd_arch_info
5944 int bits_per_address;
5946 enum bfd_architecture arch;
5948 const char *arch_name;
5949 const char *printable_name;
5950 unsigned int section_align_power;
5951 /* TRUE if this is the default machine for the architecture.
5952 The default arch should be the first entry for an arch so that
5953 all the entries for that arch can be accessed via `next'. */
5954 bfd_boolean the_default;
5955 const struct bfd_arch_info * (*compatible)
5956 (const struct bfd_arch_info *a, const struct bfd_arch_info *b);
5958 bfd_boolean (*scan) (const struct bfd_arch_info *, const char *);
5960 const struct bfd_arch_info *next;
5964 `bfd_printable_name'
5965 ....................
5968 const char *bfd_printable_name (bfd *abfd);
5970 Return a printable string representing the architecture and machine
5971 from the pointer to the architecture info structure.
5977 const bfd_arch_info_type *bfd_scan_arch (const char *string);
5979 Figure out if BFD supports any cpu which could be described with the
5980 name STRING. Return a pointer to an `arch_info' structure if a machine
5981 is found, otherwise NULL.
5987 const char **bfd_arch_list (void);
5989 Return a freshly malloced NULL-terminated vector of the names of all
5990 the valid BFD architectures. Do not modify the names.
5992 `bfd_arch_get_compatible'
5993 .........................
5996 const bfd_arch_info_type *bfd_arch_get_compatible
5997 (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns);
5999 Determine whether two BFDs' architectures and machine types are
6000 compatible. Calculates the lowest common denominator between the two
6001 architectures and machine types implied by the BFDs and returns a
6002 pointer to an `arch_info' structure describing the compatible machine.
6004 `bfd_default_arch_struct'
6005 .........................
6008 The `bfd_default_arch_struct' is an item of `bfd_arch_info_type' which
6009 has been initialized to a fairly generic state. A BFD starts life by
6010 pointing to this structure, until the correct back end has determined
6011 the real architecture of the file.
6012 extern const bfd_arch_info_type bfd_default_arch_struct;
6018 void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);
6020 Set the architecture info of ABFD to ARG.
6022 `bfd_default_set_arch_mach'
6023 ...........................
6026 bfd_boolean bfd_default_set_arch_mach
6027 (bfd *abfd, enum bfd_architecture arch, unsigned long mach);
6029 Set the architecture and machine type in BFD ABFD to ARCH and MACH.
6030 Find the correct pointer to a structure and insert it into the
6031 `arch_info' pointer.
6037 enum bfd_architecture bfd_get_arch (bfd *abfd);
6039 Return the enumerated type which describes the BFD ABFD's architecture.
6045 unsigned long bfd_get_mach (bfd *abfd);
6047 Return the long type which describes the BFD ABFD's machine.
6049 `bfd_arch_bits_per_byte'
6050 ........................
6053 unsigned int bfd_arch_bits_per_byte (bfd *abfd);
6055 Return the number of bits in one of the BFD ABFD's architecture's bytes.
6057 `bfd_arch_bits_per_address'
6058 ...........................
6061 unsigned int bfd_arch_bits_per_address (bfd *abfd);
6063 Return the number of bits in one of the BFD ABFD's architecture's
6066 `bfd_default_compatible'
6067 ........................
6070 const bfd_arch_info_type *bfd_default_compatible
6071 (const bfd_arch_info_type *a, const bfd_arch_info_type *b);
6073 The default function for testing for compatibility.
6079 bfd_boolean bfd_default_scan
6080 (const struct bfd_arch_info *info, const char *string);
6082 The default function for working out whether this is an architecture
6083 hit and a machine hit.
6089 const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);
6091 Return the architecture info struct in ABFD.
6097 const bfd_arch_info_type *bfd_lookup_arch
6098 (enum bfd_architecture arch, unsigned long machine);
6100 Look for the architecture info structure which matches the arguments
6101 ARCH and MACHINE. A machine of 0 matches the machine/architecture
6102 structure which marks itself as the default.
6104 `bfd_printable_arch_mach'
6105 .........................
6108 const char *bfd_printable_arch_mach
6109 (enum bfd_architecture arch, unsigned long machine);
6111 Return a printable string representing the architecture and machine
6114 This routine is depreciated.
6116 `bfd_octets_per_byte'
6117 .....................
6120 unsigned int bfd_octets_per_byte (bfd *abfd);
6122 Return the number of octets (8-bit quantities) per target byte (minimum
6123 addressable unit). In most cases, this will be one, but some DSP
6124 targets have 16, 32, or even 48 bits per byte.
6126 `bfd_arch_mach_octets_per_byte'
6127 ...............................
6130 unsigned int bfd_arch_mach_octets_per_byte
6131 (enum bfd_architecture arch, unsigned long machine);
6133 See bfd_octets_per_byte.
6135 This routine is provided for those cases where a bfd * is not
6139 File: bfd.info, Node: Opening and Closing, Next: Internal, Prev: Architectures, Up: BFD front end
6141 Opening and closing BFDs
6142 ========================
6144 Functions for opening and closing
6145 ---------------------------------
6151 bfd *bfd_fopen (const char *filename, const char *target,
6152 const char *mode, int fd);
6154 Open the file FILENAME with the target TARGET. Return a pointer to the
6155 created BFD. If FD is not -1, then `fdopen' is used to open the file;
6156 otherwise, `fopen' is used. MODE is passed directly to `fopen' or
6159 Calls `bfd_find_target', so TARGET is interpreted as by that
6162 The new BFD is marked as cacheable iff FD is -1.
6164 If `NULL' is returned then an error has occured. Possible errors
6165 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6172 bfd *bfd_openr (const char *filename, const char *target);
6174 Open the file FILENAME (using `fopen') with the target TARGET. Return
6175 a pointer to the created BFD.
6177 Calls `bfd_find_target', so TARGET is interpreted as by that
6180 If `NULL' is returned then an error has occured. Possible errors
6181 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6188 bfd *bfd_fdopenr (const char *filename, const char *target, int fd);
6190 `bfd_fdopenr' is to `bfd_fopenr' much like `fdopen' is to `fopen'. It
6191 opens a BFD on a file already described by the FD supplied.
6193 When the file is later `bfd_close'd, the file descriptor will be
6194 closed. If the caller desires that this file descriptor be cached by
6195 BFD (opened as needed, closed as needed to free descriptors for other
6196 opens), with the supplied FD used as an initial file descriptor (but
6197 subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the
6198 returned BFD. The default is to assume no caching; the file descriptor
6199 will remain open until `bfd_close', and will not be affected by BFD
6200 operations on other files.
6202 Possible errors are `bfd_error_no_memory',
6203 `bfd_error_invalid_target' and `bfd_error_system_call'.
6209 bfd *bfd_openstreamr (const char *, const char *, void *);
6211 Open a BFD for read access on an existing stdio stream. When the BFD
6212 is passed to `bfd_close', the stream will be closed.
6218 bfd *bfd_openr_iovec (const char *filename, const char *target,
6219 void *(*open) (struct bfd *nbfd,
6220 void *open_closure),
6222 file_ptr (*pread) (struct bfd *nbfd,
6227 int (*close) (struct bfd *nbfd,
6230 Create and return a BFD backed by a read-only STREAM. The STREAM is
6231 created using OPEN, accessed using PREAD and destroyed using CLOSE.
6233 Calls `bfd_find_target', so TARGET is interpreted as by that
6236 Calls OPEN (which can call `bfd_zalloc' and `bfd_get_filename') to
6237 obtain the read-only stream backing the BFD. OPEN either succeeds
6238 returning the non-`NULL' STREAM, or fails returning `NULL' (setting
6241 Calls PREAD to request NBYTES of data from STREAM starting at OFFSET
6242 (e.g., via a call to `bfd_read'). PREAD either succeeds returning the
6243 number of bytes read (which can be less than NBYTES when end-of-file),
6244 or fails returning -1 (setting `bfd_error').
6246 Calls CLOSE when the BFD is later closed using `bfd_close'. CLOSE
6247 either succeeds returning 0, or fails returning -1 (setting
6250 If `bfd_openr_iovec' returns `NULL' then an error has occurred.
6251 Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target'
6252 and `bfd_error_system_call'.
6258 bfd *bfd_openw (const char *filename, const char *target);
6260 Create a BFD, associated with file FILENAME, using the file format
6261 TARGET, and return a pointer to it.
6263 Possible errors are `bfd_error_system_call', `bfd_error_no_memory',
6264 `bfd_error_invalid_target'.
6270 bfd_boolean bfd_close (bfd *abfd);
6272 Close a BFD. If the BFD was open for writing, then pending operations
6273 are completed and the file written out and closed. If the created file
6274 is executable, then `chmod' is called to mark it as such.
6276 All memory attached to the BFD is released.
6278 The file descriptor associated with the BFD is closed (even if it
6279 was passed in to BFD by `bfd_fdopenr').
6282 `TRUE' is returned if all is ok, otherwise `FALSE'.
6284 `bfd_close_all_done'
6285 ....................
6288 bfd_boolean bfd_close_all_done (bfd *);
6290 Close a BFD. Differs from `bfd_close' since it does not complete any
6291 pending operations. This routine would be used if the application had
6292 just used BFD for swapping and didn't want to use any of the writing
6295 If the created file is executable, then `chmod' is called to mark it
6298 All memory attached to the BFD is released.
6301 `TRUE' is returned if all is ok, otherwise `FALSE'.
6307 bfd *bfd_create (const char *filename, bfd *templ);
6309 Create a new BFD in the manner of `bfd_openw', but without opening a
6310 file. The new BFD takes the target from the target used by TEMPLATE.
6311 The format is always set to `bfd_object'.
6317 bfd_boolean bfd_make_writable (bfd *abfd);
6319 Takes a BFD as created by `bfd_create' and converts it into one like as
6320 returned by `bfd_openw'. It does this by converting the BFD to
6321 BFD_IN_MEMORY. It's assumed that you will call `bfd_make_readable' on
6325 `TRUE' is returned if all is ok, otherwise `FALSE'.
6331 bfd_boolean bfd_make_readable (bfd *abfd);
6333 Takes a BFD as created by `bfd_create' and `bfd_make_writable' and
6334 converts it into one like as returned by `bfd_openr'. It does this by
6335 writing the contents out to the memory buffer, then reversing the
6339 `TRUE' is returned if all is ok, otherwise `FALSE'.
6345 void *bfd_alloc (bfd *abfd, bfd_size_type wanted);
6347 Allocate a block of WANTED bytes of memory attached to `abfd' and
6348 return a pointer to it.
6354 void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
6356 Allocate a block of NMEMB elements of SIZE bytes each of memory
6357 attached to `abfd' and return a pointer to it.
6363 void *bfd_zalloc (bfd *abfd, bfd_size_type wanted);
6365 Allocate a block of WANTED bytes of zeroed memory attached to `abfd'
6366 and return a pointer to it.
6372 void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
6374 Allocate a block of NMEMB elements of SIZE bytes each of zeroed memory
6375 attached to `abfd' and return a pointer to it.
6377 `bfd_calc_gnu_debuglink_crc32'
6378 ..............................
6381 unsigned long bfd_calc_gnu_debuglink_crc32
6382 (unsigned long crc, const unsigned char *buf, bfd_size_type len);
6384 Computes a CRC value as used in the .gnu_debuglink section. Advances
6385 the previously computed CRC value by computing and adding in the crc32
6386 for LEN bytes of BUF.
6389 Return the updated CRC32 value.
6391 `get_debug_link_info'
6392 .....................
6395 char *get_debug_link_info (bfd *abfd, unsigned long *crc32_out);
6397 fetch the filename and CRC32 value for any separate debuginfo
6398 associated with ABFD. Return NULL if no such info found, otherwise
6399 return filename and update CRC32_OUT.
6401 `separate_debug_file_exists'
6402 ............................
6405 bfd_boolean separate_debug_file_exists
6406 (char *name, unsigned long crc32);
6408 Checks to see if NAME is a file and if its contents match CRC32.
6410 `find_separate_debug_file'
6411 ..........................
6414 char *find_separate_debug_file (bfd *abfd);
6416 Searches ABFD for a reference to separate debugging information, scans
6417 various locations in the filesystem, including the file tree rooted at
6418 DEBUG_FILE_DIRECTORY, and returns a filename of such debugging
6419 information if the file is found and has matching CRC32. Returns NULL
6420 if no reference to debugging file exists, or file cannot be found.
6422 `bfd_follow_gnu_debuglink'
6423 ..........................
6426 char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir);
6428 Takes a BFD and searches it for a .gnu_debuglink section. If this
6429 section is found, it examines the section for the name and checksum of
6430 a '.debug' file containing auxiliary debugging information. It then
6431 searches the filesystem for this .debug file in some standard
6432 locations, including the directory tree rooted at DIR, and if found
6433 returns the full filename.
6435 If DIR is NULL, it will search a default path configured into libbfd
6436 at build time. [XXX this feature is not currently implemented].
6439 `NULL' on any errors or failure to locate the .debug file, otherwise a
6440 pointer to a heap-allocated string containing the filename. The caller
6441 is responsible for freeing this string.
6443 `bfd_create_gnu_debuglink_section'
6444 ..................................
6447 struct bfd_section *bfd_create_gnu_debuglink_section
6448 (bfd *abfd, const char *filename);
6450 Takes a BFD and adds a .gnu_debuglink section to it. The section is
6451 sized to be big enough to contain a link to the specified FILENAME.
6454 A pointer to the new section is returned if all is ok. Otherwise
6455 `NULL' is returned and bfd_error is set.
6457 `bfd_fill_in_gnu_debuglink_section'
6458 ...................................
6461 bfd_boolean bfd_fill_in_gnu_debuglink_section
6462 (bfd *abfd, struct bfd_section *sect, const char *filename);
6464 Takes a BFD and containing a .gnu_debuglink section SECT and fills in
6465 the contents of the section to contain a link to the specified
6466 FILENAME. The filename should be relative to the current directory.
6469 `TRUE' is returned if all is ok. Otherwise `FALSE' is returned and
6473 File: bfd.info, Node: Internal, Next: File Caching, Prev: Opening and Closing, Up: BFD front end
6475 Implementation details
6476 ======================
6482 These routines are used within BFD. They are not intended for export,
6483 but are documented here for completeness.
6485 `bfd_write_bigendian_4byte_int'
6486 ...............................
6489 bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int);
6491 Write a 4 byte integer I to the output BFD ABFD, in big endian order
6492 regardless of what else is going on. This is useful in archives.
6501 These macros as used for reading and writing raw data in sections; each
6502 access (except for bytes) is vectored through the target format of the
6503 BFD and mangled accordingly. The mangling performs any necessary endian
6504 translations and removes alignment restrictions. Note that types
6505 accepted and returned by these macros are identical so they can be
6506 swapped around in macros--for example, `libaout.h' defines `GET_WORD'
6507 to either `bfd_get_32' or `bfd_get_64'.
6509 In the put routines, VAL must be a `bfd_vma'. If we are on a system
6510 without prototypes, the caller is responsible for making sure that is
6511 true, with a cast if necessary. We don't cast them in the macro
6512 definitions because that would prevent `lint' or `gcc -Wall' from
6513 detecting sins such as passing a pointer. To detect calling these with
6514 less than a `bfd_vma', use `gcc -Wconversion' on a host with 64 bit
6517 /* Byte swapping macros for user section data. */
6519 #define bfd_put_8(abfd, val, ptr) \
6520 ((void) (*((unsigned char *) (ptr)) = (val) & 0xff))
6521 #define bfd_put_signed_8 \
6523 #define bfd_get_8(abfd, ptr) \
6524 (*(unsigned char *) (ptr) & 0xff)
6525 #define bfd_get_signed_8(abfd, ptr) \
6526 (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80)
6528 #define bfd_put_16(abfd, val, ptr) \
6529 BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))
6530 #define bfd_put_signed_16 \
6532 #define bfd_get_16(abfd, ptr) \
6533 BFD_SEND (abfd, bfd_getx16, (ptr))
6534 #define bfd_get_signed_16(abfd, ptr) \
6535 BFD_SEND (abfd, bfd_getx_signed_16, (ptr))
6537 #define bfd_put_32(abfd, val, ptr) \
6538 BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))
6539 #define bfd_put_signed_32 \
6541 #define bfd_get_32(abfd, ptr) \
6542 BFD_SEND (abfd, bfd_getx32, (ptr))
6543 #define bfd_get_signed_32(abfd, ptr) \
6544 BFD_SEND (abfd, bfd_getx_signed_32, (ptr))
6546 #define bfd_put_64(abfd, val, ptr) \
6547 BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))
6548 #define bfd_put_signed_64 \
6550 #define bfd_get_64(abfd, ptr) \
6551 BFD_SEND (abfd, bfd_getx64, (ptr))
6552 #define bfd_get_signed_64(abfd, ptr) \
6553 BFD_SEND (abfd, bfd_getx_signed_64, (ptr))
6555 #define bfd_get(bits, abfd, ptr) \
6556 ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \
6557 : (bits) == 16 ? bfd_get_16 (abfd, ptr) \
6558 : (bits) == 32 ? bfd_get_32 (abfd, ptr) \
6559 : (bits) == 64 ? bfd_get_64 (abfd, ptr) \
6560 : (abort (), (bfd_vma) - 1))
6562 #define bfd_put(bits, abfd, val, ptr) \
6563 ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \
6564 : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \
6565 : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \
6566 : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \
6567 : (abort (), (void) 0))
6573 These macros have the same function as their `bfd_get_x' brethren,
6574 except that they are used for removing information for the header
6575 records of object files. Believe it or not, some object files keep
6576 their header records in big endian order and their data in little
6579 /* Byte swapping macros for file header data. */
6581 #define bfd_h_put_8(abfd, val, ptr) \
6582 bfd_put_8 (abfd, val, ptr)
6583 #define bfd_h_put_signed_8(abfd, val, ptr) \
6584 bfd_put_8 (abfd, val, ptr)
6585 #define bfd_h_get_8(abfd, ptr) \
6586 bfd_get_8 (abfd, ptr)
6587 #define bfd_h_get_signed_8(abfd, ptr) \
6588 bfd_get_signed_8 (abfd, ptr)
6590 #define bfd_h_put_16(abfd, val, ptr) \
6591 BFD_SEND (abfd, bfd_h_putx16, (val, ptr))
6592 #define bfd_h_put_signed_16 \
6594 #define bfd_h_get_16(abfd, ptr) \
6595 BFD_SEND (abfd, bfd_h_getx16, (ptr))
6596 #define bfd_h_get_signed_16(abfd, ptr) \
6597 BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr))
6599 #define bfd_h_put_32(abfd, val, ptr) \
6600 BFD_SEND (abfd, bfd_h_putx32, (val, ptr))
6601 #define bfd_h_put_signed_32 \
6603 #define bfd_h_get_32(abfd, ptr) \
6604 BFD_SEND (abfd, bfd_h_getx32, (ptr))
6605 #define bfd_h_get_signed_32(abfd, ptr) \
6606 BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr))
6608 #define bfd_h_put_64(abfd, val, ptr) \
6609 BFD_SEND (abfd, bfd_h_putx64, (val, ptr))
6610 #define bfd_h_put_signed_64 \
6612 #define bfd_h_get_64(abfd, ptr) \
6613 BFD_SEND (abfd, bfd_h_getx64, (ptr))
6614 #define bfd_h_get_signed_64(abfd, ptr) \
6615 BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr))
6617 /* Aliases for the above, which should eventually go away. */
6619 #define H_PUT_64 bfd_h_put_64
6620 #define H_PUT_32 bfd_h_put_32
6621 #define H_PUT_16 bfd_h_put_16
6622 #define H_PUT_8 bfd_h_put_8
6623 #define H_PUT_S64 bfd_h_put_signed_64
6624 #define H_PUT_S32 bfd_h_put_signed_32
6625 #define H_PUT_S16 bfd_h_put_signed_16
6626 #define H_PUT_S8 bfd_h_put_signed_8
6627 #define H_GET_64 bfd_h_get_64
6628 #define H_GET_32 bfd_h_get_32
6629 #define H_GET_16 bfd_h_get_16
6630 #define H_GET_8 bfd_h_get_8
6631 #define H_GET_S64 bfd_h_get_signed_64
6632 #define H_GET_S32 bfd_h_get_signed_32
6633 #define H_GET_S16 bfd_h_get_signed_16
6634 #define H_GET_S8 bfd_h_get_signed_8
6640 unsigned int bfd_log2 (bfd_vma x);
6642 Return the log base 2 of the value supplied, rounded up. E.g., an X of
6643 1025 returns 11. A X of 0 returns 0.
6646 File: bfd.info, Node: File Caching, Next: Linker Functions, Prev: Internal, Up: BFD front end
6651 The file caching mechanism is embedded within BFD and allows the
6652 application to open as many BFDs as it wants without regard to the
6653 underlying operating system's file descriptor limit (often as low as 20
6654 open files). The module in `cache.c' maintains a least recently used
6655 list of `BFD_CACHE_MAX_OPEN' files, and exports the name
6656 `bfd_cache_lookup', which runs around and makes sure that the required
6657 BFD is open. If not, then it chooses a file to close, closes it and
6658 opens the one wanted, returning its file handle.
6667 bfd_boolean bfd_cache_init (bfd *abfd);
6669 Add a newly opened BFD to the cache.
6675 bfd_boolean bfd_cache_close (bfd *abfd);
6677 Remove the BFD ABFD from the cache. If the attached file is open, then
6681 `FALSE' is returned if closing the file fails, `TRUE' is returned if
6684 `bfd_cache_close_all'
6685 .....................
6688 bfd_boolean bfd_cache_close_all (void);
6690 Remove all BFDs from the cache. If the attached file is open, then
6694 `FALSE' is returned if closing one of the file fails, `TRUE' is
6695 returned if all is well.
6701 FILE* bfd_open_file (bfd *abfd);
6703 Call the OS to open a file for ABFD. Return the `FILE *' (possibly
6704 `NULL') that results from this operation. Set up the BFD so that
6705 future accesses know the file is open. If the `FILE *' returned is
6706 `NULL', then it won't have been put in the cache, so it won't have to
6710 File: bfd.info, Node: Linker Functions, Next: Hash Tables, Prev: File Caching, Up: BFD front end
6715 The linker uses three special entry points in the BFD target vector.
6716 It is not necessary to write special routines for these entry points
6717 when creating a new BFD back end, since generic versions are provided.
6718 However, writing them can speed up linking and make it use
6719 significantly less runtime memory.
6721 The first routine creates a hash table used by the other routines.
6722 The second routine adds the symbols from an object file to the hash
6723 table. The third routine takes all the object files and links them
6724 together to create the output file. These routines are designed so
6725 that the linker proper does not need to know anything about the symbols
6726 in the object files that it is linking. The linker merely arranges the
6727 sections as directed by the linker script and lets BFD handle the
6728 details of symbols and relocs.
6730 The second routine and third routines are passed a pointer to a
6731 `struct bfd_link_info' structure (defined in `bfdlink.h') which holds
6732 information relevant to the link, including the linker hash table
6733 (which was created by the first routine) and a set of callback
6734 functions to the linker proper.
6736 The generic linker routines are in `linker.c', and use the header
6737 file `genlink.h'. As of this writing, the only back ends which have
6738 implemented versions of these routines are a.out (in `aoutx.h') and
6739 ECOFF (in `ecoff.c'). The a.out routines are used as examples
6740 throughout this section.
6744 * Creating a Linker Hash Table::
6745 * Adding Symbols to the Hash Table::
6746 * Performing the Final Link::
6749 File: bfd.info, Node: Creating a Linker Hash Table, Next: Adding Symbols to the Hash Table, Prev: Linker Functions, Up: Linker Functions
6751 Creating a linker hash table
6752 ----------------------------
6754 The linker routines must create a hash table, which must be derived
6755 from `struct bfd_link_hash_table' described in `bfdlink.c'. *Note Hash
6756 Tables::, for information on how to create a derived hash table. This
6757 entry point is called using the target vector of the linker output file.
