1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
11 This file is part of GAS, the GNU Assembler.
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
32 #include "safe-ctype.h"
36 #include "opcode/arm.h"
40 #include "dw2gencfi.h"
43 #include "dwarf2dbg.h"
45 #define WARN_DEPRECATED 1
48 /* Must be at least the size of the largest unwind opcode (currently two). */
49 #define ARM_OPCODE_CHUNK_SIZE 8
51 /* This structure holds the unwinding state. */
56 symbolS
* table_entry
;
57 symbolS
* personality_routine
;
58 int personality_index
;
59 /* The segment containing the function. */
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes
;
66 /* The number of bytes pushed to the stack. */
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
71 offsetT pending_offset
;
72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
73 hold the reg+offset to use when restoring sp from a frame pointer. */
76 /* Nonzero if an unwind_setfp directive has been seen. */
78 /* Nonzero if the last opcode restores sp from fp_reg. */
79 unsigned sp_restored
:1;
82 /* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85 static unsigned int marked_pr_dependency
= 0;
89 /* Results from operand parsing worker functions. */
93 PARSE_OPERAND_SUCCESS
,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96 } parse_operand_result
;
101 ARM_FLOAT_ABI_SOFTFP
,
105 /* Types of processor to assemble for. */
107 #if defined __XSCALE__
108 #define CPU_DEFAULT ARM_ARCH_XSCALE
110 #if defined __thumb__
111 #define CPU_DEFAULT ARM_ARCH_V5T
118 # define FPU_DEFAULT FPU_ARCH_FPA
119 # elif defined (TE_NetBSD)
121 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
123 /* Legacy a.out format. */
124 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
126 # elif defined (TE_VXWORKS)
127 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
129 /* For backwards compatibility, default to FPA. */
130 # define FPU_DEFAULT FPU_ARCH_FPA
132 #endif /* ifndef FPU_DEFAULT */
134 #define streq(a, b) (strcmp (a, b) == 0)
136 static arm_feature_set cpu_variant
;
137 static arm_feature_set arm_arch_used
;
138 static arm_feature_set thumb_arch_used
;
140 /* Flags stored in private area of BFD structure. */
141 static int uses_apcs_26
= FALSE
;
142 static int atpcs
= FALSE
;
143 static int support_interwork
= FALSE
;
144 static int uses_apcs_float
= FALSE
;
145 static int pic_code
= FALSE
;
147 /* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
150 static const arm_feature_set
*legacy_cpu
= NULL
;
151 static const arm_feature_set
*legacy_fpu
= NULL
;
153 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
154 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
155 static const arm_feature_set
*march_cpu_opt
= NULL
;
156 static const arm_feature_set
*march_fpu_opt
= NULL
;
157 static const arm_feature_set
*mfpu_opt
= NULL
;
158 static const arm_feature_set
*object_arch
= NULL
;
160 /* Constants for known architecture features. */
161 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
162 static const arm_feature_set fpu_arch_vfp_v1
= FPU_ARCH_VFP_V1
;
163 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
164 static const arm_feature_set fpu_arch_vfp_v3
= FPU_ARCH_VFP_V3
;
165 static const arm_feature_set fpu_arch_neon_v1
= FPU_ARCH_NEON_V1
;
166 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
167 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
168 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
169 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
172 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
175 static const arm_feature_set arm_ext_v1
= ARM_FEATURE (ARM_EXT_V1
, 0);
176 static const arm_feature_set arm_ext_v2
= ARM_FEATURE (ARM_EXT_V1
, 0);
177 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE (ARM_EXT_V2S
, 0);
178 static const arm_feature_set arm_ext_v3
= ARM_FEATURE (ARM_EXT_V3
, 0);
179 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE (ARM_EXT_V3M
, 0);
180 static const arm_feature_set arm_ext_v4
= ARM_FEATURE (ARM_EXT_V4
, 0);
181 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE (ARM_EXT_V4T
, 0);
182 static const arm_feature_set arm_ext_v5
= ARM_FEATURE (ARM_EXT_V5
, 0);
183 static const arm_feature_set arm_ext_v4t_5
=
184 ARM_FEATURE (ARM_EXT_V4T
| ARM_EXT_V5
, 0);
185 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE (ARM_EXT_V5T
, 0);
186 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE (ARM_EXT_V5E
, 0);
187 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE (ARM_EXT_V5ExP
, 0);
188 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE (ARM_EXT_V5J
, 0);
189 static const arm_feature_set arm_ext_v6
= ARM_FEATURE (ARM_EXT_V6
, 0);
190 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE (ARM_EXT_V6K
, 0);
191 static const arm_feature_set arm_ext_v6z
= ARM_FEATURE (ARM_EXT_V6Z
, 0);
192 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE (ARM_EXT_V6T2
, 0);
193 static const arm_feature_set arm_ext_v6_notm
= ARM_FEATURE (ARM_EXT_V6_NOTM
, 0);
194 static const arm_feature_set arm_ext_div
= ARM_FEATURE (ARM_EXT_DIV
, 0);
195 static const arm_feature_set arm_ext_v7
= ARM_FEATURE (ARM_EXT_V7
, 0);
196 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE (ARM_EXT_V7A
, 0);
197 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE (ARM_EXT_V7R
, 0);
198 static const arm_feature_set arm_ext_v7m
= ARM_FEATURE (ARM_EXT_V7M
, 0);
200 static const arm_feature_set arm_arch_any
= ARM_ANY
;
201 static const arm_feature_set arm_arch_full
= ARM_FEATURE (-1, -1);
202 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
203 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
205 static const arm_feature_set arm_cext_iwmmxt2
=
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2
);
207 static const arm_feature_set arm_cext_iwmmxt
=
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT
);
209 static const arm_feature_set arm_cext_xscale
=
210 ARM_FEATURE (0, ARM_CEXT_XSCALE
);
211 static const arm_feature_set arm_cext_maverick
=
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK
);
213 static const arm_feature_set fpu_fpa_ext_v1
= ARM_FEATURE (0, FPU_FPA_EXT_V1
);
214 static const arm_feature_set fpu_fpa_ext_v2
= ARM_FEATURE (0, FPU_FPA_EXT_V2
);
215 static const arm_feature_set fpu_vfp_ext_v1xd
=
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD
);
217 static const arm_feature_set fpu_vfp_ext_v1
= ARM_FEATURE (0, FPU_VFP_EXT_V1
);
218 static const arm_feature_set fpu_vfp_ext_v2
= ARM_FEATURE (0, FPU_VFP_EXT_V2
);
219 static const arm_feature_set fpu_vfp_ext_v3
= ARM_FEATURE (0, FPU_VFP_EXT_V3
);
220 static const arm_feature_set fpu_neon_ext_v1
= ARM_FEATURE (0, FPU_NEON_EXT_V1
);
221 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
222 ARM_FEATURE (0, FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
224 static int mfloat_abi_opt
= -1;
225 /* Record user cpu selection for object attributes. */
226 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
227 /* Must be long enough to hold any of the names in arm_cpus. */
228 static char selected_cpu_name
[16];
231 static int meabi_flags
= EABI_DEFAULT
;
233 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
239 return (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
);
244 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
245 symbolS
* GOT_symbol
;
248 /* 0: assemble for ARM,
249 1: assemble for Thumb,
250 2: assemble for Thumb even though target CPU does not support thumb
252 static int thumb_mode
= 0;
254 /* If unified_syntax is true, we are processing the new unified
255 ARM/Thumb syntax. Important differences from the old ARM mode:
257 - Immediate operands do not require a # prefix.
258 - Conditional affixes always appear at the end of the
259 instruction. (For backward compatibility, those instructions
260 that formerly had them in the middle, continue to accept them
262 - The IT instruction may appear, and if it does is validated
263 against subsequent conditional affixes. It does not generate
266 Important differences from the old Thumb mode:
268 - Immediate operands do not require a # prefix.
269 - Most of the V6T2 instructions are only available in unified mode.
270 - The .N and .W suffixes are recognized and honored (it is an error
271 if they cannot be honored).
272 - All instructions set the flags if and only if they have an 's' affix.
273 - Conditional affixes may be used. They are validated against
274 preceding IT instructions. Unlike ARM mode, you cannot use a
275 conditional affix except in the scope of an IT instruction. */
277 static bfd_boolean unified_syntax
= FALSE
;
292 enum neon_el_type type
;
296 #define NEON_MAX_TYPE_ELS 4
300 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
307 unsigned long instruction
;
311 /* "uncond_value" is set to the value in place of the conditional field in
312 unconditional versions of the instruction, or -1 if nothing is
315 struct neon_type vectype
;
316 /* Set to the opcode if the instruction needs relaxation.
317 Zero if the instruction is not relaxed. */
321 bfd_reloc_code_real_type type
;
330 struct neon_type_el vectype
;
331 unsigned present
: 1; /* Operand present. */
332 unsigned isreg
: 1; /* Operand was a register. */
333 unsigned immisreg
: 1; /* .imm field is a second register. */
334 unsigned isscalar
: 1; /* Operand is a (Neon) scalar. */
335 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
336 unsigned immisfloat
: 1; /* Immediate was parsed as a float. */
337 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
338 instructions. This allows us to disambiguate ARM <-> vector insns. */
339 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
340 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
341 unsigned isquad
: 1; /* Operand is Neon quad-precision register. */
342 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
343 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
344 unsigned writeback
: 1; /* Operand has trailing ! */
345 unsigned preind
: 1; /* Preindexed address. */
346 unsigned postind
: 1; /* Postindexed address. */
347 unsigned negative
: 1; /* Index register was negated. */
348 unsigned shifted
: 1; /* Shift applied to operation. */
349 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
353 static struct arm_it inst
;
355 #define NUM_FLOAT_VALS 8
357 const char * fp_const
[] =
359 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
362 /* Number of littlenums required to hold an extended precision number. */
363 #define MAX_LITTLENUMS 6
365 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
375 #define CP_T_X 0x00008000
376 #define CP_T_Y 0x00400000
378 #define CONDS_BIT 0x00100000
379 #define LOAD_BIT 0x00100000
381 #define DOUBLE_LOAD_FLAG 0x00000001
385 const char * template;
389 #define COND_ALWAYS 0xE
393 const char *template;
397 struct asm_barrier_opt
399 const char *template;
403 /* The bit that distinguishes CPSR and SPSR. */
404 #define SPSR_BIT (1 << 22)
406 /* The individual PSR flag bits. */
407 #define PSR_c (1 << 16)
408 #define PSR_x (1 << 17)
409 #define PSR_s (1 << 18)
410 #define PSR_f (1 << 19)
415 bfd_reloc_code_real_type reloc
;
420 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
421 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
426 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
429 /* Bits for DEFINED field in neon_typed_alias. */
430 #define NTA_HASTYPE 1
431 #define NTA_HASINDEX 2
433 struct neon_typed_alias
435 unsigned char defined
;
437 struct neon_type_el eltype
;
440 /* ARM register categories. This includes coprocessor numbers and various
441 architecture extensions' registers. */
467 /* Structure for a hash table entry for a register.
468 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
469 information which states whether a vector type or index is specified (for a
470 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
474 unsigned char number
;
476 unsigned char builtin
;
477 struct neon_typed_alias
*neon
;
480 /* Diagnostics used when we don't get a register of the expected type. */
481 const char *const reg_expected_msgs
[] =
483 N_("ARM register expected"),
484 N_("bad or missing co-processor number"),
485 N_("co-processor register expected"),
486 N_("FPA register expected"),
487 N_("VFP single precision register expected"),
488 N_("VFP/Neon double precision register expected"),
489 N_("Neon quad precision register expected"),
490 N_("VFP single or double precision register expected"),
491 N_("Neon double or quad precision register expected"),
492 N_("VFP single, double or Neon quad precision register expected"),
493 N_("VFP system register expected"),
494 N_("Maverick MVF register expected"),
495 N_("Maverick MVD register expected"),
496 N_("Maverick MVFX register expected"),
497 N_("Maverick MVDX register expected"),
498 N_("Maverick MVAX register expected"),
499 N_("Maverick DSPSC register expected"),
500 N_("iWMMXt data register expected"),
501 N_("iWMMXt control register expected"),
502 N_("iWMMXt scalar register expected"),
503 N_("XScale accumulator register expected"),
506 /* Some well known registers that we refer to directly elsewhere. */
511 /* ARM instructions take 4bytes in the object file, Thumb instructions
517 /* Basic string to match. */
518 const char *template;
520 /* Parameters to instruction. */
521 unsigned char operands
[8];
523 /* Conditional tag - see opcode_lookup. */
524 unsigned int tag
: 4;
526 /* Basic instruction code. */
527 unsigned int avalue
: 28;
529 /* Thumb-format instruction code. */
532 /* Which architecture variant provides this instruction. */
533 const arm_feature_set
*avariant
;
534 const arm_feature_set
*tvariant
;
536 /* Function to call to encode instruction in ARM format. */
537 void (* aencode
) (void);
539 /* Function to call to encode instruction in Thumb format. */
540 void (* tencode
) (void);
543 /* Defines for various bits that we will want to toggle. */
544 #define INST_IMMEDIATE 0x02000000
545 #define OFFSET_REG 0x02000000
546 #define HWOFFSET_IMM 0x00400000
547 #define SHIFT_BY_REG 0x00000010
548 #define PRE_INDEX 0x01000000
549 #define INDEX_UP 0x00800000
550 #define WRITE_BACK 0x00200000
551 #define LDM_TYPE_2_OR_3 0x00400000
552 #define CPSI_MMOD 0x00020000
554 #define LITERAL_MASK 0xf000f000
555 #define OPCODE_MASK 0xfe1fffff
556 #define V4_STR_BIT 0x00000020
558 #define T2_SUBS_PC_LR 0xf3de8f00
560 #define DATA_OP_SHIFT 21
562 #define T2_OPCODE_MASK 0xfe1fffff
563 #define T2_DATA_OP_SHIFT 21
565 /* Codes to distinguish the arithmetic instructions. */
576 #define OPCODE_CMP 10
577 #define OPCODE_CMN 11
578 #define OPCODE_ORR 12
579 #define OPCODE_MOV 13
580 #define OPCODE_BIC 14
581 #define OPCODE_MVN 15
583 #define T2_OPCODE_AND 0
584 #define T2_OPCODE_BIC 1
585 #define T2_OPCODE_ORR 2
586 #define T2_OPCODE_ORN 3
587 #define T2_OPCODE_EOR 4
588 #define T2_OPCODE_ADD 8
589 #define T2_OPCODE_ADC 10
590 #define T2_OPCODE_SBC 11
591 #define T2_OPCODE_SUB 13
592 #define T2_OPCODE_RSB 14
594 #define T_OPCODE_MUL 0x4340
595 #define T_OPCODE_TST 0x4200
596 #define T_OPCODE_CMN 0x42c0
597 #define T_OPCODE_NEG 0x4240
598 #define T_OPCODE_MVN 0x43c0
600 #define T_OPCODE_ADD_R3 0x1800
601 #define T_OPCODE_SUB_R3 0x1a00
602 #define T_OPCODE_ADD_HI 0x4400
603 #define T_OPCODE_ADD_ST 0xb000
604 #define T_OPCODE_SUB_ST 0xb080
605 #define T_OPCODE_ADD_SP 0xa800
606 #define T_OPCODE_ADD_PC 0xa000
607 #define T_OPCODE_ADD_I8 0x3000
608 #define T_OPCODE_SUB_I8 0x3800
609 #define T_OPCODE_ADD_I3 0x1c00
610 #define T_OPCODE_SUB_I3 0x1e00
612 #define T_OPCODE_ASR_R 0x4100
613 #define T_OPCODE_LSL_R 0x4080
614 #define T_OPCODE_LSR_R 0x40c0
615 #define T_OPCODE_ROR_R 0x41c0
616 #define T_OPCODE_ASR_I 0x1000
617 #define T_OPCODE_LSL_I 0x0000
618 #define T_OPCODE_LSR_I 0x0800
620 #define T_OPCODE_MOV_I8 0x2000
621 #define T_OPCODE_CMP_I8 0x2800
622 #define T_OPCODE_CMP_LR 0x4280
623 #define T_OPCODE_MOV_HR 0x4600
624 #define T_OPCODE_CMP_HR 0x4500
626 #define T_OPCODE_LDR_PC 0x4800
627 #define T_OPCODE_LDR_SP 0x9800
628 #define T_OPCODE_STR_SP 0x9000
629 #define T_OPCODE_LDR_IW 0x6800
630 #define T_OPCODE_STR_IW 0x6000
631 #define T_OPCODE_LDR_IH 0x8800
632 #define T_OPCODE_STR_IH 0x8000
633 #define T_OPCODE_LDR_IB 0x7800
634 #define T_OPCODE_STR_IB 0x7000
635 #define T_OPCODE_LDR_RW 0x5800
636 #define T_OPCODE_STR_RW 0x5000
637 #define T_OPCODE_LDR_RH 0x5a00
638 #define T_OPCODE_STR_RH 0x5200
639 #define T_OPCODE_LDR_RB 0x5c00
640 #define T_OPCODE_STR_RB 0x5400
642 #define T_OPCODE_PUSH 0xb400
643 #define T_OPCODE_POP 0xbc00
645 #define T_OPCODE_BRANCH 0xe000
647 #define THUMB_SIZE 2 /* Size of thumb instruction. */
648 #define THUMB_PP_PC_LR 0x0100
649 #define THUMB_LOAD_BIT 0x0800
650 #define THUMB2_LOAD_BIT 0x00100000
652 #define BAD_ARGS _("bad arguments to instruction")
653 #define BAD_PC _("r15 not allowed here")
654 #define BAD_COND _("instruction cannot be conditional")
655 #define BAD_OVERLAP _("registers may not be the same")
656 #define BAD_HIREG _("lo register required")
657 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
658 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
659 #define BAD_BRANCH _("branch must be last instruction in IT block")
660 #define BAD_NOT_IT _("instruction not allowed in IT block")
661 #define BAD_FPU _("selected FPU does not support instruction")
663 static struct hash_control
*arm_ops_hsh
;
664 static struct hash_control
*arm_cond_hsh
;
665 static struct hash_control
*arm_shift_hsh
;
666 static struct hash_control
*arm_psr_hsh
;
667 static struct hash_control
*arm_v7m_psr_hsh
;
668 static struct hash_control
*arm_reg_hsh
;
669 static struct hash_control
*arm_reloc_hsh
;
670 static struct hash_control
*arm_barrier_opt_hsh
;
672 /* Stuff needed to resolve the label ambiguity
682 symbolS
* last_label_seen
;
683 static int label_is_thumb_function_name
= FALSE
;
685 /* Literal pool structure. Held on a per-section
686 and per-sub-section basis. */
688 #define MAX_LITERAL_POOL_SIZE 1024
689 typedef struct literal_pool
691 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
692 unsigned int next_free_entry
;
697 struct literal_pool
* next
;
700 /* Pointer to a linked list of literal pools. */
701 literal_pool
* list_of_pools
= NULL
;
703 /* State variables for IT block handling. */
704 static bfd_boolean current_it_mask
= 0;
705 static int current_cc
;
710 /* This array holds the chars that always start a comment. If the
711 pre-processor is disabled, these aren't very useful. */
712 const char comment_chars
[] = "@";
714 /* This array holds the chars that only start a comment at the beginning of
715 a line. If the line seems to have the form '# 123 filename'
716 .line and .file directives will appear in the pre-processed output. */
717 /* Note that input_file.c hand checks for '#' at the beginning of the
718 first line of the input file. This is because the compiler outputs
719 #NO_APP at the beginning of its output. */
720 /* Also note that comments like this one will always work. */
721 const char line_comment_chars
[] = "#";
723 const char line_separator_chars
[] = ";";
725 /* Chars that can be used to separate mant
726 from exp in floating point numbers. */
727 const char EXP_CHARS
[] = "eE";
729 /* Chars that mean this number is a floating point constant. */
733 const char FLT_CHARS
[] = "rRsSfFdDxXeEpP";
735 /* Prefix characters that indicate the start of an immediate
737 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
739 /* Separator character handling. */
741 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
744 skip_past_char (char ** str
, char c
)
754 #define skip_past_comma(str) skip_past_char (str, ',')
756 /* Arithmetic expressions (possibly involving symbols). */
758 /* Return TRUE if anything in the expression is a bignum. */
761 walk_no_bignums (symbolS
* sp
)
763 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
766 if (symbol_get_value_expression (sp
)->X_add_symbol
)
768 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
769 || (symbol_get_value_expression (sp
)->X_op_symbol
770 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
776 static int in_my_get_expression
= 0;
778 /* Third argument to my_get_expression. */
779 #define GE_NO_PREFIX 0
780 #define GE_IMM_PREFIX 1
781 #define GE_OPT_PREFIX 2
782 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
783 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
784 #define GE_OPT_PREFIX_BIG 3
787 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
792 /* In unified syntax, all prefixes are optional. */
794 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
799 case GE_NO_PREFIX
: break;
801 if (!is_immediate_prefix (**str
))
803 inst
.error
= _("immediate expression requires a # prefix");
809 case GE_OPT_PREFIX_BIG
:
810 if (is_immediate_prefix (**str
))
816 memset (ep
, 0, sizeof (expressionS
));
818 save_in
= input_line_pointer
;
819 input_line_pointer
= *str
;
820 in_my_get_expression
= 1;
821 seg
= expression (ep
);
822 in_my_get_expression
= 0;
824 if (ep
->X_op
== O_illegal
)
826 /* We found a bad expression in md_operand(). */
827 *str
= input_line_pointer
;
828 input_line_pointer
= save_in
;
829 if (inst
.error
== NULL
)
830 inst
.error
= _("bad expression");
835 if (seg
!= absolute_section
836 && seg
!= text_section
837 && seg
!= data_section
838 && seg
!= bss_section
839 && seg
!= undefined_section
)
841 inst
.error
= _("bad segment");
842 *str
= input_line_pointer
;
843 input_line_pointer
= save_in
;
848 /* Get rid of any bignums now, so that we don't generate an error for which
849 we can't establish a line number later on. Big numbers are never valid
850 in instructions, which is where this routine is always called. */
851 if (prefix_mode
!= GE_OPT_PREFIX_BIG
852 && (ep
->X_op
== O_big
854 && (walk_no_bignums (ep
->X_add_symbol
)
856 && walk_no_bignums (ep
->X_op_symbol
))))))
858 inst
.error
= _("invalid constant");
859 *str
= input_line_pointer
;
860 input_line_pointer
= save_in
;
864 *str
= input_line_pointer
;
865 input_line_pointer
= save_in
;
869 /* Turn a string in input_line_pointer into a floating point constant
870 of type TYPE, and store the appropriate bytes in *LITP. The number
871 of LITTLENUMS emitted is stored in *SIZEP. An error message is
872 returned, or NULL on OK.
874 Note that fp constants aren't represent in the normal way on the ARM.
875 In big endian mode, things are as expected. However, in little endian
876 mode fp constants are big-endian word-wise, and little-endian byte-wise
877 within the words. For example, (double) 1.1 in big endian mode is
878 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
879 the byte sequence 99 99 f1 3f 9a 99 99 99.
881 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
884 md_atof (int type
, char * litP
, int * sizeP
)
887 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
919 return _("bad call to MD_ATOF()");
922 t
= atof_ieee (input_line_pointer
, type
, words
);
924 input_line_pointer
= t
;
927 if (target_big_endian
)
929 for (i
= 0; i
< prec
; i
++)
931 md_number_to_chars (litP
, (valueT
) words
[i
], 2);
937 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
938 for (i
= prec
- 1; i
>= 0; i
--)
940 md_number_to_chars (litP
, (valueT
) words
[i
], 2);
944 /* For a 4 byte float the order of elements in `words' is 1 0.
945 For an 8 byte float the order is 1 0 3 2. */
946 for (i
= 0; i
< prec
; i
+= 2)
948 md_number_to_chars (litP
, (valueT
) words
[i
+ 1], 2);
949 md_number_to_chars (litP
+ 2, (valueT
) words
[i
], 2);
957 /* We handle all bad expressions here, so that we can report the faulty
958 instruction in the error message. */
960 md_operand (expressionS
* expr
)
962 if (in_my_get_expression
)
963 expr
->X_op
= O_illegal
;
966 /* Immediate values. */
968 /* Generic immediate-value read function for use in directives.
969 Accepts anything that 'expression' can fold to a constant.
970 *val receives the number. */
973 immediate_for_directive (int *val
)
976 exp
.X_op
= O_illegal
;
978 if (is_immediate_prefix (*input_line_pointer
))
980 input_line_pointer
++;
984 if (exp
.X_op
!= O_constant
)
986 as_bad (_("expected #constant"));
987 ignore_rest_of_line ();
990 *val
= exp
.X_add_number
;
995 /* Register parsing. */
997 /* Generic register parser. CCP points to what should be the
998 beginning of a register name. If it is indeed a valid register
999 name, advance CCP over it and return the reg_entry structure;
1000 otherwise return NULL. Does not issue diagnostics. */
1002 static struct reg_entry
*
1003 arm_reg_parse_multi (char **ccp
)
1007 struct reg_entry
*reg
;
1009 #ifdef REGISTER_PREFIX
1010 if (*start
!= REGISTER_PREFIX
)
1014 #ifdef OPTIONAL_REGISTER_PREFIX
1015 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1020 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1025 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1027 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1037 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1038 enum arm_reg_type type
)
1040 /* Alternative syntaxes are accepted for a few register classes. */
1047 /* Generic coprocessor register names are allowed for these. */
1048 if (reg
&& reg
->type
== REG_TYPE_CN
)
1053 /* For backward compatibility, a bare number is valid here. */
1055 unsigned long processor
= strtoul (start
, ccp
, 10);
1056 if (*ccp
!= start
&& processor
<= 15)
1060 case REG_TYPE_MMXWC
:
1061 /* WC includes WCG. ??? I'm not sure this is true for all
1062 instructions that take WC registers. */
1063 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1074 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1075 return value is the register number or FAIL. */
1078 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1081 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1084 /* Do not allow a scalar (reg+index) to parse as a register. */
1085 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1088 if (reg
&& reg
->type
== type
)
1091 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1098 /* Parse a Neon type specifier. *STR should point at the leading '.'
1099 character. Does no verification at this stage that the type fits the opcode
1106 Can all be legally parsed by this function.
1108 Fills in neon_type struct pointer with parsed information, and updates STR
1109 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1110 type, FAIL if not. */
1113 parse_neon_type (struct neon_type
*type
, char **str
)
1120 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1122 enum neon_el_type thistype
= NT_untyped
;
1123 unsigned thissize
= -1u;
1130 /* Just a size without an explicit type. */
1134 switch (TOLOWER (*ptr
))
1136 case 'i': thistype
= NT_integer
; break;
1137 case 'f': thistype
= NT_float
; break;
1138 case 'p': thistype
= NT_poly
; break;
1139 case 's': thistype
= NT_signed
; break;
1140 case 'u': thistype
= NT_unsigned
; break;
1142 thistype
= NT_float
;
1147 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1153 /* .f is an abbreviation for .f32. */
1154 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1159 thissize
= strtoul (ptr
, &ptr
, 10);
1161 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1164 as_bad (_("bad size %d in type specifier"), thissize
);
1172 type
->el
[type
->elems
].type
= thistype
;
1173 type
->el
[type
->elems
].size
= thissize
;
1178 /* Empty/missing type is not a successful parse. */
1179 if (type
->elems
== 0)
1187 /* Errors may be set multiple times during parsing or bit encoding
1188 (particularly in the Neon bits), but usually the earliest error which is set
1189 will be the most meaningful. Avoid overwriting it with later (cascading)
1190 errors by calling this function. */
1193 first_error (const char *err
)
1199 /* Parse a single type, e.g. ".s32", leading period included. */
1201 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1204 struct neon_type optype
;
1208 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1210 if (optype
.elems
== 1)
1211 *vectype
= optype
.el
[0];
1214 first_error (_("only one type should be specified for operand"));
1220 first_error (_("vector type expected"));
1232 /* Special meanings for indices (which have a range of 0-7), which will fit into
1235 #define NEON_ALL_LANES 15
1236 #define NEON_INTERLEAVE_LANES 14
1238 /* Parse either a register or a scalar, with an optional type. Return the
1239 register number, and optionally fill in the actual type of the register
1240 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1241 type/index information in *TYPEINFO. */
1244 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1245 enum arm_reg_type
*rtype
,
1246 struct neon_typed_alias
*typeinfo
)
1249 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1250 struct neon_typed_alias atype
;
1251 struct neon_type_el parsetype
;
1255 atype
.eltype
.type
= NT_invtype
;
1256 atype
.eltype
.size
= -1;
1258 /* Try alternate syntax for some types of register. Note these are mutually
1259 exclusive with the Neon syntax extensions. */
1262 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1270 /* Undo polymorphism when a set of register types may be accepted. */
1271 if ((type
== REG_TYPE_NDQ
1272 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1273 || (type
== REG_TYPE_VFSD
1274 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1275 || (type
== REG_TYPE_NSDQ
1276 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1277 || reg
->type
== REG_TYPE_NQ
))
1278 || (type
== REG_TYPE_MMXWC
1279 && (reg
->type
== REG_TYPE_MMXWCG
)))
1282 if (type
!= reg
->type
)
1288 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1290 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1292 first_error (_("can't redefine type for operand"));
1295 atype
.defined
|= NTA_HASTYPE
;
1296 atype
.eltype
= parsetype
;
1299 if (skip_past_char (&str
, '[') == SUCCESS
)
1301 if (type
!= REG_TYPE_VFD
)
1303 first_error (_("only D registers may be indexed"));
1307 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1309 first_error (_("can't change index for operand"));
1313 atype
.defined
|= NTA_HASINDEX
;
1315 if (skip_past_char (&str
, ']') == SUCCESS
)
1316 atype
.index
= NEON_ALL_LANES
;
1321 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1323 if (exp
.X_op
!= O_constant
)
1325 first_error (_("constant expression required"));
1329 if (skip_past_char (&str
, ']') == FAIL
)
1332 atype
.index
= exp
.X_add_number
;
1347 /* Like arm_reg_parse, but allow allow the following extra features:
1348 - If RTYPE is non-zero, return the (possibly restricted) type of the
1349 register (e.g. Neon double or quad reg when either has been requested).
1350 - If this is a Neon vector type with additional type information, fill
1351 in the struct pointed to by VECTYPE (if non-NULL).
1352 This function will fault on encountering a scalar.
1356 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1357 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1359 struct neon_typed_alias atype
;
1361 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1366 /* Do not allow a scalar (reg+index) to parse as a register. */
1367 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1369 first_error (_("register operand expected, but got scalar"));
1374 *vectype
= atype
.eltype
;
1381 #define NEON_SCALAR_REG(X) ((X) >> 4)
1382 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1384 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1385 have enough information to be able to do a good job bounds-checking. So, we
1386 just do easy checks here, and do further checks later. */
1389 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
)
1393 struct neon_typed_alias atype
;
1395 reg
= parse_typed_reg_or_scalar (&str
, REG_TYPE_VFD
, NULL
, &atype
);
1397 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1400 if (atype
.index
== NEON_ALL_LANES
)
1402 first_error (_("scalar must have an index"));
1405 else if (atype
.index
>= 64 / elsize
)
1407 first_error (_("scalar index out of range"));
1412 *type
= atype
.eltype
;
1416 return reg
* 16 + atype
.index
;
1419 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1421 parse_reg_list (char ** strp
)
1423 char * str
= * strp
;
1427 /* We come back here if we get ranges concatenated by '+' or '|'. */
1442 if ((reg
= arm_reg_parse (&str
, REG_TYPE_RN
)) == FAIL
)
1444 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
1454 first_error (_("bad range in register list"));
1458 for (i
= cur_reg
+ 1; i
< reg
; i
++)
1460 if (range
& (1 << i
))
1462 (_("Warning: duplicated register (r%d) in register list"),
1470 if (range
& (1 << reg
))
1471 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1473 else if (reg
<= cur_reg
)
1474 as_tsktsk (_("Warning: register range not in ascending order"));
1479 while (skip_past_comma (&str
) != FAIL
1480 || (in_range
= 1, *str
++ == '-'));
1485 first_error (_("missing `}'"));
1493 if (my_get_expression (&expr
, &str
, GE_NO_PREFIX
))
1496 if (expr
.X_op
== O_constant
)
1498 if (expr
.X_add_number
1499 != (expr
.X_add_number
& 0x0000ffff))
1501 inst
.error
= _("invalid register mask");
1505 if ((range
& expr
.X_add_number
) != 0)
1507 int regno
= range
& expr
.X_add_number
;
1510 regno
= (1 << regno
) - 1;
1512 (_("Warning: duplicated register (r%d) in register list"),
1516 range
|= expr
.X_add_number
;
1520 if (inst
.reloc
.type
!= 0)
1522 inst
.error
= _("expression too complex");
1526 memcpy (&inst
.reloc
.exp
, &expr
, sizeof (expressionS
));
1527 inst
.reloc
.type
= BFD_RELOC_ARM_MULTI
;
1528 inst
.reloc
.pc_rel
= 0;
1532 if (*str
== '|' || *str
== '+')
1538 while (another_range
);
1544 /* Types of registers in a list. */
1553 /* Parse a VFP register list. If the string is invalid return FAIL.
1554 Otherwise return the number of registers, and set PBASE to the first
1555 register. Parses registers of type ETYPE.
1556 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1557 - Q registers can be used to specify pairs of D registers
1558 - { } can be omitted from around a singleton register list
1559 FIXME: This is not implemented, as it would require backtracking in
1562 This could be done (the meaning isn't really ambiguous), but doesn't
1563 fit in well with the current parsing framework.
1564 - 32 D registers may be used (also true for VFPv3).
1565 FIXME: Types are ignored in these register lists, which is probably a
1569 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
)
1574 enum arm_reg_type regtype
= 0;
1578 unsigned long mask
= 0;
1583 inst
.error
= _("expecting {");
1592 regtype
= REG_TYPE_VFS
;
1597 regtype
= REG_TYPE_VFD
;
1600 case REGLIST_NEON_D
:
1601 regtype
= REG_TYPE_NDQ
;
1605 if (etype
!= REGLIST_VFP_S
)
1607 /* VFPv3 allows 32 D registers. */
1608 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3
))
1612 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
1615 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
1622 base_reg
= max_regs
;
1626 int setmask
= 1, addregs
= 1;
1628 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
1630 if (new_base
== FAIL
)
1632 first_error (_(reg_expected_msgs
[regtype
]));
1636 if (new_base
>= max_regs
)
1638 first_error (_("register out of range in list"));
1642 /* Note: a value of 2 * n is returned for the register Q<n>. */
1643 if (regtype
== REG_TYPE_NQ
)
1649 if (new_base
< base_reg
)
1650 base_reg
= new_base
;
1652 if (mask
& (setmask
<< new_base
))
1654 first_error (_("invalid register list"));
1658 if ((mask
>> new_base
) != 0 && ! warned
)
1660 as_tsktsk (_("register list not in ascending order"));
1664 mask
|= setmask
<< new_base
;
1667 if (*str
== '-') /* We have the start of a range expression */
1673 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
1676 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
1680 if (high_range
>= max_regs
)
1682 first_error (_("register out of range in list"));
1686 if (regtype
== REG_TYPE_NQ
)
1687 high_range
= high_range
+ 1;
1689 if (high_range
<= new_base
)
1691 inst
.error
= _("register range not in ascending order");
1695 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
1697 if (mask
& (setmask
<< new_base
))
1699 inst
.error
= _("invalid register list");
1703 mask
|= setmask
<< new_base
;
1708 while (skip_past_comma (&str
) != FAIL
);
1712 /* Sanity check -- should have raised a parse error above. */
1713 if (count
== 0 || count
> max_regs
)
1718 /* Final test -- the registers must be consecutive. */
1720 for (i
= 0; i
< count
; i
++)
1722 if ((mask
& (1u << i
)) == 0)
1724 inst
.error
= _("non-contiguous register range");
1734 /* True if two alias types are the same. */
1737 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
1745 if (a
->defined
!= b
->defined
)
1748 if ((a
->defined
& NTA_HASTYPE
) != 0
1749 && (a
->eltype
.type
!= b
->eltype
.type
1750 || a
->eltype
.size
!= b
->eltype
.size
))
1753 if ((a
->defined
& NTA_HASINDEX
) != 0
1754 && (a
->index
!= b
->index
))
1760 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1761 The base register is put in *PBASE.
1762 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1764 The register stride (minus one) is put in bit 4 of the return value.
1765 Bits [6:5] encode the list length (minus one).
1766 The type of the list elements is put in *ELTYPE, if non-NULL. */
1768 #define NEON_LANE(X) ((X) & 0xf)
1769 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1770 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1773 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
1774 struct neon_type_el
*eltype
)
1781 int leading_brace
= 0;
1782 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
1784 const char *const incr_error
= "register stride must be 1 or 2";
1785 const char *const type_error
= "mismatched element/structure types in list";
1786 struct neon_typed_alias firsttype
;
1788 if (skip_past_char (&ptr
, '{') == SUCCESS
)
1793 struct neon_typed_alias atype
;
1794 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
1798 first_error (_(reg_expected_msgs
[rtype
]));
1805 if (rtype
== REG_TYPE_NQ
)
1812 else if (reg_incr
== -1)
1814 reg_incr
= getreg
- base_reg
;
1815 if (reg_incr
< 1 || reg_incr
> 2)
1817 first_error (_(incr_error
));
1821 else if (getreg
!= base_reg
+ reg_incr
* count
)
1823 first_error (_(incr_error
));
1827 if (!neon_alias_types_same (&atype
, &firsttype
))
1829 first_error (_(type_error
));
1833 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1837 struct neon_typed_alias htype
;
1838 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
1840 lane
= NEON_INTERLEAVE_LANES
;
1841 else if (lane
!= NEON_INTERLEAVE_LANES
)
1843 first_error (_(type_error
));
1848 else if (reg_incr
!= 1)
1850 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1854 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
1857 first_error (_(reg_expected_msgs
[rtype
]));
1860 if (!neon_alias_types_same (&htype
, &firsttype
))
1862 first_error (_(type_error
));
1865 count
+= hireg
+ dregs
- getreg
;
1869 /* If we're using Q registers, we can't use [] or [n] syntax. */
1870 if (rtype
== REG_TYPE_NQ
)
1876 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1880 else if (lane
!= atype
.index
)
1882 first_error (_(type_error
));
1886 else if (lane
== -1)
1887 lane
= NEON_INTERLEAVE_LANES
;
1888 else if (lane
!= NEON_INTERLEAVE_LANES
)
1890 first_error (_(type_error
));
1895 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
1897 /* No lane set by [x]. We must be interleaving structures. */
1899 lane
= NEON_INTERLEAVE_LANES
;
1902 if (lane
== -1 || base_reg
== -1 || count
< 1 || count
> 4
1903 || (count
> 1 && reg_incr
== -1))
1905 first_error (_("error parsing element/structure list"));
1909 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
1911 first_error (_("expected }"));
1919 *eltype
= firsttype
.eltype
;
1924 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
1927 /* Parse an explicit relocation suffix on an expression. This is
1928 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1929 arm_reloc_hsh contains no entries, so this function can only
1930 succeed if there is no () after the word. Returns -1 on error,
1931 BFD_RELOC_UNUSED if there wasn't any suffix. */
1933 parse_reloc (char **str
)
1935 struct reloc_entry
*r
;
1939 return BFD_RELOC_UNUSED
;
1944 while (*q
&& *q
!= ')' && *q
!= ',')
1949 if ((r
= hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
1956 /* Directives: register aliases. */
1958 static struct reg_entry
*
1959 insert_reg_alias (char *str
, int number
, int type
)
1961 struct reg_entry
*new;
1964 if ((new = hash_find (arm_reg_hsh
, str
)) != 0)
1967 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
1969 /* Only warn about a redefinition if it's not defined as the
1971 else if (new->number
!= number
|| new->type
!= type
)
1972 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
1977 name
= xstrdup (str
);
1978 new = xmalloc (sizeof (struct reg_entry
));
1981 new->number
= number
;
1983 new->builtin
= FALSE
;
1986 if (hash_insert (arm_reg_hsh
, name
, (PTR
) new))
1993 insert_neon_reg_alias (char *str
, int number
, int type
,
1994 struct neon_typed_alias
*atype
)
1996 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
2000 first_error (_("attempt to redefine typed alias"));
2006 reg
->neon
= xmalloc (sizeof (struct neon_typed_alias
));
2007 *reg
->neon
= *atype
;
2011 /* Look for the .req directive. This is of the form:
2013 new_register_name .req existing_register_name
2015 If we find one, or if it looks sufficiently like one that we want to
2016 handle any error here, return TRUE. Otherwise return FALSE. */
2019 create_register_alias (char * newname
, char *p
)
2021 struct reg_entry
*old
;
2022 char *oldname
, *nbuf
;
2025 /* The input scrubber ensures that whitespace after the mnemonic is
2026 collapsed to single spaces. */
2028 if (strncmp (oldname
, " .req ", 6) != 0)
2032 if (*oldname
== '\0')
2035 old
= hash_find (arm_reg_hsh
, oldname
);
2038 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2042 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2043 the desired alias name, and p points to its end. If not, then
2044 the desired alias name is in the global original_case_string. */
2045 #ifdef TC_CASE_SENSITIVE
2048 newname
= original_case_string
;
2049 nlen
= strlen (newname
);
2052 nbuf
= alloca (nlen
+ 1);
2053 memcpy (nbuf
, newname
, nlen
);
2056 /* Create aliases under the new name as stated; an all-lowercase
2057 version of the new name; and an all-uppercase version of the new
2059 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) != NULL
)
2061 for (p
= nbuf
; *p
; p
++)
2064 if (strncmp (nbuf
, newname
, nlen
))
2066 /* If this attempt to create an additional alias fails, do not bother
2067 trying to create the all-lower case alias. We will fail and issue
2068 a second, duplicate error message. This situation arises when the
2069 programmer does something like:
2072 The second .req creates the "Foo" alias but then fails to create
2073 the artifical FOO alias because it has already been created by the
2075 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) == NULL
)
2079 for (p
= nbuf
; *p
; p
++)
2082 if (strncmp (nbuf
, newname
, nlen
))
2083 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2089 /* Create a Neon typed/indexed register alias using directives, e.g.:
2094 These typed registers can be used instead of the types specified after the
2095 Neon mnemonic, so long as all operands given have types. Types can also be
2096 specified directly, e.g.:
2097 vadd d0.s32, d1.s32, d2.s32
2101 create_neon_reg_alias (char *newname
, char *p
)
2103 enum arm_reg_type basetype
;
2104 struct reg_entry
*basereg
;
2105 struct reg_entry mybasereg
;
2106 struct neon_type ntype
;
2107 struct neon_typed_alias typeinfo
;
2108 char *namebuf
, *nameend
;
2111 typeinfo
.defined
= 0;
2112 typeinfo
.eltype
.type
= NT_invtype
;
2113 typeinfo
.eltype
.size
= -1;
2114 typeinfo
.index
= -1;
2118 if (strncmp (p
, " .dn ", 5) == 0)
2119 basetype
= REG_TYPE_VFD
;
2120 else if (strncmp (p
, " .qn ", 5) == 0)
2121 basetype
= REG_TYPE_NQ
;
2130 basereg
= arm_reg_parse_multi (&p
);
2132 if (basereg
&& basereg
->type
!= basetype
)
2134 as_bad (_("bad type for register"));
2138 if (basereg
== NULL
)
2141 /* Try parsing as an integer. */
2142 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2143 if (exp
.X_op
!= O_constant
)
2145 as_bad (_("expression must be constant"));
2148 basereg
= &mybasereg
;
2149 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2155 typeinfo
= *basereg
->neon
;
2157 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2159 /* We got a type. */
2160 if (typeinfo
.defined
& NTA_HASTYPE
)
2162 as_bad (_("can't redefine the type of a register alias"));
2166 typeinfo
.defined
|= NTA_HASTYPE
;
2167 if (ntype
.elems
!= 1)
2169 as_bad (_("you must specify a single type only"));
2172 typeinfo
.eltype
= ntype
.el
[0];
2175 if (skip_past_char (&p
, '[') == SUCCESS
)
2178 /* We got a scalar index. */
2180 if (typeinfo
.defined
& NTA_HASINDEX
)
2182 as_bad (_("can't redefine the index of a scalar alias"));
2186 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2188 if (exp
.X_op
!= O_constant
)
2190 as_bad (_("scalar index must be constant"));
2194 typeinfo
.defined
|= NTA_HASINDEX
;
2195 typeinfo
.index
= exp
.X_add_number
;
2197 if (skip_past_char (&p
, ']') == FAIL
)
2199 as_bad (_("expecting ]"));
2204 namelen
= nameend
- newname
;
2205 namebuf
= alloca (namelen
+ 1);
2206 strncpy (namebuf
, newname
, namelen
);
2207 namebuf
[namelen
] = '\0';
2209 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2210 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2212 /* Insert name in all uppercase. */
2213 for (p
= namebuf
; *p
; p
++)
2216 if (strncmp (namebuf
, newname
, namelen
))
2217 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2218 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2220 /* Insert name in all lowercase. */
2221 for (p
= namebuf
; *p
; p
++)
2224 if (strncmp (namebuf
, newname
, namelen
))
2225 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2226 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2231 /* Should never be called, as .req goes between the alias and the
2232 register name, not at the beginning of the line. */
2234 s_req (int a ATTRIBUTE_UNUSED
)
2236 as_bad (_("invalid syntax for .req directive"));
2240 s_dn (int a ATTRIBUTE_UNUSED
)
2242 as_bad (_("invalid syntax for .dn directive"));
2246 s_qn (int a ATTRIBUTE_UNUSED
)
2248 as_bad (_("invalid syntax for .qn directive"));
2251 /* The .unreq directive deletes an alias which was previously defined
2252 by .req. For example:
2258 s_unreq (int a ATTRIBUTE_UNUSED
)
2263 name
= input_line_pointer
;
2265 while (*input_line_pointer
!= 0
2266 && *input_line_pointer
!= ' '
2267 && *input_line_pointer
!= '\n')
2268 ++input_line_pointer
;
2270 saved_char
= *input_line_pointer
;
2271 *input_line_pointer
= 0;
2274 as_bad (_("invalid syntax for .unreq directive"));
2277 struct reg_entry
*reg
= hash_find (arm_reg_hsh
, name
);
2280 as_bad (_("unknown register alias '%s'"), name
);
2281 else if (reg
->builtin
)
2282 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2289 hash_delete (arm_reg_hsh
, name
);
2290 free ((char *) reg
->name
);
2295 /* Also locate the all upper case and all lower case versions.
2296 Do not complain if we cannot find one or the other as it
2297 was probably deleted above. */
2299 nbuf
= strdup (name
);
2300 for (p
= nbuf
; *p
; p
++)
2302 reg
= hash_find (arm_reg_hsh
, nbuf
);
2305 hash_delete (arm_reg_hsh
, nbuf
);
2306 free ((char *) reg
->name
);
2312 for (p
= nbuf
; *p
; p
++)
2314 reg
= hash_find (arm_reg_hsh
, nbuf
);
2317 hash_delete (arm_reg_hsh
, nbuf
);
2318 free ((char *) reg
->name
);
2328 *input_line_pointer
= saved_char
;
2329 demand_empty_rest_of_line ();
2332 /* Directives: Instruction set selection. */
2335 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2336 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2337 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2338 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2340 static enum mstate mapstate
= MAP_UNDEFINED
;
2343 mapping_state (enum mstate state
)
2346 const char * symname
;
2349 if (mapstate
== state
)
2350 /* The mapping symbol has already been emitted.
2351 There is nothing else to do. */
2360 type
= BSF_NO_FLAGS
;
2364 type
= BSF_NO_FLAGS
;
2368 type
= BSF_NO_FLAGS
;
2376 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
2378 symbolP
= symbol_new (symname
, now_seg
, (valueT
) frag_now_fix (), frag_now
);
2379 symbol_table_insert (symbolP
);
2380 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2385 THUMB_SET_FUNC (symbolP
, 0);
2386 ARM_SET_THUMB (symbolP
, 0);
2387 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2391 THUMB_SET_FUNC (symbolP
, 1);
2392 ARM_SET_THUMB (symbolP
, 1);
2393 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2402 #define mapping_state(x) /* nothing */
2405 /* Find the real, Thumb encoded start of a Thumb function. */
2408 find_real_start (symbolS
* symbolP
)
2411 const char * name
= S_GET_NAME (symbolP
);
2412 symbolS
* new_target
;
2414 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2415 #define STUB_NAME ".real_start_of"
2420 /* The compiler may generate BL instructions to local labels because
2421 it needs to perform a branch to a far away location. These labels
2422 do not have a corresponding ".real_start_of" label. We check
2423 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2424 the ".real_start_of" convention for nonlocal branches. */
2425 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
2428 real_start
= ACONCAT ((STUB_NAME
, name
, NULL
));
2429 new_target
= symbol_find (real_start
);
2431 if (new_target
== NULL
)
2433 as_warn ("Failed to find real start of function: %s\n", name
);
2434 new_target
= symbolP
;
2441 opcode_select (int width
)
2448 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
2449 as_bad (_("selected processor does not support THUMB opcodes"));
2452 /* No need to force the alignment, since we will have been
2453 coming from ARM mode, which is word-aligned. */
2454 record_alignment (now_seg
, 1);
2456 mapping_state (MAP_THUMB
);
2462 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
2463 as_bad (_("selected processor does not support ARM opcodes"));
2468 frag_align (2, 0, 0);
2470 record_alignment (now_seg
, 1);
2472 mapping_state (MAP_ARM
);
2476 as_bad (_("invalid instruction size selected (%d)"), width
);
2481 s_arm (int ignore ATTRIBUTE_UNUSED
)
2484 demand_empty_rest_of_line ();
2488 s_thumb (int ignore ATTRIBUTE_UNUSED
)
2491 demand_empty_rest_of_line ();
2495 s_code (int unused ATTRIBUTE_UNUSED
)
2499 temp
= get_absolute_expression ();
2504 opcode_select (temp
);
2508 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
2513 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
2515 /* If we are not already in thumb mode go into it, EVEN if
2516 the target processor does not support thumb instructions.