6759 The `_bfd_link_hash_table_create' entry point must allocate and
6760 initialize an instance of the desired hash table. If the back end does
6761 not require any additional information to be stored with the entries in
6762 the hash table, the entry point may simply create a `struct
6763 bfd_link_hash_table'. Most likely, however, some additional
6764 information will be needed.
6766 For example, with each entry in the hash table the a.out linker
6767 keeps the index the symbol has in the final output file (this index
6768 number is used so that when doing a relocatable link the symbol index
6769 used in the output file can be quickly filled in when copying over a
6770 reloc). The a.out linker code defines the required structures and
6771 functions for a hash table derived from `struct bfd_link_hash_table'.
6772 The a.out linker hash table is created by the function
6773 `NAME(aout,link_hash_table_create)'; it simply allocates space for the
6774 hash table, initializes it, and returns a pointer to it.
6776 When writing the linker routines for a new back end, you will
6777 generally not know exactly which fields will be required until you have
6778 finished. You should simply create a new hash table which defines no
6779 additional fields, and then simply add fields as they become necessary.
6782 File: bfd.info, Node: Adding Symbols to the Hash Table, Next: Performing the Final Link, Prev: Creating a Linker Hash Table, Up: Linker Functions
6784 Adding symbols to the hash table
6785 --------------------------------
6787 The linker proper will call the `_bfd_link_add_symbols' entry point
6788 for each object file or archive which is to be linked (typically these
6789 are the files named on the command line, but some may also come from
6790 the linker script). The entry point is responsible for examining the
6791 file. For an object file, BFD must add any relevant symbol information
6792 to the hash table. For an archive, BFD must determine which elements
6793 of the archive should be used and adding them to the link.
6795 The a.out version of this entry point is
6796 `NAME(aout,link_add_symbols)'.
6800 * Differing file formats::
6801 * Adding symbols from an object file::
6802 * Adding symbols from an archive::
6805 File: bfd.info, Node: Differing file formats, Next: Adding symbols from an object file, Prev: Adding Symbols to the Hash Table, Up: Adding Symbols to the Hash Table
6807 Differing file formats
6808 ......................
6810 Normally all the files involved in a link will be of the same
6811 format, but it is also possible to link together different format
6812 object files, and the back end must support that. The
6813 `_bfd_link_add_symbols' entry point is called via the target vector of
6814 the file to be added. This has an important consequence: the function
6815 may not assume that the hash table is the type created by the
6816 corresponding `_bfd_link_hash_table_create' vector. All the
6817 `_bfd_link_add_symbols' function can assume about the hash table is
6818 that it is derived from `struct bfd_link_hash_table'.
6820 Sometimes the `_bfd_link_add_symbols' function must store some
6821 information in the hash table entry to be used by the `_bfd_final_link'
6822 function. In such a case the `creator' field of the hash table must be
6823 checked to make sure that the hash table was created by an object file
6826 The `_bfd_final_link' routine must be prepared to handle a hash
6827 entry without any extra information added by the
6828 `_bfd_link_add_symbols' function. A hash entry without extra
6829 information will also occur when the linker script directs the linker
6830 to create a symbol. Note that, regardless of how a hash table entry is
6831 added, all the fields will be initialized to some sort of null value by
6832 the hash table entry initialization function.
6834 See `ecoff_link_add_externals' for an example of how to check the
6835 `creator' field before saving information (in this case, the ECOFF
6836 external symbol debugging information) in a hash table entry.
6839 File: bfd.info, Node: Adding symbols from an object file, Next: Adding symbols from an archive, Prev: Differing file formats, Up: Adding Symbols to the Hash Table
6841 Adding symbols from an object file
6842 ..................................
6844 When the `_bfd_link_add_symbols' routine is passed an object file,
6845 it must add all externally visible symbols in that object file to the
6846 hash table. The actual work of adding the symbol to the hash table is
6847 normally handled by the function `_bfd_generic_link_add_one_symbol'.
6848 The `_bfd_link_add_symbols' routine is responsible for reading all the
6849 symbols from the object file and passing the correct information to
6850 `_bfd_generic_link_add_one_symbol'.
6852 The `_bfd_link_add_symbols' routine should not use
6853 `bfd_canonicalize_symtab' to read the symbols. The point of providing
6854 this routine is to avoid the overhead of converting the symbols into
6855 generic `asymbol' structures.
6857 `_bfd_generic_link_add_one_symbol' handles the details of combining
6858 common symbols, warning about multiple definitions, and so forth. It
6859 takes arguments which describe the symbol to add, notably symbol flags,
6860 a section, and an offset. The symbol flags include such things as
6861 `BSF_WEAK' or `BSF_INDIRECT'. The section is a section in the object
6862 file, or something like `bfd_und_section_ptr' for an undefined symbol
6863 or `bfd_com_section_ptr' for a common symbol.
6865 If the `_bfd_final_link' routine is also going to need to read the
6866 symbol information, the `_bfd_link_add_symbols' routine should save it
6867 somewhere attached to the object file BFD. However, the information
6868 should only be saved if the `keep_memory' field of the `info' argument
6869 is TRUE, so that the `-no-keep-memory' linker switch is effective.
6871 The a.out function which adds symbols from an object file is
6872 `aout_link_add_object_symbols', and most of the interesting work is in
6873 `aout_link_add_symbols'. The latter saves pointers to the hash tables
6874 entries created by `_bfd_generic_link_add_one_symbol' indexed by symbol
6875 number, so that the `_bfd_final_link' routine does not have to call the
6876 hash table lookup routine to locate the entry.
6879 File: bfd.info, Node: Adding symbols from an archive, Prev: Adding symbols from an object file, Up: Adding Symbols to the Hash Table
6881 Adding symbols from an archive
6882 ..............................
6884 When the `_bfd_link_add_symbols' routine is passed an archive, it
6885 must look through the symbols defined by the archive and decide which
6886 elements of the archive should be included in the link. For each such
6887 element it must call the `add_archive_element' linker callback, and it
6888 must add the symbols from the object file to the linker hash table.
6890 In most cases the work of looking through the symbols in the archive
6891 should be done by the `_bfd_generic_link_add_archive_symbols' function.
6892 This function builds a hash table from the archive symbol table and
6893 looks through the list of undefined symbols to see which elements
6894 should be included. `_bfd_generic_link_add_archive_symbols' is passed
6895 a function to call to make the final decision about adding an archive
6896 element to the link and to do the actual work of adding the symbols to
6897 the linker hash table.
6899 The function passed to `_bfd_generic_link_add_archive_symbols' must
6900 read the symbols of the archive element and decide whether the archive
6901 element should be included in the link. If the element is to be
6902 included, the `add_archive_element' linker callback routine must be
6903 called with the element as an argument, and the elements symbols must
6904 be added to the linker hash table just as though the element had itself
6905 been passed to the `_bfd_link_add_symbols' function.
6907 When the a.out `_bfd_link_add_symbols' function receives an archive,
6908 it calls `_bfd_generic_link_add_archive_symbols' passing
6909 `aout_link_check_archive_element' as the function argument.
6910 `aout_link_check_archive_element' calls `aout_link_check_ar_symbols'.
6911 If the latter decides to add the element (an element is only added if
6912 it provides a real, non-common, definition for a previously undefined
6913 or common symbol) it calls the `add_archive_element' callback and then
6914 `aout_link_check_archive_element' calls `aout_link_add_symbols' to
6915 actually add the symbols to the linker hash table.
6917 The ECOFF back end is unusual in that it does not normally call
6918 `_bfd_generic_link_add_archive_symbols', because ECOFF archives already
6919 contain a hash table of symbols. The ECOFF back end searches the
6920 archive itself to avoid the overhead of creating a new hash table.
6923 File: bfd.info, Node: Performing the Final Link, Prev: Adding Symbols to the Hash Table, Up: Linker Functions
6925 Performing the final link
6926 -------------------------
6928 When all the input files have been processed, the linker calls the
6929 `_bfd_final_link' entry point of the output BFD. This routine is
6930 responsible for producing the final output file, which has several
6931 aspects. It must relocate the contents of the input sections and copy
6932 the data into the output sections. It must build an output symbol
6933 table including any local symbols from the input files and the global
6934 symbols from the hash table. When producing relocatable output, it must
6935 modify the input relocs and write them into the output file. There may
6936 also be object format dependent work to be done.
6938 The linker will also call the `write_object_contents' entry point
6939 when the BFD is closed. The two entry points must work together in
6940 order to produce the correct output file.
6942 The details of how this works are inevitably dependent upon the
6943 specific object file format. The a.out `_bfd_final_link' routine is
6944 `NAME(aout,final_link)'.
6948 * Information provided by the linker::
6949 * Relocating the section contents::
6950 * Writing the symbol table::
6953 File: bfd.info, Node: Information provided by the linker, Next: Relocating the section contents, Prev: Performing the Final Link, Up: Performing the Final Link
6955 Information provided by the linker
6956 ..................................
6958 Before the linker calls the `_bfd_final_link' entry point, it sets
6959 up some data structures for the function to use.
6961 The `input_bfds' field of the `bfd_link_info' structure will point
6962 to a list of all the input files included in the link. These files are
6963 linked through the `link_next' field of the `bfd' structure.
6965 Each section in the output file will have a list of `link_order'
6966 structures attached to the `map_head.link_order' field (the
6967 `link_order' structure is defined in `bfdlink.h'). These structures
6968 describe how to create the contents of the output section in terms of
6969 the contents of various input sections, fill constants, and,
6970 eventually, other types of information. They also describe relocs that
6971 must be created by the BFD backend, but do not correspond to any input
6972 file; this is used to support -Ur, which builds constructors while
6973 generating a relocatable object file.
6976 File: bfd.info, Node: Relocating the section contents, Next: Writing the symbol table, Prev: Information provided by the linker, Up: Performing the Final Link
6978 Relocating the section contents
6979 ...............................
6981 The `_bfd_final_link' function should look through the `link_order'
6982 structures attached to each section of the output file. Each
6983 `link_order' structure should either be handled specially, or it should
6984 be passed to the function `_bfd_default_link_order' which will do the
6985 right thing (`_bfd_default_link_order' is defined in `linker.c').
6987 For efficiency, a `link_order' of type `bfd_indirect_link_order'
6988 whose associated section belongs to a BFD of the same format as the
6989 output BFD must be handled specially. This type of `link_order'
6990 describes part of an output section in terms of a section belonging to
6991 one of the input files. The `_bfd_final_link' function should read the
6992 contents of the section and any associated relocs, apply the relocs to
6993 the section contents, and write out the modified section contents. If
6994 performing a relocatable link, the relocs themselves must also be
6995 modified and written out.
6997 The functions `_bfd_relocate_contents' and
6998 `_bfd_final_link_relocate' provide some general support for performing
6999 the actual relocations, notably overflow checking. Their arguments
7000 include information about the symbol the relocation is against and a
7001 `reloc_howto_type' argument which describes the relocation to perform.
7002 These functions are defined in `reloc.c'.
7004 The a.out function which handles reading, relocating, and writing
7005 section contents is `aout_link_input_section'. The actual relocation
7006 is done in `aout_link_input_section_std' and
7007 `aout_link_input_section_ext'.
7010 File: bfd.info, Node: Writing the symbol table, Prev: Relocating the section contents, Up: Performing the Final Link
7012 Writing the symbol table
7013 ........................
7015 The `_bfd_final_link' function must gather all the symbols in the
7016 input files and write them out. It must also write out all the symbols
7017 in the global hash table. This must be controlled by the `strip' and
7018 `discard' fields of the `bfd_link_info' structure.
7020 The local symbols of the input files will not have been entered into
7021 the linker hash table. The `_bfd_final_link' routine must consider
7022 each input file and include the symbols in the output file. It may be
7023 convenient to do this when looking through the `link_order' structures,
7024 or it may be done by stepping through the `input_bfds' list.
7026 The `_bfd_final_link' routine must also traverse the global hash
7027 table to gather all the externally visible symbols. It is possible
7028 that most of the externally visible symbols may be written out when
7029 considering the symbols of each input file, but it is still necessary
7030 to traverse the hash table since the linker script may have defined
7031 some symbols that are not in any of the input files.
7033 The `strip' field of the `bfd_link_info' structure controls which
7034 symbols are written out. The possible values are listed in
7035 `bfdlink.h'. If the value is `strip_some', then the `keep_hash' field
7036 of the `bfd_link_info' structure is a hash table of symbols to keep;
7037 each symbol should be looked up in this hash table, and only symbols
7038 which are present should be included in the output file.
7040 If the `strip' field of the `bfd_link_info' structure permits local
7041 symbols to be written out, the `discard' field is used to further
7042 controls which local symbols are included in the output file. If the
7043 value is `discard_l', then all local symbols which begin with a certain
7044 prefix are discarded; this is controlled by the
7045 `bfd_is_local_label_name' entry point.
7047 The a.out backend handles symbols by calling
7048 `aout_link_write_symbols' on each input BFD and then traversing the
7049 global hash table with the function `aout_link_write_other_symbol'. It
7050 builds a string table while writing out the symbols, which is written
7051 to the output file at the end of `NAME(aout,final_link)'.
7053 `bfd_link_split_section'
7054 ........................
7057 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
7059 Return nonzero if SEC should be split during a reloceatable or final
7061 #define bfd_link_split_section(abfd, sec) \
7062 BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
7064 `bfd_section_already_linked'
7065 ............................
7068 void bfd_section_already_linked (bfd *abfd, asection *sec);
7070 Check if SEC has been already linked during a reloceatable or final
7072 #define bfd_section_already_linked(abfd, sec) \
7073 BFD_SEND (abfd, _section_already_linked, (abfd, sec))
7076 File: bfd.info, Node: Hash Tables, Prev: Linker Functions, Up: BFD front end
7081 BFD provides a simple set of hash table functions. Routines are
7082 provided to initialize a hash table, to free a hash table, to look up a
7083 string in a hash table and optionally create an entry for it, and to
7084 traverse a hash table. There is currently no routine to delete an
7085 string from a hash table.
7087 The basic hash table does not permit any data to be stored with a
7088 string. However, a hash table is designed to present a base class from
7089 which other types of hash tables may be derived. These derived types
7090 may store additional information with the string. Hash tables were
7091 implemented in this way, rather than simply providing a data pointer in
7092 a hash table entry, because they were designed for use by the linker
7093 back ends. The linker may create thousands of hash table entries, and
7094 the overhead of allocating private data and storing and following
7095 pointers becomes noticeable.
7097 The basic hash table code is in `hash.c'.
7101 * Creating and Freeing a Hash Table::
7102 * Looking Up or Entering a String::
7103 * Traversing a Hash Table::
7104 * Deriving a New Hash Table Type::
7107 File: bfd.info, Node: Creating and Freeing a Hash Table, Next: Looking Up or Entering a String, Prev: Hash Tables, Up: Hash Tables
7109 Creating and freeing a hash table
7110 ---------------------------------
7112 To create a hash table, create an instance of a `struct
7113 bfd_hash_table' (defined in `bfd.h') and call `bfd_hash_table_init' (if
7114 you know approximately how many entries you will need, the function
7115 `bfd_hash_table_init_n', which takes a SIZE argument, may be used).
7116 `bfd_hash_table_init' returns `FALSE' if some sort of error occurs.
7118 The function `bfd_hash_table_init' take as an argument a function to
7119 use to create new entries. For a basic hash table, use the function
7120 `bfd_hash_newfunc'. *Note Deriving a New Hash Table Type::, for why
7121 you would want to use a different value for this argument.
7123 `bfd_hash_table_init' will create an objalloc which will be used to
7124 allocate new entries. You may allocate memory on this objalloc using
7125 `bfd_hash_allocate'.
7127 Use `bfd_hash_table_free' to free up all the memory that has been
7128 allocated for a hash table. This will not free up the `struct
7129 bfd_hash_table' itself, which you must provide.
7131 Use `bfd_hash_set_default_size' to set the default size of hash
7135 File: bfd.info, Node: Looking Up or Entering a String, Next: Traversing a Hash Table, Prev: Creating and Freeing a Hash Table, Up: Hash Tables
7137 Looking up or entering a string
7138 -------------------------------
7140 The function `bfd_hash_lookup' is used both to look up a string in
7141 the hash table and to create a new entry.
7143 If the CREATE argument is `FALSE', `bfd_hash_lookup' will look up a
7144 string. If the string is found, it will returns a pointer to a `struct
7145 bfd_hash_entry'. If the string is not found in the table
7146 `bfd_hash_lookup' will return `NULL'. You should not modify any of the
7147 fields in the returns `struct bfd_hash_entry'.
7149 If the CREATE argument is `TRUE', the string will be entered into
7150 the hash table if it is not already there. Either way a pointer to a
7151 `struct bfd_hash_entry' will be returned, either to the existing
7152 structure or to a newly created one. In this case, a `NULL' return
7153 means that an error occurred.
7155 If the CREATE argument is `TRUE', and a new entry is created, the
7156 COPY argument is used to decide whether to copy the string onto the
7157 hash table objalloc or not. If COPY is passed as `FALSE', you must be
7158 careful not to deallocate or modify the string as long as the hash table
7162 File: bfd.info, Node: Traversing a Hash Table, Next: Deriving a New Hash Table Type, Prev: Looking Up or Entering a String, Up: Hash Tables
7164 Traversing a hash table
7165 -----------------------
7167 The function `bfd_hash_traverse' may be used to traverse a hash
7168 table, calling a function on each element. The traversal is done in a
7171 `bfd_hash_traverse' takes as arguments a function and a generic
7172 `void *' pointer. The function is called with a hash table entry (a
7173 `struct bfd_hash_entry *') and the generic pointer passed to
7174 `bfd_hash_traverse'. The function must return a `boolean' value, which
7175 indicates whether to continue traversing the hash table. If the
7176 function returns `FALSE', `bfd_hash_traverse' will stop the traversal
7177 and return immediately.
7180 File: bfd.info, Node: Deriving a New Hash Table Type, Prev: Traversing a Hash Table, Up: Hash Tables
7182 Deriving a new hash table type
7183 ------------------------------
7185 Many uses of hash tables want to store additional information which
7186 each entry in the hash table. Some also find it convenient to store
7187 additional information with the hash table itself. This may be done
7188 using a derived hash table.
7190 Since C is not an object oriented language, creating a derived hash
7191 table requires sticking together some boilerplate routines with a few
7192 differences specific to the type of hash table you want to create.
7194 An example of a derived hash table is the linker hash table. The
7195 structures for this are defined in `bfdlink.h'. The functions are in
7198 You may also derive a hash table from an already derived hash table.
7199 For example, the a.out linker backend code uses a hash table derived
7200 from the linker hash table.
7204 * Define the Derived Structures::
7205 * Write the Derived Creation Routine::
7206 * Write Other Derived Routines::
7209 File: bfd.info, Node: Define the Derived Structures, Next: Write the Derived Creation Routine, Prev: Deriving a New Hash Table Type, Up: Deriving a New Hash Table Type
7211 Define the derived structures
7212 .............................
7214 You must define a structure for an entry in the hash table, and a
7215 structure for the hash table itself.
7217 The first field in the structure for an entry in the hash table must
7218 be of the type used for an entry in the hash table you are deriving
7219 from. If you are deriving from a basic hash table this is `struct
7220 bfd_hash_entry', which is defined in `bfd.h'. The first field in the
7221 structure for the hash table itself must be of the type of the hash
7222 table you are deriving from itself. If you are deriving from a basic
7223 hash table, this is `struct bfd_hash_table'.
7225 For example, the linker hash table defines `struct
7226 bfd_link_hash_entry' (in `bfdlink.h'). The first field, `root', is of
7227 type `struct bfd_hash_entry'. Similarly, the first field in `struct
7228 bfd_link_hash_table', `table', is of type `struct bfd_hash_table'.
7231 File: bfd.info, Node: Write the Derived Creation Routine, Next: Write Other Derived Routines, Prev: Define the Derived Structures, Up: Deriving a New Hash Table Type
7233 Write the derived creation routine
7234 ..................................
7236 You must write a routine which will create and initialize an entry
7237 in the hash table. This routine is passed as the function argument to
7238 `bfd_hash_table_init'.
7240 In order to permit other hash tables to be derived from the hash
7241 table you are creating, this routine must be written in a standard way.
7243 The first argument to the creation routine is a pointer to a hash
7244 table entry. This may be `NULL', in which case the routine should
7245 allocate the right amount of space. Otherwise the space has already
7246 been allocated by a hash table type derived from this one.
7248 After allocating space, the creation routine must call the creation
7249 routine of the hash table type it is derived from, passing in a pointer
7250 to the space it just allocated. This will initialize any fields used
7251 by the base hash table.
7253 Finally the creation routine must initialize any local fields for
7254 the new hash table type.
7256 Here is a boilerplate example of a creation routine. FUNCTION_NAME
7257 is the name of the routine. ENTRY_TYPE is the type of an entry in the
7258 hash table you are creating. BASE_NEWFUNC is the name of the creation
7259 routine of the hash table type your hash table is derived from.
7261 struct bfd_hash_entry *
7262 FUNCTION_NAME (struct bfd_hash_entry *entry,
7263 struct bfd_hash_table *table,
7266 struct ENTRY_TYPE *ret = (ENTRY_TYPE *) entry;
7268 /* Allocate the structure if it has not already been allocated by a
7272 ret = bfd_hash_allocate (table, sizeof (* ret));
7277 /* Call the allocation method of the base class. */
7278 ret = ((ENTRY_TYPE *)
7279 BASE_NEWFUNC ((struct bfd_hash_entry *) ret, table, string));
7281 /* Initialize the local fields here. */
7283 return (struct bfd_hash_entry *) ret;
7286 The creation routine for the linker hash table, which is in `linker.c',
7287 looks just like this example. FUNCTION_NAME is
7288 `_bfd_link_hash_newfunc'. ENTRY_TYPE is `struct bfd_link_hash_entry'.
7289 BASE_NEWFUNC is `bfd_hash_newfunc', the creation routine for a basic
7292 `_bfd_link_hash_newfunc' also initializes the local fields in a
7293 linker hash table entry: `type', `written' and `next'.
7296 File: bfd.info, Node: Write Other Derived Routines, Prev: Write the Derived Creation Routine, Up: Deriving a New Hash Table Type
7298 Write other derived routines
7299 ............................
7301 You will want to write other routines for your new hash table, as
7304 You will want an initialization routine which calls the
7305 initialization routine of the hash table you are deriving from and
7306 initializes any other local fields. For the linker hash table, this is
7307 `_bfd_link_hash_table_init' in `linker.c'.
7309 You will want a lookup routine which calls the lookup routine of the
7310 hash table you are deriving from and casts the result. The linker hash
7311 table uses `bfd_link_hash_lookup' in `linker.c' (this actually takes an
7312 additional argument which it uses to decide how to return the looked up
7315 You may want a traversal routine. This should just call the
7316 traversal routine of the hash table you are deriving from with
7317 appropriate casts. The linker hash table uses `bfd_link_hash_traverse'
7320 These routines may simply be defined as macros. For example, the
7321 a.out backend linker hash table, which is derived from the linker hash
7322 table, uses macros for the lookup and traversal routines. These are
7323 `aout_link_hash_lookup' and `aout_link_hash_traverse' in aoutx.h.
7326 File: bfd.info, Node: BFD back ends, Next: GNU Free Documentation License, Prev: BFD front end, Up: Top
7333 * What to Put Where::
7334 * aout :: a.out backends
7335 * coff :: coff backends
7336 * elf :: elf backends
7337 * mmo :: mmo backend
7340 File: bfd.info, Node: What to Put Where, Next: aout, Prev: BFD back ends, Up: BFD back ends
7342 All of BFD lives in one directory.
7345 File: bfd.info, Node: aout, Next: coff, Prev: What to Put Where, Up: BFD back ends
7351 BFD supports a number of different flavours of a.out format, though the
7352 major differences are only the sizes of the structures on disk, and the
7353 shape of the relocation information.