2517 This is used by gcc/config/arm/lib1funcs.asm for example
2518 to compile interworking support functions even if the
2519 target processor should not support interworking. */
2523 record_alignment (now_seg
, 1);
2526 demand_empty_rest_of_line ();
2530 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
2534 /* The following label is the name/address of the start of a Thumb function.
2535 We need to know this for the interworking support. */
2536 label_is_thumb_function_name
= TRUE
;
2539 /* Perform a .set directive, but also mark the alias as
2540 being a thumb function. */
2543 s_thumb_set (int equiv
)
2545 /* XXX the following is a duplicate of the code for s_set() in read.c
2546 We cannot just call that code as we need to get at the symbol that
2553 /* Especial apologies for the random logic:
2554 This just grew, and could be parsed much more simply!
2556 name
= input_line_pointer
;
2557 delim
= get_symbol_end ();
2558 end_name
= input_line_pointer
;
2561 if (*input_line_pointer
!= ',')
2564 as_bad (_("expected comma after name \"%s\""), name
);
2566 ignore_rest_of_line ();
2570 input_line_pointer
++;
2573 if (name
[0] == '.' && name
[1] == '\0')
2575 /* XXX - this should not happen to .thumb_set. */
2579 if ((symbolP
= symbol_find (name
)) == NULL
2580 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
2583 /* When doing symbol listings, play games with dummy fragments living
2584 outside the normal fragment chain to record the file and line info
2586 if (listing
& LISTING_SYMBOLS
)
2588 extern struct list_info_struct
* listing_tail
;
2589 fragS
* dummy_frag
= xmalloc (sizeof (fragS
));
2591 memset (dummy_frag
, 0, sizeof (fragS
));
2592 dummy_frag
->fr_type
= rs_fill
;
2593 dummy_frag
->line
= listing_tail
;
2594 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
2595 dummy_frag
->fr_symbol
= symbolP
;
2599 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
2602 /* "set" symbols are local unless otherwise specified. */
2603 SF_SET_LOCAL (symbolP
);
2604 #endif /* OBJ_COFF */
2605 } /* Make a new symbol. */
2607 symbol_table_insert (symbolP
);
2612 && S_IS_DEFINED (symbolP
)
2613 && S_GET_SEGMENT (symbolP
) != reg_section
)
2614 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
2616 pseudo_set (symbolP
);
2618 demand_empty_rest_of_line ();
2620 /* XXX Now we come to the Thumb specific bit of code. */
2622 THUMB_SET_FUNC (symbolP
, 1);
2623 ARM_SET_THUMB (symbolP
, 1);
2624 #if defined OBJ_ELF || defined OBJ_COFF
2625 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2629 /* Directives: Mode selection. */
2631 /* .syntax [unified|divided] - choose the new unified syntax
2632 (same for Arm and Thumb encoding, modulo slight differences in what
2633 can be represented) or the old divergent syntax for each mode. */
2635 s_syntax (int unused ATTRIBUTE_UNUSED
)
2639 name
= input_line_pointer
;
2640 delim
= get_symbol_end ();
2642 if (!strcasecmp (name
, "unified"))
2643 unified_syntax
= TRUE
;
2644 else if (!strcasecmp (name
, "divided"))
2645 unified_syntax
= FALSE
;
2648 as_bad (_("unrecognized syntax mode \"%s\""), name
);
2651 *input_line_pointer
= delim
;
2652 demand_empty_rest_of_line ();
2655 /* Directives: sectioning and alignment. */
2657 /* Same as s_align_ptwo but align 0 => align 2. */
2660 s_align (int unused ATTRIBUTE_UNUSED
)
2665 long max_alignment
= 15;
2667 temp
= get_absolute_expression ();
2668 if (temp
> max_alignment
)
2669 as_bad (_("alignment too large: %d assumed"), temp
= max_alignment
);
2672 as_bad (_("alignment negative. 0 assumed."));
2676 if (*input_line_pointer
== ',')
2678 input_line_pointer
++;
2679 temp_fill
= get_absolute_expression ();
2691 /* Only make a frag if we HAVE to. */
2692 if (temp
&& !need_pass_2
)
2694 if (!fill_p
&& subseg_text_p (now_seg
))
2695 frag_align_code (temp
, 0);
2697 frag_align (temp
, (int) temp_fill
, 0);
2699 demand_empty_rest_of_line ();
2701 record_alignment (now_seg
, temp
);
2705 s_bss (int ignore ATTRIBUTE_UNUSED
)
2707 /* We don't support putting frags in the BSS segment, we fake it by
2708 marking in_bss, then looking at s_skip for clues. */
2709 subseg_set (bss_section
, 0);
2710 demand_empty_rest_of_line ();
2711 mapping_state (MAP_DATA
);
2715 s_even (int ignore ATTRIBUTE_UNUSED
)
2717 /* Never make frag if expect extra pass. */
2719 frag_align (1, 0, 0);
2721 record_alignment (now_seg
, 1);
2723 demand_empty_rest_of_line ();
2726 /* Directives: Literal pools. */
2728 static literal_pool
*
2729 find_literal_pool (void)
2731 literal_pool
* pool
;
2733 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
2735 if (pool
->section
== now_seg
2736 && pool
->sub_section
== now_subseg
)
2743 static literal_pool
*
2744 find_or_make_literal_pool (void)
2746 /* Next literal pool ID number. */
2747 static unsigned int latest_pool_num
= 1;
2748 literal_pool
* pool
;
2750 pool
= find_literal_pool ();
2754 /* Create a new pool. */
2755 pool
= xmalloc (sizeof (* pool
));
2759 pool
->next_free_entry
= 0;
2760 pool
->section
= now_seg
;
2761 pool
->sub_section
= now_subseg
;
2762 pool
->next
= list_of_pools
;
2763 pool
->symbol
= NULL
;
2765 /* Add it to the list. */
2766 list_of_pools
= pool
;
2769 /* New pools, and emptied pools, will have a NULL symbol. */
2770 if (pool
->symbol
== NULL
)
2772 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
2773 (valueT
) 0, &zero_address_frag
);
2774 pool
->id
= latest_pool_num
++;
2781 /* Add the literal in the global 'inst'
2782 structure to the relevent literal pool. */
2785 add_to_lit_pool (void)
2787 literal_pool
* pool
;
2790 pool
= find_or_make_literal_pool ();
2792 /* Check if this literal value is already in the pool. */
2793 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
2795 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
2796 && (inst
.reloc
.exp
.X_op
== O_constant
)
2797 && (pool
->literals
[entry
].X_add_number
2798 == inst
.reloc
.exp
.X_add_number
)
2799 && (pool
->literals
[entry
].X_unsigned
2800 == inst
.reloc
.exp
.X_unsigned
))
2803 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
2804 && (inst
.reloc
.exp
.X_op
== O_symbol
)
2805 && (pool
->literals
[entry
].X_add_number
2806 == inst
.reloc
.exp
.X_add_number
)
2807 && (pool
->literals
[entry
].X_add_symbol
2808 == inst
.reloc
.exp
.X_add_symbol
)
2809 && (pool
->literals
[entry
].X_op_symbol
2810 == inst
.reloc
.exp
.X_op_symbol
))
2814 /* Do we need to create a new entry? */
2815 if (entry
== pool
->next_free_entry
)
2817 if (entry
>= MAX_LITERAL_POOL_SIZE
)
2819 inst
.error
= _("literal pool overflow");
2823 pool
->literals
[entry
] = inst
.reloc
.exp
;
2824 pool
->next_free_entry
+= 1;
2827 inst
.reloc
.exp
.X_op
= O_symbol
;
2828 inst
.reloc
.exp
.X_add_number
= ((int) entry
) * 4;
2829 inst
.reloc
.exp
.X_add_symbol
= pool
->symbol
;
2834 /* Can't use symbol_new here, so have to create a symbol and then at
2835 a later date assign it a value. Thats what these functions do. */
2838 symbol_locate (symbolS
* symbolP
,
2839 const char * name
, /* It is copied, the caller can modify. */
2840 segT segment
, /* Segment identifier (SEG_<something>). */
2841 valueT valu
, /* Symbol value. */
2842 fragS
* frag
) /* Associated fragment. */
2844 unsigned int name_length
;
2845 char * preserved_copy_of_name
;
2847 name_length
= strlen (name
) + 1; /* +1 for \0. */
2848 obstack_grow (¬es
, name
, name_length
);
2849 preserved_copy_of_name
= obstack_finish (¬es
);
2851 #ifdef tc_canonicalize_symbol_name
2852 preserved_copy_of_name
=
2853 tc_canonicalize_symbol_name (preserved_copy_of_name
);
2856 S_SET_NAME (symbolP
, preserved_copy_of_name
);
2858 S_SET_SEGMENT (symbolP
, segment
);
2859 S_SET_VALUE (symbolP
, valu
);
2860 symbol_clear_list_pointers (symbolP
);
2862 symbol_set_frag (symbolP
, frag
);
2864 /* Link to end of symbol chain. */
2866 extern int symbol_table_frozen
;
2868 if (symbol_table_frozen
)
2872 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
2874 obj_symbol_new_hook (symbolP
);
2876 #ifdef tc_symbol_new_hook
2877 tc_symbol_new_hook (symbolP
);
2881 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
2882 #endif /* DEBUG_SYMS */
2887 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
2890 literal_pool
* pool
;
2893 pool
= find_literal_pool ();
2895 || pool
->symbol
== NULL
2896 || pool
->next_free_entry
== 0)
2899 mapping_state (MAP_DATA
);
2901 /* Align pool as you have word accesses.
2902 Only make a frag if we have to. */
2904 frag_align (2, 0, 0);
2906 record_alignment (now_seg
, 2);
2908 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
2910 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
2911 (valueT
) frag_now_fix (), frag_now
);
2912 symbol_table_insert (pool
->symbol
);
2914 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
2916 #if defined OBJ_COFF || defined OBJ_ELF
2917 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
2920 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
2921 /* First output the expression in the instruction to the pool. */
2922 emit_expr (&(pool
->literals
[entry
]), 4); /* .word */
2924 /* Mark the pool as empty. */
2925 pool
->next_free_entry
= 0;
2926 pool
->symbol
= NULL
;
2930 /* Forward declarations for functions below, in the MD interface
2932 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
2933 static valueT
create_unwind_entry (int);
2934 static void start_unwind_section (const segT
, int);
2935 static void add_unwind_opcode (valueT
, int);
2936 static void flush_pending_unwind (void);
2938 /* Directives: Data. */
2941 s_arm_elf_cons (int nbytes
)
2945 #ifdef md_flush_pending_output
2946 md_flush_pending_output ();
2949 if (is_it_end_of_statement ())
2951 demand_empty_rest_of_line ();
2955 #ifdef md_cons_align
2956 md_cons_align (nbytes
);
2959 mapping_state (MAP_DATA
);
2963 char *base
= input_line_pointer
;
2967 if (exp
.X_op
!= O_symbol
)
2968 emit_expr (&exp
, (unsigned int) nbytes
);
2971 char *before_reloc
= input_line_pointer
;
2972 reloc
= parse_reloc (&input_line_pointer
);
2975 as_bad (_("unrecognized relocation suffix"));
2976 ignore_rest_of_line ();
2979 else if (reloc
== BFD_RELOC_UNUSED
)
2980 emit_expr (&exp
, (unsigned int) nbytes
);
2983 reloc_howto_type
*howto
= bfd_reloc_type_lookup (stdoutput
, reloc
);
2984 int size
= bfd_get_reloc_size (howto
);
2986 if (reloc
== BFD_RELOC_ARM_PLT32
)
2988 as_bad (_("(plt) is only valid on branch targets"));
2989 reloc
= BFD_RELOC_UNUSED
;
2994 as_bad (_("%s relocations do not fit in %d bytes"),
2995 howto
->name
, nbytes
);
2998 /* We've parsed an expression stopping at O_symbol.
2999 But there may be more expression left now that we
3000 have parsed the relocation marker. Parse it again.
3001 XXX Surely there is a cleaner way to do this. */
3002 char *p
= input_line_pointer
;
3004 char *save_buf
= alloca (input_line_pointer
- base
);
3005 memcpy (save_buf
, base
, input_line_pointer
- base
);
3006 memmove (base
+ (input_line_pointer
- before_reloc
),
3007 base
, before_reloc
- base
);
3009 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
3011 memcpy (base
, save_buf
, p
- base
);
3013 offset
= nbytes
- size
;
3014 p
= frag_more ((int) nbytes
);
3015 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
3016 size
, &exp
, 0, reloc
);
3021 while (*input_line_pointer
++ == ',');
3023 /* Put terminator back into stream. */
3024 input_line_pointer
--;
3025 demand_empty_rest_of_line ();
3029 /* Parse a .rel31 directive. */
3032 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
3039 if (*input_line_pointer
== '1')
3040 highbit
= 0x80000000;
3041 else if (*input_line_pointer
!= '0')
3042 as_bad (_("expected 0 or 1"));
3044 input_line_pointer
++;
3045 if (*input_line_pointer
!= ',')
3046 as_bad (_("missing comma"));
3047 input_line_pointer
++;
3049 #ifdef md_flush_pending_output
3050 md_flush_pending_output ();
3053 #ifdef md_cons_align
3057 mapping_state (MAP_DATA
);
3062 md_number_to_chars (p
, highbit
, 4);
3063 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
3064 BFD_RELOC_ARM_PREL31
);
3066 demand_empty_rest_of_line ();
3069 /* Directives: AEABI stack-unwind tables. */
3071 /* Parse an unwind_fnstart directive. Simply records the current location. */
3074 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
3076 demand_empty_rest_of_line ();
3077 /* Mark the start of the function. */
3078 unwind
.proc_start
= expr_build_dot ();
3080 /* Reset the rest of the unwind info. */
3081 unwind
.opcode_count
= 0;
3082 unwind
.table_entry
= NULL
;
3083 unwind
.personality_routine
= NULL
;
3084 unwind
.personality_index
= -1;
3085 unwind
.frame_size
= 0;
3086 unwind
.fp_offset
= 0;
3089 unwind
.sp_restored
= 0;
3093 /* Parse a handlerdata directive. Creates the exception handling table entry
3094 for the function. */
3097 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
3099 demand_empty_rest_of_line ();
3100 if (unwind
.table_entry
)
3101 as_bad (_("dupicate .handlerdata directive"));
3103 create_unwind_entry (1);
3106 /* Parse an unwind_fnend directive. Generates the index table entry. */
3109 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
3115 demand_empty_rest_of_line ();
3117 /* Add eh table entry. */
3118 if (unwind
.table_entry
== NULL
)
3119 val
= create_unwind_entry (0);
3123 /* Add index table entry. This is two words. */
3124 start_unwind_section (unwind
.saved_seg
, 1);
3125 frag_align (2, 0, 0);
3126 record_alignment (now_seg
, 2);
3128 ptr
= frag_more (8);
3129 where
= frag_now_fix () - 8;
3131 /* Self relative offset of the function start. */
3132 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
3133 BFD_RELOC_ARM_PREL31
);
3135 /* Indicate dependency on EHABI-defined personality routines to the
3136 linker, if it hasn't been done already. */
3137 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
3138 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
3140 static const char *const name
[] = {
3141 "__aeabi_unwind_cpp_pr0",
3142 "__aeabi_unwind_cpp_pr1",
3143 "__aeabi_unwind_cpp_pr2"
3145 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
3146 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
3147 marked_pr_dependency
|= 1 << unwind
.personality_index
;
3148 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
3149 = marked_pr_dependency
;
3153 /* Inline exception table entry. */
3154 md_number_to_chars (ptr
+ 4, val
, 4);
3156 /* Self relative offset of the table entry. */
3157 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
3158 BFD_RELOC_ARM_PREL31
);
3160 /* Restore the original section. */
3161 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
3165 /* Parse an unwind_cantunwind directive. */
3168 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
3170 demand_empty_rest_of_line ();
3171 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3172 as_bad (_("personality routine specified for cantunwind frame"));
3174 unwind
.personality_index
= -2;
3178 /* Parse a personalityindex directive. */
3181 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
3185 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3186 as_bad (_("duplicate .personalityindex directive"));
3190 if (exp
.X_op
!= O_constant
3191 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
3193 as_bad (_("bad personality routine number"));
3194 ignore_rest_of_line ();
3198 unwind
.personality_index
= exp
.X_add_number
;
3200 demand_empty_rest_of_line ();
3204 /* Parse a personality directive. */
3207 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
3211 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3212 as_bad (_("duplicate .personality directive"));
3214 name
= input_line_pointer
;
3215 c
= get_symbol_end ();
3216 p
= input_line_pointer
;
3217 unwind
.personality_routine
= symbol_find_or_make (name
);
3219 demand_empty_rest_of_line ();
3223 /* Parse a directive saving core registers. */
3226 s_arm_unwind_save_core (void)
3232 range
= parse_reg_list (&input_line_pointer
);
3235 as_bad (_("expected register list"));
3236 ignore_rest_of_line ();
3240 demand_empty_rest_of_line ();
3242 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3243 into .unwind_save {..., sp...}. We aren't bothered about the value of
3244 ip because it is clobbered by calls. */
3245 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
3246 && (range
& 0x3000) == 0x1000)
3248 unwind
.opcode_count
--;
3249 unwind
.sp_restored
= 0;
3250 range
= (range
| 0x2000) & ~0x1000;
3251 unwind
.pending_offset
= 0;
3257 /* See if we can use the short opcodes. These pop a block of up to 8
3258 registers starting with r4, plus maybe r14. */
3259 for (n
= 0; n
< 8; n
++)
3261 /* Break at the first non-saved register. */
3262 if ((range
& (1 << (n
+ 4))) == 0)
3265 /* See if there are any other bits set. */
3266 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
3268 /* Use the long form. */
3269 op
= 0x8000 | ((range
>> 4) & 0xfff);
3270 add_unwind_opcode (op
, 2);
3274 /* Use the short form. */
3276 op
= 0xa8; /* Pop r14. */
3278 op
= 0xa0; /* Do not pop r14. */
3280 add_unwind_opcode (op
, 1);
3287 op
= 0xb100 | (range
& 0xf);
3288 add_unwind_opcode (op
, 2);
3291 /* Record the number of bytes pushed. */
3292 for (n
= 0; n
< 16; n
++)
3294 if (range
& (1 << n
))
3295 unwind
.frame_size
+= 4;
3300 /* Parse a directive saving FPA registers. */
3303 s_arm_unwind_save_fpa (int reg
)
3309 /* Get Number of registers to transfer. */
3310 if (skip_past_comma (&input_line_pointer
) != FAIL
)
3313 exp
.X_op
= O_illegal
;
3315 if (exp
.X_op
!= O_constant
)
3317 as_bad (_("expected , <constant>"));
3318 ignore_rest_of_line ();
3322 num_regs
= exp
.X_add_number
;
3324 if (num_regs
< 1 || num_regs
> 4)
3326 as_bad (_("number of registers must be in the range [1:4]"));
3327 ignore_rest_of_line ();
3331 demand_empty_rest_of_line ();
3336 op
= 0xb4 | (num_regs
- 1);
3337 add_unwind_opcode (op
, 1);
3342 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
3343 add_unwind_opcode (op
, 2);
3345 unwind
.frame_size
+= num_regs
* 12;
3349 /* Parse a directive saving VFP registers for ARMv6 and above. */
3352 s_arm_unwind_save_vfp_armv6 (void)
3357 int num_vfpv3_regs
= 0;
3358 int num_regs_below_16
;
3360 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
);
3363 as_bad (_("expected register list"));
3364 ignore_rest_of_line ();
3368 demand_empty_rest_of_line ();
3370 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3371 than FSTMX/FLDMX-style ones). */
3373 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3375 num_vfpv3_regs
= count
;
3376 else if (start
+ count
> 16)
3377 num_vfpv3_regs
= start
+ count
- 16;
3379 if (num_vfpv3_regs
> 0)
3381 int start_offset
= start
> 16 ? start
- 16 : 0;
3382 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
3383 add_unwind_opcode (op
, 2);
3386 /* Generate opcode for registers numbered in the range 0 .. 15. */
3387 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
3388 assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
3389 if (num_regs_below_16
> 0)
3391 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
3392 add_unwind_opcode (op
, 2);
3395 unwind
.frame_size
+= count
* 8;
3399 /* Parse a directive saving VFP registers for pre-ARMv6. */
3402 s_arm_unwind_save_vfp (void)
3408 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
);
3411 as_bad (_("expected register list"));
3412 ignore_rest_of_line ();
3416 demand_empty_rest_of_line ();
3421 op
= 0xb8 | (count
- 1);
3422 add_unwind_opcode (op
, 1);
3427 op
= 0xb300 | (reg
<< 4) | (count
- 1);
3428 add_unwind_opcode (op
, 2);
3430 unwind
.frame_size
+= count
* 8 + 4;
3434 /* Parse a directive saving iWMMXt data registers. */
3437 s_arm_unwind_save_mmxwr (void)
3445 if (*input_line_pointer
== '{')
3446 input_line_pointer
++;
3450 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3454 as_bad (_(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3459 as_tsktsk (_("register list not in ascending order"));
3462 if (*input_line_pointer
== '-')
3464 input_line_pointer
++;
3465 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3468 as_bad (_(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3471 else if (reg
>= hi_reg
)
3473 as_bad (_("bad register range"));
3476 for (; reg
< hi_reg
; reg
++)
3480 while (skip_past_comma (&input_line_pointer
) != FAIL
);
3482 if (*input_line_pointer
== '}')
3483 input_line_pointer
++;
3485 demand_empty_rest_of_line ();
3487 /* Generate any deferred opcodes because we're going to be looking at
3489 flush_pending_unwind ();
3491 for (i
= 0; i
< 16; i
++)
3493 if (mask
& (1 << i
))
3494 unwind
.frame_size
+= 8;
3497 /* Attempt to combine with a previous opcode. We do this because gcc
3498 likes to output separate unwind directives for a single block of
3500 if (unwind
.opcode_count
> 0)
3502 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
3503 if ((i
& 0xf8) == 0xc0)
3506 /* Only merge if the blocks are contiguous. */
3509 if ((mask
& 0xfe00) == (1 << 9))
3511 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
3512 unwind
.opcode_count
--;
3515 else if (i
== 6 && unwind
.opcode_count
>= 2)
3517 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
3521 op
= 0xffff << (reg
- 1);
3523 && ((mask
& op
) == (1u << (reg
- 1))))
3525 op
= (1 << (reg
+ i
+ 1)) - 1;
3526 op
&= ~((1 << reg
) - 1);
3528 unwind
.opcode_count
-= 2;
3535 /* We want to generate opcodes in the order the registers have been
3536 saved, ie. descending order. */
3537 for (reg
= 15; reg
>= -1; reg
--)
3539 /* Save registers in blocks. */
3541 || !(mask
& (1 << reg
)))
3543 /* We found an unsaved reg. Generate opcodes to save the
3544 preceeding block. */
3550 op
= 0xc0 | (hi_reg
- 10);
3551 add_unwind_opcode (op
, 1);
3556 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
3557 add_unwind_opcode (op
, 2);
3566 ignore_rest_of_line ();
3570 s_arm_unwind_save_mmxwcg (void)
3577 if (*input_line_pointer
== '{')
3578 input_line_pointer
++;
3582 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
3586 as_bad (_(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
3592 as_tsktsk (_("register list not in ascending order"));
3595 if (*input_line_pointer
== '-')
3597 input_line_pointer
++;
3598 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
3601 as_bad (_(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
3604 else if (reg
>= hi_reg
)
3606 as_bad (_("bad register range"));
3609 for (; reg
< hi_reg
; reg
++)
3613 while (skip_past_comma (&input_line_pointer
) != FAIL
);
3615 if (*input_line_pointer
== '}')
3616 input_line_pointer
++;
3618 demand_empty_rest_of_line ();
3620 /* Generate any deferred opcodes because we're going to be looking at
3622 flush_pending_unwind ();
3624 for (reg
= 0; reg
< 16; reg
++)
3626 if (mask
& (1 << reg
))
3627 unwind
.frame_size
+= 4;
3630 add_unwind_opcode (op
, 2);
3633 ignore_rest_of_line ();
3637 /* Parse an unwind_save directive.