7355 The support is split into a basic support file `aoutx.h' and other
7356 files which derive functions from the base. One derivation file is
7357 `aoutf1.h' (for a.out flavour 1), and adds to the basic a.out functions
7358 support for sun3, sun4, 386 and 29k a.out files, to create a target
7359 jump vector for a specific target.
7361 This information is further split out into more specific files for
7362 each machine, including `sunos.c' for sun3 and sun4, `newsos3.c' for
7363 the Sony NEWS, and `demo64.c' for a demonstration of a 64 bit a.out
7366 The base file `aoutx.h' defines general mechanisms for reading and
7367 writing records to and from disk and various other methods which BFD
7368 requires. It is included by `aout32.c' and `aout64.c' to form the names
7369 `aout_32_swap_exec_header_in', `aout_64_swap_exec_header_in', etc.
7371 As an example, this is what goes on to make the back end for a sun4,
7374 #define ARCH_SIZE 32
7377 Which exports names:
7380 aout_32_canonicalize_reloc
7381 aout_32_find_nearest_line
7383 aout_32_get_reloc_upper_bound
7388 #define TARGET_NAME "a.out-sunos-big"
7389 #define VECNAME sunos_big_vec
7392 requires all the names from `aout32.c', and produces the jump vector
7396 The file `host-aout.c' is a special case. It is for a large set of
7397 hosts that use "more or less standard" a.out files, and for which
7398 cross-debugging is not interesting. It uses the standard 32-bit a.out
7399 support routines, but determines the file offsets and addresses of the
7400 text, data, and BSS sections, the machine architecture and machine
7401 type, and the entry point address, in a host-dependent manner. Once
7402 these values have been determined, generic code is used to handle the
7405 When porting it to run on a new system, you must supply:
7409 HOST_MACHINE_ARCH (optional)
7410 HOST_MACHINE_MACHINE (optional)
7411 HOST_TEXT_START_ADDR
7414 in the file `../include/sys/h-XXX.h' (for your host). These values,
7415 plus the structures and macros defined in `a.out.h' on your host
7416 system, will produce a BFD target that will access ordinary a.out files
7417 on your host. To configure a new machine to use `host-aout.c', specify:
7419 TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
7420 TDEPFILES= host-aout.o trad-core.o
7422 in the `config/XXX.mt' file, and modify `configure.in' to use the
7423 `XXX.mt' file (by setting "`bfd_target=XXX'") when your configuration
7430 The file `aoutx.h' provides for both the _standard_ and _extended_
7431 forms of a.out relocation records.
7433 The standard records contain only an address, a symbol index, and a
7434 type field. The extended records (used on 29ks and sparcs) also have a
7435 full integer for an addend.
7437 Internal entry points
7438 ---------------------
7441 `aoutx.h' exports several routines for accessing the contents of an
7442 a.out file, which are gathered and exported in turn by various format
7443 specific files (eg sunos.c).
7445 `aout_SIZE_swap_exec_header_in'
7446 ...............................
7449 void aout_SIZE_swap_exec_header_in,
7451 struct external_exec *bytes,
7452 struct internal_exec *execp);
7454 Swap the information in an executable header RAW_BYTES taken from a raw
7455 byte stream memory image into the internal exec header structure EXECP.
7457 `aout_SIZE_swap_exec_header_out'
7458 ................................
7461 void aout_SIZE_swap_exec_header_out
7463 struct internal_exec *execp,
7464 struct external_exec *raw_bytes);
7466 Swap the information in an internal exec header structure EXECP into
7467 the buffer RAW_BYTES ready for writing to disk.
7469 `aout_SIZE_some_aout_object_p'
7470 ..............................
7473 const bfd_target *aout_SIZE_some_aout_object_p
7475 struct internal_exec *execp,
7476 const bfd_target *(*callback_to_real_object_p) (bfd *));
7478 Some a.out variant thinks that the file open in ABFD checking is an
7479 a.out file. Do some more checking, and set up for access if it really
7480 is. Call back to the calling environment's "finish up" function just
7481 before returning, to handle any last-minute setup.
7483 `aout_SIZE_mkobject'
7484 ....................
7487 bfd_boolean aout_SIZE_mkobject, (bfd *abfd);
7489 Initialize BFD ABFD for use with a.out files.
7491 `aout_SIZE_machine_type'
7492 ........................
7495 enum machine_type aout_SIZE_machine_type
7496 (enum bfd_architecture arch,
7497 unsigned long machine,
7498 bfd_boolean *unknown);
7500 Keep track of machine architecture and machine type for a.out's. Return
7501 the `machine_type' for a particular architecture and machine, or
7502 `M_UNKNOWN' if that exact architecture and machine can't be represented
7505 If the architecture is understood, machine type 0 (default) is
7508 `aout_SIZE_set_arch_mach'
7509 .........................
7512 bfd_boolean aout_SIZE_set_arch_mach,
7514 enum bfd_architecture arch,
7515 unsigned long machine);
7517 Set the architecture and the machine of the BFD ABFD to the values ARCH
7518 and MACHINE. Verify that ABFD's format can support the architecture
7521 `aout_SIZE_new_section_hook'
7522 ............................
7525 bfd_boolean aout_SIZE_new_section_hook,
7529 Called by the BFD in response to a `bfd_make_section' request.
7532 File: bfd.info, Node: coff, Next: elf, Prev: aout, Up: BFD back ends
7537 BFD supports a number of different flavours of coff format. The
7538 major differences between formats are the sizes and alignments of
7539 fields in structures on disk, and the occasional extra field.
7541 Coff in all its varieties is implemented with a few common files and
7542 a number of implementation specific files. For example, The 88k bcs
7543 coff format is implemented in the file `coff-m88k.c'. This file
7544 `#include's `coff/m88k.h' which defines the external structure of the
7545 coff format for the 88k, and `coff/internal.h' which defines the
7546 internal structure. `coff-m88k.c' also defines the relocations used by
7547 the 88k format *Note Relocations::.
7549 The Intel i960 processor version of coff is implemented in
7550 `coff-i960.c'. This file has the same structure as `coff-m88k.c',
7551 except that it includes `coff/i960.h' rather than `coff-m88k.h'.
7553 Porting to a new version of coff
7554 --------------------------------
7556 The recommended method is to select from the existing
7557 implementations the version of coff which is most like the one you want
7558 to use. For example, we'll say that i386 coff is the one you select,
7559 and that your coff flavour is called foo. Copy `i386coff.c' to
7560 `foocoff.c', copy `../include/coff/i386.h' to `../include/coff/foo.h',
7561 and add the lines to `targets.c' and `Makefile.in' so that your new
7562 back end is used. Alter the shapes of the structures in
7563 `../include/coff/foo.h' so that they match what you need. You will
7564 probably also have to add `#ifdef's to the code in `coff/internal.h' and
7565 `coffcode.h' if your version of coff is too wild.
7567 You can verify that your new BFD backend works quite simply by
7568 building `objdump' from the `binutils' directory, and making sure that
7569 its version of what's going on and your host system's idea (assuming it
7570 has the pretty standard coff dump utility, usually called `att-dump' or
7571 just `dump') are the same. Then clean up your code, and send what
7572 you've done to Cygnus. Then your stuff will be in the next release, and
7573 you won't have to keep integrating it.
7575 How the coff backend works
7576 --------------------------
7581 The Coff backend is split into generic routines that are applicable
7582 to any Coff target and routines that are specific to a particular
7583 target. The target-specific routines are further split into ones which
7584 are basically the same for all Coff targets except that they use the
7585 external symbol format or use different values for certain constants.
7587 The generic routines are in `coffgen.c'. These routines work for
7588 any Coff target. They use some hooks into the target specific code;
7589 the hooks are in a `bfd_coff_backend_data' structure, one of which
7590 exists for each target.
7592 The essentially similar target-specific routines are in
7593 `coffcode.h'. This header file includes executable C code. The
7594 various Coff targets first include the appropriate Coff header file,
7595 make any special defines that are needed, and then include `coffcode.h'.
7597 Some of the Coff targets then also have additional routines in the
7598 target source file itself.
7600 For example, `coff-i960.c' includes `coff/internal.h' and
7601 `coff/i960.h'. It then defines a few constants, such as `I960', and
7602 includes `coffcode.h'. Since the i960 has complex relocation types,
7603 `coff-i960.c' also includes some code to manipulate the i960 relocs.
7604 This code is not in `coffcode.h' because it would not be used by any
7610 Each flavour of coff supported in BFD has its own header file
7611 describing the external layout of the structures. There is also an
7612 internal description of the coff layout, in `coff/internal.h'. A major
7613 function of the coff backend is swapping the bytes and twiddling the
7614 bits to translate the external form of the structures into the normal
7615 internal form. This is all performed in the `bfd_swap'_thing_direction
7616 routines. Some elements are different sizes between different versions
7617 of coff; it is the duty of the coff version specific include file to
7618 override the definitions of various packing routines in `coffcode.h'.
7619 E.g., the size of line number entry in coff is sometimes 16 bits, and
7620 sometimes 32 bits. `#define'ing `PUT_LNSZ_LNNO' and `GET_LNSZ_LNNO'
7621 will select the correct one. No doubt, some day someone will find a
7622 version of coff which has a varying field size not catered to at the
7623 moment. To port BFD, that person will have to add more `#defines'.
7624 Three of the bit twiddling routines are exported to `gdb';
7625 `coff_swap_aux_in', `coff_swap_sym_in' and `coff_swap_lineno_in'. `GDB'
7626 reads the symbol table on its own, but uses BFD to fix things up. More
7627 of the bit twiddlers are exported for `gas'; `coff_swap_aux_out',
7628 `coff_swap_sym_out', `coff_swap_lineno_out', `coff_swap_reloc_out',
7629 `coff_swap_filehdr_out', `coff_swap_aouthdr_out',
7630 `coff_swap_scnhdr_out'. `Gas' currently keeps track of all the symbol
7631 table and reloc drudgery itself, thereby saving the internal BFD
7632 overhead, but uses BFD to swap things on the way out, making cross
7633 ports much safer. Doing so also allows BFD (and thus the linker) to
7634 use the same header files as `gas', which makes one avenue to disaster
7640 The simple canonical form for symbols used by BFD is not rich enough
7641 to keep all the information available in a coff symbol table. The back
7642 end gets around this problem by keeping the original symbol table
7643 around, "behind the scenes".
7645 When a symbol table is requested (through a call to
7646 `bfd_canonicalize_symtab'), a request gets through to
7647 `coff_get_normalized_symtab'. This reads the symbol table from the coff
7648 file and swaps all the structures inside into the internal form. It
7649 also fixes up all the pointers in the table (represented in the file by
7650 offsets from the first symbol in the table) into physical pointers to
7651 elements in the new internal table. This involves some work since the
7652 meanings of fields change depending upon context: a field that is a
7653 pointer to another structure in the symbol table at one moment may be
7654 the size in bytes of a structure at the next. Another pass is made
7655 over the table. All symbols which mark file names (`C_FILE' symbols)
7656 are modified so that the internal string points to the value in the
7657 auxent (the real filename) rather than the normal text associated with
7658 the symbol (`".file"').
7660 At this time the symbol names are moved around. Coff stores all
7661 symbols less than nine characters long physically within the symbol
7662 table; longer strings are kept at the end of the file in the string
7663 table. This pass moves all strings into memory and replaces them with
7664 pointers to the strings.
7666 The symbol table is massaged once again, this time to create the
7667 canonical table used by the BFD application. Each symbol is inspected
7668 in turn, and a decision made (using the `sclass' field) about the
7669 various flags to set in the `asymbol'. *Note Symbols::. The generated
7670 canonical table shares strings with the hidden internal symbol table.
7672 Any linenumbers are read from the coff file too, and attached to the
7673 symbols which own the functions the linenumbers belong to.
7678 Writing a symbol to a coff file which didn't come from a coff file
7679 will lose any debugging information. The `asymbol' structure remembers
7680 the BFD from which the symbol was taken, and on output the back end
7681 makes sure that the same destination target as source target is present.
7683 When the symbols have come from a coff file then all the debugging
7684 information is preserved.
7686 Symbol tables are provided for writing to the back end in a vector
7687 of pointers to pointers. This allows applications like the linker to
7688 accumulate and output large symbol tables without having to do too much
7691 This function runs through the provided symbol table and patches
7692 each symbol marked as a file place holder (`C_FILE') to point to the
7693 next file place holder in the list. It also marks each `offset' field
7694 in the list with the offset from the first symbol of the current symbol.
7696 Another function of this procedure is to turn the canonical value
7697 form of BFD into the form used by coff. Internally, BFD expects symbol
7698 values to be offsets from a section base; so a symbol physically at
7699 0x120, but in a section starting at 0x100, would have the value 0x20.
7700 Coff expects symbols to contain their final value, so symbols have
7701 their values changed at this point to reflect their sum with their
7702 owning section. This transformation uses the `output_section' field of
7703 the `asymbol''s `asection' *Note Sections::.
7705 * `coff_mangle_symbols'
7706 This routine runs though the provided symbol table and uses the
7707 offsets generated by the previous pass and the pointers generated when
7708 the symbol table was read in to create the structured hierarchy
7709 required by coff. It changes each pointer to a symbol into the index
7710 into the symbol table of the asymbol.
7712 * `coff_write_symbols'
7713 This routine runs through the symbol table and patches up the
7714 symbols from their internal form into the coff way, calls the bit
7715 twiddlers, and writes out the table to the file.
7721 The hidden information for an `asymbol' is described in a
7722 `combined_entry_type':
7725 typedef struct coff_ptr_struct
7727 /* Remembers the offset from the first symbol in the file for
7728 this symbol. Generated by coff_renumber_symbols. */
7729 unsigned int offset;
7731 /* Should the value of this symbol be renumbered. Used for
7732 XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */
7733 unsigned int fix_value : 1;
7735 /* Should the tag field of this symbol be renumbered.
7736 Created by coff_pointerize_aux. */
7737 unsigned int fix_tag : 1;
7739 /* Should the endidx field of this symbol be renumbered.
7740 Created by coff_pointerize_aux. */
7741 unsigned int fix_end : 1;
7743 /* Should the x_csect.x_scnlen field be renumbered.
7744 Created by coff_pointerize_aux. */
7745 unsigned int fix_scnlen : 1;
7747 /* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the
7748 index into the line number entries. Set by coff_slurp_symbol_table. */
7749 unsigned int fix_line : 1;
7751 /* The container for the symbol structure as read and translated
7755 union internal_auxent auxent;
7756 struct internal_syment syment;
7758 } combined_entry_type;
7761 /* Each canonical asymbol really looks like this: */
7763 typedef struct coff_symbol_struct
7765 /* The actual symbol which the rest of BFD works with */
7768 /* A pointer to the hidden information for this symbol */
7769 combined_entry_type *native;
7771 /* A pointer to the linenumber information for this symbol */
7772 struct lineno_cache_entry *lineno;
7774 /* Have the line numbers been relocated yet ? */
7775 bfd_boolean done_lineno;
7778 `bfd_coff_backend_data'
7779 .......................
7781 /* COFF symbol classifications. */
7783 enum coff_symbol_classification
7785 /* Global symbol. */
7787 /* Common symbol. */
7789 /* Undefined symbol. */
7790 COFF_SYMBOL_UNDEFINED,
7793 /* PE section symbol. */
7794 COFF_SYMBOL_PE_SECTION
7796 Special entry points for gdb to swap in coff symbol table parts:
7799 void (*_bfd_coff_swap_aux_in)
7800 (bfd *, void *, int, int, int, int, void *);
7802 void (*_bfd_coff_swap_sym_in)
7803 (bfd *, void *, void *);
7805 void (*_bfd_coff_swap_lineno_in)
7806 (bfd *, void *, void *);
7808 unsigned int (*_bfd_coff_swap_aux_out)
7809 (bfd *, void *, int, int, int, int, void *);
7811 unsigned int (*_bfd_coff_swap_sym_out)
7812 (bfd *, void *, void *);
7814 unsigned int (*_bfd_coff_swap_lineno_out)
7815 (bfd *, void *, void *);
7817 unsigned int (*_bfd_coff_swap_reloc_out)
7818 (bfd *, void *, void *);
7820 unsigned int (*_bfd_coff_swap_filehdr_out)
7821 (bfd *, void *, void *);
7823 unsigned int (*_bfd_coff_swap_aouthdr_out)
7824 (bfd *, void *, void *);
7826 unsigned int (*_bfd_coff_swap_scnhdr_out)
7827 (bfd *, void *, void *);
7829 unsigned int _bfd_filhsz;
7830 unsigned int _bfd_aoutsz;
7831 unsigned int _bfd_scnhsz;
7832 unsigned int _bfd_symesz;
7833 unsigned int _bfd_auxesz;
7834 unsigned int _bfd_relsz;
7835 unsigned int _bfd_linesz;
7836 unsigned int _bfd_filnmlen;
7837 bfd_boolean _bfd_coff_long_filenames;
7838 bfd_boolean _bfd_coff_long_section_names;
7839 unsigned int _bfd_coff_default_section_alignment_power;
7840 bfd_boolean _bfd_coff_force_symnames_in_strings;
7841 unsigned int _bfd_coff_debug_string_prefix_length;
7843 void (*_bfd_coff_swap_filehdr_in)
7844 (bfd *, void *, void *);
7846 void (*_bfd_coff_swap_aouthdr_in)
7847 (bfd *, void *, void *);
7849 void (*_bfd_coff_swap_scnhdr_in)
7850 (bfd *, void *, void *);
7852 void (*_bfd_coff_swap_reloc_in)
7853 (bfd *abfd, void *, void *);
7855 bfd_boolean (*_bfd_coff_bad_format_hook)
7858 bfd_boolean (*_bfd_coff_set_arch_mach_hook)
7861 void * (*_bfd_coff_mkobject_hook)
7862 (bfd *, void *, void *);
7864 bfd_boolean (*_bfd_styp_to_sec_flags_hook)
7865 (bfd *, void *, const char *, asection *, flagword *);
7867 void (*_bfd_set_alignment_hook)
7868 (bfd *, asection *, void *);
7870 bfd_boolean (*_bfd_coff_slurp_symbol_table)
7873 bfd_boolean (*_bfd_coff_symname_in_debug)
7874 (bfd *, struct internal_syment *);
7876 bfd_boolean (*_bfd_coff_pointerize_aux_hook)
7877 (bfd *, combined_entry_type *, combined_entry_type *,
7878 unsigned int, combined_entry_type *);
7880 bfd_boolean (*_bfd_coff_print_aux)
7881 (bfd *, FILE *, combined_entry_type *, combined_entry_type *,
7882 combined_entry_type *, unsigned int);
7884 void (*_bfd_coff_reloc16_extra_cases)
7885 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
7886 bfd_byte *, unsigned int *, unsigned int *);
7888 int (*_bfd_coff_reloc16_estimate)
7889 (bfd *, asection *, arelent *, unsigned int,
7890 struct bfd_link_info *);
7892 enum coff_symbol_classification (*_bfd_coff_classify_symbol)
7893 (bfd *, struct internal_syment *);
7895 bfd_boolean (*_bfd_coff_compute_section_file_positions)
7898 bfd_boolean (*_bfd_coff_start_final_link)
7899 (bfd *, struct bfd_link_info *);
7901 bfd_boolean (*_bfd_coff_relocate_section)
7902 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
7903 struct internal_reloc *, struct internal_syment *, asection **);
7905 reloc_howto_type *(*_bfd_coff_rtype_to_howto)
7906 (bfd *, asection *, struct internal_reloc *,
7907 struct coff_link_hash_entry *, struct internal_syment *,
7910 bfd_boolean (*_bfd_coff_adjust_symndx)
7911 (bfd *, struct bfd_link_info *, bfd *, asection *,
7912 struct internal_reloc *, bfd_boolean *);
7914 bfd_boolean (*_bfd_coff_link_add_one_symbol)
7915 (struct bfd_link_info *, bfd *, const char *, flagword,
7916 asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean,
7917 struct bfd_link_hash_entry **);
7919 bfd_boolean (*_bfd_coff_link_output_has_begun)
7920 (bfd *, struct coff_final_link_info *);
7922 bfd_boolean (*_bfd_coff_final_link_postscript)
7923 (bfd *, struct coff_final_link_info *);
7925 } bfd_coff_backend_data;
7927 #define coff_backend_info(abfd) \
7928 ((bfd_coff_backend_data *) (abfd)->xvec->backend_data)
7930 #define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \
7931 ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i))
7933 #define bfd_coff_swap_sym_in(a,e,i) \
7934 ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i))
7936 #define bfd_coff_swap_lineno_in(a,e,i) \
7937 ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i))
7939 #define bfd_coff_swap_reloc_out(abfd, i, o) \
7940 ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o))
7942 #define bfd_coff_swap_lineno_out(abfd, i, o) \
7943 ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o))
7945 #define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \
7946 ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o))
7948 #define bfd_coff_swap_sym_out(abfd, i,o) \
7949 ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o))
7951 #define bfd_coff_swap_scnhdr_out(abfd, i,o) \
7952 ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o))
7954 #define bfd_coff_swap_filehdr_out(abfd, i,o) \
7955 ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o))
7957 #define bfd_coff_swap_aouthdr_out(abfd, i,o) \
7958 ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o))
7960 #define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz)
7961 #define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz)
7962 #define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz)
7963 #define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz)
7964 #define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz)
7965 #define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz)
7966 #define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz)
7967 #define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen)
7968 #define bfd_coff_long_filenames(abfd) \
7969 (coff_backend_info (abfd)->_bfd_coff_long_filenames)
7970 #define bfd_coff_long_section_names(abfd) \
7971 (coff_backend_info (abfd)->_bfd_coff_long_section_names)
7972 #define bfd_coff_default_section_alignment_power(abfd) \
7973 (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power)
7974 #define bfd_coff_swap_filehdr_in(abfd, i,o) \
7975 ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o))
7977 #define bfd_coff_swap_aouthdr_in(abfd, i,o) \
7978 ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o))
7980 #define bfd_coff_swap_scnhdr_in(abfd, i,o) \
7981 ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o))
7983 #define bfd_coff_swap_reloc_in(abfd, i, o) \
7984 ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o))
7986 #define bfd_coff_bad_format_hook(abfd, filehdr) \
7987 ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr))
7989 #define bfd_coff_set_arch_mach_hook(abfd, filehdr)\
7990 ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr))
7991 #define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\
7992 ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\
7993 (abfd, filehdr, aouthdr))
7995 #define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\
7996 ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\
7997 (abfd, scnhdr, name, section, flags_ptr))
7999 #define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\
8000 ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr))
8002 #define bfd_coff_slurp_symbol_table(abfd)\
8003 ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd))
8005 #define bfd_coff_symname_in_debug(abfd, sym)\
8006 ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym))
8008 #define bfd_coff_force_symnames_in_strings(abfd)\
8009 (coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings)
8011 #define bfd_coff_debug_string_prefix_length(abfd)\
8012 (coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length)
8014 #define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\
8015 ((coff_backend_info (abfd)->_bfd_coff_print_aux)\
8016 (abfd, file, base, symbol, aux, indaux))
8018 #define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\
8019 reloc, data, src_ptr, dst_ptr)\
8020 ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\
8021 (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr))
8023 #define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\
8024 ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\
8025 (abfd, section, reloc, shrink, link_info))
8027 #define bfd_coff_classify_symbol(abfd, sym)\
8028 ((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\
8031 #define bfd_coff_compute_section_file_positions(abfd)\
8032 ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\
8035 #define bfd_coff_start_final_link(obfd, info)\
8036 ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\
8038 #define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\
8039 ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\
8040 (obfd, info, ibfd, o, con, rel, isyms, secs))
8041 #define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\
8042 ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\
8043 (abfd, sec, rel, h, sym, addendp))
8044 #define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\
8045 ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\
8046 (obfd, info, ibfd, sec, rel, adjustedp))
8047 #define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\
8048 value, string, cp, coll, hashp)\
8049 ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\
8050 (info, abfd, name, flags, section, value, string, cp, coll, hashp))
8052 #define bfd_coff_link_output_has_begun(a,p) \
8053 ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p))
8054 #define bfd_coff_final_link_postscript(a,p) \
8055 ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p))
8060 To write relocations, the back end steps though the canonical
8061 relocation table and create an `internal_reloc'. The symbol index to
8062 use is removed from the `offset' field in the symbol table supplied.