3638 If the argument is non-zero, this is a .vsave directive. */
3641 s_arm_unwind_save (int arch_v6
)
3644 struct reg_entry
*reg
;
3645 bfd_boolean had_brace
= FALSE
;
3647 /* Figure out what sort of save we have. */
3648 peek
= input_line_pointer
;
3656 reg
= arm_reg_parse_multi (&peek
);
3660 as_bad (_("register expected"));
3661 ignore_rest_of_line ();
3670 as_bad (_("FPA .unwind_save does not take a register list"));
3671 ignore_rest_of_line ();
3674 s_arm_unwind_save_fpa (reg
->number
);
3677 case REG_TYPE_RN
: s_arm_unwind_save_core (); return;
3680 s_arm_unwind_save_vfp_armv6 ();
3682 s_arm_unwind_save_vfp ();
3684 case REG_TYPE_MMXWR
: s_arm_unwind_save_mmxwr (); return;
3685 case REG_TYPE_MMXWCG
: s_arm_unwind_save_mmxwcg (); return;
3688 as_bad (_(".unwind_save does not support this kind of register"));
3689 ignore_rest_of_line ();
3694 /* Parse an unwind_movsp directive. */
3697 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
3703 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
3706 as_bad (_(reg_expected_msgs
[REG_TYPE_RN
]));
3707 ignore_rest_of_line ();
3711 /* Optional constant. */
3712 if (skip_past_comma (&input_line_pointer
) != FAIL
)
3714 if (immediate_for_directive (&offset
) == FAIL
)
3720 demand_empty_rest_of_line ();
3722 if (reg
== REG_SP
|| reg
== REG_PC
)
3724 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3728 if (unwind
.fp_reg
!= REG_SP
)
3729 as_bad (_("unexpected .unwind_movsp directive"));
3731 /* Generate opcode to restore the value. */
3733 add_unwind_opcode (op
, 1);
3735 /* Record the information for later. */
3736 unwind
.fp_reg
= reg
;
3737 unwind
.fp_offset
= unwind
.frame_size
- offset
;
3738 unwind
.sp_restored
= 1;
3741 /* Parse an unwind_pad directive. */
3744 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
3748 if (immediate_for_directive (&offset
) == FAIL
)
3753 as_bad (_("stack increment must be multiple of 4"));
3754 ignore_rest_of_line ();
3758 /* Don't generate any opcodes, just record the details for later. */
3759 unwind
.frame_size
+= offset
;
3760 unwind
.pending_offset
+= offset
;
3762 demand_empty_rest_of_line ();
3765 /* Parse an unwind_setfp directive. */
3768 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
3774 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
3775 if (skip_past_comma (&input_line_pointer
) == FAIL
)
3778 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
3780 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
3782 as_bad (_("expected <reg>, <reg>"));
3783 ignore_rest_of_line ();
3787 /* Optional constant. */
3788 if (skip_past_comma (&input_line_pointer
) != FAIL
)
3790 if (immediate_for_directive (&offset
) == FAIL
)
3796 demand_empty_rest_of_line ();
3798 if (sp_reg
!= 13 && sp_reg
!= unwind
.fp_reg
)
3800 as_bad (_("register must be either sp or set by a previous"
3801 "unwind_movsp directive"));
3805 /* Don't generate any opcodes, just record the information for later. */
3806 unwind
.fp_reg
= fp_reg
;
3809 unwind
.fp_offset
= unwind
.frame_size
- offset
;
3811 unwind
.fp_offset
-= offset
;
3814 /* Parse an unwind_raw directive. */
3817 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
3820 /* This is an arbitrary limit. */
3821 unsigned char op
[16];
3825 if (exp
.X_op
== O_constant
3826 && skip_past_comma (&input_line_pointer
) != FAIL
)
3828 unwind
.frame_size
+= exp
.X_add_number
;
3832 exp
.X_op
= O_illegal
;
3834 if (exp
.X_op
!= O_constant
)
3836 as_bad (_("expected <offset>, <opcode>"));
3837 ignore_rest_of_line ();
3843 /* Parse the opcode. */
3848 as_bad (_("unwind opcode too long"));
3849 ignore_rest_of_line ();
3851 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
3853 as_bad (_("invalid unwind opcode"));
3854 ignore_rest_of_line ();
3857 op
[count
++] = exp
.X_add_number
;
3859 /* Parse the next byte. */
3860 if (skip_past_comma (&input_line_pointer
) == FAIL
)
3866 /* Add the opcode bytes in reverse order. */
3868 add_unwind_opcode (op
[count
], 1);
3870 demand_empty_rest_of_line ();
3874 /* Parse a .eabi_attribute directive. */
3877 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
3879 s_vendor_attribute (OBJ_ATTR_PROC
);
3881 #endif /* OBJ_ELF */
3883 static void s_arm_arch (int);
3884 static void s_arm_object_arch (int);
3885 static void s_arm_cpu (int);
3886 static void s_arm_fpu (int);
3891 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
3898 if (exp
.X_op
== O_symbol
)
3899 exp
.X_op
= O_secrel
;
3901 emit_expr (&exp
, 4);
3903 while (*input_line_pointer
++ == ',');
3905 input_line_pointer
--;
3906 demand_empty_rest_of_line ();
3910 /* This table describes all the machine specific pseudo-ops the assembler
3911 has to support. The fields are:
3912 pseudo-op name without dot
3913 function to call to execute this pseudo-op
3914 Integer arg to pass to the function. */
3916 const pseudo_typeS md_pseudo_table
[] =
3918 /* Never called because '.req' does not start a line. */
3919 { "req", s_req
, 0 },
3920 /* Following two are likewise never called. */
3923 { "unreq", s_unreq
, 0 },
3924 { "bss", s_bss
, 0 },
3925 { "align", s_align
, 0 },
3926 { "arm", s_arm
, 0 },
3927 { "thumb", s_thumb
, 0 },
3928 { "code", s_code
, 0 },
3929 { "force_thumb", s_force_thumb
, 0 },
3930 { "thumb_func", s_thumb_func
, 0 },
3931 { "thumb_set", s_thumb_set
, 0 },
3932 { "even", s_even
, 0 },
3933 { "ltorg", s_ltorg
, 0 },
3934 { "pool", s_ltorg
, 0 },
3935 { "syntax", s_syntax
, 0 },
3936 { "cpu", s_arm_cpu
, 0 },
3937 { "arch", s_arm_arch
, 0 },
3938 { "object_arch", s_arm_object_arch
, 0 },
3939 { "fpu", s_arm_fpu
, 0 },
3941 { "word", s_arm_elf_cons
, 4 },
3942 { "long", s_arm_elf_cons
, 4 },
3943 { "rel31", s_arm_rel31
, 0 },
3944 { "fnstart", s_arm_unwind_fnstart
, 0 },
3945 { "fnend", s_arm_unwind_fnend
, 0 },
3946 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
3947 { "personality", s_arm_unwind_personality
, 0 },
3948 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
3949 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
3950 { "save", s_arm_unwind_save
, 0 },
3951 { "vsave", s_arm_unwind_save
, 1 },
3952 { "movsp", s_arm_unwind_movsp
, 0 },
3953 { "pad", s_arm_unwind_pad
, 0 },
3954 { "setfp", s_arm_unwind_setfp
, 0 },
3955 { "unwind_raw", s_arm_unwind_raw
, 0 },
3956 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
3960 /* These are used for dwarf. */
3964 /* These are used for dwarf2. */
3965 { "file", (void (*) (int)) dwarf2_directive_file
, 0 },
3966 { "loc", dwarf2_directive_loc
, 0 },
3967 { "loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0 },
3969 { "extend", float_cons
, 'x' },
3970 { "ldouble", float_cons
, 'x' },
3971 { "packed", float_cons
, 'p' },
3973 {"secrel32", pe_directive_secrel
, 0},
3978 /* Parser functions used exclusively in instruction operands. */
3980 /* Generic immediate-value read function for use in insn parsing.
3981 STR points to the beginning of the immediate (the leading #);
3982 VAL receives the value; if the value is outside [MIN, MAX]
3983 issue an error. PREFIX_OPT is true if the immediate prefix is
3987 parse_immediate (char **str
, int *val
, int min
, int max
,
3988 bfd_boolean prefix_opt
)
3991 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
3992 if (exp
.X_op
!= O_constant
)
3994 inst
.error
= _("constant expression required");
3998 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
4000 inst
.error
= _("immediate value out of range");
4004 *val
= exp
.X_add_number
;
4008 /* Less-generic immediate-value read function with the possibility of loading a
4009 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4010 instructions. Puts the result directly in inst.operands[i]. */
4013 parse_big_immediate (char **str
, int i
)
4018 my_get_expression (&exp
, &ptr
, GE_OPT_PREFIX_BIG
);
4020 if (exp
.X_op
== O_constant
)
4022 inst
.operands
[i
].imm
= exp
.X_add_number
& 0xffffffff;
4023 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4024 O_constant. We have to be careful not to break compilation for
4025 32-bit X_add_number, though. */
4026 if ((exp
.X_add_number
& ~0xffffffffl
) != 0)
4028 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4029 inst
.operands
[i
].reg
= ((exp
.X_add_number
>> 16) >> 16) & 0xffffffff;
4030 inst
.operands
[i
].regisimm
= 1;
4033 else if (exp
.X_op
== O_big
4034 && LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
> 32
4035 && LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
<= 64)
4037 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
4038 /* Bignums have their least significant bits in
4039 generic_bignum[0]. Make sure we put 32 bits in imm and
4040 32 bits in reg, in a (hopefully) portable way. */
4041 assert (parts
!= 0);
4042 inst
.operands
[i
].imm
= 0;
4043 for (j
= 0; j
< parts
; j
++, idx
++)
4044 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
4045 << (LITTLENUM_NUMBER_OF_BITS
* j
);
4046 inst
.operands
[i
].reg
= 0;
4047 for (j
= 0; j
< parts
; j
++, idx
++)
4048 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
4049 << (LITTLENUM_NUMBER_OF_BITS
* j
);
4050 inst
.operands
[i
].regisimm
= 1;
4060 /* Returns the pseudo-register number of an FPA immediate constant,
4061 or FAIL if there isn't a valid constant here. */
4064 parse_fpa_immediate (char ** str
)
4066 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4072 /* First try and match exact strings, this is to guarantee
4073 that some formats will work even for cross assembly. */
4075 for (i
= 0; fp_const
[i
]; i
++)
4077 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
4081 *str
+= strlen (fp_const
[i
]);
4082 if (is_end_of_line
[(unsigned char) **str
])
4088 /* Just because we didn't get a match doesn't mean that the constant
4089 isn't valid, just that it is in a format that we don't
4090 automatically recognize. Try parsing it with the standard
4091 expression routines. */
4093 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
4095 /* Look for a raw floating point number. */
4096 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
4097 && is_end_of_line
[(unsigned char) *save_in
])
4099 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4101 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4103 if (words
[j
] != fp_values
[i
][j
])
4107 if (j
== MAX_LITTLENUMS
)
4115 /* Try and parse a more complex expression, this will probably fail
4116 unless the code uses a floating point prefix (eg "0f"). */
4117 save_in
= input_line_pointer
;
4118 input_line_pointer
= *str
;
4119 if (expression (&exp
) == absolute_section
4120 && exp
.X_op
== O_big
4121 && exp
.X_add_number
< 0)
4123 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4125 if (gen_to_words (words
, 5, (long) 15) == 0)
4127 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4129 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4131 if (words
[j
] != fp_values
[i
][j
])
4135 if (j
== MAX_LITTLENUMS
)
4137 *str
= input_line_pointer
;
4138 input_line_pointer
= save_in
;
4145 *str
= input_line_pointer
;
4146 input_line_pointer
= save_in
;
4147 inst
.error
= _("invalid FPA immediate expression");
4151 /* Returns 1 if a number has "quarter-precision" float format
4152 0baBbbbbbc defgh000 00000000 00000000. */
4155 is_quarter_float (unsigned imm
)
4157 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
4158 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
4161 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4162 0baBbbbbbc defgh000 00000000 00000000.
4163 The zero and minus-zero cases need special handling, since they can't be
4164 encoded in the "quarter-precision" float format, but can nonetheless be
4165 loaded as integer constants. */
4168 parse_qfloat_immediate (char **ccp
, int *immed
)
4172 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4173 int found_fpchar
= 0;
4175 skip_past_char (&str
, '#');
4177 /* We must not accidentally parse an integer as a floating-point number. Make
4178 sure that the value we parse is not an integer by checking for special
4179 characters '.' or 'e'.
4180 FIXME: This is a horrible hack, but doing better is tricky because type
4181 information isn't in a very usable state at parse time. */
4183 skip_whitespace (fpnum
);
4185 if (strncmp (fpnum
, "0x", 2) == 0)
4189 for (; *fpnum
!= '\0' && *fpnum
!= ' ' && *fpnum
!= '\n'; fpnum
++)
4190 if (*fpnum
== '.' || *fpnum
== 'e' || *fpnum
== 'E')
4200 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
4202 unsigned fpword
= 0;
4205 /* Our FP word must be 32 bits (single-precision FP). */
4206 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
4208 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
4212 if (is_quarter_float (fpword
) || (fpword
& 0x7fffffff) == 0)
4225 /* Shift operands. */
4228 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
4231 struct asm_shift_name
4234 enum shift_kind kind
;
4237 /* Third argument to parse_shift. */
4238 enum parse_shift_mode
4240 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
4241 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
4242 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
4243 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
4244 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
4247 /* Parse a <shift> specifier on an ARM data processing instruction.
4248 This has three forms:
4250 (LSL|LSR|ASL|ASR|ROR) Rs
4251 (LSL|LSR|ASL|ASR|ROR) #imm
4254 Note that ASL is assimilated to LSL in the instruction encoding, and
4255 RRX to ROR #0 (which cannot be written as such). */
4258 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
4260 const struct asm_shift_name
*shift_name
;
4261 enum shift_kind shift
;
4266 for (p
= *str
; ISALPHA (*p
); p
++)
4271 inst
.error
= _("shift expression expected");
4275 shift_name
= hash_find_n (arm_shift_hsh
, *str
, p
- *str
);
4277 if (shift_name
== NULL
)
4279 inst
.error
= _("shift expression expected");
4283 shift
= shift_name
->kind
;
4287 case NO_SHIFT_RESTRICT
:
4288 case SHIFT_IMMEDIATE
: break;
4290 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
4291 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
4293 inst
.error
= _("'LSL' or 'ASR' required");
4298 case SHIFT_LSL_IMMEDIATE
:
4299 if (shift
!= SHIFT_LSL
)
4301 inst
.error
= _("'LSL' required");
4306 case SHIFT_ASR_IMMEDIATE
:
4307 if (shift
!= SHIFT_ASR
)
4309 inst
.error
= _("'ASR' required");
4317 if (shift
!= SHIFT_RRX
)
4319 /* Whitespace can appear here if the next thing is a bare digit. */
4320 skip_whitespace (p
);
4322 if (mode
== NO_SHIFT_RESTRICT
4323 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
4325 inst
.operands
[i
].imm
= reg
;
4326 inst
.operands
[i
].immisreg
= 1;
4328 else if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
4331 inst
.operands
[i
].shift_kind
= shift
;
4332 inst
.operands
[i
].shifted
= 1;
4337 /* Parse a <shifter_operand> for an ARM data processing instruction:
4340 #<immediate>, <rotate>
4344 where <shift> is defined by parse_shift above, and <rotate> is a
4345 multiple of 2 between 0 and 30. Validation of immediate operands
4346 is deferred to md_apply_fix. */
4349 parse_shifter_operand (char **str
, int i
)
4354 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
4356 inst
.operands
[i
].reg
= value
;
4357 inst
.operands
[i
].isreg
= 1;
4359 /* parse_shift will override this if appropriate */
4360 inst
.reloc
.exp
.X_op
= O_constant
;
4361 inst
.reloc
.exp
.X_add_number
= 0;
4363 if (skip_past_comma (str
) == FAIL
)
4366 /* Shift operation on register. */
4367 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
4370 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_IMM_PREFIX
))
4373 if (skip_past_comma (str
) == SUCCESS
)
4375 /* #x, y -- ie explicit rotation by Y. */
4376 if (my_get_expression (&expr
, str
, GE_NO_PREFIX
))
4379 if (expr
.X_op
!= O_constant
|| inst
.reloc
.exp
.X_op
!= O_constant
)
4381 inst
.error
= _("constant expression expected");
4385 value
= expr
.X_add_number
;
4386 if (value
< 0 || value
> 30 || value
% 2 != 0)
4388 inst
.error
= _("invalid rotation");
4391 if (inst
.reloc
.exp
.X_add_number
< 0 || inst
.reloc
.exp
.X_add_number
> 255)
4393 inst
.error
= _("invalid constant");
4397 /* Convert to decoded value. md_apply_fix will put it back. */
4398 inst
.reloc
.exp
.X_add_number
4399 = (((inst
.reloc
.exp
.X_add_number
<< (32 - value
))
4400 | (inst
.reloc
.exp
.X_add_number
>> value
)) & 0xffffffff);
4403 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
4404 inst
.reloc
.pc_rel
= 0;
4408 /* Group relocation information. Each entry in the table contains the
4409 textual name of the relocation as may appear in assembler source
4410 and must end with a colon.
4411 Along with this textual name are the relocation codes to be used if
4412 the corresponding instruction is an ALU instruction (ADD or SUB only),
4413 an LDR, an LDRS, or an LDC. */
4415 struct group_reloc_table_entry
4426 /* Varieties of non-ALU group relocation. */
4433 static struct group_reloc_table_entry group_reloc_table
[] =
4434 { /* Program counter relative: */
4436 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
4441 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
4442 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
4443 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
4444 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
4446 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
4451 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
4452 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
4453 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
4454 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
4456 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
4457 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
4458 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
4459 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
4460 /* Section base relative */
4462 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
4467 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
4468 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
4469 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
4470 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
4472 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
4477 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
4478 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
4479 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
4480 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
4482 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
4483 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
4484 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
4485 BFD_RELOC_ARM_LDC_SB_G2
} }; /* LDC */
4487 /* Given the address of a pointer pointing to the textual name of a group
4488 relocation as may appear in assembler source, attempt to find its details
4489 in group_reloc_table. The pointer will be updated to the character after
4490 the trailing colon. On failure, FAIL will be returned; SUCCESS
4491 otherwise. On success, *entry will be updated to point at the relevant
4492 group_reloc_table entry. */
4495 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
4498 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
4500 int length
= strlen (group_reloc_table
[i
].name
);
4502 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0 &&
4503 (*str
)[length
] == ':')
4505 *out
= &group_reloc_table
[i
];
4506 *str
+= (length
+ 1);
4514 /* Parse a <shifter_operand> for an ARM data processing instruction
4515 (as for parse_shifter_operand) where group relocations are allowed:
4518 #<immediate>, <rotate>
4519 #:<group_reloc>:<expression>
4523 where <group_reloc> is one of the strings defined in group_reloc_table.
4524 The hashes are optional.
4526 Everything else is as for parse_shifter_operand. */
4528 static parse_operand_result
4529 parse_shifter_operand_group_reloc (char **str
, int i
)
4531 /* Determine if we have the sequence of characters #: or just :
4532 coming next. If we do, then we check for a group relocation.
4533 If we don't, punt the whole lot to parse_shifter_operand. */
4535 if (((*str
)[0] == '#' && (*str
)[1] == ':')
4536 || (*str
)[0] == ':')
4538 struct group_reloc_table_entry
*entry
;
4540 if ((*str
)[0] == '#')
4545 /* Try to parse a group relocation. Anything else is an error. */
4546 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
4548 inst
.error
= _("unknown group relocation");
4549 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4552 /* We now have the group relocation table entry corresponding to
4553 the name in the assembler source. Next, we parse the expression. */
4554 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_NO_PREFIX
))
4555 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4557 /* Record the relocation type (always the ALU variant here). */
4558 inst
.reloc
.type
= entry
->alu_code
;
4559 assert (inst
.reloc
.type
!= 0);
4561 return PARSE_OPERAND_SUCCESS
;
4564 return parse_shifter_operand (str
, i
) == SUCCESS
4565 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
4567 /* Never reached. */
4570 /* Parse all forms of an ARM address expression. Information is written
4571 to inst.operands[i] and/or inst.reloc.
4573 Preindexed addressing (.preind=1):
4575 [Rn, #offset] .reg=Rn .reloc.exp=offset
4576 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4577 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4578 .shift_kind=shift .reloc.exp=shift_imm