8063 The address comes directly from the sum of the section base address and
8064 the relocation offset; the type is dug directly from the howto field.
8065 Then the `internal_reloc' is swapped into the shape of an
8066 `external_reloc' and written out to disk.
8071 Creating the linenumber table is done by reading in the entire coff
8072 linenumber table, and creating another table for internal use.
8074 A coff linenumber table is structured so that each function is
8075 marked as having a line number of 0. Each line within the function is
8076 an offset from the first line in the function. The base of the line
8077 number information for the table is stored in the symbol associated
8080 Note: The PE format uses line number 0 for a flag indicating a new
8083 The information is copied from the external to the internal table,
8084 and each symbol which marks a function is marked by pointing its...
8086 How does this work ?
8091 Coff relocations are easily transformed into the internal BFD form
8094 Reading a coff relocation table is done in the following stages:
8096 * Read the entire coff relocation table into memory.
8098 * Process each relocation in turn; first swap it from the external
8099 to the internal form.
8101 * Turn the symbol referenced in the relocation's symbol index into a
8102 pointer into the canonical symbol table. This table is the same
8103 as the one returned by a call to `bfd_canonicalize_symtab'. The
8104 back end will call that routine and save the result if a
8105 canonicalization hasn't been done.
8107 * The reloc index is turned into a pointer to a howto structure, in
8108 a back end specific way. For instance, the 386 and 960 use the
8109 `r_type' to directly produce an index into a howto table vector;
8110 the 88k subtracts a number from the `r_type' field and creates an
8114 File: bfd.info, Node: elf, Next: mmo, Prev: coff, Up: BFD back ends
8119 BFD support for ELF formats is being worked on. Currently, the best
8120 supported back ends are for sparc and i386 (running svr4 or Solaris 2).
8122 Documentation of the internals of the support code still needs to be
8123 written. The code is changing quickly enough that we haven't bothered
8126 `bfd_elf_find_section'
8127 ......................
8130 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
8132 Helper functions for GDB to locate the string tables. Since BFD hides
8133 string tables from callers, GDB needs to use an internal hook to find
8134 them. Sun's .stabstr, in particular, isn't even pointed to by the
8135 .stab section, so ordinary mechanisms wouldn't work to find it, even if
8139 File: bfd.info, Node: mmo, Prev: elf, Up: BFD back ends
8144 The mmo object format is used exclusively together with Professor
8145 Donald E. Knuth's educational 64-bit processor MMIX. The simulator
8146 `mmix' which is available at
8147 <http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz>
8148 understands this format. That package also includes a combined
8149 assembler and linker called `mmixal'. The mmo format has no advantages
8150 feature-wise compared to e.g. ELF. It is a simple non-relocatable
8151 object format with no support for archives or debugging information,
8152 except for symbol value information and line numbers (which is not yet
8153 implemented in BFD). See
8154 <http://www-cs-faculty.stanford.edu/~knuth/mmix.html> for more
8155 information about MMIX. The ELF format is used for intermediate object
8156 files in the BFD implementation.
8162 * mmo section mapping::
8165 File: bfd.info, Node: File layout, Next: Symbol-table, Prev: mmo, Up: mmo
8170 The mmo file contents is not partitioned into named sections as with
8171 e.g. ELF. Memory areas is formed by specifying the location of the
8172 data that follows. Only the memory area `0x0000...00' to `0x01ff...ff'
8173 is executable, so it is used for code (and constants) and the area
8174 `0x2000...00' to `0x20ff...ff' is used for writable data. *Note mmo
8177 There is provision for specifying "special data" of 65536 different
8178 types. We use type 80 (decimal), arbitrarily chosen the same as the
8179 ELF `e_machine' number for MMIX, filling it with section information
8180 normally found in ELF objects. *Note mmo section mapping::.
8182 Contents is entered as 32-bit words, xor:ed over previous contents,
8183 always zero-initialized. A word that starts with the byte `0x98' forms
8184 a command called a `lopcode', where the next byte distinguished between
8185 the thirteen lopcodes. The two remaining bytes, called the `Y' and `Z'
8186 fields, or the `YZ' field (a 16-bit big-endian number), are used for
8187 various purposes different for each lopcode. As documented in
8188 <http://www-cs-faculty.stanford.edu/~knuth/mmixal-intro.ps.gz>, the
8192 0x98000001. The next word is contents, regardless of whether it
8193 starts with 0x98 or not.
8196 0x9801YYZZ, where `Z' is 1 or 2. This is a location directive,
8197 setting the location for the next data to the next 32-bit word
8198 (for Z = 1) or 64-bit word (for Z = 2), plus Y * 2^56. Normally
8199 `Y' is 0 for the text segment and 2 for the data segment.
8202 0x9802YYZZ. Increase the current location by `YZ' bytes.
8205 0x9803YYZZ, where `Z' is 1 or 2. Store the current location as 64
8206 bits into the location pointed to by the next 32-bit (Z = 1) or
8207 64-bit (Z = 2) word, plus Y * 2^56.
8210 0x9804YYZZ. `YZ' is stored into the current location plus 2 - 4 *
8214 0x980500ZZ. `Z' is 16 or 24. A value `L' derived from the
8215 following 32-bit word are used in a manner similar to `YZ' in
8216 lop_fixr: it is xor:ed into the current location minus 4 * L. The
8217 first byte of the word is 0 or 1. If it is 1, then L = (LOWEST 24
8218 BITS OF WORD) - 2^Z, if 0, then L = (LOWEST 24 BITS OF WORD).
8221 0x9806YYZZ. `Y' is the file number, `Z' is count of 32-bit words.
8222 Set the file number to `Y' and the line counter to 0. The next Z
8223 * 4 bytes contain the file name, padded with zeros if the count is
8224 not a multiple of four. The same `Y' may occur multiple times,
8225 but `Z' must be 0 for all but the first occurrence.
8228 0x9807YYZZ. `YZ' is the line number. Together with lop_file, it
8229 forms the source location for the next 32-bit word. Note that for
8230 each non-lopcode 32-bit word, line numbers are assumed incremented
8234 0x9808YYZZ. `YZ' is the type number. Data until the next lopcode
8235 other than lop_quote forms special data of type `YZ'. *Note mmo
8238 Other types than 80, (or type 80 with a content that does not
8239 parse) is stored in sections named `.MMIX.spec_data.N' where N is
8240 the `YZ'-type. The flags for such a sections say not to allocate
8241 or load the data. The vma is 0. Contents of multiple occurrences
8242 of special data N is concatenated to the data of the previous
8243 lop_spec Ns. The location in data or code at which the lop_spec
8247 0x980901ZZ. The first lopcode in a file. The `Z' field forms the
8248 length of header information in 32-bit words, where the first word
8249 tells the time in seconds since `00:00:00 GMT Jan 1 1970'.
8252 0x980a00ZZ. Z > 32. This lopcode follows after all
8253 content-generating lopcodes in a program. The `Z' field denotes
8254 the value of `rG' at the beginning of the program. The following
8255 256 - Z big-endian 64-bit words are loaded into global registers
8259 0x980b0000. The next-to-last lopcode in a program. Must follow
8260 immediately after the lop_post lopcode and its data. After this
8261 lopcode follows all symbols in a compressed format (*note
8265 0x980cYYZZ. The last lopcode in a program. It must follow the
8266 lop_stab lopcode and its data. The `YZ' field contains the number
8267 of 32-bit words of symbol table information after the preceding
8270 Note that the lopcode "fixups"; `lop_fixr', `lop_fixrx' and
8271 `lop_fixo' are not generated by BFD, but are handled. They are
8272 generated by `mmixal'.
8274 This trivial one-label, one-instruction file:
8278 can be represented this way in mmo:
8280 0x98090101 - lop_pre, one 32-bit word with timestamp.
8282 0x98010002 - lop_loc, text segment, using a 64-bit address.
8283 Note that mmixal does not emit this for the file above.
8284 0x00000000 - Address, high 32 bits.
8285 0x00000000 - Address, low 32 bits.
8286 0x98060002 - lop_file, 2 32-bit words for file-name.
8288 0x2e730000 - ".s\0\0"
8289 0x98070001 - lop_line, line 1.
8290 0x00010203 - TRAP 1,2,3
8291 0x980a00ff - lop_post, setting $255 to 0.
8294 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
8295 0x203a4040 *Note Symbol-table::.
8300 0x980c0005 - lop_end; symbol table contained five 32-bit words.
8303 File: bfd.info, Node: Symbol-table, Next: mmo section mapping, Prev: File layout, Up: mmo
8308 From mmixal.w (or really, the generated mmixal.tex) in
8309 <http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz>):
8310 "Symbols are stored and retrieved by means of a `ternary search trie',
8311 following ideas of Bentley and Sedgewick. (See ACM-SIAM Symp. on
8312 Discrete Algorithms `8' (1997), 360-369; R.Sedgewick, `Algorithms in C'
8313 (Reading, Mass. Addison-Wesley, 1998), `15.4'.) Each trie node stores
8314 a character, and there are branches to subtries for the cases where a
8315 given character is less than, equal to, or greater than the character
8316 in the trie. There also is a pointer to a symbol table entry if a
8317 symbol ends at the current node."
8319 So it's a tree encoded as a stream of bytes. The stream of bytes
8320 acts on a single virtual global symbol, adding and removing characters
8321 and signalling complete symbol points. Here, we read the stream and
8322 create symbols at the completion points.
8324 First, there's a control byte `m'. If any of the listed bits in `m'
8325 is nonzero, we execute what stands at the right, in the listed order:
8328 0x40 - Traverse left trie.
8329 (Read a new command byte and recurse.)
8332 0x2f - Read the next byte as a character and store it in the
8333 current character position; increment character position.
8334 Test the bits of `m':
8337 0x80 - The character is 16-bit (so read another byte,
8338 merge into current character.
8341 0xf - We have a complete symbol; parse the type, value
8342 and serial number and do what should be done
8343 with a symbol. The type and length information
8344 is in j = (m & 0xf).
8347 j == 0xf: A register variable. The following
8348 byte tells which register.
8349 j <= 8: An absolute symbol. Read j bytes as the
8350 big-endian number the symbol equals.
8351 A j = 2 with two zero bytes denotes an
8353 j > 8: As with j <= 8, but add (0x20 << 56)
8354 to the value in the following j - 8
8357 Then comes the serial number, as a variant of
8358 uleb128, but better named ubeb128:
8359 Read bytes and shift the previous value left 7
8360 (multiply by 128). Add in the new byte, repeat
8361 until a byte has bit 7 set. The serial number
8362 is the computed value minus 128.
8365 0x20 - Traverse middle trie. (Read a new command byte
8366 and recurse.) Decrement character position.
8369 0x10 - Traverse right trie. (Read a new command byte and
8372 Let's look again at the `lop_stab' for the trivial file (*note File
8375 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
8382 This forms the trivial trie (note that the path between ":" and "M"
8394 016e "n" is the last character in a full symbol, and
8395 with a value represented in one byte.
8397 81 The serial number is 1.
8400 File: bfd.info, Node: mmo section mapping, Prev: Symbol-table, Up: mmo
8405 The implementation in BFD uses special data type 80 (decimal) to
8406 encapsulate and describe named sections, containing e.g. debug
8407 information. If needed, any datum in the encapsulation will be quoted
8408 using lop_quote. First comes a 32-bit word holding the number of
8409 32-bit words containing the zero-terminated zero-padded segment name.
8410 After the name there's a 32-bit word holding flags describing the
8411 section type. Then comes a 64-bit big-endian word with the section
8412 length (in bytes), then another with the section start address.
8413 Depending on the type of section, the contents might follow,
8414 zero-padded to 32-bit boundary. For a loadable section (such as data
8415 or code), the contents might follow at some later point, not
8416 necessarily immediately, as a lop_loc with the same start address as in
8417 the section description, followed by the contents. This in effect
8418 forms a descriptor that must be emitted before the actual contents.
8419 Sections described this way must not overlap.
8421 For areas that don't have such descriptors, synthetic sections are
8422 formed by BFD. Consecutive contents in the two memory areas
8423 `0x0000...00' to `0x01ff...ff' and `0x2000...00' to `0x20ff...ff' are
8424 entered in sections named `.text' and `.data' respectively. If an area
8425 is not otherwise described, but would together with a neighboring lower
8426 area be less than `0x40000000' bytes long, it is joined with the lower
8427 area and the gap is zero-filled. For other cases, a new section is
8428 formed, named `.MMIX.sec.N'. Here, N is a number, a running count
8429 through the mmo file, starting at 0.
8431 A loadable section specified as:
8433 .section secname,"ax"
8434 TETRA 1,2,3,4,-1,-2009
8437 and linked to address `0x4', is represented by the sequence:
8439 0x98080050 - lop_spec 80
8440 0x00000002 - two 32-bit words for the section name
8442 0x616d6500 - "ame\0"
8443 0x00000033 - flags CODE, READONLY, LOAD, ALLOC
8444 0x00000000 - high 32 bits of section length
8445 0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits
8446 0x00000000 - high 32 bits of section address
8447 0x00000004 - section address is 4
8448 0x98010002 - 64 bits with address of following data
8449 0x00000000 - high 32 bits of address
8450 0x00000004 - low 32 bits: data starts at address 4
8457 0x50000000 - 80 as a byte, padded with zeros.
8459 Note that the lop_spec wrapping does not include the section
8460 contents. Compare this to a non-loaded section specified as:
8466 This, when linked to address `0x200000000000001c', is represented by:
8468 0x98080050 - lop_spec 80
8469 0x00000002 - two 32-bit words for the section name
8472 0x00000010 - flag READONLY
8473 0x00000000 - high 32 bits of section length
8474 0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits
8475 0x20000000 - high 32 bits of address
8476 0x0000001c - low 32 bits of address 0x200000000000001c
8479 0x26280000 - 38, 40 as bytes, padded with zeros
8481 For the latter example, the section contents must not be loaded in
8482 memory, and is therefore specified as part of the special data. The
8483 address is usually unimportant but might provide information for e.g.
8484 the DWARF 2 debugging format.
8487 File: bfd.info, Node: GNU Free Documentation License, Next: Index, Prev: BFD back ends, Up: Top
8489 GNU Free Documentation License
8490 ******************************
8492 Version 1.1, March 2000
8493 Copyright (C) 2000, 2003 Free Software Foundation, Inc.
8494 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
8496 Everyone is permitted to copy and distribute verbatim copies
8497 of this license document, but changing it is not allowed.
8502 The purpose of this License is to make a manual, textbook, or other
8503 written document "free" in the sense of freedom: to assure everyone
8504 the effective freedom to copy and redistribute it, with or without
8505 modifying it, either commercially or noncommercially. Secondarily,
8506 this License preserves for the author and publisher a way to get
8507 credit for their work, while not being considered responsible for
8508 modifications made by others.
8510 This License is a kind of "copyleft", which means that derivative
8511 works of the document must themselves be free in the same sense.
8512 It complements the GNU General Public License, which is a copyleft
8513 license designed for free software.
8515 We have designed this License in order to use it for manuals for
8516 free software, because free software needs free documentation: a
8517 free program should come with manuals providing the same freedoms
8518 that the software does. But this License is not limited to
8519 software manuals; it can be used for any textual work, regardless
8520 of subject matter or whether it is published as a printed book.
8521 We recommend this License principally for works whose purpose is
8522 instruction or reference.
8525 1. APPLICABILITY AND DEFINITIONS
8527 This License applies to any manual or other work that contains a
8528 notice placed by the copyright holder saying it can be distributed
8529 under the terms of this License. The "Document", below, refers to
8530 any such manual or work. Any member of the public is a licensee,
8531 and is addressed as "you."
8533 A "Modified Version" of the Document means any work containing the
8534 Document or a portion of it, either copied verbatim, or with
8535 modifications and/or translated into another language.
8537 A "Secondary Section" is a named appendix or a front-matter
8538 section of the Document that deals exclusively with the
8539 relationship of the publishers or authors of the Document to the
8540 Document's overall subject (or to related matters) and contains
8541 nothing that could fall directly within that overall subject.
8542 (For example, if the Document is in part a textbook of
8543 mathematics, a Secondary Section may not explain any mathematics.)
8544 The relationship could be a matter of historical connection with
8545 the subject or with related matters, or of legal, commercial,
8546 philosophical, ethical or political position regarding them.
8548 The "Invariant Sections" are certain Secondary Sections whose
8549 titles are designated, as being those of Invariant Sections, in
8550 the notice that says that the Document is released under this
8553 The "Cover Texts" are certain short passages of text that are
8554 listed, as Front-Cover Texts or Back-Cover Texts, in the notice
8555 that says that the Document is released under this License.
8557 A "Transparent" copy of the Document means a machine-readable copy,
8558 represented in a format whose specification is available to the
8559 general public, whose contents can be viewed and edited directly
8560 and straightforwardly with generic text editors or (for images
8561 composed of pixels) generic paint programs or (for drawings) some
8562 widely available drawing editor, and that is suitable for input to
8563 text formatters or for automatic translation to a variety of
8564 formats suitable for input to text formatters. A copy made in an
8565 otherwise Transparent file format whose markup has been designed
8566 to thwart or discourage subsequent modification by readers is not
8567 Transparent. A copy that is not "Transparent" is called "Opaque."
8569 Examples of suitable formats for Transparent copies include plain
8570 ASCII without markup, Texinfo input format, LaTeX input format,
8571 SGML or XML using a publicly available DTD, and
8572 standard-conforming simple HTML designed for human modification.
8573 Opaque formats include PostScript, PDF, proprietary formats that
8574 can be read and edited only by proprietary word processors, SGML
8575 or XML for which the DTD and/or processing tools are not generally
8576 available, and the machine-generated HTML produced by some word
8577 processors for output purposes only.
8579 The "Title Page" means, for a printed book, the title page itself,
8580 plus such following pages as are needed to hold, legibly, the
8581 material this License requires to appear in the title page. For
8582 works in formats which do not have any title page as such, "Title
8583 Page" means the text near the most prominent appearance of the
8584 work's title, preceding the beginning of the body of the text.
8588 You may copy and distribute the Document in any medium, either
8589 commercially or noncommercially, provided that this License, the
8590 copyright notices, and the license notice saying this License
8591 applies to the Document are reproduced in all copies, and that you
8592 add no other conditions whatsoever to those of this License. You
8593 may not use technical measures to obstruct or control the reading
8594 or further copying of the copies you make or distribute. However,
8595 you may accept compensation in exchange for copies. If you
8596 distribute a large enough number of copies you must also follow
8597 the conditions in section 3.
8599 You may also lend copies, under the same conditions stated above,
8600 and you may publicly display copies.
8602 3. COPYING IN QUANTITY
8604 If you publish printed copies of the Document numbering more than
8605 100, and the Document's license notice requires Cover Texts, you
8606 must enclose the copies in covers that carry, clearly and legibly,
8607 all these Cover Texts: Front-Cover Texts on the front cover, and
8608 Back-Cover Texts on the back cover. Both covers must also clearly
8609 and legibly identify you as the publisher of these copies. The
8610 front cover must present the full title with all words of the
8611 title equally prominent and visible. You may add other material
8612 on the covers in addition. Copying with changes limited to the
8613 covers, as long as they preserve the title of the Document and
8614 satisfy these conditions, can be treated as verbatim copying in
8617 If the required texts for either cover are too voluminous to fit
8618 legibly, you should put the first ones listed (as many as fit
8619 reasonably) on the actual cover, and continue the rest onto
8622 If you publish or distribute Opaque copies of the Document
8623 numbering more than 100, you must either include a
8624 machine-readable Transparent copy along with each Opaque copy, or
8625 state in or with each Opaque copy a publicly-accessible
8626 computer-network location containing a complete Transparent copy
8627 of the Document, free of added material, which the general
8628 network-using public has access to download anonymously at no
8629 charge using public-standard network protocols. If you use the
8630 latter option, you must take reasonably prudent steps, when you
8631 begin distribution of Opaque copies in quantity, to ensure that
8632 this Transparent copy will remain thus accessible at the stated
8633 location until at least one year after the last time you
8634 distribute an Opaque copy (directly or through your agents or
8635 retailers) of that edition to the public.
8637 It is requested, but not required, that you contact the authors of
8638 the Document well before redistributing any large number of
8639 copies, to give them a chance to provide you with an updated
8640 version of the Document.
8644 You may copy and distribute a Modified Version of the Document
8645 under the conditions of sections 2 and 3 above, provided that you
8646 release the Modified Version under precisely this License, with
8647 the Modified Version filling the role of the Document, thus
8648 licensing distribution and modification of the Modified Version to
8649 whoever possesses a copy of it. In addition, you must do these
8650 things in the Modified Version:
8652 A. Use in the Title Page (and on the covers, if any) a title
8653 distinct from that of the Document, and from those of previous
8654 versions (which should, if there were any, be listed in the
8655 History section of the Document). You may use the same title
8656 as a previous version if the original publisher of that version
8658 B. List on the Title Page, as authors, one or more persons or
8659 entities responsible for authorship of the modifications in the
8660 Modified Version, together with at least five of the principal
8661 authors of the Document (all of its principal authors, if it
8662 has less than five).
8663 C. State on the Title page the name of the publisher of the
8664 Modified Version, as the publisher.
8665 D. Preserve all the copyright notices of the Document.
8666 E. Add an appropriate copyright notice for your modifications
8667 adjacent to the other copyright notices.
8668 F. Include, immediately after the copyright notices, a license
8669 notice giving the public permission to use the Modified Version
8670 under the terms of this License, in the form shown in the
8672 G. Preserve in that license notice the full lists of Invariant
8673 Sections and required Cover Texts given in the Document's
8675 H. Include an unaltered copy of this License.
8676 I. Preserve the section entitled "History", and its title, and add
8677 to it an item stating at least the title, year, new authors, and
8678 publisher of the Modified Version as given on the Title Page.
8679 If there is no section entitled "History" in the Document,
8680 create one stating the title, year, authors, and publisher of
8681 the Document as given on its Title Page, then add an item
8682 describing the Modified Version as stated in the previous
8684 J. Preserve the network location, if any, given in the Document for
8685 public access to a Transparent copy of the Document, and
8686 likewise the network locations given in the Document for
8687 previous versions it was based on. These may be placed in the
8688 "History" section. You may omit a network location for a work
8689 that was published at least four years before the Document
8690 itself, or if the original publisher of the version it refers
8691 to gives permission.
8692 K. In any section entitled "Acknowledgements" or "Dedications",
8693 preserve the section's title, and preserve in the section all the
8694 substance and tone of each of the contributor acknowledgements
8695 and/or dedications given therein.
8696 L. Preserve all the Invariant Sections of the Document,
8697 unaltered in their text and in their titles. Section numbers
8698 or the equivalent are not considered part of the section titles.
8699 M. Delete any section entitled "Endorsements." Such a section
8700 may not be included in the Modified Version.
8701 N. Do not retitle any existing section as "Endorsements" or to
8702 conflict in title with any Invariant Section.
8704 If the Modified Version includes new front-matter sections or
8705 appendices that qualify as Secondary Sections and contain no
8706 material copied from the Document, you may at your option
8707 designate some or all of these sections as invariant. To do this,
8708 add their titles to the list of Invariant Sections in the Modified
8709 Version's license notice. These titles must be distinct from any
8710 other section titles.
8712 You may add a section entitled "Endorsements", provided it contains
8713 nothing but endorsements of your Modified Version by various
8714 parties-for example, statements of peer review or that the text has
8715 been approved by an organization as the authoritative definition
8718 You may add a passage of up to five words as a Front-Cover Text,
8719 and a passage of up to 25 words as a Back-Cover Text, to the end
8720 of the list of Cover Texts in the Modified Version. Only one
8721 passage of Front-Cover Text and one of Back-Cover Text may be
8722 added by (or through arrangements made by) any one entity. If the
8723 Document already includes a cover text for the same cover,
8724 previously added by you or by arrangement made by the same entity
8725 you are acting on behalf of, you may not add another; but you may
8726 replace the old one, on explicit permission from the previous
8727 publisher that added the old one.
8729 The author(s) and publisher(s) of the Document do not by this
8730 License give permission to use their names for publicity for or to
8731 assert or imply endorsement of any Modified Version.
8733 5. COMBINING DOCUMENTS
8735 You may combine the Document with other documents released under
8736 this License, under the terms defined in section 4 above for
8737 modified versions, provided that you include in the combination
8738 all of the Invariant Sections of all of the original documents,
8739 unmodified, and list them all as Invariant Sections of your
8740 combined work in its license notice.
8742 The combined work need only contain one copy of this License, and
8743 multiple identical Invariant Sections may be replaced with a single
8744 copy. If there are multiple Invariant Sections with the same name
8745 but different contents, make the title of each such section unique
8746 by adding at the end of it, in parentheses, the name of the
8747 original author or publisher of that section if known, or else a
8748 unique number. Make the same adjustment to the section titles in
8749 the list of Invariant Sections in the license notice of the
8752 In the combination, you must combine any sections entitled
8753 "History" in the various original documents, forming one section
8754 entitled "History"; likewise combine any sections entitled
8755 "Acknowledgements", and any sections entitled "Dedications." You
8756 must delete all sections entitled "Endorsements."
8758 6. COLLECTIONS OF DOCUMENTS
8760 You may make a collection consisting of the Document and other
8761 documents released under this License, and replace the individual
8762 copies of this License in the various documents with a single copy
8763 that is included in the collection, provided that you follow the
8764 rules of this License for verbatim copying of each of the
8765 documents in all other respects.
8767 You may extract a single document from such a collection, and
8768 distribute it individually under this License, provided you insert
8769 a copy of this License into the extracted document, and follow
8770 this License in all other respects regarding verbatim copying of
8773 7. AGGREGATION WITH INDEPENDENT WORKS
8775 A compilation of the Document or its derivatives with other
8776 separate and independent documents or works, in or on a volume of
8777 a storage or distribution medium, does not as a whole count as a
8778 Modified Version of the Document, provided no compilation
8779 copyright is claimed for the compilation. Such a compilation is
8780 called an "aggregate", and this License does not apply to the
8781 other self-contained works thus compiled with the Document, on
8782 account of their being thus compiled, if they are not themselves
8783 derivative works of the Document.
8785 If the Cover Text requirement of section 3 is applicable to these
8786 copies of the Document, then if the Document is less than one
8787 quarter of the entire aggregate, the Document's Cover Texts may be
8788 placed on covers that surround only the Document within the
8789 aggregate. Otherwise they must appear on covers around the whole
8794 Translation is considered a kind of modification, so you may
8795 distribute translations of the Document under the terms of section
8796 4. Replacing Invariant Sections with translations requires special
8797 permission from their copyright holders, but you may include
8798 translations of some or all Invariant Sections in addition to the
8799 original versions of these Invariant Sections. You may include a
8800 translation of this License provided that you also include the
8801 original English version of this License. In case of a
8802 disagreement between the translation and the original English
8803 version of this License, the original English version will prevail.
8807 You may not copy, modify, sublicense, or distribute the Document
8808 except as expressly provided for under this License. Any other
8809 attempt to copy, modify, sublicense or distribute the Document is
8810 void, and will automatically terminate your rights under this
8811 License. However, parties who have received copies, or rights,
8812 from you under this License will not have their licenses
8813 terminated so long as such parties remain in full compliance.
8815 10. FUTURE REVISIONS OF THIS LICENSE
8817 The Free Software Foundation may publish new, revised versions of
8818 the GNU Free Documentation License from time to time. Such new
8819 versions will be similar in spirit to the present version, but may
8820 differ in detail to address new problems or concerns. See
8821 http://www.gnu.org/copyleft/.
8823 Each version of the License is given a distinguishing version
8824 number. If the Document specifies that a particular numbered
8825 version of this License "or any later version" applies to it, you
8826 have the option of following the terms and conditions either of
8827 that specified version or of any later version that has been
8828 published (not as a draft) by the Free Software Foundation. If
8829 the Document does not specify a version number of this License,
8830 you may choose any version ever published (not as a draft) by the
8831 Free Software Foundation.
8834 ADDENDUM: How to use this License for your documents
8835 ====================================================
8837 To use this License in a document you have written, include a copy of
8838 the License in the document and put the following copyright and license
8839 notices just after the title page:
8841 Copyright (C) YEAR YOUR NAME.
8842 Permission is granted to copy, distribute and/or modify this document
8843 under the terms of the GNU Free Documentation License, Version 1.1
8844 or any later version published by the Free Software Foundation;
8845 with the Invariant Sections being LIST THEIR TITLES, with the
8846 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
8847 A copy of the license is included in the section entitled "GNU
8848 Free Documentation License."
8850 If you have no Invariant Sections, write "with no Invariant Sections"
8851 instead of saying which ones are invariant. If you have no Front-Cover
8852 Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being
8853 LIST"; likewise for Back-Cover Texts.
8855 If your document contains nontrivial examples of program code, we
8856 recommend releasing these examples in parallel under your choice of
8857 free software license, such as the GNU General Public License, to
8858 permit their use in free software.
8861 File: bfd.info, Node: Index, Prev: GNU Free Documentation License, Up: Top
8868 * _bfd_final_link_relocate: Relocating the section contents.
8869 * _bfd_generic_link_add_archive_symbols: Adding symbols from an archive.
8870 * _bfd_generic_link_add_one_symbol: Adding symbols from an object file.
8871 * _bfd_generic_make_empty_symbol: symbol handling functions.
8872 * _bfd_link_add_symbols in target vector: Adding Symbols to the Hash Table.
8873 * _bfd_link_final_link in target vector: Performing the Final Link.
8874 * _bfd_link_hash_table_create in target vector: Creating a Linker Hash Table.
8875 * _bfd_relocate_contents: Relocating the section contents.
8876 * aout_SIZE_machine_type: aout.
8877 * aout_SIZE_mkobject: aout.
8878 * aout_SIZE_new_section_hook: aout.
8879 * aout_SIZE_set_arch_mach: aout.
8880 * aout_SIZE_some_aout_object_p: aout.
8881 * aout_SIZE_swap_exec_header_in: aout.
8882 * aout_SIZE_swap_exec_header_out: aout.
8883 * arelent_chain: typedef arelent.
8885 * BFD canonical format: Canonical format.
8886 * bfd_alloc: Opening and Closing.
8887 * bfd_alloc2: Opening and Closing.
8888 * bfd_alt_mach_code: BFD front end.
8889 * bfd_arch_bits_per_address: Architectures.
8890 * bfd_arch_bits_per_byte: Architectures.
8891 * bfd_arch_get_compatible: Architectures.
8892 * bfd_arch_list: Architectures.
8893 * bfd_arch_mach_octets_per_byte: Architectures.
8894 * BFD_ARELOC_BFIN_ADD: howto manager.
8895 * BFD_ARELOC_BFIN_ADDR: howto manager.
8896 * BFD_ARELOC_BFIN_AND: howto manager.
8897 * BFD_ARELOC_BFIN_COMP: howto manager.
8898 * BFD_ARELOC_BFIN_CONST: howto manager.
8899 * BFD_ARELOC_BFIN_DIV: howto manager.
8900 * BFD_ARELOC_BFIN_HWPAGE: howto manager.
8901 * BFD_ARELOC_BFIN_LAND: howto manager.
8902 * BFD_ARELOC_BFIN_LEN: howto manager.
8903 * BFD_ARELOC_BFIN_LOR: howto manager.
8904 * BFD_ARELOC_BFIN_LSHIFT: howto manager.
8905 * BFD_ARELOC_BFIN_MOD: howto manager.
8906 * BFD_ARELOC_BFIN_MULT: howto manager.
8907 * BFD_ARELOC_BFIN_NEG: howto manager.
8908 * BFD_ARELOC_BFIN_OR: howto manager.
8909 * BFD_ARELOC_BFIN_PAGE: howto manager.
8910 * BFD_ARELOC_BFIN_PUSH: howto manager.
8911 * BFD_ARELOC_BFIN_RSHIFT: howto manager.
8912 * BFD_ARELOC_BFIN_SUB: howto manager.
8913 * BFD_ARELOC_BFIN_XOR: howto manager.
8914 * bfd_cache_close: File Caching.
8915 * bfd_cache_close_all: File Caching.
8916 * bfd_cache_init: File Caching.
8917 * bfd_calc_gnu_debuglink_crc32: Opening and Closing.
8918 * bfd_canonicalize_reloc: BFD front end.
8919 * bfd_canonicalize_symtab: symbol handling functions.
8920 * bfd_check_format: Formats.
8921 * bfd_check_format_matches: Formats.
8922 * bfd_check_overflow: typedef arelent.
8923 * bfd_close: Opening and Closing.
8924 * bfd_close_all_done: Opening and Closing.
8925 * bfd_coff_backend_data: coff.
8926 * bfd_copy_private_bfd_data: BFD front end.
8927 * bfd_copy_private_header_data: BFD front end.
8928 * bfd_copy_private_section_data: section prototypes.
8929 * bfd_copy_private_symbol_data: symbol handling functions.
8930 * bfd_core_file_failing_command: Core Files.
8931 * bfd_core_file_failing_signal: Core Files.
8932 * bfd_create: Opening and Closing.
8933 * bfd_create_gnu_debuglink_section: Opening and Closing.
8934 * bfd_decode_symclass: symbol handling functions.
8935 * bfd_default_arch_struct: Architectures.
8936 * bfd_default_compatible: Architectures.
8937 * bfd_default_reloc_type_lookup: howto manager.
8938 * bfd_default_scan: Architectures.
8939 * bfd_default_set_arch_mach: Architectures.
8940 * bfd_elf_find_section: elf.
8941 * bfd_errmsg: BFD front end.
8942 * bfd_fdopenr: Opening and Closing.
8943 * bfd_fill_in_gnu_debuglink_section: Opening and Closing.
8944 * bfd_find_target: bfd_target.
8945 * bfd_follow_gnu_debuglink: Opening and Closing.
8946 * bfd_fopen: Opening and Closing.
8947 * bfd_format_string: Formats.
8948 * bfd_generic_discard_group: section prototypes.
8949 * bfd_generic_gc_sections: howto manager.
8950 * bfd_generic_get_relocated_section_contents: howto manager.
8951 * bfd_generic_is_group_section: section prototypes.
8952 * bfd_generic_merge_sections: howto manager.
8953 * bfd_generic_relax_section: howto manager.
8954 * bfd_get_arch: Architectures.
8955 * bfd_get_arch_info: Architectures.
8956 * bfd_get_arch_size: BFD front end.
8957 * bfd_get_error: BFD front end.
8958 * bfd_get_error_handler: BFD front end.
8959 * bfd_get_gp_size: BFD front end.
8960 * bfd_get_mach: Architectures.
8961 * bfd_get_mtime: BFD front end.
8962 * bfd_get_next_mapent: Archives.
8963 * bfd_get_reloc_code_name: howto manager.
8964 * bfd_get_reloc_size: typedef arelent.
8965 * bfd_get_reloc_upper_bound: BFD front end.
8966 * bfd_get_section_by_name: section prototypes.
8967 * bfd_get_section_by_name_if: section prototypes.
8968 * bfd_get_section_contents: section prototypes.
8969 * bfd_get_sign_extend_vma: BFD front end.
8970 * bfd_get_size <1>: Internal.
8971 * bfd_get_size: BFD front end.
8972 * bfd_get_symtab_upper_bound: symbol handling functions.
8973 * bfd_get_unique_section_name: section prototypes.
8974 * bfd_h_put_size: Internal.
8975 * bfd_hash_allocate: Creating and Freeing a Hash Table.
8976 * bfd_hash_lookup: Looking Up or Entering a String.
8977 * bfd_hash_newfunc: Creating and Freeing a Hash Table.
8978 * bfd_hash_set_default_size: Creating and Freeing a Hash Table.
8979 * bfd_hash_table_free: Creating and Freeing a Hash Table.
8980 * bfd_hash_table_init: Creating and Freeing a Hash Table.
8981 * bfd_hash_table_init_n: Creating and Freeing a Hash Table.
8982 * bfd_hash_traverse: Traversing a Hash Table.
8983 * bfd_init: Initialization.
8984 * bfd_install_relocation: typedef arelent.
8985 * bfd_is_local_label: symbol handling functions.
8986 * bfd_is_local_label_name: symbol handling functions.
8987 * bfd_is_target_special_symbol: symbol handling functions.
8988 * bfd_is_undefined_symclass: symbol handling functions.
8989 * bfd_link_split_section: Writing the symbol table.
8990 * bfd_log2: Internal.
8991 * bfd_lookup_arch: Architectures.
8992 * bfd_make_debug_symbol: symbol handling functions.
8993 * bfd_make_empty_symbol: symbol handling functions.
8994 * bfd_make_readable: Opening and Closing.
8995 * bfd_make_section: section prototypes.
8996 * bfd_make_section_anyway: section prototypes.
8997 * bfd_make_section_anyway_with_flags: section prototypes.
8998 * bfd_make_section_old_way: section prototypes.
8999 * bfd_make_section_with_flags: section prototypes.
9000 * bfd_make_writable: Opening and Closing.
9001 * bfd_malloc_and_get_section: section prototypes.
9002 * bfd_map_over_sections: section prototypes.
9003 * bfd_merge_private_bfd_data: BFD front end.
9004 * bfd_octets_per_byte: Architectures.
9005 * bfd_open_file: File Caching.
9006 * bfd_openr: Opening and Closing.
9007 * bfd_openr_iovec: Opening and Closing.
9008 * bfd_openr_next_archived_file: Archives.
9009 * bfd_openstreamr: Opening and Closing.
9010 * bfd_openw: Opening and Closing.
9011 * bfd_perform_relocation: typedef arelent.
9012 * bfd_perror: BFD front end.
9013 * bfd_preserve_finish: BFD front end.
9014 * bfd_preserve_restore: BFD front end.
9015 * bfd_preserve_save: BFD front end.
9016 * bfd_print_symbol_vandf: symbol handling functions.
9017 * bfd_printable_arch_mach: Architectures.
9018 * bfd_printable_name: Architectures.
9019 * bfd_put_size: Internal.
9020 * BFD_RELOC_12_PCREL: howto manager.
9021 * BFD_RELOC_14: howto manager.
9022 * BFD_RELOC_16: howto manager.
9023 * BFD_RELOC_16_BASEREL: howto manager.
9024 * BFD_RELOC_16_GOT_PCREL: howto manager.
9025 * BFD_RELOC_16_GOTOFF: howto manager.
9026 * BFD_RELOC_16_PCREL: howto manager.
9027 * BFD_RELOC_16_PCREL_S2: howto manager.
9028 * BFD_RELOC_16_PLT_PCREL: howto manager.
9029 * BFD_RELOC_16_PLTOFF: howto manager.
9030 * BFD_RELOC_16C_ABS20: howto manager.
9031 * BFD_RELOC_16C_ABS20_C: howto manager.
9032 * BFD_RELOC_16C_ABS24: howto manager.
9033 * BFD_RELOC_16C_ABS24_C: howto manager.
9034 * BFD_RELOC_16C_DISP04: howto manager.
9035 * BFD_RELOC_16C_DISP04_C: howto manager.
9036 * BFD_RELOC_16C_DISP08: howto manager.
9037 * BFD_RELOC_16C_DISP08_C: howto manager.
9038 * BFD_RELOC_16C_DISP16: howto manager.
9039 * BFD_RELOC_16C_DISP16_C: howto manager.
9040 * BFD_RELOC_16C_DISP24: howto manager.
9041 * BFD_RELOC_16C_DISP24_C: howto manager.
9042 * BFD_RELOC_16C_DISP24a: howto manager.
9043 * BFD_RELOC_16C_DISP24a_C: howto manager.
9044 * BFD_RELOC_16C_IMM04: howto manager.
9045 * BFD_RELOC_16C_IMM04_C: howto manager.
9046 * BFD_RELOC_16C_IMM16: howto manager.
9047 * BFD_RELOC_16C_IMM16_C: howto manager.
9048 * BFD_RELOC_16C_IMM20: howto manager.
9049 * BFD_RELOC_16C_IMM20_C: howto manager.
9050 * BFD_RELOC_16C_IMM24: howto manager.
9051 * BFD_RELOC_16C_IMM24_C: howto manager.
9052 * BFD_RELOC_16C_IMM32: howto manager.
9053 * BFD_RELOC_16C_IMM32_C: howto manager.
9054 * BFD_RELOC_16C_NUM08: howto manager.
9055 * BFD_RELOC_16C_NUM08_C: howto manager.
9056 * BFD_RELOC_16C_NUM16: howto manager.
9057 * BFD_RELOC_16C_NUM16_C: howto manager.
9058 * BFD_RELOC_16C_NUM32: howto manager.
9059 * BFD_RELOC_16C_NUM32_C: howto manager.
9060 * BFD_RELOC_16C_REG04: howto manager.
9061 * BFD_RELOC_16C_REG04_C: howto manager.
9062 * BFD_RELOC_16C_REG04a: howto manager.
9063 * BFD_RELOC_16C_REG04a_C: howto manager.
9064 * BFD_RELOC_16C_REG14: howto manager.
9065 * BFD_RELOC_16C_REG14_C: howto manager.
9066 * BFD_RELOC_16C_REG16: howto manager.
9067 * BFD_RELOC_16C_REG16_C: howto manager.
9068 * BFD_RELOC_16C_REG20: howto manager.
9069 * BFD_RELOC_16C_REG20_C: howto manager.
9070 * BFD_RELOC_23_PCREL_S2: howto manager.
9071 * BFD_RELOC_24: howto manager.
9072 * BFD_RELOC_24_PCREL: howto manager.
9073 * BFD_RELOC_24_PLT_PCREL: howto manager.
9074 * BFD_RELOC_26: howto manager.
9075 * BFD_RELOC_32: howto manager.
9076 * BFD_RELOC_32_BASEREL: howto manager.
9077 * BFD_RELOC_32_GOT_PCREL: howto manager.
9078 * BFD_RELOC_32_GOTOFF: howto manager.
9079 * BFD_RELOC_32_PCREL: howto manager.
9080 * BFD_RELOC_32_PCREL_S2: howto manager.
9081 * BFD_RELOC_32_PLT_PCREL: howto manager.
9082 * BFD_RELOC_32_PLTOFF: howto manager.
9083 * BFD_RELOC_32_SECREL: howto manager.
9084 * BFD_RELOC_386_COPY: howto manager.
9085 * BFD_RELOC_386_GLOB_DAT: howto manager.
9086 * BFD_RELOC_386_GOT32: howto manager.
9087 * BFD_RELOC_386_GOTOFF: howto manager.
9088 * BFD_RELOC_386_GOTPC: howto manager.
9089 * BFD_RELOC_386_JUMP_SLOT: howto manager.
9090 * BFD_RELOC_386_PLT32: howto manager.
9091 * BFD_RELOC_386_RELATIVE: howto manager.
9092 * BFD_RELOC_386_TLS_DESC: howto manager.
9093 * BFD_RELOC_386_TLS_DESC_CALL: howto manager.
9094 * BFD_RELOC_386_TLS_DTPMOD32: howto manager.
9095 * BFD_RELOC_386_TLS_DTPOFF32: howto manager.
9096 * BFD_RELOC_386_TLS_GD: howto manager.
9097 * BFD_RELOC_386_TLS_GOTDESC: howto manager.
9098 * BFD_RELOC_386_TLS_GOTIE: howto manager.
9099 * BFD_RELOC_386_TLS_IE: howto manager.
9100 * BFD_RELOC_386_TLS_IE_32: howto manager.
9101 * BFD_RELOC_386_TLS_LDM: howto manager.
9102 * BFD_RELOC_386_TLS_LDO_32: howto manager.
9103 * BFD_RELOC_386_TLS_LE: howto manager.
9104 * BFD_RELOC_386_TLS_LE_32: howto manager.
9105 * BFD_RELOC_386_TLS_TPOFF: howto manager.
9106 * BFD_RELOC_386_TLS_TPOFF32: howto manager.
9107 * BFD_RELOC_390_12: howto manager.
9108 * BFD_RELOC_390_20: howto manager.
9109 * BFD_RELOC_390_COPY: howto manager.
9110 * BFD_RELOC_390_GLOB_DAT: howto manager.
9111 * BFD_RELOC_390_GOT12: howto manager.
9112 * BFD_RELOC_390_GOT16: howto manager.
9113 * BFD_RELOC_390_GOT20: howto manager.
9114 * BFD_RELOC_390_GOT64: howto manager.
9115 * BFD_RELOC_390_GOTENT: howto manager.
9116 * BFD_RELOC_390_GOTOFF64: howto manager.
9117 * BFD_RELOC_390_GOTPC: howto manager.
9118 * BFD_RELOC_390_GOTPCDBL: howto manager.
9119 * BFD_RELOC_390_GOTPLT12: howto manager.
9120 * BFD_RELOC_390_GOTPLT16: howto manager.
9121 * BFD_RELOC_390_GOTPLT20: howto manager.
9122 * BFD_RELOC_390_GOTPLT32: howto manager.
9123 * BFD_RELOC_390_GOTPLT64: howto manager.
9124 * BFD_RELOC_390_GOTPLTENT: howto manager.
9125 * BFD_RELOC_390_JMP_SLOT: howto manager.
9126 * BFD_RELOC_390_PC16DBL: howto manager.
9127 * BFD_RELOC_390_PC32DBL: howto manager.
9128 * BFD_RELOC_390_PLT16DBL: howto manager.
9129 * BFD_RELOC_390_PLT32: howto manager.
9130 * BFD_RELOC_390_PLT32DBL: howto manager.
9131 * BFD_RELOC_390_PLT64: howto manager.
9132 * BFD_RELOC_390_PLTOFF16: howto manager.
9133 * BFD_RELOC_390_PLTOFF32: howto manager.
9134 * BFD_RELOC_390_PLTOFF64: howto manager.
9135 * BFD_RELOC_390_RELATIVE: howto manager.
9136 * BFD_RELOC_390_TLS_DTPMOD: howto manager.
9137 * BFD_RELOC_390_TLS_DTPOFF: howto manager.
9138 * BFD_RELOC_390_TLS_GD32: howto manager.
9139 * BFD_RELOC_390_TLS_GD64: howto manager.
9140 * BFD_RELOC_390_TLS_GDCALL: howto manager.
9141 * BFD_RELOC_390_TLS_GOTIE12: howto manager.
9142 * BFD_RELOC_390_TLS_GOTIE20: howto manager.
9143 * BFD_RELOC_390_TLS_GOTIE32: howto manager.
9144 * BFD_RELOC_390_TLS_GOTIE64: howto manager.
9145 * BFD_RELOC_390_TLS_IE32: howto manager.
9146 * BFD_RELOC_390_TLS_IE64: howto manager.
9147 * BFD_RELOC_390_TLS_IEENT: howto manager.
9148 * BFD_RELOC_390_TLS_LDCALL: howto manager.
9149 * BFD_RELOC_390_TLS_LDM32: howto manager.
9150 * BFD_RELOC_390_TLS_LDM64: howto manager.