4580 These three may have a trailing ! which causes .writeback to be set also.
4582 Postindexed addressing (.postind=1, .writeback=1):
4584 [Rn], #offset .reg=Rn .reloc.exp=offset
4585 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4586 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4587 .shift_kind=shift .reloc.exp=shift_imm
4589 Unindexed addressing (.preind=0, .postind=0):
4591 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4595 [Rn]{!} shorthand for [Rn,#0]{!}
4596 =immediate .isreg=0 .reloc.exp=immediate
4597 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4599 It is the caller's responsibility to check for addressing modes not
4600 supported by the instruction, and to set inst.reloc.type. */
4602 static parse_operand_result
4603 parse_address_main (char **str
, int i
, int group_relocations
,
4604 group_reloc_type group_type
)
4609 if (skip_past_char (&p
, '[') == FAIL
)
4611 if (skip_past_char (&p
, '=') == FAIL
)
4613 /* bare address - translate to PC-relative offset */
4614 inst
.reloc
.pc_rel
= 1;
4615 inst
.operands
[i
].reg
= REG_PC
;
4616 inst
.operands
[i
].isreg
= 1;
4617 inst
.operands
[i
].preind
= 1;
4619 /* else a load-constant pseudo op, no special treatment needed here */
4621 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
4622 return PARSE_OPERAND_FAIL
;
4625 return PARSE_OPERAND_SUCCESS
;
4628 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
4630 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
4631 return PARSE_OPERAND_FAIL
;
4633 inst
.operands
[i
].reg
= reg
;
4634 inst
.operands
[i
].isreg
= 1;
4636 if (skip_past_comma (&p
) == SUCCESS
)
4638 inst
.operands
[i
].preind
= 1;
4641 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
4643 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
4645 inst
.operands
[i
].imm
= reg
;
4646 inst
.operands
[i
].immisreg
= 1;
4648 if (skip_past_comma (&p
) == SUCCESS
)
4649 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
4650 return PARSE_OPERAND_FAIL
;
4652 else if (skip_past_char (&p
, ':') == SUCCESS
)
4654 /* FIXME: '@' should be used here, but it's filtered out by generic
4655 code before we get to see it here. This may be subject to
4658 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
4659 if (exp
.X_op
!= O_constant
)
4661 inst
.error
= _("alignment must be constant");
4662 return PARSE_OPERAND_FAIL
;
4664 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
4665 inst
.operands
[i
].immisalign
= 1;
4666 /* Alignments are not pre-indexes. */
4667 inst
.operands
[i
].preind
= 0;
4671 if (inst
.operands
[i
].negative
)
4673 inst
.operands
[i
].negative
= 0;
4677 if (group_relocations
&&
4678 ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
4681 struct group_reloc_table_entry
*entry
;
4683 /* Skip over the #: or : sequence. */
4689 /* Try to parse a group relocation. Anything else is an
4691 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
4693 inst
.error
= _("unknown group relocation");
4694 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4697 /* We now have the group relocation table entry corresponding to
4698 the name in the assembler source. Next, we parse the
4700 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
4701 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4703 /* Record the relocation type. */
4707 inst
.reloc
.type
= entry
->ldr_code
;
4711 inst
.reloc
.type
= entry
->ldrs_code
;
4715 inst
.reloc
.type
= entry
->ldc_code
;
4722 if (inst
.reloc
.type
== 0)
4724 inst
.error
= _("this group relocation is not allowed on this instruction");
4725 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4729 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
4730 return PARSE_OPERAND_FAIL
;
4734 if (skip_past_char (&p
, ']') == FAIL
)
4736 inst
.error
= _("']' expected");
4737 return PARSE_OPERAND_FAIL
;
4740 if (skip_past_char (&p
, '!') == SUCCESS
)
4741 inst
.operands
[i
].writeback
= 1;
4743 else if (skip_past_comma (&p
) == SUCCESS
)
4745 if (skip_past_char (&p
, '{') == SUCCESS
)
4747 /* [Rn], {expr} - unindexed, with option */
4748 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
4749 0, 255, TRUE
) == FAIL
)
4750 return PARSE_OPERAND_FAIL
;
4752 if (skip_past_char (&p
, '}') == FAIL
)
4754 inst
.error
= _("'}' expected at end of 'option' field");
4755 return PARSE_OPERAND_FAIL
;
4757 if (inst
.operands
[i
].preind
)
4759 inst
.error
= _("cannot combine index with option");
4760 return PARSE_OPERAND_FAIL
;
4763 return PARSE_OPERAND_SUCCESS
;
4767 inst
.operands
[i
].postind
= 1;
4768 inst
.operands
[i
].writeback
= 1;
4770 if (inst
.operands
[i
].preind
)
4772 inst
.error
= _("cannot combine pre- and post-indexing");
4773 return PARSE_OPERAND_FAIL
;
4777 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
4779 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
4781 /* We might be using the immediate for alignment already. If we
4782 are, OR the register number into the low-order bits. */
4783 if (inst
.operands
[i
].immisalign
)
4784 inst
.operands
[i
].imm
|= reg
;
4786 inst
.operands
[i
].imm
= reg
;
4787 inst
.operands
[i
].immisreg
= 1;
4789 if (skip_past_comma (&p
) == SUCCESS
)
4790 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
4791 return PARSE_OPERAND_FAIL
;
4795 if (inst
.operands
[i
].negative
)
4797 inst
.operands
[i
].negative
= 0;
4800 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
4801 return PARSE_OPERAND_FAIL
;
4806 /* If at this point neither .preind nor .postind is set, we have a
4807 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4808 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
4810 inst
.operands
[i
].preind
= 1;
4811 inst
.reloc
.exp
.X_op
= O_constant
;
4812 inst
.reloc
.exp
.X_add_number
= 0;
4815 return PARSE_OPERAND_SUCCESS
;
4819 parse_address (char **str
, int i
)
4821 return parse_address_main (str
, i
, 0, 0) == PARSE_OPERAND_SUCCESS
4825 static parse_operand_result
4826 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
4828 return parse_address_main (str
, i
, 1, type
);
4831 /* Parse an operand for a MOVW or MOVT instruction. */
4833 parse_half (char **str
)
4838 skip_past_char (&p
, '#');
4839 if (strncasecmp (p
, ":lower16:", 9) == 0)
4840 inst
.reloc
.type
= BFD_RELOC_ARM_MOVW
;
4841 else if (strncasecmp (p
, ":upper16:", 9) == 0)
4842 inst
.reloc
.type
= BFD_RELOC_ARM_MOVT
;
4844 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
4850 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
4853 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
4855 if (inst
.reloc
.exp
.X_op
!= O_constant
)
4857 inst
.error
= _("constant expression expected");
4860 if (inst
.reloc
.exp
.X_add_number
< 0
4861 || inst
.reloc
.exp
.X_add_number
> 0xffff)
4863 inst
.error
= _("immediate value out of range");
4871 /* Miscellaneous. */
4873 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4874 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4876 parse_psr (char **str
)
4879 unsigned long psr_field
;
4880 const struct asm_psr
*psr
;
4883 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4884 feature for ease of use and backwards compatibility. */
4886 if (strncasecmp (p
, "SPSR", 4) == 0)
4887 psr_field
= SPSR_BIT
;
4888 else if (strncasecmp (p
, "CPSR", 4) == 0)
4895 while (ISALNUM (*p
) || *p
== '_');
4897 psr
= hash_find_n (arm_v7m_psr_hsh
, start
, p
- start
);
4908 /* A suffix follows. */
4914 while (ISALNUM (*p
) || *p
== '_');
4916 psr
= hash_find_n (arm_psr_hsh
, start
, p
- start
);
4920 psr_field
|= psr
->field
;
4925 goto error
; /* Garbage after "[CS]PSR". */
4927 psr_field
|= (PSR_c
| PSR_f
);
4933 inst
.error
= _("flag for {c}psr instruction expected");
4937 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4938 value suitable for splatting into the AIF field of the instruction. */
4941 parse_cps_flags (char **str
)
4950 case '\0': case ',':
4953 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
4954 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
4955 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
4958 inst
.error
= _("unrecognized CPS flag");
4963 if (saw_a_flag
== 0)
4965 inst
.error
= _("missing CPS flags");
4973 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4974 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4977 parse_endian_specifier (char **str
)
4982 if (strncasecmp (s
, "BE", 2))
4984 else if (strncasecmp (s
, "LE", 2))
4988 inst
.error
= _("valid endian specifiers are be or le");
4992 if (ISALNUM (s
[2]) || s
[2] == '_')
4994 inst
.error
= _("valid endian specifiers are be or le");
4999 return little_endian
;
5002 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5003 value suitable for poking into the rotate field of an sxt or sxta
5004 instruction, or FAIL on error. */
5007 parse_ror (char **str
)
5012 if (strncasecmp (s
, "ROR", 3) == 0)
5016 inst
.error
= _("missing rotation field after comma");
5020 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
5025 case 0: *str
= s
; return 0x0;
5026 case 8: *str
= s
; return 0x1;
5027 case 16: *str
= s
; return 0x2;
5028 case 24: *str
= s
; return 0x3;
5031 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
5036 /* Parse a conditional code (from conds[] below). The value returned is in the
5037 range 0 .. 14, or FAIL. */
5039 parse_cond (char **str
)
5042 const struct asm_cond
*c
;
5045 while (ISALPHA (*q
))
5048 c
= hash_find_n (arm_cond_hsh
, p
, q
- p
);
5051 inst
.error
= _("condition required");
5059 /* Parse an option for a barrier instruction. Returns the encoding for the
5062 parse_barrier (char **str
)
5065 const struct asm_barrier_opt
*o
;
5068 while (ISALPHA (*q
))
5071 o
= hash_find_n (arm_barrier_opt_hsh
, p
, q
- p
);
5079 /* Parse the operands of a table branch instruction. Similar to a memory
5082 parse_tb (char **str
)
5087 if (skip_past_char (&p
, '[') == FAIL
)
5089 inst
.error
= _("'[' expected");
5093 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5095 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5098 inst
.operands
[0].reg
= reg
;
5100 if (skip_past_comma (&p
) == FAIL
)
5102 inst
.error
= _("',' expected");
5106 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5108 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5111 inst
.operands
[0].imm
= reg
;
5113 if (skip_past_comma (&p
) == SUCCESS
)
5115 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
5117 if (inst
.reloc
.exp
.X_add_number
!= 1)
5119 inst
.error
= _("invalid shift");
5122 inst
.operands
[0].shifted
= 1;
5125 if (skip_past_char (&p
, ']') == FAIL
)
5127 inst
.error
= _("']' expected");
5134 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5135 information on the types the operands can take and how they are encoded.
5136 Up to four operands may be read; this function handles setting the
5137 ".present" field for each read operand itself.
5138 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5139 else returns FAIL. */
5142 parse_neon_mov (char **str
, int *which_operand
)
5144 int i
= *which_operand
, val
;
5145 enum arm_reg_type rtype
;
5147 struct neon_type_el optype
;
5149 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
5151 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5152 inst
.operands
[i
].reg
= val
;
5153 inst
.operands
[i
].isscalar
= 1;
5154 inst
.operands
[i
].vectype
= optype
;
5155 inst
.operands
[i
++].present
= 1;
5157 if (skip_past_comma (&ptr
) == FAIL
)
5160 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5163 inst
.operands
[i
].reg
= val
;
5164 inst
.operands
[i
].isreg
= 1;
5165 inst
.operands
[i
].present
= 1;
5167 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
5170 /* Cases 0, 1, 2, 3, 5 (D only). */
5171 if (skip_past_comma (&ptr
) == FAIL
)
5174 inst
.operands
[i
].reg
= val
;
5175 inst
.operands
[i
].isreg
= 1;
5176 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5177 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5178 inst
.operands
[i
].isvec
= 1;
5179 inst
.operands
[i
].vectype
= optype
;
5180 inst
.operands
[i
++].present
= 1;
5182 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5184 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5185 Case 13: VMOV <Sd>, <Rm> */
5186 inst
.operands
[i
].reg
= val
;
5187 inst
.operands
[i
].isreg
= 1;
5188 inst
.operands
[i
].present
= 1;
5190 if (rtype
== REG_TYPE_NQ
)
5192 first_error (_("can't use Neon quad register here"));
5195 else if (rtype
!= REG_TYPE_VFS
)
5198 if (skip_past_comma (&ptr
) == FAIL
)
5200 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5202 inst
.operands
[i
].reg
= val
;
5203 inst
.operands
[i
].isreg
= 1;
5204 inst
.operands
[i
].present
= 1;
5207 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
5208 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5209 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5210 Case 10: VMOV.F32 <Sd>, #<imm>
5211 Case 11: VMOV.F64 <Dd>, #<imm> */
5212 inst
.operands
[i
].immisfloat
= 1;
5213 else if (parse_big_immediate (&ptr
, i
) == SUCCESS
)
5214 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5215 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5217 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
5220 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5221 Case 1: VMOV<c><q> <Dd>, <Dm>
5222 Case 8: VMOV.F32 <Sd>, <Sm>
5223 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5225 inst
.operands
[i
].reg
= val
;
5226 inst
.operands
[i
].isreg
= 1;
5227 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5228 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5229 inst
.operands
[i
].isvec
= 1;
5230 inst
.operands
[i
].vectype
= optype
;
5231 inst
.operands
[i
].present
= 1;
5233 if (skip_past_comma (&ptr
) == SUCCESS
)
5238 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5241 inst
.operands
[i
].reg
= val
;
5242 inst
.operands
[i
].isreg
= 1;
5243 inst
.operands
[i
++].present
= 1;
5245 if (skip_past_comma (&ptr
) == FAIL
)
5248 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5251 inst
.operands
[i
].reg
= val
;
5252 inst
.operands
[i
].isreg
= 1;
5253 inst
.operands
[i
++].present
= 1;
5258 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5262 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5265 inst
.operands
[i
].reg
= val
;
5266 inst
.operands
[i
].isreg
= 1;
5267 inst
.operands
[i
++].present
= 1;
5269 if (skip_past_comma (&ptr
) == FAIL
)
5272 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
5274 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5275 inst
.operands
[i
].reg
= val
;
5276 inst
.operands
[i
].isscalar
= 1;
5277 inst
.operands
[i
].present
= 1;
5278 inst
.operands
[i
].vectype
= optype
;
5280 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5282 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5283 inst
.operands
[i
].reg
= val
;
5284 inst
.operands
[i
].isreg
= 1;
5285 inst
.operands
[i
++].present
= 1;
5287 if (skip_past_comma (&ptr
) == FAIL
)
5290 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
5293 first_error (_(reg_expected_msgs
[REG_TYPE_VFSD
]));
5297 inst
.operands
[i
].reg
= val
;
5298 inst
.operands
[i
].isreg
= 1;
5299 inst
.operands
[i
].isvec
= 1;
5300 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5301 inst
.operands
[i
].vectype
= optype
;
5302 inst
.operands
[i
].present
= 1;
5304 if (rtype
== REG_TYPE_VFS
)
5308 if (skip_past_comma (&ptr
) == FAIL
)
5310 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
5313 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
5316 inst
.operands
[i
].reg
= val
;
5317 inst
.operands
[i
].isreg
= 1;
5318 inst
.operands
[i
].isvec
= 1;
5319 inst
.operands
[i
].issingle
= 1;
5320 inst
.operands
[i
].vectype
= optype
;
5321 inst
.operands
[i
].present
= 1;
5324 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
5328 inst
.operands
[i
].reg
= val
;
5329 inst
.operands
[i
].isreg
= 1;
5330 inst
.operands
[i
].isvec
= 1;
5331 inst
.operands
[i
].issingle
= 1;
5332 inst
.operands
[i
].vectype
= optype
;
5333 inst
.operands
[i
++].present
= 1;
5338 first_error (_("parse error"));
5342 /* Successfully parsed the operands. Update args. */
5348 first_error (_("expected comma"));
5352 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
5356 /* Matcher codes for parse_operands. */
5357 enum operand_parse_code
5359 OP_stop
, /* end of line */
5361 OP_RR
, /* ARM register */
5362 OP_RRnpc
, /* ARM register, not r15 */
5363 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
5364 OP_RRw
, /* ARM register, not r15, optional trailing ! */
5365 OP_RCP
, /* Coprocessor number */
5366 OP_RCN
, /* Coprocessor register */
5367 OP_RF
, /* FPA register */
5368 OP_RVS
, /* VFP single precision register */
5369 OP_RVD
, /* VFP double precision register (0..15) */
5370 OP_RND
, /* Neon double precision register (0..31) */
5371 OP_RNQ
, /* Neon quad precision register */
5372 OP_RVSD
, /* VFP single or double precision register */
5373 OP_RNDQ
, /* Neon double or quad precision register */
5374 OP_RNSDQ
, /* Neon single, double or quad precision register */
5375 OP_RNSC
, /* Neon scalar D[X] */
5376 OP_RVC
, /* VFP control register */
5377 OP_RMF
, /* Maverick F register */
5378 OP_RMD
, /* Maverick D register */
5379 OP_RMFX
, /* Maverick FX register */
5380 OP_RMDX
, /* Maverick DX register */
5381 OP_RMAX
, /* Maverick AX register */
5382 OP_RMDS
, /* Maverick DSPSC register */
5383 OP_RIWR
, /* iWMMXt wR register */
5384 OP_RIWC
, /* iWMMXt wC register */
5385 OP_RIWG
, /* iWMMXt wCG register */
5386 OP_RXA
, /* XScale accumulator register */
5388 OP_REGLST
, /* ARM register list */
5389 OP_VRSLST
, /* VFP single-precision register list */
5390 OP_VRDLST
, /* VFP double-precision register list */
5391 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
5392 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
5393 OP_NSTRLST
, /* Neon element/structure list */
5395 OP_NILO
, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5396 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
5397 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
5398 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
5399 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
5400 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
5401 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
5402 OP_VMOV
, /* Neon VMOV operands. */
5403 OP_RNDQ_IMVNb
,/* Neon D or Q reg, or immediate good for VMVN. */
5404 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
5405 OP_RIWR_I32z
, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5407 OP_I0
, /* immediate zero */
5408 OP_I7
, /* immediate value 0 .. 7 */
5409 OP_I15
, /* 0 .. 15 */
5410 OP_I16
, /* 1 .. 16 */
5411 OP_I16z
, /* 0 .. 16 */
5412 OP_I31
, /* 0 .. 31 */
5413 OP_I31w
, /* 0 .. 31, optional trailing ! */
5414 OP_I32
, /* 1 .. 32 */
5415 OP_I32z
, /* 0 .. 32 */
5416 OP_I63
, /* 0 .. 63 */
5417 OP_I63s
, /* -64 .. 63 */
5418 OP_I64
, /* 1 .. 64 */
5419 OP_I64z
, /* 0 .. 64 */
5420 OP_I255
, /* 0 .. 255 */
5422 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
5423 OP_I7b
, /* 0 .. 7 */
5424 OP_I15b
, /* 0 .. 15 */
5425 OP_I31b
, /* 0 .. 31 */
5427 OP_SH
, /* shifter operand */
5428 OP_SHG
, /* shifter operand with possible group relocation */
5429 OP_ADDR
, /* Memory address expression (any mode) */
5430 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
5431 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
5432 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
5433 OP_EXP
, /* arbitrary expression */
5434 OP_EXPi
, /* same, with optional immediate prefix */
5435 OP_EXPr
, /* same, with optional relocation suffix */
5436 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
5438 OP_CPSF
, /* CPS flags */
5439 OP_ENDI
, /* Endianness specifier */
5440 OP_PSR
, /* CPSR/SPSR mask for msr */
5441 OP_COND
, /* conditional code */
5442 OP_TB
, /* Table branch. */
5444 OP_RVC_PSR
, /* CPSR/SPSR mask for msr, or VFP control register. */
5445 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
5447 OP_RRnpc_I0
, /* ARM register or literal 0 */
5448 OP_RR_EXr
, /* ARM register or expression with opt. reloc suff. */
5449 OP_RR_EXi
, /* ARM register or expression with imm prefix */
5450 OP_RF_IF
, /* FPA register or immediate */
5451 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
5452 OP_RIWC_RIWG
, /* iWMMXt wC or wCG reg */
5454 /* Optional operands. */
5455 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
5456 OP_oI31b
, /* 0 .. 31 */
5457 OP_oI32b
, /* 1 .. 32 */
5458 OP_oIffffb
, /* 0 .. 65535 */
5459 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
5461 OP_oRR
, /* ARM register */
5462 OP_oRRnpc
, /* ARM register, not the PC */
5463 OP_oRRw
, /* ARM register, not r15, optional trailing ! */
5464 OP_oRND
, /* Optional Neon double precision register */
5465 OP_oRNQ
, /* Optional Neon quad precision register */
5466 OP_oRNDQ
, /* Optional Neon double or quad precision register */
5467 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
5468 OP_oSHll
, /* LSL immediate */
5469 OP_oSHar
, /* ASR immediate */
5470 OP_oSHllar
, /* LSL or ASR immediate */
5471 OP_oROR
, /* ROR 0/8/16/24 */
5472 OP_oBARRIER
, /* Option argument for a barrier instruction. */
5474 OP_FIRST_OPTIONAL
= OP_oI7b
5477 /* Generic instruction operand parser. This does no encoding and no
5478 semantic validation; it merely squirrels values away in the inst
5479 structure. Returns SUCCESS or FAIL depending on whether the
5480 specified grammar matched. */
5482 parse_operands (char *str
, const unsigned char *pattern
)
5484 unsigned const char *upat
= pattern
;
5485 char *backtrack_pos
= 0;
5486 const char *backtrack_error
= 0;
5487 int i
, val
, backtrack_index
= 0;
5488 enum arm_reg_type rtype
;
5489 parse_operand_result result
;
5491 #define po_char_or_fail(chr) do { \
5492 if (skip_past_char (&str, chr) == FAIL) \
5496 #define po_reg_or_fail(regtype) do { \
5497 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5498 &inst.operands[i].vectype); \
5501 first_error (_(reg_expected_msgs[regtype])); \
5504 inst.operands[i].reg = val; \
5505 inst.operands[i].isreg = 1; \
5506 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5507 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5508 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5509 || rtype == REG_TYPE_VFD \
5510 || rtype == REG_TYPE_NQ); \
5513 #define po_reg_or_goto(regtype, label) do { \
5514 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5515 &inst.operands[i].vectype); \
5519 inst.operands[i].reg = val; \
5520 inst.operands[i].isreg = 1; \
5521 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5522 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5523 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5524 || rtype == REG_TYPE_VFD \
5525 || rtype == REG_TYPE_NQ); \
5528 #define po_imm_or_fail(min, max, popt) do { \
5529 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5531 inst.operands[i].imm = val; \
5534 #define po_scalar_or_goto(elsz, label) do { \
5535 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5538 inst.operands[i].reg = val; \
5539 inst.operands[i].isscalar = 1; \
5542 #define po_misc_or_fail(expr) do { \
5547 #define po_misc_or_fail_no_backtrack(expr) do { \
5549 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5550 backtrack_pos = 0; \
5551 if (result != PARSE_OPERAND_SUCCESS) \
5555 skip_whitespace (str
);
5557 for (i
= 0; upat
[i
] != OP_stop
; i
++)
5559 if (upat
[i
] >= OP_FIRST_OPTIONAL
)
5561 /* Remember where we are in case we need to backtrack. */
5562 assert (!backtrack_pos
);
5563 backtrack_pos
= str
;
5564 backtrack_error
= inst
.error
;
5565 backtrack_index
= i
;
5568 if (i
> 0 && (i
> 1 || inst
.operands
[0].present
))
5569 po_char_or_fail (',');
5577 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
5578 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
5579 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
5580 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
5581 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
5582 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
5584 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
5586 po_reg_or_goto (REG_TYPE_VFC
, coproc_reg
);
5588 /* Also accept generic coprocessor regs for unknown registers. */
5590 po_reg_or_fail (REG_TYPE_CN
);
5592 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
5593 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
5594 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
5595 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
5596 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
5597 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
5598 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
5599 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
5600 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
5601 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
5603 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
5605 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
5606 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
5608 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
5610 /* Neon scalar. Using an element size of 8 means that some invalid
5611 scalars are accepted here, so deal with those in later code. */
5612 case OP_RNSC
: po_scalar_or_goto (8, failure
); break;
5614 /* WARNING: We can expand to two operands here. This has the potential
5615 to totally confuse the backtracking mechanism! It will be OK at
5616 least as long as we don't try to use optional args as well,
5620 po_reg_or_goto (REG_TYPE_NDQ
, try_imm
);
5621 inst
.operands
[i
].present
= 1;
5623 skip_past_comma (&str
);
5624 po_reg_or_goto (REG_TYPE_NDQ
, one_reg_only
);
5627 /* Optional register operand was omitted. Unfortunately, it's in
5628 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5629 here (this is a bit grotty). */
5630 inst
.operands
[i
] = inst
.operands
[i
-1];
5631 inst
.operands
[i
-1].present
= 0;
5634 /* There's a possibility of getting a 64-bit immediate here, so
5635 we need special handling. */
5636 if (parse_big_immediate (&str
, i
) == FAIL
)
5638 inst
.error
= _("immediate value is out of range");
5646 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
5649 po_imm_or_fail (0, 0, TRUE
);
5654 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
5659 po_scalar_or_goto (8, try_rr
);
5662 po_reg_or_fail (REG_TYPE_RN
);
5668 po_scalar_or_goto (8, try_nsdq
);
5671 po_reg_or_fail (REG_TYPE_NSDQ
);
5677 po_scalar_or_goto (8, try_ndq
);
5680 po_reg_or_fail (REG_TYPE_NDQ
);
5686 po_scalar_or_goto (8, try_vfd
);
5689 po_reg_or_fail (REG_TYPE_VFD
);
5694 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5695 not careful then bad things might happen. */
5696 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
5701 po_reg_or_goto (REG_TYPE_NDQ
, try_mvnimm
);
5704 /* There's a possibility of getting a 64-bit immediate here, so
5705 we need special handling. */
5706 if (parse_big_immediate (&str
, i
) == FAIL
)
5708 inst
.error
= _("immediate value is out of range");
5716 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
5719 po_imm_or_fail (0, 63, TRUE
);
5724 po_char_or_fail ('[');
5725 po_reg_or_fail (REG_TYPE_RN
);
5726 po_char_or_fail (']');
5731 po_reg_or_fail (REG_TYPE_RN
);
5732 if (skip_past_char (&str
, '!') == SUCCESS
)
5733 inst
.operands
[i
].writeback
= 1;
5737 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
5738 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
5739 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
5740 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
5741 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
5742 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
5743 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
5744 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
5745 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
5746 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
5747 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
5748 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
5750 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
5752 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
5753 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
5755 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
5756 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
5757 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
5759 /* Immediate variants */
5761 po_char_or_fail ('{');
5762 po_imm_or_fail (0, 255, TRUE
);
5763 po_char_or_fail ('}');
5767 /* The expression parser chokes on a trailing !, so we have
5768 to find it first and zap it. */
5771 while (*s
&& *s
!= ',')
5776 inst
.operands
[i
].writeback
= 1;
5778 po_imm_or_fail (0, 31, TRUE
);
5786 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
5791 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
5796 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
5798 if (inst
.reloc
.exp
.X_op
== O_symbol
)
5800 val
= parse_reloc (&str
);
5803 inst
.error
= _("unrecognized relocation suffix");
5806 else if (val
!= BFD_RELOC_UNUSED
)
5808 inst
.operands
[i
].imm
= val
;
5809 inst
.operands
[i
].hasreloc
= 1;
5814 /* Operand for MOVW or MOVT. */
5816 po_misc_or_fail (parse_half (&str
));
5819 /* Register or expression */
5820 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
5821 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
5823 /* Register or immediate */
5824 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
5825 I0
: po_imm_or_fail (0, 0, FALSE
); break;
5827 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
5829 if (!is_immediate_prefix (*str
))
5832 val
= parse_fpa_immediate (&str
);
5835 /* FPA immediates are encoded as registers 8-15.