9151 * BFD_RELOC_390_TLS_LDO32: howto manager.
9152 * BFD_RELOC_390_TLS_LDO64: howto manager.
9153 * BFD_RELOC_390_TLS_LE32: howto manager.
9154 * BFD_RELOC_390_TLS_LE64: howto manager.
9155 * BFD_RELOC_390_TLS_LOAD: howto manager.
9156 * BFD_RELOC_390_TLS_TPOFF: howto manager.
9157 * BFD_RELOC_64: howto manager.
9158 * BFD_RELOC_64_PCREL: howto manager.
9159 * BFD_RELOC_64_PLT_PCREL: howto manager.
9160 * BFD_RELOC_64_PLTOFF: howto manager.
9161 * BFD_RELOC_68K_GLOB_DAT: howto manager.
9162 * BFD_RELOC_68K_JMP_SLOT: howto manager.
9163 * BFD_RELOC_68K_RELATIVE: howto manager.
9164 * BFD_RELOC_8: howto manager.
9165 * BFD_RELOC_860_COPY: howto manager.
9166 * BFD_RELOC_860_GLOB_DAT: howto manager.
9167 * BFD_RELOC_860_HAGOT: howto manager.
9168 * BFD_RELOC_860_HAGOTOFF: howto manager.
9169 * BFD_RELOC_860_HAPC: howto manager.
9170 * BFD_RELOC_860_HIGH: howto manager.
9171 * BFD_RELOC_860_HIGHADJ: howto manager.
9172 * BFD_RELOC_860_HIGOT: howto manager.
9173 * BFD_RELOC_860_HIGOTOFF: howto manager.
9174 * BFD_RELOC_860_JUMP_SLOT: howto manager.
9175 * BFD_RELOC_860_LOGOT0: howto manager.
9176 * BFD_RELOC_860_LOGOT1: howto manager.
9177 * BFD_RELOC_860_LOGOTOFF0: howto manager.
9178 * BFD_RELOC_860_LOGOTOFF1: howto manager.
9179 * BFD_RELOC_860_LOGOTOFF2: howto manager.
9180 * BFD_RELOC_860_LOGOTOFF3: howto manager.
9181 * BFD_RELOC_860_LOPC: howto manager.
9182 * BFD_RELOC_860_LOW0: howto manager.
9183 * BFD_RELOC_860_LOW1: howto manager.
9184 * BFD_RELOC_860_LOW2: howto manager.
9185 * BFD_RELOC_860_LOW3: howto manager.
9186 * BFD_RELOC_860_PC16: howto manager.
9187 * BFD_RELOC_860_PC26: howto manager.
9188 * BFD_RELOC_860_PLT26: howto manager.
9189 * BFD_RELOC_860_RELATIVE: howto manager.
9190 * BFD_RELOC_860_SPGOT0: howto manager.
9191 * BFD_RELOC_860_SPGOT1: howto manager.
9192 * BFD_RELOC_860_SPGOTOFF0: howto manager.
9193 * BFD_RELOC_860_SPGOTOFF1: howto manager.
9194 * BFD_RELOC_860_SPLIT0: howto manager.
9195 * BFD_RELOC_860_SPLIT1: howto manager.
9196 * BFD_RELOC_860_SPLIT2: howto manager.
9197 * BFD_RELOC_8_BASEREL: howto manager.
9198 * BFD_RELOC_8_FFnn: howto manager.
9199 * BFD_RELOC_8_GOT_PCREL: howto manager.
9200 * BFD_RELOC_8_GOTOFF: howto manager.
9201 * BFD_RELOC_8_PCREL: howto manager.
9202 * BFD_RELOC_8_PLT_PCREL: howto manager.
9203 * BFD_RELOC_8_PLTOFF: howto manager.
9204 * BFD_RELOC_ALPHA_BRSGP: howto manager.
9205 * BFD_RELOC_ALPHA_CODEADDR: howto manager.
9206 * BFD_RELOC_ALPHA_DTPMOD64: howto manager.
9207 * BFD_RELOC_ALPHA_DTPREL16: howto manager.
9208 * BFD_RELOC_ALPHA_DTPREL64: howto manager.
9209 * BFD_RELOC_ALPHA_DTPREL_HI16: howto manager.
9210 * BFD_RELOC_ALPHA_DTPREL_LO16: howto manager.
9211 * BFD_RELOC_ALPHA_ELF_LITERAL: howto manager.
9212 * BFD_RELOC_ALPHA_GOTDTPREL16: howto manager.
9213 * BFD_RELOC_ALPHA_GOTTPREL16: howto manager.
9214 * BFD_RELOC_ALPHA_GPDISP: howto manager.
9215 * BFD_RELOC_ALPHA_GPDISP_HI16: howto manager.
9216 * BFD_RELOC_ALPHA_GPDISP_LO16: howto manager.
9217 * BFD_RELOC_ALPHA_GPREL_HI16: howto manager.
9218 * BFD_RELOC_ALPHA_GPREL_LO16: howto manager.
9219 * BFD_RELOC_ALPHA_HINT: howto manager.
9220 * BFD_RELOC_ALPHA_LINKAGE: howto manager.
9221 * BFD_RELOC_ALPHA_LITERAL: howto manager.
9222 * BFD_RELOC_ALPHA_LITUSE: howto manager.
9223 * BFD_RELOC_ALPHA_TLSGD: howto manager.
9224 * BFD_RELOC_ALPHA_TLSLDM: howto manager.
9225 * BFD_RELOC_ALPHA_TPREL16: howto manager.
9226 * BFD_RELOC_ALPHA_TPREL64: howto manager.
9227 * BFD_RELOC_ALPHA_TPREL_HI16: howto manager.
9228 * BFD_RELOC_ALPHA_TPREL_LO16: howto manager.
9229 * BFD_RELOC_ARC_B22_PCREL: howto manager.
9230 * BFD_RELOC_ARC_B26: howto manager.
9231 * BFD_RELOC_ARM_ADR_IMM: howto manager.
9232 * BFD_RELOC_ARM_ADRL_IMMEDIATE: howto manager.
9233 * BFD_RELOC_ARM_CP_OFF_IMM: howto manager.
9234 * BFD_RELOC_ARM_CP_OFF_IMM_S2: howto manager.
9235 * BFD_RELOC_ARM_GLOB_DAT: howto manager.
9236 * BFD_RELOC_ARM_GOT32: howto manager.
9237 * BFD_RELOC_ARM_GOTOFF: howto manager.
9238 * BFD_RELOC_ARM_GOTPC: howto manager.
9239 * BFD_RELOC_ARM_HWLITERAL: howto manager.
9240 * BFD_RELOC_ARM_IMMEDIATE: howto manager.
9241 * BFD_RELOC_ARM_IN_POOL: howto manager.
9242 * BFD_RELOC_ARM_JUMP_SLOT: howto manager.
9243 * BFD_RELOC_ARM_LDR_IMM: howto manager.
9244 * BFD_RELOC_ARM_LITERAL: howto manager.
9245 * BFD_RELOC_ARM_MULTI: howto manager.
9246 * BFD_RELOC_ARM_OFFSET_IMM: howto manager.
9247 * BFD_RELOC_ARM_OFFSET_IMM8: howto manager.
9248 * BFD_RELOC_ARM_PCREL_BLX: howto manager.
9249 * BFD_RELOC_ARM_PCREL_BRANCH: howto manager.
9250 * BFD_RELOC_ARM_PCREL_CALL: howto manager.
9251 * BFD_RELOC_ARM_PCREL_JUMP: howto manager.
9252 * BFD_RELOC_ARM_PLT32: howto manager.
9253 * BFD_RELOC_ARM_PREL31: howto manager.
9254 * BFD_RELOC_ARM_RELATIVE: howto manager.
9255 * BFD_RELOC_ARM_ROSEGREL32: howto manager.
9256 * BFD_RELOC_ARM_SBREL32: howto manager.
9257 * BFD_RELOC_ARM_SHIFT_IMM: howto manager.
9258 * BFD_RELOC_ARM_SMC: howto manager.
9259 * BFD_RELOC_ARM_SWI: howto manager.
9260 * BFD_RELOC_ARM_T32_ADD_PC12: howto manager.
9261 * BFD_RELOC_ARM_T32_CP_OFF_IMM: howto manager.
9262 * BFD_RELOC_ARM_T32_CP_OFF_IMM_S2: howto manager.
9263 * BFD_RELOC_ARM_T32_IMM12: howto manager.
9264 * BFD_RELOC_ARM_T32_IMMEDIATE: howto manager.
9265 * BFD_RELOC_ARM_T32_OFFSET_IMM: howto manager.
9266 * BFD_RELOC_ARM_T32_OFFSET_U8: howto manager.
9267 * BFD_RELOC_ARM_TARGET1: howto manager.
9268 * BFD_RELOC_ARM_TARGET2: howto manager.
9269 * BFD_RELOC_ARM_THUMB_ADD: howto manager.
9270 * BFD_RELOC_ARM_THUMB_IMM: howto manager.
9271 * BFD_RELOC_ARM_THUMB_OFFSET: howto manager.
9272 * BFD_RELOC_ARM_THUMB_SHIFT: howto manager.
9273 * BFD_RELOC_ARM_TLS_DTPMOD32: howto manager.
9274 * BFD_RELOC_ARM_TLS_DTPOFF32: howto manager.
9275 * BFD_RELOC_ARM_TLS_GD32: howto manager.
9276 * BFD_RELOC_ARM_TLS_IE32: howto manager.
9277 * BFD_RELOC_ARM_TLS_LDM32: howto manager.
9278 * BFD_RELOC_ARM_TLS_LDO32: howto manager.
9279 * BFD_RELOC_ARM_TLS_LE32: howto manager.
9280 * BFD_RELOC_ARM_TLS_TPOFF32: howto manager.
9281 * BFD_RELOC_AVR_13_PCREL: howto manager.
9282 * BFD_RELOC_AVR_16_PM: howto manager.
9283 * BFD_RELOC_AVR_6: howto manager.
9284 * BFD_RELOC_AVR_6_ADIW: howto manager.
9285 * BFD_RELOC_AVR_7_PCREL: howto manager.
9286 * BFD_RELOC_AVR_CALL: howto manager.
9287 * BFD_RELOC_AVR_HH8_LDI: howto manager.
9288 * BFD_RELOC_AVR_HH8_LDI_NEG: howto manager.
9289 * BFD_RELOC_AVR_HH8_LDI_PM: howto manager.
9290 * BFD_RELOC_AVR_HH8_LDI_PM_NEG: howto manager.
9291 * BFD_RELOC_AVR_HI8_LDI: howto manager.
9292 * BFD_RELOC_AVR_HI8_LDI_NEG: howto manager.
9293 * BFD_RELOC_AVR_HI8_LDI_PM: howto manager.
9294 * BFD_RELOC_AVR_HI8_LDI_PM_NEG: howto manager.
9295 * BFD_RELOC_AVR_LDI: howto manager.
9296 * BFD_RELOC_AVR_LO8_LDI: howto manager.
9297 * BFD_RELOC_AVR_LO8_LDI_NEG: howto manager.
9298 * BFD_RELOC_AVR_LO8_LDI_PM: howto manager.
9299 * BFD_RELOC_AVR_LO8_LDI_PM_NEG: howto manager.
9300 * BFD_RELOC_BFIN_10_PCREL: howto manager.
9301 * BFD_RELOC_BFIN_11_PCREL: howto manager.
9302 * BFD_RELOC_BFIN_12_PCREL_JUMP: howto manager.
9303 * BFD_RELOC_BFIN_12_PCREL_JUMP_S: howto manager.
9304 * BFD_RELOC_BFIN_16_HIGH: howto manager.
9305 * BFD_RELOC_BFIN_16_IMM: howto manager.
9306 * BFD_RELOC_BFIN_16_LOW: howto manager.
9307 * BFD_RELOC_BFIN_24_PCREL_CALL_X: howto manager.
9308 * BFD_RELOC_BFIN_24_PCREL_JUMP_L: howto manager.
9309 * BFD_RELOC_BFIN_4_PCREL: howto manager.
9310 * BFD_RELOC_BFIN_5_PCREL: howto manager.
9311 * BFD_RELOC_BFIN_GOT: howto manager.
9312 * BFD_RELOC_BFIN_PLTPC: howto manager.
9313 * bfd_reloc_code_type: howto manager.
9314 * BFD_RELOC_CRIS_16_GOT: howto manager.
9315 * BFD_RELOC_CRIS_16_GOTPLT: howto manager.
9316 * BFD_RELOC_CRIS_32_GOT: howto manager.
9317 * BFD_RELOC_CRIS_32_GOTPLT: howto manager.
9318 * BFD_RELOC_CRIS_32_GOTREL: howto manager.
9319 * BFD_RELOC_CRIS_32_PLT_GOTREL: howto manager.
9320 * BFD_RELOC_CRIS_32_PLT_PCREL: howto manager.
9321 * BFD_RELOC_CRIS_BDISP8: howto manager.
9322 * BFD_RELOC_CRIS_COPY: howto manager.
9323 * BFD_RELOC_CRIS_GLOB_DAT: howto manager.
9324 * BFD_RELOC_CRIS_JUMP_SLOT: howto manager.
9325 * BFD_RELOC_CRIS_LAPCQ_OFFSET: howto manager.
9326 * BFD_RELOC_CRIS_RELATIVE: howto manager.
9327 * BFD_RELOC_CRIS_SIGNED_16: howto manager.
9328 * BFD_RELOC_CRIS_SIGNED_6: howto manager.
9329 * BFD_RELOC_CRIS_SIGNED_8: howto manager.
9330 * BFD_RELOC_CRIS_UNSIGNED_16: howto manager.
9331 * BFD_RELOC_CRIS_UNSIGNED_4: howto manager.
9332 * BFD_RELOC_CRIS_UNSIGNED_5: howto manager.
9333 * BFD_RELOC_CRIS_UNSIGNED_6: howto manager.
9334 * BFD_RELOC_CRIS_UNSIGNED_8: howto manager.
9335 * BFD_RELOC_CRX_ABS16: howto manager.
9336 * BFD_RELOC_CRX_ABS32: howto manager.
9337 * BFD_RELOC_CRX_IMM16: howto manager.
9338 * BFD_RELOC_CRX_IMM32: howto manager.
9339 * BFD_RELOC_CRX_NUM16: howto manager.
9340 * BFD_RELOC_CRX_NUM32: howto manager.
9341 * BFD_RELOC_CRX_NUM8: howto manager.
9342 * BFD_RELOC_CRX_REGREL12: howto manager.
9343 * BFD_RELOC_CRX_REGREL22: howto manager.
9344 * BFD_RELOC_CRX_REGREL28: howto manager.
9345 * BFD_RELOC_CRX_REGREL32: howto manager.
9346 * BFD_RELOC_CRX_REL16: howto manager.
9347 * BFD_RELOC_CRX_REL24: howto manager.
9348 * BFD_RELOC_CRX_REL32: howto manager.
9349 * BFD_RELOC_CRX_REL4: howto manager.
9350 * BFD_RELOC_CRX_REL8: howto manager.
9351 * BFD_RELOC_CRX_REL8_CMP: howto manager.
9352 * BFD_RELOC_CRX_SWITCH16: howto manager.
9353 * BFD_RELOC_CRX_SWITCH32: howto manager.
9354 * BFD_RELOC_CRX_SWITCH8: howto manager.
9355 * BFD_RELOC_CTOR: howto manager.
9356 * BFD_RELOC_D10V_10_PCREL_L: howto manager.
9357 * BFD_RELOC_D10V_10_PCREL_R: howto manager.
9358 * BFD_RELOC_D10V_18: howto manager.
9359 * BFD_RELOC_D10V_18_PCREL: howto manager.
9360 * BFD_RELOC_D30V_15: howto manager.
9361 * BFD_RELOC_D30V_15_PCREL: howto manager.
9362 * BFD_RELOC_D30V_15_PCREL_R: howto manager.
9363 * BFD_RELOC_D30V_21: howto manager.
9364 * BFD_RELOC_D30V_21_PCREL: howto manager.
9365 * BFD_RELOC_D30V_21_PCREL_R: howto manager.
9366 * BFD_RELOC_D30V_32: howto manager.
9367 * BFD_RELOC_D30V_32_PCREL: howto manager.
9368 * BFD_RELOC_D30V_6: howto manager.
9369 * BFD_RELOC_D30V_9_PCREL: howto manager.
9370 * BFD_RELOC_D30V_9_PCREL_R: howto manager.
9371 * BFD_RELOC_DLX_HI16_S: howto manager.
9372 * BFD_RELOC_DLX_JMP26: howto manager.
9373 * BFD_RELOC_DLX_LO16: howto manager.
9374 * BFD_RELOC_FR30_10_IN_8: howto manager.
9375 * BFD_RELOC_FR30_12_PCREL: howto manager.
9376 * BFD_RELOC_FR30_20: howto manager.
9377 * BFD_RELOC_FR30_48: howto manager.
9378 * BFD_RELOC_FR30_6_IN_4: howto manager.
9379 * BFD_RELOC_FR30_8_IN_8: howto manager.
9380 * BFD_RELOC_FR30_9_IN_8: howto manager.
9381 * BFD_RELOC_FR30_9_PCREL: howto manager.
9382 * BFD_RELOC_FRV_FUNCDESC: howto manager.
9383 * BFD_RELOC_FRV_FUNCDESC_GOT12: howto manager.
9384 * BFD_RELOC_FRV_FUNCDESC_GOTHI: howto manager.
9385 * BFD_RELOC_FRV_FUNCDESC_GOTLO: howto manager.
9386 * BFD_RELOC_FRV_FUNCDESC_GOTOFF12: howto manager.
9387 * BFD_RELOC_FRV_FUNCDESC_GOTOFFHI: howto manager.
9388 * BFD_RELOC_FRV_FUNCDESC_GOTOFFLO: howto manager.
9389 * BFD_RELOC_FRV_FUNCDESC_VALUE: howto manager.
9390 * BFD_RELOC_FRV_GETTLSOFF: howto manager.
9391 * BFD_RELOC_FRV_GETTLSOFF_RELAX: howto manager.
9392 * BFD_RELOC_FRV_GOT12: howto manager.
9393 * BFD_RELOC_FRV_GOTHI: howto manager.
9394 * BFD_RELOC_FRV_GOTLO: howto manager.
9395 * BFD_RELOC_FRV_GOTOFF12: howto manager.
9396 * BFD_RELOC_FRV_GOTOFFHI: howto manager.
9397 * BFD_RELOC_FRV_GOTOFFLO: howto manager.
9398 * BFD_RELOC_FRV_GOTTLSDESC12: howto manager.
9399 * BFD_RELOC_FRV_GOTTLSDESCHI: howto manager.
9400 * BFD_RELOC_FRV_GOTTLSDESCLO: howto manager.
9401 * BFD_RELOC_FRV_GOTTLSOFF12: howto manager.
9402 * BFD_RELOC_FRV_GOTTLSOFFHI: howto manager.
9403 * BFD_RELOC_FRV_GOTTLSOFFLO: howto manager.
9404 * BFD_RELOC_FRV_GPREL12: howto manager.
9405 * BFD_RELOC_FRV_GPREL32: howto manager.
9406 * BFD_RELOC_FRV_GPRELHI: howto manager.
9407 * BFD_RELOC_FRV_GPRELLO: howto manager.
9408 * BFD_RELOC_FRV_GPRELU12: howto manager.
9409 * BFD_RELOC_FRV_HI16: howto manager.
9410 * BFD_RELOC_FRV_LABEL16: howto manager.
9411 * BFD_RELOC_FRV_LABEL24: howto manager.
9412 * BFD_RELOC_FRV_LO16: howto manager.
9413 * BFD_RELOC_FRV_TLSDESC_RELAX: howto manager.
9414 * BFD_RELOC_FRV_TLSDESC_VALUE: howto manager.
9415 * BFD_RELOC_FRV_TLSMOFF: howto manager.
9416 * BFD_RELOC_FRV_TLSMOFF12: howto manager.
9417 * BFD_RELOC_FRV_TLSMOFFHI: howto manager.
9418 * BFD_RELOC_FRV_TLSMOFFLO: howto manager.
9419 * BFD_RELOC_FRV_TLSOFF: howto manager.
9420 * BFD_RELOC_FRV_TLSOFF_RELAX: howto manager.
9421 * BFD_RELOC_GPREL16: howto manager.
9422 * BFD_RELOC_GPREL32: howto manager.
9423 * BFD_RELOC_H8_DIR16A8: howto manager.
9424 * BFD_RELOC_H8_DIR16R8: howto manager.
9425 * BFD_RELOC_H8_DIR24A8: howto manager.
9426 * BFD_RELOC_H8_DIR24R8: howto manager.
9427 * BFD_RELOC_H8_DIR32A16: howto manager.
9428 * BFD_RELOC_HI16: howto manager.
9429 * BFD_RELOC_HI16_BASEREL: howto manager.
9430 * BFD_RELOC_HI16_GOTOFF: howto manager.
9431 * BFD_RELOC_HI16_PCREL: howto manager.
9432 * BFD_RELOC_HI16_PLTOFF: howto manager.
9433 * BFD_RELOC_HI16_S: howto manager.
9434 * BFD_RELOC_HI16_S_BASEREL: howto manager.
9435 * BFD_RELOC_HI16_S_GOTOFF: howto manager.
9436 * BFD_RELOC_HI16_S_PCREL: howto manager.
9437 * BFD_RELOC_HI16_S_PLTOFF: howto manager.
9438 * BFD_RELOC_HI22: howto manager.
9439 * BFD_RELOC_I370_D12: howto manager.
9440 * BFD_RELOC_I960_CALLJ: howto manager.
9441 * BFD_RELOC_IA64_COPY: howto manager.
9442 * BFD_RELOC_IA64_DIR32LSB: howto manager.
9443 * BFD_RELOC_IA64_DIR32MSB: howto manager.
9444 * BFD_RELOC_IA64_DIR64LSB: howto manager.
9445 * BFD_RELOC_IA64_DIR64MSB: howto manager.
9446 * BFD_RELOC_IA64_DTPMOD64LSB: howto manager.
9447 * BFD_RELOC_IA64_DTPMOD64MSB: howto manager.
9448 * BFD_RELOC_IA64_DTPREL14: howto manager.
9449 * BFD_RELOC_IA64_DTPREL22: howto manager.
9450 * BFD_RELOC_IA64_DTPREL32LSB: howto manager.
9451 * BFD_RELOC_IA64_DTPREL32MSB: howto manager.
9452 * BFD_RELOC_IA64_DTPREL64I: howto manager.
9453 * BFD_RELOC_IA64_DTPREL64LSB: howto manager.
9454 * BFD_RELOC_IA64_DTPREL64MSB: howto manager.
9455 * BFD_RELOC_IA64_FPTR32LSB: howto manager.
9456 * BFD_RELOC_IA64_FPTR32MSB: howto manager.
9457 * BFD_RELOC_IA64_FPTR64I: howto manager.
9458 * BFD_RELOC_IA64_FPTR64LSB: howto manager.
9459 * BFD_RELOC_IA64_FPTR64MSB: howto manager.
9460 * BFD_RELOC_IA64_GPREL22: howto manager.
9461 * BFD_RELOC_IA64_GPREL32LSB: howto manager.
9462 * BFD_RELOC_IA64_GPREL32MSB: howto manager.
9463 * BFD_RELOC_IA64_GPREL64I: howto manager.
9464 * BFD_RELOC_IA64_GPREL64LSB: howto manager.
9465 * BFD_RELOC_IA64_GPREL64MSB: howto manager.
9466 * BFD_RELOC_IA64_IMM14: howto manager.
9467 * BFD_RELOC_IA64_IMM22: howto manager.
9468 * BFD_RELOC_IA64_IMM64: howto manager.
9469 * BFD_RELOC_IA64_IPLTLSB: howto manager.
9470 * BFD_RELOC_IA64_IPLTMSB: howto manager.