5836 parse_fpa_immediate has already applied the offset. */
5837 inst
.operands
[i
].reg
= val
;
5838 inst
.operands
[i
].isreg
= 1;
5841 case OP_RIWR_I32z
: po_reg_or_goto (REG_TYPE_MMXWR
, I32z
); break;
5842 I32z
: po_imm_or_fail (0, 32, FALSE
); break;
5844 /* Two kinds of register */
5847 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
5849 || (rege
->type
!= REG_TYPE_MMXWR
5850 && rege
->type
!= REG_TYPE_MMXWC
5851 && rege
->type
!= REG_TYPE_MMXWCG
))
5853 inst
.error
= _("iWMMXt data or control register expected");
5856 inst
.operands
[i
].reg
= rege
->number
;
5857 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
5863 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
5865 || (rege
->type
!= REG_TYPE_MMXWC
5866 && rege
->type
!= REG_TYPE_MMXWCG
))
5868 inst
.error
= _("iWMMXt control register expected");
5871 inst
.operands
[i
].reg
= rege
->number
;
5872 inst
.operands
[i
].isreg
= 1;
5877 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
5878 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
5879 case OP_oROR
: val
= parse_ror (&str
); break;
5880 case OP_PSR
: val
= parse_psr (&str
); break;
5881 case OP_COND
: val
= parse_cond (&str
); break;
5882 case OP_oBARRIER
:val
= parse_barrier (&str
); break;
5885 po_reg_or_goto (REG_TYPE_VFC
, try_psr
);
5886 inst
.operands
[i
].isvec
= 1; /* Mark VFP control reg as vector. */
5889 val
= parse_psr (&str
);
5893 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
5896 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5898 if (strncasecmp (str
, "APSR_", 5) == 0)
5905 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
5906 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
5907 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
5908 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
5909 default: found
= 16;
5913 inst
.operands
[i
].isvec
= 1;
5920 po_misc_or_fail (parse_tb (&str
));
5923 /* Register lists */
5925 val
= parse_reg_list (&str
);
5928 inst
.operands
[1].writeback
= 1;
5934 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
);
5938 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
);
5942 /* Allow Q registers too. */
5943 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
5948 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
5950 inst
.operands
[i
].issingle
= 1;
5955 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
5960 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
5961 &inst
.operands
[i
].vectype
);
5964 /* Addressing modes */
5966 po_misc_or_fail (parse_address (&str
, i
));
5970 po_misc_or_fail_no_backtrack (
5971 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
5975 po_misc_or_fail_no_backtrack (
5976 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
5980 po_misc_or_fail_no_backtrack (
5981 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
5985 po_misc_or_fail (parse_shifter_operand (&str
, i
));
5989 po_misc_or_fail_no_backtrack (
5990 parse_shifter_operand_group_reloc (&str
, i
));
5994 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
5998 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
6002 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
6006 as_fatal ("unhandled operand code %d", upat
[i
]);
6009 /* Various value-based sanity checks and shared operations. We
6010 do not signal immediate failures for the register constraints;
6011 this allows a syntax error to take precedence. */
6020 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
6021 inst
.error
= BAD_PC
;
6039 inst
.operands
[i
].imm
= val
;
6046 /* If we get here, this operand was successfully parsed. */
6047 inst
.operands
[i
].present
= 1;
6051 inst
.error
= BAD_ARGS
;
6056 /* The parse routine should already have set inst.error, but set a
6057 defaut here just in case. */
6059 inst
.error
= _("syntax error");
6063 /* Do not backtrack over a trailing optional argument that
6064 absorbed some text. We will only fail again, with the
6065 'garbage following instruction' error message, which is
6066 probably less helpful than the current one. */
6067 if (backtrack_index
== i
&& backtrack_pos
!= str
6068 && upat
[i
+1] == OP_stop
)
6071 inst
.error
= _("syntax error");
6075 /* Try again, skipping the optional argument at backtrack_pos. */
6076 str
= backtrack_pos
;
6077 inst
.error
= backtrack_error
;
6078 inst
.operands
[backtrack_index
].present
= 0;
6079 i
= backtrack_index
;
6083 /* Check that we have parsed all the arguments. */
6084 if (*str
!= '\0' && !inst
.error
)
6085 inst
.error
= _("garbage following instruction");
6087 return inst
.error
? FAIL
: SUCCESS
;
6090 #undef po_char_or_fail
6091 #undef po_reg_or_fail
6092 #undef po_reg_or_goto
6093 #undef po_imm_or_fail
6094 #undef po_scalar_or_fail
6096 /* Shorthand macro for instruction encoding functions issuing errors. */
6097 #define constraint(expr, err) do { \
6105 /* Functions for operand encoding. ARM, then Thumb. */
6107 #define rotate_left(v, n) (v << n | v >> (32 - n))
6109 /* If VAL can be encoded in the immediate field of an ARM instruction,
6110 return the encoded form. Otherwise, return FAIL. */
6113 encode_arm_immediate (unsigned int val
)
6117 for (i
= 0; i
< 32; i
+= 2)
6118 if ((a
= rotate_left (val
, i
)) <= 0xff)
6119 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
6124 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6125 return the encoded form. Otherwise, return FAIL. */
6127 encode_thumb32_immediate (unsigned int val
)
6134 for (i
= 1; i
<= 24; i
++)
6137 if ((val
& ~(0xff << i
)) == 0)
6138 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
6142 if (val
== ((a
<< 16) | a
))
6144 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
6148 if (val
== ((a
<< 16) | a
))
6149 return 0x200 | (a
>> 8);
6153 /* Encode a VFP SP or DP register number into inst.instruction. */
6156 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
6158 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
6161 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3
))
6164 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
6167 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
6172 first_error (_("D register out of range for selected VFP version"));
6180 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
6184 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
6188 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
6192 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
6196 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
6200 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
6208 /* Encode a <shift> in an ARM-format instruction. The immediate,
6209 if any, is handled by md_apply_fix. */
6211 encode_arm_shift (int i
)
6213 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
6214 inst
.instruction
|= SHIFT_ROR
<< 5;
6217 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
6218 if (inst
.operands
[i
].immisreg
)
6220 inst
.instruction
|= SHIFT_BY_REG
;
6221 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
6224 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
6229 encode_arm_shifter_operand (int i
)
6231 if (inst
.operands
[i
].isreg
)
6233 inst
.instruction
|= inst
.operands
[i
].reg
;
6234 encode_arm_shift (i
);
6237 inst
.instruction
|= INST_IMMEDIATE
;
6240 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6242 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
6244 assert (inst
.operands
[i
].isreg
);
6245 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
6247 if (inst
.operands
[i
].preind
)
6251 inst
.error
= _("instruction does not accept preindexed addressing");
6254 inst
.instruction
|= PRE_INDEX
;
6255 if (inst
.operands
[i
].writeback
)
6256 inst
.instruction
|= WRITE_BACK
;
6259 else if (inst
.operands
[i
].postind
)
6261 assert (inst
.operands
[i
].writeback
);
6263 inst
.instruction
|= WRITE_BACK
;
6265 else /* unindexed - only for coprocessor */
6267 inst
.error
= _("instruction does not accept unindexed addressing");
6271 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
6272 && (((inst
.instruction
& 0x000f0000) >> 16)
6273 == ((inst
.instruction
& 0x0000f000) >> 12)))
6274 as_warn ((inst
.instruction
& LOAD_BIT
)
6275 ? _("destination register same as write-back base")
6276 : _("source register same as write-back base"));
6279 /* inst.operands[i] was set up by parse_address. Encode it into an
6280 ARM-format mode 2 load or store instruction. If is_t is true,
6281 reject forms that cannot be used with a T instruction (i.e. not
6284 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
6286 encode_arm_addr_mode_common (i
, is_t
);
6288 if (inst
.operands
[i
].immisreg
)
6290 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
6291 inst
.instruction
|= inst
.operands
[i
].imm
;
6292 if (!inst
.operands
[i
].negative
)
6293 inst
.instruction
|= INDEX_UP
;
6294 if (inst
.operands
[i
].shifted
)
6296 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
6297 inst
.instruction
|= SHIFT_ROR
<< 5;
6300 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
6301 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
6305 else /* immediate offset in inst.reloc */
6307 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
6308 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM
;
6312 /* inst.operands[i] was set up by parse_address. Encode it into an
6313 ARM-format mode 3 load or store instruction. Reject forms that
6314 cannot be used with such instructions. If is_t is true, reject
6315 forms that cannot be used with a T instruction (i.e. not
6318 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
6320 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
6322 inst
.error
= _("instruction does not accept scaled register index");
6326 encode_arm_addr_mode_common (i
, is_t
);
6328 if (inst
.operands
[i
].immisreg
)
6330 inst
.instruction
|= inst
.operands
[i
].imm
;
6331 if (!inst
.operands
[i
].negative
)
6332 inst
.instruction
|= INDEX_UP
;
6334 else /* immediate offset in inst.reloc */
6336 inst
.instruction
|= HWOFFSET_IMM
;
6337 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
6338 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM8
;
6342 /* inst.operands[i] was set up by parse_address. Encode it into an
6343 ARM-format instruction. Reject all forms which cannot be encoded
6344 into a coprocessor load/store instruction. If wb_ok is false,
6345 reject use of writeback; if unind_ok is false, reject use of
6346 unindexed addressing. If reloc_override is not 0, use it instead
6347 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6348 (in which case it is preserved). */
6351 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
6353 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
6355 assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
6357 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
6359 assert (!inst
.operands
[i
].writeback
);
6362 inst
.error
= _("instruction does not support unindexed addressing");
6365 inst
.instruction
|= inst
.operands
[i
].imm
;
6366 inst
.instruction
|= INDEX_UP
;
6370 if (inst
.operands
[i
].preind
)
6371 inst
.instruction
|= PRE_INDEX
;
6373 if (inst
.operands
[i
].writeback
)
6375 if (inst
.operands
[i
].reg
== REG_PC
)
6377 inst
.error
= _("pc may not be used with write-back");
6382 inst
.error
= _("instruction does not support writeback");
6385 inst
.instruction
|= WRITE_BACK
;
6389 inst
.reloc
.type
= reloc_override
;
6390 else if ((inst
.reloc
.type
< BFD_RELOC_ARM_ALU_PC_G0_NC
6391 || inst
.reloc
.type
> BFD_RELOC_ARM_LDC_SB_G2
)
6392 && inst
.reloc
.type
!= BFD_RELOC_ARM_LDR_PC_G0
)
6395 inst
.reloc
.type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
6397 inst
.reloc
.type
= BFD_RELOC_ARM_CP_OFF_IMM
;
6403 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6404 Determine whether it can be performed with a move instruction; if
6405 it can, convert inst.instruction to that move instruction and
6406 return 1; if it can't, convert inst.instruction to a literal-pool
6407 load and return 0. If this is not a valid thing to do in the
6408 current context, set inst.error and return 1.
6410 inst.operands[i] describes the destination register. */
6413 move_or_literal_pool (int i
, bfd_boolean thumb_p
, bfd_boolean mode_3
)
6418 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
6422 if ((inst
.instruction
& tbit
) == 0)
6424 inst
.error
= _("invalid pseudo operation");
6427 if (inst
.reloc
.exp
.X_op
!= O_constant
&& inst
.reloc
.exp
.X_op
!= O_symbol
)
6429 inst
.error
= _("constant expression expected");
6432 if (inst
.reloc
.exp
.X_op
== O_constant
)
6436 if (!unified_syntax
&& (inst
.reloc
.exp
.X_add_number
& ~0xFF) == 0)
6438 /* This can be done with a mov(1) instruction. */
6439 inst
.instruction
= T_OPCODE_MOV_I8
| (inst
.operands
[i
].reg
<< 8);
6440 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
;
6446 int value
= encode_arm_immediate (inst
.reloc
.exp
.X_add_number
);
6449 /* This can be done with a mov instruction. */
6450 inst
.instruction
&= LITERAL_MASK
;
6451 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
6452 inst
.instruction
|= value
& 0xfff;
6456 value
= encode_arm_immediate (~inst
.reloc
.exp
.X_add_number
);
6459 /* This can be done with a mvn instruction. */
6460 inst
.instruction
&= LITERAL_MASK
;
6461 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
6462 inst
.instruction
|= value
& 0xfff;
6468 if (add_to_lit_pool () == FAIL
)
6470 inst
.error
= _("literal pool insertion failed");
6473 inst
.operands
[1].reg
= REG_PC
;
6474 inst
.operands
[1].isreg
= 1;
6475 inst
.operands
[1].preind
= 1;
6476 inst
.reloc
.pc_rel
= 1;
6477 inst
.reloc
.type
= (thumb_p
6478 ? BFD_RELOC_ARM_THUMB_OFFSET
6480 ? BFD_RELOC_ARM_HWLITERAL
6481 : BFD_RELOC_ARM_LITERAL
));
6485 /* Functions for instruction encoding, sorted by subarchitecture.
6486 First some generics; their names are taken from the conventional
6487 bit positions for register arguments in ARM format instructions. */
6497 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6503 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6504 inst
.instruction
|= inst
.operands
[1].reg
;
6510 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6511 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6517 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
6518 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
6524 unsigned Rn
= inst
.operands
[2].reg
;
6525 /* Enforce restrictions on SWP instruction. */
6526 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
6527 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
6528 _("Rn must not overlap other operands"));
6529 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6530 inst
.instruction
|= inst
.operands
[1].reg
;
6531 inst
.instruction
|= Rn
<< 16;
6537 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6538 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6539 inst
.instruction
|= inst
.operands
[2].reg
;
6545 inst
.instruction
|= inst
.operands
[0].reg
;
6546 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
6547 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
6553 inst
.instruction
|= inst
.operands
[0].imm
;
6559 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6560 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
6563 /* ARM instructions, in alphabetical order by function name (except
6564 that wrapper functions appear immediately after the function they
6567 /* This is a pseudo-op of the form "adr rd, label" to be converted
6568 into a relative address of the form "add rd, pc, #label-.-8". */
6573 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
6575 /* Frag hacking will turn this into a sub instruction if the offset turns
6576 out to be negative. */
6577 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
6578 inst
.reloc
.pc_rel
= 1;
6579 inst
.reloc
.exp
.X_add_number
-= 8;
6582 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6583 into a relative address of the form:
6584 add rd, pc, #low(label-.-8)"
6585 add rd, rd, #high(label-.-8)" */
6590 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
6592 /* Frag hacking will turn this into a sub instruction if the offset turns
6593 out to be negative. */
6594 inst
.reloc
.type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
6595 inst
.reloc
.pc_rel
= 1;
6596 inst
.size
= INSN_SIZE
* 2;
6597 inst
.reloc
.exp
.X_add_number
-= 8;
6603 if (!inst
.operands
[1].present
)
6604 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
6605 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6606 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6607 encode_arm_shifter_operand (2);
6613 if (inst
.operands
[0].present
)
6615 constraint ((inst
.instruction
& 0xf0) != 0x40
6616 && inst
.operands
[0].imm
!= 0xf,
6617 "bad barrier type");
6618 inst
.instruction
|= inst
.operands
[0].imm
;
6621 inst
.instruction
|= 0xf;
6627 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
6628 constraint (msb
> 32, _("bit-field extends past end of register"));
6629 /* The instruction encoding stores the LSB and MSB,
6630 not the LSB and width. */
6631 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6632 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
6633 inst
.instruction
|= (msb
- 1) << 16;
6641 /* #0 in second position is alternative syntax for bfc, which is
6642 the same instruction but with REG_PC in the Rm field. */
6643 if (!inst
.operands
[1].isreg
)
6644 inst
.operands
[1].reg
= REG_PC
;
6646 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
6647 constraint (msb
> 32, _("bit-field extends past end of register"));
6648 /* The instruction encoding stores the LSB and MSB,
6649 not the LSB and width. */
6650 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6651 inst
.instruction
|= inst
.operands
[1].reg
;
6652 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
6653 inst
.instruction
|= (msb
- 1) << 16;
6659 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
6660 _("bit-field extends past end of register"));
6661 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6662 inst
.instruction
|= inst
.operands
[1].reg
;
6663 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
6664 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
6667 /* ARM V5 breakpoint instruction (argument parse)
6668 BKPT <16 bit unsigned immediate>
6669 Instruction is not conditional.
6670 The bit pattern given in insns[] has the COND_ALWAYS condition,
6671 and it is an error if the caller tried to override that. */
6676 /* Top 12 of 16 bits to bits 19:8. */
6677 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
6679 /* Bottom 4 of 16 bits to bits 3:0. */
6680 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
6684 encode_branch (int default_reloc
)
6686 if (inst
.operands
[0].hasreloc
)
6688 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
,
6689 _("the only suffix valid here is '(plt)'"));
6690 inst
.reloc
.type
= BFD_RELOC_ARM_PLT32
;
6694 inst
.reloc
.type
= default_reloc
;
6696 inst
.reloc
.pc_rel
= 1;
6703 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
6704 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
6707 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
6714 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
6716 if (inst
.cond
== COND_ALWAYS
)
6717 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
6719 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
6723 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
6726 /* ARM V5 branch-link-exchange instruction (argument parse)
6727 BLX <target_addr> ie BLX(1)
6728 BLX{<condition>} <Rm> ie BLX(2)
6729 Unfortunately, there are two different opcodes for this mnemonic.
6730 So, the insns[].value is not used, and the code here zaps values
6731 into inst.instruction.
6732 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6737 if (inst
.operands
[0].isreg
)
6739 /* Arg is a register; the opcode provided by insns[] is correct.
6740 It is not illegal to do "blx pc", just useless. */
6741 if (inst
.operands
[0].reg
== REG_PC
)
6742 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6744 inst
.instruction
|= inst
.operands
[0].reg
;
6748 /* Arg is an address; this instruction cannot be executed
6749 conditionally, and the opcode must be adjusted. */
6750 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
6751 inst
.instruction
= 0xfa000000;
6753 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
6754 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
6757 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
6764 if (inst
.operands
[0].reg
== REG_PC
)
6765 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6767 inst
.instruction
|= inst
.operands
[0].reg
;
6771 /* ARM v5TEJ. Jump to Jazelle code. */
6776 if (inst
.operands
[0].reg
== REG_PC
)
6777 as_tsktsk (_("use of r15 in bxj is not really useful"));
6779 inst
.instruction
|= inst
.operands
[0].reg
;
6782 /* Co-processor data operation:
6783 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6784 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6788 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
6789 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
6790 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
6791 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
6792 inst
.instruction
|= inst
.operands
[4].reg
;
6793 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
6799 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
6800 encode_arm_shifter_operand (1);
6803 /* Transfer between coprocessor and ARM registers.
6804 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6809 No special properties. */
6814 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
6815 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
6816 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
6817 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
6818 inst
.instruction
|= inst
.operands
[4].reg
;
6819 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
6822 /* Transfer between coprocessor register and pair of ARM registers.
6823 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6828 Two XScale instructions are special cases of these:
6830 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6831 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6833 Result unpredicatable if Rd or Rn is R15. */
6838 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
6839 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
6840 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
6841 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
6842 inst
.instruction
|= inst
.operands
[4].reg
;
6848 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
6849 if (inst
.operands
[1].present
)
6851 inst
.instruction
|= CPSI_MMOD
;
6852 inst
.instruction
|= inst
.operands
[1].imm
;
6859 inst
.instruction
|= inst
.operands
[0].imm
;
6865 /* There is no IT instruction in ARM mode. We
6866 process it but do not generate code for it. */
6873 int base_reg
= inst
.operands
[0].reg
;
6874 int range
= inst
.operands
[1].imm
;
6876 inst
.instruction
|= base_reg
<< 16;
6877 inst
.instruction
|= range
;
6879 if (inst
.operands
[1].writeback
)
6880 inst
.instruction
|= LDM_TYPE_2_OR_3
;
6882 if (inst
.operands
[0].writeback
)
6884 inst
.instruction
|= WRITE_BACK
;
6885 /* Check for unpredictable uses of writeback. */
6886 if (inst
.instruction
& LOAD_BIT
)
6888 /* Not allowed in LDM type 2. */
6889 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
6890 && ((range
& (1 << REG_PC
)) == 0))
6891 as_warn (_("writeback of base register is UNPREDICTABLE"));
6892 /* Only allowed if base reg not in list for other types. */
6893 else if (range
& (1 << base_reg
))
6894 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6898 /* Not allowed for type 2. */
6899 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
6900 as_warn (_("writeback of base register is UNPREDICTABLE"));
6901 /* Only allowed if base reg not in list, or first in list. */
6902 else if ((range
& (1 << base_reg
))
6903 && (range
& ((1 << base_reg
) - 1)))
6904 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6909 /* ARMv5TE load-consecutive (argument parse)
6918 constraint (inst
.operands
[0].reg
% 2 != 0,
6919 _("first destination register must be even"));
6920 constraint (inst
.operands
[1].present
6921 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
6922 _("can only load two consecutive registers"));
6923 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
6924 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
6926 if (!inst
.operands
[1].present
)
6927 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
6929 if (inst
.instruction
& LOAD_BIT
)
6931 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6932 register and the first register written; we have to diagnose
6933 overlap between the base and the second register written here. */
6935 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
6936 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
6937 as_warn (_("base register written back, and overlaps "
6938 "second destination register"));
6940 /* For an index-register load, the index register must not overlap the
6941 destination (even if not write-back). */
6942 else if (inst
.operands
[2].immisreg
6943 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
6944 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
6945 as_warn (_("index register overlaps destination register"));
6948 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6949 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
6955 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
6956 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
6957 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
6958 || inst
.operands
[1].negative
6959 /* This can arise if the programmer has written
6961 or if they have mistakenly used a register name as the last
6964 It is very difficult to distinguish between these two cases
6965 because "rX" might actually be a label. ie the register
6966 name has been occluded by a symbol of the same name. So we
6967 just generate a general 'bad addressing mode' type error
6968 message and leave it up to the programmer to discover the
6969 true cause and fix their mistake. */
6970 || (inst
.operands
[1].reg
== REG_PC
),
6973 constraint (inst
.reloc
.exp
.X_op
!= O_constant
6974 || inst
.reloc
.exp
.X_add_number
!= 0,
6975 _("offset must be zero in ARM encoding"));
6977 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6978 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6979 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
6985 constraint (inst
.operands
[0].reg
% 2 != 0,
6986 _("even register required"));
6987 constraint (inst
.operands
[1].present
6988 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
6989 _("can only load two consecutive registers"));
6990 /* If op 1 were present and equal to PC, this function wouldn't
6991 have been called in the first place. */
6992 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
6994 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6995 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7001 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7002 if (!inst
.operands
[1].isreg
)
7003 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/FALSE
))
7005 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
7011 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7013 if (inst
.operands
[1].preind
)
7015 constraint (inst
.reloc
.exp
.X_op
!= O_constant
||
7016 inst
.reloc
.exp
.X_add_number
!= 0,
7017 _("this instruction requires a post-indexed address"));
7019 inst
.operands
[1].preind
= 0;
7020 inst
.operands
[1].postind
= 1;
7021 inst
.operands
[1].writeback
= 1;
7023 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7024 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
7027 /* Halfword and signed-byte load/store operations. */
7032 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7033 if (!inst
.operands
[1].isreg
)
7034 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/TRUE
))
7036 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
7042 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7044 if (inst
.operands
[1].preind
)
7046 constraint (inst
.reloc
.exp
.X_op
!= O_constant
||
7047 inst
.reloc
.exp
.X_add_number
!= 0,
7048 _("this instruction requires a post-indexed address"));
7050 inst
.operands
[1].preind
= 0;
7051 inst
.operands
[1].postind
= 1;
7052 inst
.operands
[1].writeback
= 1;
7054 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7055 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
7058 /* Co-processor register load/store.
7059 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7063 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7064 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7065 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
7071 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7072 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
7073 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
)
7074 && !(inst
.instruction
& 0x00400000))
7075 as_tsktsk (_("Rd and Rm should be different in mla"));
7077 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7078 inst
.instruction
|= inst
.operands
[1].reg
;
7079 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7080 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
7086 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7087 encode_arm_shifter_operand (1);
7090 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7097 top
= (inst
.instruction
& 0x00400000) != 0;
7098 constraint (top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
,
7099 _(":lower16: not allowed this instruction"));
7100 constraint (!top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
,
7101 _(":upper16: not allowed instruction"));
7102 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7103 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
7105 imm
= inst
.reloc
.exp
.X_add_number
;
7106 /* The value is in two pieces: 0:11, 16:19. */
7107 inst
.instruction
|= (imm
& 0x00000fff);
7108 inst
.instruction
|= (imm
& 0x0000f000) << 4;
7112 static void do_vfp_nsyn_opcode (const char *);
7115 do_vfp_nsyn_mrs (void)
7117 if (inst
.operands
[0].isvec
)
7119 if (inst
.operands
[1].reg
!= 1)
7120 first_error (_("operand 1 must be FPSCR"));
7121 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
7122 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
7123 do_vfp_nsyn_opcode ("fmstat");
7125 else if (inst
.operands
[1].isvec
)
7126 do_vfp_nsyn_opcode ("fmrx");
7134 do_vfp_nsyn_msr (void)
7136 if (inst
.operands
[0].isvec
)
7137 do_vfp_nsyn_opcode ("fmxr");
7147 if (do_vfp_nsyn_mrs () == SUCCESS
)
7150 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7151 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
7153 _("'CPSR' or 'SPSR' expected"));
7154 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7155 inst
.instruction
|= (inst
.operands
[1].imm
& SPSR_BIT
);
7158 /* Two possible forms:
7159 "{C|S}PSR_<field>, Rm",
7160 "{C|S}PSR_f, #expression". */
7165 if (do_vfp_nsyn_msr () == SUCCESS
)
7168 inst
.instruction
|= inst
.operands
[0].imm
;
7169 if (inst
.operands
[1].isreg
)
7170 inst
.instruction
|= inst
.operands
[1].reg
;
7173 inst
.instruction
|= INST_IMMEDIATE
;
7174 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
7175 inst
.reloc
.pc_rel
= 0;
7182 if (!inst
.operands
[2].present
)
7183 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
7184 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7185 inst
.instruction
|= inst
.operands
[1].reg
;
7186 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7188 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
7189 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
7190 as_tsktsk (_("Rd and Rm should be different in mul"));
7193 /* Long Multiply Parser
7194 UMULL RdLo, RdHi, Rm, Rs
7195 SMULL RdLo, RdHi, Rm, Rs
7196 UMLAL RdLo, RdHi, Rm, Rs
7197 SMLAL RdLo, RdHi, Rm, Rs. */
7202 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7203 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7204 inst
.instruction
|= inst
.operands
[2].reg
;
7205 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
7207 /* rdhi, rdlo and rm must all be different. */
7208 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
7209 || inst
.operands
[0].reg
== inst
.operands
[2].reg
7210 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
7211 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7217 if (inst
.operands
[0].present
)
7219 /* Architectural NOP hints are CPSR sets with no bits selected. */
7220 inst
.instruction
&= 0xf0000000;
7221 inst
.instruction
|= 0x0320f000 + inst
.operands
[0].imm
;
7225 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7226 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7227 Condition defaults to COND_ALWAYS.