9471 * BFD_RELOC_IA64_LDXMOV: howto manager.
9472 * BFD_RELOC_IA64_LTOFF22: howto manager.
9473 * BFD_RELOC_IA64_LTOFF22X: howto manager.
9474 * BFD_RELOC_IA64_LTOFF64I: howto manager.
9475 * BFD_RELOC_IA64_LTOFF_DTPMOD22: howto manager.
9476 * BFD_RELOC_IA64_LTOFF_DTPREL22: howto manager.
9477 * BFD_RELOC_IA64_LTOFF_FPTR22: howto manager.
9478 * BFD_RELOC_IA64_LTOFF_FPTR32LSB: howto manager.
9479 * BFD_RELOC_IA64_LTOFF_FPTR32MSB: howto manager.
9480 * BFD_RELOC_IA64_LTOFF_FPTR64I: howto manager.
9481 * BFD_RELOC_IA64_LTOFF_FPTR64LSB: howto manager.
9482 * BFD_RELOC_IA64_LTOFF_FPTR64MSB: howto manager.
9483 * BFD_RELOC_IA64_LTOFF_TPREL22: howto manager.
9484 * BFD_RELOC_IA64_LTV32LSB: howto manager.
9485 * BFD_RELOC_IA64_LTV32MSB: howto manager.
9486 * BFD_RELOC_IA64_LTV64LSB: howto manager.
9487 * BFD_RELOC_IA64_LTV64MSB: howto manager.
9488 * BFD_RELOC_IA64_PCREL21B: howto manager.
9489 * BFD_RELOC_IA64_PCREL21BI: howto manager.
9490 * BFD_RELOC_IA64_PCREL21F: howto manager.
9491 * BFD_RELOC_IA64_PCREL21M: howto manager.
9492 * BFD_RELOC_IA64_PCREL22: howto manager.
9493 * BFD_RELOC_IA64_PCREL32LSB: howto manager.
9494 * BFD_RELOC_IA64_PCREL32MSB: howto manager.
9495 * BFD_RELOC_IA64_PCREL60B: howto manager.
9496 * BFD_RELOC_IA64_PCREL64I: howto manager.
9497 * BFD_RELOC_IA64_PCREL64LSB: howto manager.
9498 * BFD_RELOC_IA64_PCREL64MSB: howto manager.
9499 * BFD_RELOC_IA64_PLTOFF22: howto manager.
9500 * BFD_RELOC_IA64_PLTOFF64I: howto manager.
9501 * BFD_RELOC_IA64_PLTOFF64LSB: howto manager.
9502 * BFD_RELOC_IA64_PLTOFF64MSB: howto manager.
9503 * BFD_RELOC_IA64_REL32LSB: howto manager.
9504 * BFD_RELOC_IA64_REL32MSB: howto manager.
9505 * BFD_RELOC_IA64_REL64LSB: howto manager.
9506 * BFD_RELOC_IA64_REL64MSB: howto manager.
9507 * BFD_RELOC_IA64_SECREL32LSB: howto manager.
9508 * BFD_RELOC_IA64_SECREL32MSB: howto manager.
9509 * BFD_RELOC_IA64_SECREL64LSB: howto manager.
9510 * BFD_RELOC_IA64_SECREL64MSB: howto manager.
9511 * BFD_RELOC_IA64_SEGREL32LSB: howto manager.
9512 * BFD_RELOC_IA64_SEGREL32MSB: howto manager.
9513 * BFD_RELOC_IA64_SEGREL64LSB: howto manager.
9514 * BFD_RELOC_IA64_SEGREL64MSB: howto manager.
9515 * BFD_RELOC_IA64_TPREL14: howto manager.
9516 * BFD_RELOC_IA64_TPREL22: howto manager.
9517 * BFD_RELOC_IA64_TPREL64I: howto manager.
9518 * BFD_RELOC_IA64_TPREL64LSB: howto manager.
9519 * BFD_RELOC_IA64_TPREL64MSB: howto manager.
9520 * BFD_RELOC_IP2K_ADDR16CJP: howto manager.
9521 * BFD_RELOC_IP2K_BANK: howto manager.
9522 * BFD_RELOC_IP2K_EX8DATA: howto manager.
9523 * BFD_RELOC_IP2K_FR9: howto manager.
9524 * BFD_RELOC_IP2K_FR_OFFSET: howto manager.
9525 * BFD_RELOC_IP2K_HI8DATA: howto manager.
9526 * BFD_RELOC_IP2K_HI8INSN: howto manager.
9527 * BFD_RELOC_IP2K_LO8DATA: howto manager.
9528 * BFD_RELOC_IP2K_LO8INSN: howto manager.
9529 * BFD_RELOC_IP2K_PAGE3: howto manager.
9530 * BFD_RELOC_IP2K_PC_SKIP: howto manager.
9531 * BFD_RELOC_IP2K_TEXT: howto manager.
9532 * BFD_RELOC_IQ2000_OFFSET_16: howto manager.
9533 * BFD_RELOC_IQ2000_OFFSET_21: howto manager.
9534 * BFD_RELOC_IQ2000_UHI16: howto manager.
9535 * BFD_RELOC_LO10: howto manager.
9536 * BFD_RELOC_LO16: howto manager.
9537 * BFD_RELOC_LO16_BASEREL: howto manager.
9538 * BFD_RELOC_LO16_GOTOFF: howto manager.
9539 * BFD_RELOC_LO16_PCREL: howto manager.
9540 * BFD_RELOC_LO16_PLTOFF: howto manager.
9541 * BFD_RELOC_M32C_HI8: howto manager.
9542 * BFD_RELOC_M32R_10_PCREL: howto manager.
9543 * BFD_RELOC_M32R_18_PCREL: howto manager.
9544 * BFD_RELOC_M32R_24: howto manager.
9545 * BFD_RELOC_M32R_26_PCREL: howto manager.
9546 * BFD_RELOC_M32R_26_PLTREL: howto manager.
9547 * BFD_RELOC_M32R_COPY: howto manager.
9548 * BFD_RELOC_M32R_GLOB_DAT: howto manager.
9549 * BFD_RELOC_M32R_GOT16_HI_SLO: howto manager.
9550 * BFD_RELOC_M32R_GOT16_HI_ULO: howto manager.
9551 * BFD_RELOC_M32R_GOT16_LO: howto manager.
9552 * BFD_RELOC_M32R_GOT24: howto manager.
9553 * BFD_RELOC_M32R_GOTOFF: howto manager.
9554 * BFD_RELOC_M32R_GOTOFF_HI_SLO: howto manager.
9555 * BFD_RELOC_M32R_GOTOFF_HI_ULO: howto manager.
9556 * BFD_RELOC_M32R_GOTOFF_LO: howto manager.
9557 * BFD_RELOC_M32R_GOTPC24: howto manager.
9558 * BFD_RELOC_M32R_GOTPC_HI_SLO: howto manager.
9559 * BFD_RELOC_M32R_GOTPC_HI_ULO: howto manager.
9560 * BFD_RELOC_M32R_GOTPC_LO: howto manager.
9561 * BFD_RELOC_M32R_HI16_SLO: howto manager.
9562 * BFD_RELOC_M32R_HI16_ULO: howto manager.
9563 * BFD_RELOC_M32R_JMP_SLOT: howto manager.
9564 * BFD_RELOC_M32R_LO16: howto manager.
9565 * BFD_RELOC_M32R_RELATIVE: howto manager.
9566 * BFD_RELOC_M32R_SDA16: howto manager.
9567 * BFD_RELOC_M68HC11_24: howto manager.
9568 * BFD_RELOC_M68HC11_3B: howto manager.
9569 * BFD_RELOC_M68HC11_HI8: howto manager.
9570 * BFD_RELOC_M68HC11_LO16: howto manager.
9571 * BFD_RELOC_M68HC11_LO8: howto manager.
9572 * BFD_RELOC_M68HC11_PAGE: howto manager.
9573 * BFD_RELOC_M68HC11_RL_GROUP: howto manager.
9574 * BFD_RELOC_M68HC11_RL_JUMP: howto manager.
9575 * BFD_RELOC_M68HC12_5B: howto manager.
9576 * BFD_RELOC_MCORE_PCREL_32: howto manager.
9577 * BFD_RELOC_MCORE_PCREL_IMM11BY2: howto manager.
9578 * BFD_RELOC_MCORE_PCREL_IMM4BY2: howto manager.
9579 * BFD_RELOC_MCORE_PCREL_IMM8BY4: howto manager.
9580 * BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2: howto manager.
9581 * BFD_RELOC_MCORE_RVA: howto manager.
9582 * BFD_RELOC_MIPS16_GPREL: howto manager.
9583 * BFD_RELOC_MIPS16_HI16: howto manager.
9584 * BFD_RELOC_MIPS16_HI16_S: howto manager.
9585 * BFD_RELOC_MIPS16_JMP: howto manager.
9586 * BFD_RELOC_MIPS16_LO16: howto manager.
9587 * BFD_RELOC_MIPS_CALL16: howto manager.
9588 * BFD_RELOC_MIPS_CALL_HI16: howto manager.
9589 * BFD_RELOC_MIPS_CALL_LO16: howto manager.
9590 * BFD_RELOC_MIPS_DELETE: howto manager.
9591 * BFD_RELOC_MIPS_GOT16: howto manager.
9592 * BFD_RELOC_MIPS_GOT_DISP: howto manager.
9593 * BFD_RELOC_MIPS_GOT_HI16: howto manager.
9594 * BFD_RELOC_MIPS_GOT_LO16: howto manager.
9595 * BFD_RELOC_MIPS_GOT_OFST: howto manager.
9596 * BFD_RELOC_MIPS_GOT_PAGE: howto manager.
9597 * BFD_RELOC_MIPS_HIGHER: howto manager.
9598 * BFD_RELOC_MIPS_HIGHEST: howto manager.
9599 * BFD_RELOC_MIPS_INSERT_A: howto manager.
9600 * BFD_RELOC_MIPS_INSERT_B: howto manager.
9601 * BFD_RELOC_MIPS_JALR: howto manager.
9602 * BFD_RELOC_MIPS_JMP: howto manager.
9603 * BFD_RELOC_MIPS_LITERAL: howto manager.
9604 * BFD_RELOC_MIPS_REL16: howto manager.
9605 * BFD_RELOC_MIPS_RELGOT: howto manager.
9606 * BFD_RELOC_MIPS_SCN_DISP: howto manager.
9607 * BFD_RELOC_MIPS_SHIFT5: howto manager.
9608 * BFD_RELOC_MIPS_SHIFT6: howto manager.
9609 * BFD_RELOC_MIPS_SUB: howto manager.
9610 * BFD_RELOC_MIPS_TLS_DTPMOD32: howto manager.
9611 * BFD_RELOC_MIPS_TLS_DTPMOD64: howto manager.
9612 * BFD_RELOC_MIPS_TLS_DTPREL32: howto manager.
9613 * BFD_RELOC_MIPS_TLS_DTPREL64: howto manager.
9614 * BFD_RELOC_MIPS_TLS_DTPREL_HI16: howto manager.
9615 * BFD_RELOC_MIPS_TLS_DTPREL_LO16: howto manager.
9616 * BFD_RELOC_MIPS_TLS_GD: howto manager.
9617 * BFD_RELOC_MIPS_TLS_GOTTPREL: howto manager.
9618 * BFD_RELOC_MIPS_TLS_LDM: howto manager.
9619 * BFD_RELOC_MIPS_TLS_TPREL32: howto manager.
9620 * BFD_RELOC_MIPS_TLS_TPREL64: howto manager.
9621 * BFD_RELOC_MIPS_TLS_TPREL_HI16: howto manager.
9622 * BFD_RELOC_MIPS_TLS_TPREL_LO16: howto manager.
9623 * BFD_RELOC_MMIX_ADDR19: howto manager.
9624 * BFD_RELOC_MMIX_ADDR27: howto manager.
9625 * BFD_RELOC_MMIX_BASE_PLUS_OFFSET: howto manager.
9626 * BFD_RELOC_MMIX_CBRANCH: howto manager.
9627 * BFD_RELOC_MMIX_CBRANCH_1: howto manager.
9628 * BFD_RELOC_MMIX_CBRANCH_2: howto manager.
9629 * BFD_RELOC_MMIX_CBRANCH_3: howto manager.
9630 * BFD_RELOC_MMIX_CBRANCH_J: howto manager.
9631 * BFD_RELOC_MMIX_GETA: howto manager.
9632 * BFD_RELOC_MMIX_GETA_1: howto manager.
9633 * BFD_RELOC_MMIX_GETA_2: howto manager.
9634 * BFD_RELOC_MMIX_GETA_3: howto manager.
9635 * BFD_RELOC_MMIX_JMP: howto manager.
9636 * BFD_RELOC_MMIX_JMP_1: howto manager.
9637 * BFD_RELOC_MMIX_JMP_2: howto manager.
9638 * BFD_RELOC_MMIX_JMP_3: howto manager.
9639 * BFD_RELOC_MMIX_LOCAL: howto manager.
9640 * BFD_RELOC_MMIX_PUSHJ: howto manager.
9641 * BFD_RELOC_MMIX_PUSHJ_1: howto manager.
9642 * BFD_RELOC_MMIX_PUSHJ_2: howto manager.
9643 * BFD_RELOC_MMIX_PUSHJ_3: howto manager.
9644 * BFD_RELOC_MMIX_PUSHJ_STUBBABLE: howto manager.
9645 * BFD_RELOC_MMIX_REG: howto manager.
9646 * BFD_RELOC_MMIX_REG_OR_BYTE: howto manager.
9647 * BFD_RELOC_MN10300_16_PCREL: howto manager.
9648 * BFD_RELOC_MN10300_32_PCREL: howto manager.
9649 * BFD_RELOC_MN10300_COPY: howto manager.
9650 * BFD_RELOC_MN10300_GLOB_DAT: howto manager.
9651 * BFD_RELOC_MN10300_GOT16: howto manager.
9652 * BFD_RELOC_MN10300_GOT24: howto manager.
9653 * BFD_RELOC_MN10300_GOT32: howto manager.
9654 * BFD_RELOC_MN10300_GOTOFF24: howto manager.
9655 * BFD_RELOC_MN10300_JMP_SLOT: howto manager.
9656 * BFD_RELOC_MN10300_RELATIVE: howto manager.
9657 * BFD_RELOC_MSP430_10_PCREL: howto manager.
9658 * BFD_RELOC_MSP430_16: howto manager.
9659 * BFD_RELOC_MSP430_16_BYTE: howto manager.
9660 * BFD_RELOC_MSP430_16_PCREL: howto manager.
9661 * BFD_RELOC_MSP430_16_PCREL_BYTE: howto manager.
9662 * BFD_RELOC_MSP430_2X_PCREL: howto manager.
9663 * BFD_RELOC_MSP430_RL_PCREL: howto manager.
9664 * BFD_RELOC_MT_GNU_VTENTRY: howto manager.
9665 * BFD_RELOC_MT_GNU_VTINHERIT: howto manager.
9666 * BFD_RELOC_MT_HI16: howto manager.
9667 * BFD_RELOC_MT_LO16: howto manager.
9668 * BFD_RELOC_MT_PC16: howto manager.
9669 * BFD_RELOC_MT_PCINSN8: howto manager.
9670 * BFD_RELOC_NONE: howto manager.
9671 * BFD_RELOC_NS32K_DISP_16: howto manager.
9672 * BFD_RELOC_NS32K_DISP_16_PCREL: howto manager.
9673 * BFD_RELOC_NS32K_DISP_32: howto manager.
9674 * BFD_RELOC_NS32K_DISP_32_PCREL: howto manager.
9675 * BFD_RELOC_NS32K_DISP_8: howto manager.
9676 * BFD_RELOC_NS32K_DISP_8_PCREL: howto manager.
9677 * BFD_RELOC_NS32K_IMM_16: howto manager.
9678 * BFD_RELOC_NS32K_IMM_16_PCREL: howto manager.
9679 * BFD_RELOC_NS32K_IMM_32: howto manager.
9680 * BFD_RELOC_NS32K_IMM_32_PCREL: howto manager.
9681 * BFD_RELOC_NS32K_IMM_8: howto manager.
9682 * BFD_RELOC_NS32K_IMM_8_PCREL: howto manager.
9683 * BFD_RELOC_OPENRISC_ABS_26: howto manager.
9684 * BFD_RELOC_OPENRISC_REL_26: howto manager.
9685 * BFD_RELOC_PDP11_DISP_6_PCREL: howto manager.
9686 * BFD_RELOC_PDP11_DISP_8_PCREL: howto manager.
9687 * BFD_RELOC_PJ_CODE_DIR16: howto manager.
9688 * BFD_RELOC_PJ_CODE_DIR32: howto manager.
9689 * BFD_RELOC_PJ_CODE_HI16: howto manager.
9690 * BFD_RELOC_PJ_CODE_LO16: howto manager.
9691 * BFD_RELOC_PJ_CODE_REL16: howto manager.
9692 * BFD_RELOC_PJ_CODE_REL32: howto manager.
9693 * BFD_RELOC_PPC64_ADDR16_DS: howto manager.
9694 * BFD_RELOC_PPC64_ADDR16_LO_DS: howto manager.
9695 * BFD_RELOC_PPC64_DTPREL16_DS: howto manager.
9696 * BFD_RELOC_PPC64_DTPREL16_HIGHER: howto manager.
9697 * BFD_RELOC_PPC64_DTPREL16_HIGHERA: howto manager.
9698 * BFD_RELOC_PPC64_DTPREL16_HIGHEST: howto manager.
9699 * BFD_RELOC_PPC64_DTPREL16_HIGHESTA: howto manager.
9700 * BFD_RELOC_PPC64_DTPREL16_LO_DS: howto manager.
9701 * BFD_RELOC_PPC64_GOT16_DS: howto manager.
9702 * BFD_RELOC_PPC64_GOT16_LO_DS: howto manager.
9703 * BFD_RELOC_PPC64_HIGHER: howto manager.
9704 * BFD_RELOC_PPC64_HIGHER_S: howto manager.
9705 * BFD_RELOC_PPC64_HIGHEST: howto manager.
9706 * BFD_RELOC_PPC64_HIGHEST_S: howto manager.
9707 * BFD_RELOC_PPC64_PLT16_LO_DS: howto manager.
9708 * BFD_RELOC_PPC64_PLTGOT16: howto manager.
9709 * BFD_RELOC_PPC64_PLTGOT16_DS: howto manager.
9710 * BFD_RELOC_PPC64_PLTGOT16_HA: howto manager.
9711 * BFD_RELOC_PPC64_PLTGOT16_HI: howto manager.
9712 * BFD_RELOC_PPC64_PLTGOT16_LO: howto manager.
9713 * BFD_RELOC_PPC64_PLTGOT16_LO_DS: howto manager.
9714 * BFD_RELOC_PPC64_SECTOFF_DS: howto manager.
9715 * BFD_RELOC_PPC64_SECTOFF_LO_DS: howto manager.
9716 * BFD_RELOC_PPC64_TOC: howto manager.
9717 * BFD_RELOC_PPC64_TOC16_DS: howto manager.
9718 * BFD_RELOC_PPC64_TOC16_HA: howto manager.
9719 * BFD_RELOC_PPC64_TOC16_HI: howto manager.
9720 * BFD_RELOC_PPC64_TOC16_LO: howto manager.
9721 * BFD_RELOC_PPC64_TOC16_LO_DS: howto manager.
9722 * BFD_RELOC_PPC64_TPREL16_DS: howto manager.
9723 * BFD_RELOC_PPC64_TPREL16_HIGHER: howto manager.
9724 * BFD_RELOC_PPC64_TPREL16_HIGHERA: howto manager.
9725 * BFD_RELOC_PPC64_TPREL16_HIGHEST: howto manager.
9726 * BFD_RELOC_PPC64_TPREL16_HIGHESTA: howto manager.
9727 * BFD_RELOC_PPC64_TPREL16_LO_DS: howto manager.
9728 * BFD_RELOC_PPC_B16: howto manager.
9729 * BFD_RELOC_PPC_B16_BRNTAKEN: howto manager.
9730 * BFD_RELOC_PPC_B16_BRTAKEN: howto manager.
9731 * BFD_RELOC_PPC_B26: howto manager.
9732 * BFD_RELOC_PPC_BA16: howto manager.
9733 * BFD_RELOC_PPC_BA16_BRNTAKEN: howto manager.
9734 * BFD_RELOC_PPC_BA16_BRTAKEN: howto manager.
9735 * BFD_RELOC_PPC_BA26: howto manager.
9736 * BFD_RELOC_PPC_COPY: howto manager.
9737 * BFD_RELOC_PPC_DTPMOD: howto manager.
9738 * BFD_RELOC_PPC_DTPREL: howto manager.
9739 * BFD_RELOC_PPC_DTPREL16: howto manager.
9740 * BFD_RELOC_PPC_DTPREL16_HA: howto manager.
9741 * BFD_RELOC_PPC_DTPREL16_HI: howto manager.
9742 * BFD_RELOC_PPC_DTPREL16_LO: howto manager.
9743 * BFD_RELOC_PPC_EMB_BIT_FLD: howto manager.
9744 * BFD_RELOC_PPC_EMB_MRKREF: howto manager.
9745 * BFD_RELOC_PPC_EMB_NADDR16: howto manager.
9746 * BFD_RELOC_PPC_EMB_NADDR16_HA: howto manager.
9747 * BFD_RELOC_PPC_EMB_NADDR16_HI: howto manager.
9748 * BFD_RELOC_PPC_EMB_NADDR16_LO: howto manager.
9749 * BFD_RELOC_PPC_EMB_NADDR32: howto manager.
9750 * BFD_RELOC_PPC_EMB_RELSDA: howto manager.
9751 * BFD_RELOC_PPC_EMB_RELSEC16: howto manager.
9752 * BFD_RELOC_PPC_EMB_RELST_HA: howto manager.
9753 * BFD_RELOC_PPC_EMB_RELST_HI: howto manager.
9754 * BFD_RELOC_PPC_EMB_RELST_LO: howto manager.
9755 * BFD_RELOC_PPC_EMB_SDA21: howto manager.
9756 * BFD_RELOC_PPC_EMB_SDA2I16: howto manager.
9757 * BFD_RELOC_PPC_EMB_SDA2REL: howto manager.
9758 * BFD_RELOC_PPC_EMB_SDAI16: howto manager.
9759 * BFD_RELOC_PPC_GLOB_DAT: howto manager.
9760 * BFD_RELOC_PPC_GOT_DTPREL16: howto manager.
9761 * BFD_RELOC_PPC_GOT_DTPREL16_HA: howto manager.
9762 * BFD_RELOC_PPC_GOT_DTPREL16_HI: howto manager.
9763 * BFD_RELOC_PPC_GOT_DTPREL16_LO: howto manager.
9764 * BFD_RELOC_PPC_GOT_TLSGD16: howto manager.
9765 * BFD_RELOC_PPC_GOT_TLSGD16_HA: howto manager.
9766 * BFD_RELOC_PPC_GOT_TLSGD16_HI: howto manager.
9767 * BFD_RELOC_PPC_GOT_TLSGD16_LO: howto manager.
9768 * BFD_RELOC_PPC_GOT_TLSLD16: howto manager.
9769 * BFD_RELOC_PPC_GOT_TLSLD16_HA: howto manager.
9770 * BFD_RELOC_PPC_GOT_TLSLD16_HI: howto manager.
9771 * BFD_RELOC_PPC_GOT_TLSLD16_LO: howto manager.
9772 * BFD_RELOC_PPC_GOT_TPREL16: howto manager.
9773 * BFD_RELOC_PPC_GOT_TPREL16_HA: howto manager.
9774 * BFD_RELOC_PPC_GOT_TPREL16_HI: howto manager.
9775 * BFD_RELOC_PPC_GOT_TPREL16_LO: howto manager.