7228 Error if Rd, Rn or Rm are R15. */
7233 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7234 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7235 inst
.instruction
|= inst
.operands
[2].reg
;
7236 if (inst
.operands
[3].present
)
7237 encode_arm_shift (3);
7240 /* ARM V6 PKHTB (Argument Parse). */
7245 if (!inst
.operands
[3].present
)
7247 /* If the shift specifier is omitted, turn the instruction
7248 into pkhbt rd, rm, rn. */
7249 inst
.instruction
&= 0xfff00010;
7250 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7251 inst
.instruction
|= inst
.operands
[1].reg
;
7252 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7256 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7257 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7258 inst
.instruction
|= inst
.operands
[2].reg
;
7259 encode_arm_shift (3);
7263 /* ARMv5TE: Preload-Cache
7267 Syntactically, like LDR with B=1, W=0, L=1. */
7272 constraint (!inst
.operands
[0].isreg
,
7273 _("'[' expected after PLD mnemonic"));
7274 constraint (inst
.operands
[0].postind
,
7275 _("post-indexed expression used in preload instruction"));
7276 constraint (inst
.operands
[0].writeback
,
7277 _("writeback used in preload instruction"));
7278 constraint (!inst
.operands
[0].preind
,
7279 _("unindexed addressing used in preload instruction"));
7280 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
7283 /* ARMv7: PLI <addr_mode> */
7287 constraint (!inst
.operands
[0].isreg
,
7288 _("'[' expected after PLI mnemonic"));
7289 constraint (inst
.operands
[0].postind
,
7290 _("post-indexed expression used in preload instruction"));
7291 constraint (inst
.operands
[0].writeback
,
7292 _("writeback used in preload instruction"));
7293 constraint (!inst
.operands
[0].preind
,
7294 _("unindexed addressing used in preload instruction"));
7295 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
7296 inst
.instruction
&= ~PRE_INDEX
;
7302 inst
.operands
[1] = inst
.operands
[0];
7303 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
7304 inst
.operands
[0].isreg
= 1;
7305 inst
.operands
[0].writeback
= 1;
7306 inst
.operands
[0].reg
= REG_SP
;
7310 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7311 word at the specified address and the following word
7313 Unconditionally executed.
7314 Error if Rn is R15. */
7319 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7320 if (inst
.operands
[0].writeback
)
7321 inst
.instruction
|= WRITE_BACK
;
7324 /* ARM V6 ssat (argument parse). */
7329 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7330 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
7331 inst
.instruction
|= inst
.operands
[2].reg
;
7333 if (inst
.operands
[3].present
)
7334 encode_arm_shift (3);
7337 /* ARM V6 usat (argument parse). */
7342 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7343 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
7344 inst
.instruction
|= inst
.operands
[2].reg
;
7346 if (inst
.operands
[3].present
)
7347 encode_arm_shift (3);
7350 /* ARM V6 ssat16 (argument parse). */
7355 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7356 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
7357 inst
.instruction
|= inst
.operands
[2].reg
;
7363 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7364 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
7365 inst
.instruction
|= inst
.operands
[2].reg
;
7368 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7369 preserving the other bits.
7371 setend <endian_specifier>, where <endian_specifier> is either
7377 if (inst
.operands
[0].imm
)
7378 inst
.instruction
|= 0x200;
7384 unsigned int Rm
= (inst
.operands
[1].present
7385 ? inst
.operands
[1].reg
7386 : inst
.operands
[0].reg
);
7388 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7389 inst
.instruction
|= Rm
;
7390 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
7392 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7393 inst
.instruction
|= SHIFT_BY_REG
;
7396 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
7402 inst
.reloc
.type
= BFD_RELOC_ARM_SMC
;
7403 inst
.reloc
.pc_rel
= 0;
7409 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
7410 inst
.reloc
.pc_rel
= 0;
7413 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7414 SMLAxy{cond} Rd,Rm,Rs,Rn
7415 SMLAWy{cond} Rd,Rm,Rs,Rn
7416 Error if any register is R15. */
7421 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7422 inst
.instruction
|= inst
.operands
[1].reg
;
7423 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7424 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
7427 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7428 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7429 Error if any register is R15.
7430 Warning if Rdlo == Rdhi. */
7435 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7436 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7437 inst
.instruction
|= inst
.operands
[2].reg
;
7438 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
7440 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
7441 as_tsktsk (_("rdhi and rdlo must be different"));
7444 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7445 SMULxy{cond} Rd,Rm,Rs
7446 Error if any register is R15. */
7451 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7452 inst
.instruction
|= inst
.operands
[1].reg
;
7453 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7456 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7457 the same for both ARM and Thumb-2. */
7464 if (inst
.operands
[0].present
)
7466 reg
= inst
.operands
[0].reg
;
7467 constraint (reg
!= 13, _("SRS base register must be r13"));
7472 inst
.instruction
|= reg
<< 16;
7473 inst
.instruction
|= inst
.operands
[1].imm
;
7474 if (inst
.operands
[0].writeback
|| inst
.operands
[1].writeback
)
7475 inst
.instruction
|= WRITE_BACK
;
7478 /* ARM V6 strex (argument parse). */
7483 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
7484 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
7485 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
7486 || inst
.operands
[2].negative
7487 /* See comment in do_ldrex(). */
7488 || (inst
.operands
[2].reg
== REG_PC
),
7491 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
7492 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
7494 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7495 || inst
.reloc
.exp
.X_add_number
!= 0,
7496 _("offset must be zero in ARM encoding"));
7498 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7499 inst
.instruction
|= inst
.operands
[1].reg
;
7500 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7501 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
7507 constraint (inst
.operands
[1].reg
% 2 != 0,
7508 _("even register required"));
7509 constraint (inst
.operands
[2].present
7510 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
7511 _("can only store two consecutive registers"));
7512 /* If op 2 were present and equal to PC, this function wouldn't
7513 have been called in the first place. */
7514 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
7516 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
7517 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
7518 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
7521 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7522 inst
.instruction
|= inst
.operands
[1].reg
;
7523 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
7526 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7527 extends it to 32-bits, and adds the result to a value in another
7528 register. You can specify a rotation by 0, 8, 16, or 24 bits
7529 before extracting the 16-bit value.
7530 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7531 Condition defaults to COND_ALWAYS.
7532 Error if any register uses R15. */
7537 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7538 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7539 inst
.instruction
|= inst
.operands
[2].reg
;
7540 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
7545 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7546 Condition defaults to COND_ALWAYS.
7547 Error if any register uses R15. */
7552 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7553 inst
.instruction
|= inst
.operands
[1].reg
;
7554 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
7557 /* VFP instructions. In a logical order: SP variant first, monad
7558 before dyad, arithmetic then move then load/store. */
7561 do_vfp_sp_monadic (void)
7563 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7564 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
7568 do_vfp_sp_dyadic (void)
7570 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7571 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
7572 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
7576 do_vfp_sp_compare_z (void)
7578 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7582 do_vfp_dp_sp_cvt (void)
7584 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7585 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
7589 do_vfp_sp_dp_cvt (void)
7591 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7592 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
7596 do_vfp_reg_from_sp (void)
7598 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7599 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
7603 do_vfp_reg2_from_sp2 (void)
7605 constraint (inst
.operands
[2].imm
!= 2,
7606 _("only two consecutive VFP SP registers allowed here"));
7607 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7608 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7609 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
7613 do_vfp_sp_from_reg (void)
7615 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
7616 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7620 do_vfp_sp2_from_reg2 (void)
7622 constraint (inst
.operands
[0].imm
!= 2,
7623 _("only two consecutive VFP SP registers allowed here"));
7624 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
7625 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7626 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7630 do_vfp_sp_ldst (void)
7632 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7633 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
7637 do_vfp_dp_ldst (void)
7639 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7640 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
7645 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
7647 if (inst
.operands
[0].writeback
)
7648 inst
.instruction
|= WRITE_BACK
;
7650 constraint (ldstm_type
!= VFP_LDSTMIA
,
7651 _("this addressing mode requires base-register writeback"));
7652 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7653 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
7654 inst
.instruction
|= inst
.operands
[1].imm
;
7658 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
7662 if (inst
.operands
[0].writeback
)
7663 inst
.instruction
|= WRITE_BACK
;
7665 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
7666 _("this addressing mode requires base-register writeback"));
7668 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7669 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
7671 count
= inst
.operands
[1].imm
<< 1;
7672 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
7675 inst
.instruction
|= count
;
7679 do_vfp_sp_ldstmia (void)
7681 vfp_sp_ldstm (VFP_LDSTMIA
);
7685 do_vfp_sp_ldstmdb (void)
7687 vfp_sp_ldstm (VFP_LDSTMDB
);
7691 do_vfp_dp_ldstmia (void)
7693 vfp_dp_ldstm (VFP_LDSTMIA
);
7697 do_vfp_dp_ldstmdb (void)
7699 vfp_dp_ldstm (VFP_LDSTMDB
);
7703 do_vfp_xp_ldstmia (void)
7705 vfp_dp_ldstm (VFP_LDSTMIAX
);
7709 do_vfp_xp_ldstmdb (void)
7711 vfp_dp_ldstm (VFP_LDSTMDBX
);
7715 do_vfp_dp_rd_rm (void)
7717 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7718 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
7722 do_vfp_dp_rn_rd (void)
7724 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
7725 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
7729 do_vfp_dp_rd_rn (void)
7731 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7732 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
7736 do_vfp_dp_rd_rn_rm (void)
7738 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7739 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
7740 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
7746 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7750 do_vfp_dp_rm_rd_rn (void)
7752 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
7753 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
7754 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
7757 /* VFPv3 instructions. */
7759 do_vfp_sp_const (void)
7761 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7762 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
7763 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
7767 do_vfp_dp_const (void)
7769 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7770 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
7771 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
7775 vfp_conv (int srcsize
)
7777 unsigned immbits
= srcsize
- inst
.operands
[1].imm
;
7778 inst
.instruction
|= (immbits
& 1) << 5;
7779 inst
.instruction
|= (immbits
>> 1);
7783 do_vfp_sp_conv_16 (void)
7785 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7790 do_vfp_dp_conv_16 (void)
7792 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7797 do_vfp_sp_conv_32 (void)
7799 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7804 do_vfp_dp_conv_32 (void)
7806 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7811 /* FPA instructions. Also in a logical order. */
7816 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7817 inst
.instruction
|= inst
.operands
[1].reg
;
7821 do_fpa_ldmstm (void)
7823 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7824 switch (inst
.operands
[1].imm
)
7826 case 1: inst
.instruction
|= CP_T_X
; break;
7827 case 2: inst
.instruction
|= CP_T_Y
; break;
7828 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
7833 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
7835 /* The instruction specified "ea" or "fd", so we can only accept
7836 [Rn]{!}. The instruction does not really support stacking or
7837 unstacking, so we have to emulate these by setting appropriate
7838 bits and offsets. */
7839 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7840 || inst
.reloc
.exp
.X_add_number
!= 0,
7841 _("this instruction does not support indexing"));
7843 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
7844 inst
.reloc
.exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
7846 if (!(inst
.instruction
& INDEX_UP
))
7847 inst
.reloc
.exp
.X_add_number
= -inst
.reloc
.exp
.X_add_number
;
7849 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
7851 inst
.operands
[2].preind
= 0;
7852 inst
.operands
[2].postind
= 1;
7856 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
7860 /* iWMMXt instructions: strictly in alphabetical order. */
7863 do_iwmmxt_tandorc (void)
7865 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
7869 do_iwmmxt_textrc (void)
7871 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7872 inst
.instruction
|= inst
.operands
[1].imm
;
7876 do_iwmmxt_textrm (void)
7878 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7879 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7880 inst
.instruction
|= inst
.operands
[2].imm
;
7884 do_iwmmxt_tinsr (void)
7886 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7887 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7888 inst
.instruction
|= inst
.operands
[2].imm
;
7892 do_iwmmxt_tmia (void)
7894 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
7895 inst
.instruction
|= inst
.operands
[1].reg
;
7896 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
7900 do_iwmmxt_waligni (void)
7902 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7903 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7904 inst
.instruction
|= inst
.operands
[2].reg
;
7905 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
7909 do_iwmmxt_wmerge (void)
7911 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7912 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7913 inst
.instruction
|= inst
.operands
[2].reg
;
7914 inst
.instruction
|= inst
.operands
[3].imm
<< 21;
7918 do_iwmmxt_wmov (void)
7920 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7921 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7922 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7923 inst
.instruction
|= inst
.operands
[1].reg
;
7927 do_iwmmxt_wldstbh (void)
7930 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7932 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
7934 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
7935 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
7939 do_iwmmxt_wldstw (void)
7941 /* RIWR_RIWC clears .isreg for a control register. */
7942 if (!inst
.operands
[0].isreg
)
7944 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
7945 inst
.instruction
|= 0xf0000000;
7948 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7949 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
7953 do_iwmmxt_wldstd (void)
7955 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7956 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
)
7957 && inst
.operands
[1].immisreg
)
7959 inst
.instruction
&= ~0x1a000ff;
7960 inst
.instruction
|= (0xf << 28);
7961 if (inst
.operands
[1].preind
)
7962 inst
.instruction
|= PRE_INDEX
;
7963 if (!inst
.operands
[1].negative
)
7964 inst
.instruction
|= INDEX_UP
;
7965 if (inst
.operands
[1].writeback
)
7966 inst
.instruction
|= WRITE_BACK
;
7967 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7968 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
<< 4;
7969 inst
.instruction
|= inst
.operands
[1].imm
;
7972 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
7976 do_iwmmxt_wshufh (void)
7978 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7979 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7980 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
7981 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
7985 do_iwmmxt_wzero (void)
7987 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7988 inst
.instruction
|= inst
.operands
[0].reg
;
7989 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7990 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7994 do_iwmmxt_wrwrwr_or_imm5 (void)
7996 if (inst
.operands
[2].isreg
)
7999 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
),
8000 _("immediate operand requires iWMMXt2"));
8002 if (inst
.operands
[2].imm
== 0)
8004 switch ((inst
.instruction
>> 20) & 0xf)
8010 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8011 inst
.operands
[2].imm
= 16;
8012 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0x7 << 20);
8018 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8019 inst
.operands
[2].imm
= 32;
8020 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0xb << 20);
8027 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8029 wrn
= (inst
.instruction
>> 16) & 0xf;
8030 inst
.instruction
&= 0xff0fff0f;
8031 inst
.instruction
|= wrn
;
8032 /* Bail out here; the instruction is now assembled. */
8037 /* Map 32 -> 0, etc. */
8038 inst
.operands
[2].imm
&= 0x1f;
8039 inst
.instruction
|= (0xf << 28) | ((inst
.operands
[2].imm
& 0x10) << 4) | (inst
.operands
[2].imm
& 0xf);
8043 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8044 operations first, then control, shift, and load/store. */
8046 /* Insns like "foo X,Y,Z". */
8049 do_mav_triple (void)
8051 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8052 inst
.instruction
|= inst
.operands
[1].reg
;
8053 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
8056 /* Insns like "foo W,X,Y,Z".
8057 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8062 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
8063 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8064 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8065 inst
.instruction
|= inst
.operands
[3].reg
;
8068 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8072 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8075 /* Maverick shift immediate instructions.
8076 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8077 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8082 int imm
= inst
.operands
[2].imm
;
8084 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8085 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8087 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8088 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8089 Bit 4 should be 0. */
8090 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
8092 inst
.instruction
|= imm
;
8095 /* XScale instructions. Also sorted arithmetic before move. */
8097 /* Xscale multiply-accumulate (argument parse)
8100 MIAxycc acc0,Rm,Rs. */
8105 inst
.instruction
|= inst
.operands
[1].reg
;
8106 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
8109 /* Xscale move-accumulator-register (argument parse)
8111 MARcc acc0,RdLo,RdHi. */
8116 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8117 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8120 /* Xscale move-register-accumulator (argument parse)
8122 MRAcc RdLo,RdHi,acc0. */
8127 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
8128 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8129 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8132 /* Encoding functions relevant only to Thumb. */
8134 /* inst.operands[i] is a shifted-register operand; encode
8135 it into inst.instruction in the format used by Thumb32. */
8138 encode_thumb32_shifted_operand (int i
)
8140 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
8141 unsigned int shift
= inst
.operands
[i
].shift_kind
;
8143 constraint (inst
.operands
[i
].immisreg
,
8144 _("shift by register not allowed in thumb mode"));
8145 inst
.instruction
|= inst
.operands
[i
].reg
;
8146 if (shift
== SHIFT_RRX
)
8147 inst
.instruction
|= SHIFT_ROR
<< 4;
8150 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
8151 _("expression too complex"));
8153 constraint (value
> 32
8154 || (value
== 32 && (shift
== SHIFT_LSL
8155 || shift
== SHIFT_ROR
)),
8156 _("shift expression is too large"));
8160 else if (value
== 32)
8163 inst
.instruction
|= shift
<< 4;
8164 inst
.instruction
|= (value
& 0x1c) << 10;
8165 inst
.instruction
|= (value
& 0x03) << 6;
8170 /* inst.operands[i] was set up by parse_address. Encode it into a
8171 Thumb32 format load or store instruction. Reject forms that cannot
8172 be used with such instructions. If is_t is true, reject forms that
8173 cannot be used with a T instruction; if is_d is true, reject forms
8174 that cannot be used with a D instruction. */
8177 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
8179 bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
8181 constraint (!inst
.operands
[i
].isreg
,
8182 _("Instruction does not support =N addresses"));
8184 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8185 if (inst
.operands
[i
].immisreg
)
8187 constraint (is_pc
, _("cannot use register index with PC-relative addressing"));
8188 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
8189 constraint (inst
.operands
[i
].negative
,
8190 _("Thumb does not support negative register indexing"));
8191 constraint (inst
.operands
[i
].postind
,
8192 _("Thumb does not support register post-indexing"));
8193 constraint (inst
.operands
[i
].writeback
,
8194 _("Thumb does not support register indexing with writeback"));
8195 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
8196 _("Thumb supports only LSL in shifted register indexing"));
8198 inst
.instruction
|= inst
.operands
[i
].imm
;
8199 if (inst
.operands
[i
].shifted
)
8201 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
8202 _("expression too complex"));
8203 constraint (inst
.reloc
.exp
.X_add_number
< 0
8204 || inst
.reloc
.exp
.X_add_number
> 3,
8205 _("shift out of range"));
8206 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
<< 4;
8208 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
8210 else if (inst
.operands
[i
].preind
)
8212 constraint (is_pc
&& inst
.operands
[i
].writeback
,
8213 _("cannot use writeback with PC-relative addressing"));
8214 constraint (is_t
&& inst
.operands
[i
].writeback
,
8215 _("cannot use writeback with this instruction"));
8219 inst
.instruction
|= 0x01000000;
8220 if (inst
.operands
[i
].writeback
)
8221 inst
.instruction
|= 0x00200000;
8225 inst
.instruction
|= 0x00000c00;
8226 if (inst
.operands
[i
].writeback
)
8227 inst
.instruction
|= 0x00000100;
8229 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
8231 else if (inst
.operands
[i
].postind
)
8233 assert (inst
.operands
[i
].writeback
);
8234 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
8235 constraint (is_t
, _("cannot use post-indexing with this instruction"));
8238 inst
.instruction
|= 0x00200000;
8240 inst
.instruction
|= 0x00000900;
8241 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
8243 else /* unindexed - only for coprocessor */
8244 inst
.error
= _("instruction does not accept unindexed addressing");
8247 /* Table of Thumb instructions which exist in both 16- and 32-bit
8248 encodings (the latter only in post-V6T2 cores). The index is the
8249 value used in the insns table below. When there is more than one
8250 possible 16-bit encoding for the instruction, this table always
8252 Also contains several pseudo-instructions used during relaxation. */
8253 #define T16_32_TAB \
8254 X(adc, 4140, eb400000), \
8255 X(adcs, 4140, eb500000), \
8256 X(add, 1c00, eb000000), \
8257 X(adds, 1c00, eb100000), \
8258 X(addi, 0000, f1000000), \
8259 X(addis, 0000, f1100000), \
8260 X(add_pc,000f, f20f0000), \
8261 X(add_sp,000d, f10d0000), \
8262 X(adr, 000f, f20f0000), \
8263 X(and, 4000, ea000000), \
8264 X(ands, 4000, ea100000), \
8265 X(asr, 1000, fa40f000), \
8266 X(asrs, 1000, fa50f000), \
8267 X(b, e000, f000b000), \
8268 X(bcond, d000, f0008000), \
8269 X(bic, 4380, ea200000), \
8270 X(bics, 4380, ea300000), \
8271 X(cmn, 42c0, eb100f00), \
8272 X(cmp, 2800, ebb00f00), \
8273 X(cpsie, b660, f3af8400), \
8274 X(cpsid, b670, f3af8600), \
8275 X(cpy, 4600, ea4f0000), \
8276 X(dec_sp,80dd, f1ad0d00), \
8277 X(eor, 4040, ea800000), \
8278 X(eors, 4040, ea900000), \
8279 X(inc_sp,00dd, f10d0d00), \
8280 X(ldmia, c800, e8900000), \
8281 X(ldr, 6800, f8500000), \
8282 X(ldrb, 7800, f8100000), \
8283 X(ldrh, 8800, f8300000), \
8284 X(ldrsb, 5600, f9100000), \
8285 X(ldrsh, 5e00, f9300000), \
8286 X(ldr_pc,4800, f85f0000), \
8287 X(ldr_pc2,4800, f85f0000), \
8288 X(ldr_sp,9800, f85d0000), \
8289 X(lsl, 0000, fa00f000), \
8290 X(lsls, 0000, fa10f000), \
8291 X(lsr, 0800, fa20f000), \
8292 X(lsrs, 0800, fa30f000), \
8293 X(mov, 2000, ea4f0000), \
8294 X(movs, 2000, ea5f0000), \
8295 X(mul, 4340, fb00f000), \
8296 X(muls, 4340, ffffffff), /* no 32b muls */ \
8297 X(mvn, 43c0, ea6f0000), \
8298 X(mvns, 43c0, ea7f0000), \
8299 X(neg, 4240, f1c00000), /* rsb #0 */ \
8300 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8301 X(orr, 4300, ea400000), \
8302 X(orrs, 4300, ea500000), \
8303 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8304 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8305 X(rev, ba00, fa90f080), \
8306 X(rev16, ba40, fa90f090), \
8307 X(revsh, bac0, fa90f0b0), \
8308 X(ror, 41c0, fa60f000), \
8309 X(rors, 41c0, fa70f000), \
8310 X(sbc, 4180, eb600000), \
8311 X(sbcs, 4180, eb700000), \
8312 X(stmia, c000, e8800000), \
8313 X(str, 6000, f8400000), \
8314 X(strb, 7000, f8000000), \
8315 X(strh, 8000, f8200000), \
8316 X(str_sp,9000, f84d0000), \
8317 X(sub, 1e00, eba00000), \
8318 X(subs, 1e00, ebb00000), \
8319 X(subi, 8000, f1a00000), \
8320 X(subis, 8000, f1b00000), \
8321 X(sxtb, b240, fa4ff080), \
8322 X(sxth, b200, fa0ff080), \
8323 X(tst, 4200, ea100f00), \
8324 X(uxtb, b2c0, fa5ff080), \
8325 X(uxth, b280, fa1ff080), \
8326 X(nop, bf00, f3af8000), \
8327 X(yield, bf10, f3af8001), \
8328 X(wfe, bf20, f3af8002), \
8329 X(wfi, bf30, f3af8003), \
8330 X(sev, bf40, f3af9004), /* typo, 8004? */
8332 /* To catch errors in encoding functions, the codes are all offset by
8333 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8334 as 16-bit instructions. */
8335 #define X(a,b,c) T_MNEM_##a
8336 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
8339 #define X(a,b,c) 0x##b
8340 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
8341 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8344 #define X(a,b,c) 0x##c
8345 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
8346 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8347 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8351 /* Thumb instruction encoders, in alphabetical order. */
8355 do_t_add_sub_w (void)
8359 Rd
= inst
.operands
[0].reg
;
8360 Rn
= inst
.operands
[1].reg
;
8362 constraint (Rd
== 15, _("PC not allowed as destination"));
8363 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
8364 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
8367 /* Parse an add or subtract instruction. We get here with inst.instruction
8368 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8375 Rd
= inst
.operands
[0].reg
;
8376 Rs
= (inst
.operands
[1].present
8377 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
8378 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
8386 flags
= (inst
.instruction
== T_MNEM_adds
8387 || inst
.instruction
== T_MNEM_subs
);
8389 narrow
= (current_it_mask
== 0);
8391 narrow
= (current_it_mask
!= 0);
8392 if (!inst
.operands
[2].isreg
)
8396 add
= (inst
.instruction
== T_MNEM_add
8397 || inst
.instruction
== T_MNEM_adds
);
8399 if (inst
.size_req
!= 4)
8401 /* Attempt to use a narrow opcode, with relaxation if
8403 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
8404 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
8405 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
8406 opcode
= T_MNEM_add_sp
;
8407 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
8408 opcode
= T_MNEM_add_pc
;
8409 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
8412 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
8414 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
8418 inst
.instruction
= THUMB_OP16(opcode
);
8419 inst
.instruction
|= (Rd
<< 4) | Rs
;
8420 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
8421 if (inst
.size_req
!= 2)
8422 inst
.relax
= opcode
;
8425 constraint (inst
.size_req
== 2, BAD_HIREG
);
8427 if (inst
.size_req
== 4
8428 || (inst
.size_req
!= 2 && !opcode
))
8432 constraint (Rs
!= REG_LR
|| inst
.instruction
!= T_MNEM_subs
,
8433 _("only SUBS PC, LR, #const allowed"));
8434 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
8435 _("expression too complex"));
8436 constraint (inst
.reloc
.exp
.X_add_number
< 0
8437 || inst
.reloc
.exp
.X_add_number
> 0xff,
8438 _("immediate value out of range"));
8439 inst
.instruction
= T2_SUBS_PC_LR
8440 | inst
.reloc
.exp
.X_add_number
;
8441 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
8444 else if (Rs
== REG_PC
)
8446 /* Always use addw/subw. */
8447 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
8448 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
8452 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8453 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
8456 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
8458 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_IMM
;
8460 inst
.instruction
|= Rd
<< 8;
8461 inst
.instruction
|= Rs
<< 16;
8466 Rn
= inst
.operands
[2].reg
;
8467 /* See if we can do this with a 16-bit instruction. */
8468 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
8470 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
8475 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
8476 || inst
.instruction
== T_MNEM_add
)
8479 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
8483 if (inst
.instruction
== T_MNEM_add
)
8487 inst
.instruction
= T_OPCODE_ADD_HI
;
8488 inst
.instruction
|= (Rd
& 8) << 4;
8489 inst
.instruction
|= (Rd
& 7);
8490 inst
.instruction
|= Rn
<< 3;
8493 /* ... because addition is commutative! */
8496 inst
.instruction
= T_OPCODE_ADD_HI
;
8497 inst
.instruction
|= (Rd
& 8) << 4;
8498 inst
.instruction
|= (Rd
& 7);
8499 inst
.instruction
|= Rs
<< 3;
8504 /* If we get here, it can't be done in 16 bits. */
8505 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
8506 _("shift must be constant"));
8507 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8508 inst
.instruction
|= Rd
<< 8;
8509 inst
.instruction
|= Rs
<< 16;
8510 encode_thumb32_shifted_operand (2);
8515 constraint (inst
.instruction
== T_MNEM_adds
8516 || inst
.instruction
== T_MNEM_subs
,
8519 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
8521 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
8522 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
8525 inst
.instruction
= (inst
.instruction
== T_MNEM_add
8527 inst
.instruction
|= (Rd
<< 4) | Rs
;
8528 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
8532 Rn
= inst
.operands
[2].reg
;
8533 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
8535 /* We now have Rd, Rs, and Rn set to registers. */
8536 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
8538 /* Can't do this for SUB. */
8539 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
8540 inst
.instruction
= T_OPCODE_ADD_HI
;
8541 inst
.instruction
|= (Rd
& 8) << 4;
8542 inst
.instruction
|= (Rd
& 7);
8544 inst
.instruction
|= Rn
<< 3;
8546 inst
.instruction
|= Rs
<< 3;
8548 constraint (1, _("dest must overlap one source register"));
8552 inst
.instruction
= (inst
.instruction
== T_MNEM_add
8553 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
8554 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
8562 if (unified_syntax
&& inst
.size_req
== 0 && inst
.operands
[0].reg
<= 7)
8564 /* Defer to section relaxation. */
8565 inst
.relax
= inst
.instruction
;
8566 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8567 inst
.instruction
|= inst
.operands
[0].reg
<< 4;
8569 else if (unified_syntax
&& inst
.size_req
!= 2)
8571 /* Generate a 32-bit opcode. */
8572 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8573 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8574 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_PC12
;
8575 inst
.reloc
.pc_rel
= 1;
8579 /* Generate a 16-bit opcode. */
8580 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8581 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
8582 inst
.reloc
.exp
.X_add_number
-= 4; /* PC relative adjust. */
8583 inst
.reloc
.pc_rel
= 1;
8585 inst
.instruction
|= inst
.operands
[0].reg
<< 4;
8589 /* Arithmetic instructions for which there is just one 16-bit
8590 instruction encoding, and it allows only two low registers.