9776 * BFD_RELOC_PPC_JMP_SLOT: howto manager.
9777 * BFD_RELOC_PPC_LOCAL24PC: howto manager.
9778 * BFD_RELOC_PPC_RELATIVE: howto manager.
9779 * BFD_RELOC_PPC_TLS: howto manager.
9780 * BFD_RELOC_PPC_TOC16: howto manager.
9781 * BFD_RELOC_PPC_TPREL: howto manager.
9782 * BFD_RELOC_PPC_TPREL16: howto manager.
9783 * BFD_RELOC_PPC_TPREL16_HA: howto manager.
9784 * BFD_RELOC_PPC_TPREL16_HI: howto manager.
9785 * BFD_RELOC_PPC_TPREL16_LO: howto manager.
9786 * BFD_RELOC_RVA: howto manager.
9787 * BFD_RELOC_SH_ALIGN: howto manager.
9788 * BFD_RELOC_SH_CODE: howto manager.
9789 * BFD_RELOC_SH_COPY: howto manager.
9790 * BFD_RELOC_SH_COPY64: howto manager.
9791 * BFD_RELOC_SH_COUNT: howto manager.
9792 * BFD_RELOC_SH_DATA: howto manager.
9793 * BFD_RELOC_SH_DISP12: howto manager.
9794 * BFD_RELOC_SH_DISP12BY2: howto manager.
9795 * BFD_RELOC_SH_DISP12BY4: howto manager.
9796 * BFD_RELOC_SH_DISP12BY8: howto manager.
9797 * BFD_RELOC_SH_DISP20: howto manager.
9798 * BFD_RELOC_SH_DISP20BY8: howto manager.
9799 * BFD_RELOC_SH_GLOB_DAT: howto manager.
9800 * BFD_RELOC_SH_GLOB_DAT64: howto manager.
9801 * BFD_RELOC_SH_GOT10BY4: howto manager.
9802 * BFD_RELOC_SH_GOT10BY8: howto manager.
9803 * BFD_RELOC_SH_GOT_HI16: howto manager.
9804 * BFD_RELOC_SH_GOT_LOW16: howto manager.
9805 * BFD_RELOC_SH_GOT_MEDHI16: howto manager.
9806 * BFD_RELOC_SH_GOT_MEDLOW16: howto manager.
9807 * BFD_RELOC_SH_GOTOFF_HI16: howto manager.
9808 * BFD_RELOC_SH_GOTOFF_LOW16: howto manager.
9809 * BFD_RELOC_SH_GOTOFF_MEDHI16: howto manager.
9810 * BFD_RELOC_SH_GOTOFF_MEDLOW16: howto manager.
9811 * BFD_RELOC_SH_GOTPC: howto manager.
9812 * BFD_RELOC_SH_GOTPC_HI16: howto manager.
9813 * BFD_RELOC_SH_GOTPC_LOW16: howto manager.
9814 * BFD_RELOC_SH_GOTPC_MEDHI16: howto manager.
9815 * BFD_RELOC_SH_GOTPC_MEDLOW16: howto manager.
9816 * BFD_RELOC_SH_GOTPLT10BY4: howto manager.
9817 * BFD_RELOC_SH_GOTPLT10BY8: howto manager.
9818 * BFD_RELOC_SH_GOTPLT32: howto manager.
9819 * BFD_RELOC_SH_GOTPLT_HI16: howto manager.
9820 * BFD_RELOC_SH_GOTPLT_LOW16: howto manager.
9821 * BFD_RELOC_SH_GOTPLT_MEDHI16: howto manager.
9822 * BFD_RELOC_SH_GOTPLT_MEDLOW16: howto manager.
9823 * BFD_RELOC_SH_IMM3: howto manager.
9824 * BFD_RELOC_SH_IMM3U: howto manager.
9825 * BFD_RELOC_SH_IMM4: howto manager.
9826 * BFD_RELOC_SH_IMM4BY2: howto manager.
9827 * BFD_RELOC_SH_IMM4BY4: howto manager.
9828 * BFD_RELOC_SH_IMM8: howto manager.
9829 * BFD_RELOC_SH_IMM8BY2: howto manager.
9830 * BFD_RELOC_SH_IMM8BY4: howto manager.
9831 * BFD_RELOC_SH_IMM_HI16: howto manager.
9832 * BFD_RELOC_SH_IMM_HI16_PCREL: howto manager.
9833 * BFD_RELOC_SH_IMM_LOW16: howto manager.
9834 * BFD_RELOC_SH_IMM_LOW16_PCREL: howto manager.
9835 * BFD_RELOC_SH_IMM_MEDHI16: howto manager.
9836 * BFD_RELOC_SH_IMM_MEDHI16_PCREL: howto manager.
9837 * BFD_RELOC_SH_IMM_MEDLOW16: howto manager.
9838 * BFD_RELOC_SH_IMM_MEDLOW16_PCREL: howto manager.
9839 * BFD_RELOC_SH_IMMS10: howto manager.
9840 * BFD_RELOC_SH_IMMS10BY2: howto manager.
9841 * BFD_RELOC_SH_IMMS10BY4: howto manager.
9842 * BFD_RELOC_SH_IMMS10BY8: howto manager.
9843 * BFD_RELOC_SH_IMMS16: howto manager.
9844 * BFD_RELOC_SH_IMMS6: howto manager.
9845 * BFD_RELOC_SH_IMMS6BY32: howto manager.
9846 * BFD_RELOC_SH_IMMU16: howto manager.
9847 * BFD_RELOC_SH_IMMU5: howto manager.
9848 * BFD_RELOC_SH_IMMU6: howto manager.
9849 * BFD_RELOC_SH_JMP_SLOT: howto manager.
9850 * BFD_RELOC_SH_JMP_SLOT64: howto manager.
9851 * BFD_RELOC_SH_LABEL: howto manager.
9852 * BFD_RELOC_SH_LOOP_END: howto manager.
9853 * BFD_RELOC_SH_LOOP_START: howto manager.
9854 * BFD_RELOC_SH_PCDISP12BY2: howto manager.
9855 * BFD_RELOC_SH_PCDISP8BY2: howto manager.
9856 * BFD_RELOC_SH_PCRELIMM8BY2: howto manager.
9857 * BFD_RELOC_SH_PCRELIMM8BY4: howto manager.
9858 * BFD_RELOC_SH_PLT_HI16: howto manager.
9859 * BFD_RELOC_SH_PLT_LOW16: howto manager.
9860 * BFD_RELOC_SH_PLT_MEDHI16: howto manager.
9861 * BFD_RELOC_SH_PLT_MEDLOW16: howto manager.
9862 * BFD_RELOC_SH_PT_16: howto manager.
9863 * BFD_RELOC_SH_RELATIVE: howto manager.
9864 * BFD_RELOC_SH_RELATIVE64: howto manager.
9865 * BFD_RELOC_SH_SHMEDIA_CODE: howto manager.
9866 * BFD_RELOC_SH_SWITCH16: howto manager.
9867 * BFD_RELOC_SH_SWITCH32: howto manager.
9868 * BFD_RELOC_SH_TLS_DTPMOD32: howto manager.
9869 * BFD_RELOC_SH_TLS_DTPOFF32: howto manager.
9870 * BFD_RELOC_SH_TLS_GD_32: howto manager.
9871 * BFD_RELOC_SH_TLS_IE_32: howto manager.
9872 * BFD_RELOC_SH_TLS_LD_32: howto manager.
9873 * BFD_RELOC_SH_TLS_LDO_32: howto manager.
9874 * BFD_RELOC_SH_TLS_LE_32: howto manager.
9875 * BFD_RELOC_SH_TLS_TPOFF32: howto manager.
9876 * BFD_RELOC_SH_USES: howto manager.
9877 * BFD_RELOC_SPARC13: howto manager.
9878 * BFD_RELOC_SPARC22: howto manager.
9879 * BFD_RELOC_SPARC_10: howto manager.
9880 * BFD_RELOC_SPARC_11: howto manager.
9881 * BFD_RELOC_SPARC_5: howto manager.
9882 * BFD_RELOC_SPARC_6: howto manager.
9883 * BFD_RELOC_SPARC_64: howto manager.
9884 * BFD_RELOC_SPARC_7: howto manager.
9885 * BFD_RELOC_SPARC_BASE13: howto manager.
9886 * BFD_RELOC_SPARC_BASE22: howto manager.
9887 * BFD_RELOC_SPARC_COPY: howto manager.
9888 * BFD_RELOC_SPARC_DISP64: howto manager.
9889 * BFD_RELOC_SPARC_GLOB_DAT: howto manager.
9890 * BFD_RELOC_SPARC_GOT10: howto manager.
9891 * BFD_RELOC_SPARC_GOT13: howto manager.
9892 * BFD_RELOC_SPARC_GOT22: howto manager.
9893 * BFD_RELOC_SPARC_H44: howto manager.
9894 * BFD_RELOC_SPARC_HH22: howto manager.
9895 * BFD_RELOC_SPARC_HIX22: howto manager.
9896 * BFD_RELOC_SPARC_HM10: howto manager.
9897 * BFD_RELOC_SPARC_JMP_SLOT: howto manager.
9898 * BFD_RELOC_SPARC_L44: howto manager.
9899 * BFD_RELOC_SPARC_LM22: howto manager.
9900 * BFD_RELOC_SPARC_LOX10: howto manager.
9901 * BFD_RELOC_SPARC_M44: howto manager.
9902 * BFD_RELOC_SPARC_OLO10: howto manager.
9903 * BFD_RELOC_SPARC_PC10: howto manager.
9904 * BFD_RELOC_SPARC_PC22: howto manager.
9905 * BFD_RELOC_SPARC_PC_HH22: howto manager.
9906 * BFD_RELOC_SPARC_PC_HM10: howto manager.
9907 * BFD_RELOC_SPARC_PC_LM22: howto manager.
9908 * BFD_RELOC_SPARC_PLT32: howto manager.
9909 * BFD_RELOC_SPARC_PLT64: howto manager.
9910 * BFD_RELOC_SPARC_REGISTER: howto manager.
9911 * BFD_RELOC_SPARC_RELATIVE: howto manager.
9912 * BFD_RELOC_SPARC_REV32: howto manager.
9913 * BFD_RELOC_SPARC_TLS_DTPMOD32: howto manager.
9914 * BFD_RELOC_SPARC_TLS_DTPMOD64: howto manager.
9915 * BFD_RELOC_SPARC_TLS_DTPOFF32: howto manager.
9916 * BFD_RELOC_SPARC_TLS_DTPOFF64: howto manager.
9917 * BFD_RELOC_SPARC_TLS_GD_ADD: howto manager.
9918 * BFD_RELOC_SPARC_TLS_GD_CALL: howto manager.
9919 * BFD_RELOC_SPARC_TLS_GD_HI22: howto manager.
9920 * BFD_RELOC_SPARC_TLS_GD_LO10: howto manager.
9921 * BFD_RELOC_SPARC_TLS_IE_ADD: howto manager.
9922 * BFD_RELOC_SPARC_TLS_IE_HI22: howto manager.
9923 * BFD_RELOC_SPARC_TLS_IE_LD: howto manager.
9924 * BFD_RELOC_SPARC_TLS_IE_LDX: howto manager.
9925 * BFD_RELOC_SPARC_TLS_IE_LO10: howto manager.
9926 * BFD_RELOC_SPARC_TLS_LDM_ADD: howto manager.
9927 * BFD_RELOC_SPARC_TLS_LDM_CALL: howto manager.
9928 * BFD_RELOC_SPARC_TLS_LDM_HI22: howto manager.
9929 * BFD_RELOC_SPARC_TLS_LDM_LO10: howto manager.
9930 * BFD_RELOC_SPARC_TLS_LDO_ADD: howto manager.
9931 * BFD_RELOC_SPARC_TLS_LDO_HIX22: howto manager.
9932 * BFD_RELOC_SPARC_TLS_LDO_LOX10: howto manager.
9933 * BFD_RELOC_SPARC_TLS_LE_HIX22: howto manager.
9934 * BFD_RELOC_SPARC_TLS_LE_LOX10: howto manager.
9935 * BFD_RELOC_SPARC_TLS_TPOFF32: howto manager.
9936 * BFD_RELOC_SPARC_TLS_TPOFF64: howto manager.
9937 * BFD_RELOC_SPARC_UA16: howto manager.
9938 * BFD_RELOC_SPARC_UA32: howto manager.
9939 * BFD_RELOC_SPARC_UA64: howto manager.
9940 * BFD_RELOC_SPARC_WDISP16: howto manager.
9941 * BFD_RELOC_SPARC_WDISP19: howto manager.
9942 * BFD_RELOC_SPARC_WDISP22: howto manager.
9943 * BFD_RELOC_SPARC_WPLT30: howto manager.
9944 * BFD_RELOC_THUMB_PCREL_BLX: howto manager.
9945 * BFD_RELOC_THUMB_PCREL_BRANCH12: howto manager.
9946 * BFD_RELOC_THUMB_PCREL_BRANCH20: howto manager.
9947 * BFD_RELOC_THUMB_PCREL_BRANCH23: howto manager.
9948 * BFD_RELOC_THUMB_PCREL_BRANCH25: howto manager.
9949 * BFD_RELOC_THUMB_PCREL_BRANCH7: howto manager.
9950 * BFD_RELOC_THUMB_PCREL_BRANCH9: howto manager.
9951 * BFD_RELOC_TIC30_LDP: howto manager.
9952 * BFD_RELOC_TIC54X_16_OF_23: howto manager.
9953 * BFD_RELOC_TIC54X_23: howto manager.
9954 * BFD_RELOC_TIC54X_MS7_OF_23: howto manager.
9955 * BFD_RELOC_TIC54X_PARTLS7: howto manager.
9956 * BFD_RELOC_TIC54X_PARTMS9: howto manager.
9957 * bfd_reloc_type_lookup: howto manager.
9958 * BFD_RELOC_V850_22_PCREL: howto manager.
9959 * BFD_RELOC_V850_9_PCREL: howto manager.
9960 * BFD_RELOC_V850_ALIGN: howto manager.
9961 * BFD_RELOC_V850_CALLT_16_16_OFFSET: howto manager.
9962 * BFD_RELOC_V850_CALLT_6_7_OFFSET: howto manager.
9963 * BFD_RELOC_V850_LO16_SPLIT_OFFSET: howto manager.
9964 * BFD_RELOC_V850_LONGCALL: howto manager.
9965 * BFD_RELOC_V850_LONGJUMP: howto manager.
9966 * BFD_RELOC_V850_SDA_15_16_OFFSET: howto manager.
9967 * BFD_RELOC_V850_SDA_16_16_OFFSET: howto manager.
9968 * BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET: howto manager.
9969 * BFD_RELOC_V850_TDA_16_16_OFFSET: howto manager.
9970 * BFD_RELOC_V850_TDA_4_4_OFFSET: howto manager.
9971 * BFD_RELOC_V850_TDA_4_5_OFFSET: howto manager.
9972 * BFD_RELOC_V850_TDA_6_8_OFFSET: howto manager.
9973 * BFD_RELOC_V850_TDA_7_7_OFFSET: howto manager.
9974 * BFD_RELOC_V850_TDA_7_8_OFFSET: howto manager.
9975 * BFD_RELOC_V850_ZDA_15_16_OFFSET: howto manager.
9976 * BFD_RELOC_V850_ZDA_16_16_OFFSET: howto manager.
9977 * BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET: howto manager.
9978 * BFD_RELOC_VAX_GLOB_DAT: howto manager.
9979 * BFD_RELOC_VAX_JMP_SLOT: howto manager.
9980 * BFD_RELOC_VAX_RELATIVE: howto manager.
9981 * BFD_RELOC_VPE4KMATH_DATA: howto manager.
9982 * BFD_RELOC_VPE4KMATH_INSN: howto manager.
9983 * BFD_RELOC_VTABLE_ENTRY: howto manager.
9984 * BFD_RELOC_VTABLE_INHERIT: howto manager.
9985 * BFD_RELOC_X86_64_32S: howto manager.
9986 * BFD_RELOC_X86_64_COPY: howto manager.
9987 * BFD_RELOC_X86_64_DTPMOD64: howto manager.
9988 * BFD_RELOC_X86_64_DTPOFF32: howto manager.
9989 * BFD_RELOC_X86_64_DTPOFF64: howto manager.
9990 * BFD_RELOC_X86_64_GLOB_DAT: howto manager.
9991 * BFD_RELOC_X86_64_GOT32: howto manager.
9992 * BFD_RELOC_X86_64_GOTOFF64: howto manager.
9993 * BFD_RELOC_X86_64_GOTPC32: howto manager.
9994 * BFD_RELOC_X86_64_GOTPC32_TLSDESC: howto manager.
9995 * BFD_RELOC_X86_64_GOTPCREL: howto manager.
9996 * BFD_RELOC_X86_64_GOTTPOFF: howto manager.
9997 * BFD_RELOC_X86_64_JUMP_SLOT: howto manager.
9998 * BFD_RELOC_X86_64_PLT32: howto manager.
9999 * BFD_RELOC_X86_64_RELATIVE: howto manager.
10000 * BFD_RELOC_X86_64_TLSDESC: howto manager.
10001 * BFD_RELOC_X86_64_TLSDESC_CALL: howto manager.
10002 * BFD_RELOC_X86_64_TLSGD: howto manager.
10003 * BFD_RELOC_X86_64_TLSLD: howto manager.
10004 * BFD_RELOC_X86_64_TPOFF32: howto manager.
10005 * BFD_RELOC_X86_64_TPOFF64: howto manager.
10006 * BFD_RELOC_XSTORMY16_12: howto manager.
10007 * BFD_RELOC_XSTORMY16_24: howto manager.
10008 * BFD_RELOC_XSTORMY16_FPTR16: howto manager.
10009 * BFD_RELOC_XSTORMY16_REL_12: howto manager.
10010 * BFD_RELOC_XTENSA_ASM_EXPAND: howto manager.
10011 * BFD_RELOC_XTENSA_ASM_SIMPLIFY: howto manager.
10012 * BFD_RELOC_XTENSA_DIFF16: howto manager.
10013 * BFD_RELOC_XTENSA_DIFF32: howto manager.
10014 * BFD_RELOC_XTENSA_DIFF8: howto manager.
10015 * BFD_RELOC_XTENSA_GLOB_DAT: howto manager.
10016 * BFD_RELOC_XTENSA_JMP_SLOT: howto manager.
10017 * BFD_RELOC_XTENSA_OP0: howto manager.
10018 * BFD_RELOC_XTENSA_OP1: howto manager.
10019 * BFD_RELOC_XTENSA_OP2: howto manager.
10020 * BFD_RELOC_XTENSA_PLT: howto manager.
10021 * BFD_RELOC_XTENSA_RELATIVE: howto manager.
10022 * BFD_RELOC_XTENSA_RTLD: howto manager.
10023 * BFD_RELOC_XTENSA_SLOT0_ALT: howto manager.
10024 * BFD_RELOC_XTENSA_SLOT0_OP: howto manager.
10025 * BFD_RELOC_XTENSA_SLOT10_ALT: howto manager.
10026 * BFD_RELOC_XTENSA_SLOT10_OP: howto manager.
10027 * BFD_RELOC_XTENSA_SLOT11_ALT: howto manager.
10028 * BFD_RELOC_XTENSA_SLOT11_OP: howto manager.
10029 * BFD_RELOC_XTENSA_SLOT12_ALT: howto manager.
10030 * BFD_RELOC_XTENSA_SLOT12_OP: howto manager.
10031 * BFD_RELOC_XTENSA_SLOT13_ALT: howto manager.
10032 * BFD_RELOC_XTENSA_SLOT13_OP: howto manager.
10033 * BFD_RELOC_XTENSA_SLOT14_ALT: howto manager.
10034 * BFD_RELOC_XTENSA_SLOT14_OP: howto manager.
10035 * BFD_RELOC_XTENSA_SLOT1_ALT: howto manager.
10036 * BFD_RELOC_XTENSA_SLOT1_OP: howto manager.
10037 * BFD_RELOC_XTENSA_SLOT2_ALT: howto manager.
10038 * BFD_RELOC_XTENSA_SLOT2_OP: howto manager.
10039 * BFD_RELOC_XTENSA_SLOT3_ALT: howto manager.
10040 * BFD_RELOC_XTENSA_SLOT3_OP: howto manager.
10041 * BFD_RELOC_XTENSA_SLOT4_ALT: howto manager.
10042 * BFD_RELOC_XTENSA_SLOT4_OP: howto manager.
10043 * BFD_RELOC_XTENSA_SLOT5_ALT: howto manager.
10044 * BFD_RELOC_XTENSA_SLOT5_OP: howto manager.
10045 * BFD_RELOC_XTENSA_SLOT6_ALT: howto manager.
10046 * BFD_RELOC_XTENSA_SLOT6_OP: howto manager.
10047 * BFD_RELOC_XTENSA_SLOT7_ALT: howto manager.
10048 * BFD_RELOC_XTENSA_SLOT7_OP: howto manager.
10049 * BFD_RELOC_XTENSA_SLOT8_ALT: howto manager.
10050 * BFD_RELOC_XTENSA_SLOT8_OP: howto manager.
10051 * BFD_RELOC_XTENSA_SLOT9_ALT: howto manager.
10052 * BFD_RELOC_XTENSA_SLOT9_OP: howto manager.
10053 * BFD_RELOC_Z80_DISP8: howto manager.
10054 * BFD_RELOC_Z8K_CALLR: howto manager.
10055 * BFD_RELOC_Z8K_DISP7: howto manager.
10056 * BFD_RELOC_Z8K_IMM4L: howto manager.
10057 * bfd_scan_arch: Architectures.
10058 * bfd_scan_vma: BFD front end.
10059 * bfd_seach_for_target: bfd_target.
10060 * bfd_section_already_linked: Writing the symbol table.
10061 * bfd_section_list_clear: section prototypes.
10062 * bfd_sections_find_if: section prototypes.
10063 * bfd_set_arch_info: Architectures.
10064 * bfd_set_archive_head: Archives.
10065 * bfd_set_default_target: bfd_target.
10066 * bfd_set_error: BFD front end.
10067 * bfd_set_error_handler: BFD front end.
10068 * bfd_set_error_program_name: BFD front end.
10069 * bfd_set_file_flags: BFD front end.
10070 * bfd_set_format: Formats.
10071 * bfd_set_gp_size: BFD front end.
10072 * bfd_set_private_flags: BFD front end.
10073 * bfd_set_reloc: BFD front end.
10074 * bfd_set_section_contents: section prototypes.
10075 * bfd_set_section_flags: section prototypes.
10076 * bfd_set_section_size: section prototypes.
10077 * bfd_set_start_address: BFD front end.
10078 * bfd_set_symtab: symbol handling functions.
10079 * bfd_symbol_info: symbol handling functions.
10080 * bfd_target_list: bfd_target.
10081 * bfd_write_bigendian_4byte_int: Internal.
10082 * bfd_zalloc: Opening and Closing.
10083 * bfd_zalloc2: Opening and Closing.
10084 * coff_symbol_type: coff.
10085 * core_file_matches_executable_p: Core Files.
10086 * find_separate_debug_file: Opening and Closing.
10087 * generic_core_file_matches_executable_p: Core Files.
10088 * get_debug_link_info: Opening and Closing.
10089 * Hash tables: Hash Tables.
10090 * internal object-file format: Canonical format.
10091 * Linker: Linker Functions.
10092 * Other functions: BFD front end.
10093 * separate_debug_file_exists: Opening and Closing.
10094 * struct bfd_iovec: BFD front end.
10095 * target vector (_bfd_final_link): Performing the Final Link.
10096 * target vector (_bfd_link_add_symbols): Adding Symbols to the Hash Table.
10097 * target vector (_bfd_link_hash_table_create): Creating a Linker Hash Table.
10098 * The HOWTO Macro: typedef arelent.
10099 * what is it?: Overview.