8591 For maximal compatibility with ARM syntax, we allow three register
8592 operands even when Thumb-32 instructions are not available, as long
8593 as the first two are identical. For instance, both "sbc r0,r1" and
8594 "sbc r0,r0,r1" are allowed. */
8600 Rd
= inst
.operands
[0].reg
;
8601 Rs
= (inst
.operands
[1].present
8602 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
8603 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
8604 Rn
= inst
.operands
[2].reg
;
8608 if (!inst
.operands
[2].isreg
)
8610 /* For an immediate, we always generate a 32-bit opcode;
8611 section relaxation will shrink it later if possible. */
8612 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8613 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
8614 inst
.instruction
|= Rd
<< 8;
8615 inst
.instruction
|= Rs
<< 16;
8616 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
8622 /* See if we can do this with a 16-bit instruction. */
8623 if (THUMB_SETS_FLAGS (inst
.instruction
))
8624 narrow
= current_it_mask
== 0;
8626 narrow
= current_it_mask
!= 0;
8628 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
8630 if (inst
.operands
[2].shifted
)
8632 if (inst
.size_req
== 4)
8638 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8639 inst
.instruction
|= Rd
;
8640 inst
.instruction
|= Rn
<< 3;
8644 /* If we get here, it can't be done in 16 bits. */
8645 constraint (inst
.operands
[2].shifted
8646 && inst
.operands
[2].immisreg
,
8647 _("shift must be constant"));
8648 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8649 inst
.instruction
|= Rd
<< 8;
8650 inst
.instruction
|= Rs
<< 16;
8651 encode_thumb32_shifted_operand (2);
8656 /* On its face this is a lie - the instruction does set the
8657 flags. However, the only supported mnemonic in this mode
8659 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
8661 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
8662 _("unshifted register required"));
8663 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
8664 constraint (Rd
!= Rs
,
8665 _("dest and source1 must be the same register"));
8667 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8668 inst
.instruction
|= Rd
;
8669 inst
.instruction
|= Rn
<< 3;
8673 /* Similarly, but for instructions where the arithmetic operation is
8674 commutative, so we can allow either of them to be different from
8675 the destination operand in a 16-bit instruction. For instance, all
8676 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8683 Rd
= inst
.operands
[0].reg
;
8684 Rs
= (inst
.operands
[1].present
8685 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
8686 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
8687 Rn
= inst
.operands
[2].reg
;
8691 if (!inst
.operands
[2].isreg
)
8693 /* For an immediate, we always generate a 32-bit opcode;
8694 section relaxation will shrink it later if possible. */
8695 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8696 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
8697 inst
.instruction
|= Rd
<< 8;
8698 inst
.instruction
|= Rs
<< 16;
8699 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
8705 /* See if we can do this with a 16-bit instruction. */
8706 if (THUMB_SETS_FLAGS (inst
.instruction
))
8707 narrow
= current_it_mask
== 0;
8709 narrow
= current_it_mask
!= 0;
8711 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
8713 if (inst
.operands
[2].shifted
)
8715 if (inst
.size_req
== 4)
8722 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8723 inst
.instruction
|= Rd
;
8724 inst
.instruction
|= Rn
<< 3;
8729 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8730 inst
.instruction
|= Rd
;
8731 inst
.instruction
|= Rs
<< 3;
8736 /* If we get here, it can't be done in 16 bits. */
8737 constraint (inst
.operands
[2].shifted
8738 && inst
.operands
[2].immisreg
,
8739 _("shift must be constant"));
8740 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8741 inst
.instruction
|= Rd
<< 8;
8742 inst
.instruction
|= Rs
<< 16;
8743 encode_thumb32_shifted_operand (2);
8748 /* On its face this is a lie - the instruction does set the
8749 flags. However, the only supported mnemonic in this mode
8751 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
8753 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
8754 _("unshifted register required"));
8755 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
8757 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8758 inst
.instruction
|= Rd
;
8761 inst
.instruction
|= Rn
<< 3;
8763 inst
.instruction
|= Rs
<< 3;
8765 constraint (1, _("dest must overlap one source register"));
8772 if (inst
.operands
[0].present
)
8774 constraint ((inst
.instruction
& 0xf0) != 0x40
8775 && inst
.operands
[0].imm
!= 0xf,
8776 "bad barrier type");
8777 inst
.instruction
|= inst
.operands
[0].imm
;
8780 inst
.instruction
|= 0xf;
8786 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
8787 constraint (msb
> 32, _("bit-field extends past end of register"));
8788 /* The instruction encoding stores the LSB and MSB,
8789 not the LSB and width. */
8790 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8791 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
8792 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
8793 inst
.instruction
|= msb
- 1;
8801 /* #0 in second position is alternative syntax for bfc, which is
8802 the same instruction but with REG_PC in the Rm field. */
8803 if (!inst
.operands
[1].isreg
)
8804 inst
.operands
[1].reg
= REG_PC
;
8806 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
8807 constraint (msb
> 32, _("bit-field extends past end of register"));
8808 /* The instruction encoding stores the LSB and MSB,
8809 not the LSB and width. */
8810 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8811 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8812 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
8813 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
8814 inst
.instruction
|= msb
- 1;
8820 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
8821 _("bit-field extends past end of register"));
8822 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8823 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8824 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
8825 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
8826 inst
.instruction
|= inst
.operands
[3].imm
- 1;
8829 /* ARM V5 Thumb BLX (argument parse)
8830 BLX <target_addr> which is BLX(1)
8831 BLX <Rm> which is BLX(2)
8832 Unfortunately, there are two different opcodes for this mnemonic.
8833 So, the insns[].value is not used, and the code here zaps values
8834 into inst.instruction.
8836 ??? How to take advantage of the additional two bits of displacement
8837 available in Thumb32 mode? Need new relocation? */
8842 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
8843 if (inst
.operands
[0].isreg
)
8844 /* We have a register, so this is BLX(2). */
8845 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
8848 /* No register. This must be BLX(1). */
8849 inst
.instruction
= 0xf000e800;
8851 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
8852 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
8855 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BLX
;
8856 inst
.reloc
.pc_rel
= 1;
8866 if (current_it_mask
)
8868 /* Conditional branches inside IT blocks are encoded as unconditional
8871 /* A branch must be the last instruction in an IT block. */
8872 constraint (current_it_mask
!= 0x10, BAD_BRANCH
);
8877 if (cond
!= COND_ALWAYS
)
8878 opcode
= T_MNEM_bcond
;
8880 opcode
= inst
.instruction
;
8882 if (unified_syntax
&& inst
.size_req
== 4)
8884 inst
.instruction
= THUMB_OP32(opcode
);
8885 if (cond
== COND_ALWAYS
)
8886 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
8889 assert (cond
!= 0xF);
8890 inst
.instruction
|= cond
<< 22;
8891 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
8896 inst
.instruction
= THUMB_OP16(opcode
);
8897 if (cond
== COND_ALWAYS
)
8898 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
8901 inst
.instruction
|= cond
<< 8;
8902 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
8904 /* Allow section relaxation. */
8905 if (unified_syntax
&& inst
.size_req
!= 2)
8906 inst
.relax
= opcode
;
8909 inst
.reloc
.pc_rel
= 1;
8915 constraint (inst
.cond
!= COND_ALWAYS
,
8916 _("instruction is always unconditional"));
8917 if (inst
.operands
[0].present
)
8919 constraint (inst
.operands
[0].imm
> 255,
8920 _("immediate value out of range"));
8921 inst
.instruction
|= inst
.operands
[0].imm
;
8926 do_t_branch23 (void)
8928 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
8929 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
8930 inst
.reloc
.pc_rel
= 1;
8932 /* If the destination of the branch is a defined symbol which does not have
8933 the THUMB_FUNC attribute, then we must be calling a function which has
8934 the (interfacearm) attribute. We look for the Thumb entry point to that
8935 function and change the branch to refer to that function instead. */
8936 if ( inst
.reloc
.exp
.X_op
== O_symbol
8937 && inst
.reloc
.exp
.X_add_symbol
!= NULL
8938 && S_IS_DEFINED (inst
.reloc
.exp
.X_add_symbol
)
8939 && ! THUMB_IS_FUNC (inst
.reloc
.exp
.X_add_symbol
))
8940 inst
.reloc
.exp
.X_add_symbol
=
8941 find_real_start (inst
.reloc
.exp
.X_add_symbol
);
8947 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
8948 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
8949 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8950 should cause the alignment to be checked once it is known. This is
8951 because BX PC only works if the instruction is word aligned. */
8957 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
8958 if (inst
.operands
[0].reg
== REG_PC
)
8959 as_tsktsk (_("use of r15 in bxj is not really useful"));
8961 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8967 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8968 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8969 inst
.instruction
|= inst
.operands
[1].reg
;
8975 constraint (current_it_mask
, BAD_NOT_IT
);
8976 inst
.instruction
|= inst
.operands
[0].imm
;
8982 constraint (current_it_mask
, BAD_NOT_IT
);
8984 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
8985 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
8987 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
8988 inst
.instruction
= 0xf3af8000;
8989 inst
.instruction
|= imod
<< 9;
8990 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
8991 if (inst
.operands
[1].present
)
8992 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
8996 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
8997 && (inst
.operands
[0].imm
& 4),
8998 _("selected processor does not support 'A' form "
8999 "of this instruction"));
9000 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
9001 _("Thumb does not support the 2-argument "
9002 "form of this instruction"));
9003 inst
.instruction
|= inst
.operands
[0].imm
;
9007 /* THUMB CPY instruction (argument parse). */
9012 if (inst
.size_req
== 4)
9014 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
9015 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9016 inst
.instruction
|= inst
.operands
[1].reg
;
9020 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
9021 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
9022 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9029 constraint (current_it_mask
, BAD_NOT_IT
);
9030 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
9031 inst
.instruction
|= inst
.operands
[0].reg
;
9032 inst
.reloc
.pc_rel
= 1;
9033 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
9039 inst
.instruction
|= inst
.operands
[0].imm
;
9045 if (!inst
.operands
[1].present
)
9046 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
9047 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9048 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9049 inst
.instruction
|= inst
.operands
[2].reg
;
9055 if (unified_syntax
&& inst
.size_req
== 4)
9056 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9058 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9064 unsigned int cond
= inst
.operands
[0].imm
;
9066 constraint (current_it_mask
, BAD_NOT_IT
);
9067 current_it_mask
= (inst
.instruction
& 0xf) | 0x10;
9070 /* If the condition is a negative condition, invert the mask. */
9071 if ((cond
& 0x1) == 0x0)
9073 unsigned int mask
= inst
.instruction
& 0x000f;
9075 if ((mask
& 0x7) == 0)
9076 /* no conversion needed */;
9077 else if ((mask
& 0x3) == 0)
9079 else if ((mask
& 0x1) == 0)
9084 inst
.instruction
&= 0xfff0;
9085 inst
.instruction
|= mask
;
9088 inst
.instruction
|= cond
<< 4;
9091 /* Helper function used for both push/pop and ldm/stm. */
9093 encode_thumb2_ldmstm (int base
, unsigned mask
, bfd_boolean writeback
)
9097 load
= (inst
.instruction
& (1 << 20)) != 0;
9099 if (mask
& (1 << 13))
9100 inst
.error
= _("SP not allowed in register list");
9103 if (mask
& (1 << 14)
9104 && mask
& (1 << 15))
9105 inst
.error
= _("LR and PC should not both be in register list");
9107 if ((mask
& (1 << base
)) != 0
9109 as_warn (_("base register should not be in register list "
9110 "when written back"));
9114 if (mask
& (1 << 15))
9115 inst
.error
= _("PC not allowed in register list");
9117 if (mask
& (1 << base
))
9118 as_warn (_("value stored for r%d is UNPREDICTABLE"), base
);
9121 if ((mask
& (mask
- 1)) == 0)
9123 /* Single register transfers implemented as str/ldr. */
9126 if (inst
.instruction
& (1 << 23))
9127 inst
.instruction
= 0x00000b04; /* ia! -> [base], #4 */
9129 inst
.instruction
= 0x00000d04; /* db! -> [base, #-4]! */
9133 if (inst
.instruction
& (1 << 23))
9134 inst
.instruction
= 0x00800000; /* ia -> [base] */
9136 inst
.instruction
= 0x00000c04; /* db -> [base, #-4] */
9139 inst
.instruction
|= 0xf8400000;
9141 inst
.instruction
|= 0x00100000;
9143 mask
= ffs(mask
) - 1;
9147 inst
.instruction
|= WRITE_BACK
;
9149 inst
.instruction
|= mask
;
9150 inst
.instruction
|= base
<< 16;
9156 /* This really doesn't seem worth it. */
9157 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
9158 _("expression too complex"));
9159 constraint (inst
.operands
[1].writeback
,
9160 _("Thumb load/store multiple does not support {reglist}^"));
9168 /* See if we can use a 16-bit instruction. */
9169 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
9170 && inst
.size_req
!= 4
9171 && !(inst
.operands
[1].imm
& ~0xff))
9173 mask
= 1 << inst
.operands
[0].reg
;
9175 if (inst
.operands
[0].reg
<= 7
9176 && (inst
.instruction
== T_MNEM_stmia
9177 ? inst
.operands
[0].writeback
9178 : (inst
.operands
[0].writeback
9179 == !(inst
.operands
[1].imm
& mask
))))
9181 if (inst
.instruction
== T_MNEM_stmia
9182 && (inst
.operands
[1].imm
& mask
)
9183 && (inst
.operands
[1].imm
& (mask
- 1)))
9184 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9185 inst
.operands
[0].reg
);
9187 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9188 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9189 inst
.instruction
|= inst
.operands
[1].imm
;
9192 else if (inst
.operands
[0] .reg
== REG_SP
9193 && inst
.operands
[0].writeback
)
9195 inst
.instruction
= THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
9196 ? T_MNEM_push
: T_MNEM_pop
);
9197 inst
.instruction
|= inst
.operands
[1].imm
;
9204 if (inst
.instruction
< 0xffff)
9205 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9207 encode_thumb2_ldmstm(inst
.operands
[0].reg
, inst
.operands
[1].imm
,
9208 inst
.operands
[0].writeback
);
9213 constraint (inst
.operands
[0].reg
> 7
9214 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
9215 constraint (inst
.instruction
!= T_MNEM_ldmia
9216 && inst
.instruction
!= T_MNEM_stmia
,
9217 _("Thumb-2 instruction only valid in unified syntax"));
9218 if (inst
.instruction
== T_MNEM_stmia
)
9220 if (!inst
.operands
[0].writeback
)
9221 as_warn (_("this instruction will write back the base register"));
9222 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
9223 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
9224 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9225 inst
.operands
[0].reg
);
9229 if (!inst
.operands
[0].writeback
9230 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
9231 as_warn (_("this instruction will write back the base register"));
9232 else if (inst
.operands
[0].writeback
9233 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
9234 as_warn (_("this instruction will not write back the base register"));
9237 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9238 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9239 inst
.instruction
|= inst
.operands
[1].imm
;
9246 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
9247 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
9248 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
9249 || inst
.operands
[1].negative
,
9252 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9253 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9254 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
9260 if (!inst
.operands
[1].present
)
9262 constraint (inst
.operands
[0].reg
== REG_LR
,
9263 _("r14 not allowed as first register "
9264 "when second register is omitted"));
9265 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
9267 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
9270 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9271 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
9272 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9278 unsigned long opcode
;
9281 opcode
= inst
.instruction
;
9284 if (!inst
.operands
[1].isreg
)
9286 if (opcode
<= 0xffff)
9287 inst
.instruction
= THUMB_OP32 (opcode
);
9288 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
9291 if (inst
.operands
[1].isreg
9292 && !inst
.operands
[1].writeback
9293 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
9294 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
9296 && inst
.size_req
!= 4)
9298 /* Insn may have a 16-bit form. */
9299 Rn
= inst
.operands
[1].reg
;
9300 if (inst
.operands
[1].immisreg
)
9302 inst
.instruction
= THUMB_OP16 (opcode
);
9304 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
9307 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
9308 && opcode
!= T_MNEM_ldrsb
)
9309 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
9310 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
9317 if (inst
.reloc
.pc_rel
)
9318 opcode
= T_MNEM_ldr_pc2
;
9320 opcode
= T_MNEM_ldr_pc
;
9324 if (opcode
== T_MNEM_ldr
)
9325 opcode
= T_MNEM_ldr_sp
;
9327 opcode
= T_MNEM_str_sp
;
9329 inst
.instruction
= inst
.operands
[0].reg
<< 8;
9333 inst
.instruction
= inst
.operands
[0].reg
;
9334 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9336 inst
.instruction
|= THUMB_OP16 (opcode
);
9337 if (inst
.size_req
== 2)
9338 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
9340 inst
.relax
= opcode
;
9344 /* Definitely a 32-bit variant. */
9345 inst
.instruction
= THUMB_OP32 (opcode
);
9346 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9347 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
9351 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
9353 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
9355 /* Only [Rn,Rm] is acceptable. */
9356 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
9357 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
9358 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
9359 || inst
.operands
[1].negative
,
9360 _("Thumb does not support this addressing mode"));
9361 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9365 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9366 if (!inst
.operands
[1].isreg
)
9367 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
9370 constraint (!inst
.operands
[1].preind
9371 || inst
.operands
[1].shifted
9372 || inst
.operands
[1].writeback
,
9373 _("Thumb does not support this addressing mode"));
9374 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
9376 constraint (inst
.instruction
& 0x0600,
9377 _("byte or halfword not valid for base register"));
9378 constraint (inst
.operands
[1].reg
== REG_PC
9379 && !(inst
.instruction
& THUMB_LOAD_BIT
),
9380 _("r15 based store not allowed"));
9381 constraint (inst
.operands
[1].immisreg
,
9382 _("invalid base register for register offset"));
9384 if (inst
.operands
[1].reg
== REG_PC
)
9385 inst
.instruction
= T_OPCODE_LDR_PC
;
9386 else if (inst
.instruction
& THUMB_LOAD_BIT
)
9387 inst
.instruction
= T_OPCODE_LDR_SP
;
9389 inst
.instruction
= T_OPCODE_STR_SP
;
9391 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9392 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
9396 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
9397 if (!inst
.operands
[1].immisreg
)
9399 /* Immediate offset. */
9400 inst
.instruction
|= inst
.operands
[0].reg
;
9401 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9402 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
9406 /* Register offset. */
9407 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
9408 constraint (inst
.operands
[1].negative
,
9409 _("Thumb does not support this addressing mode"));
9412 switch (inst
.instruction
)
9414 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
9415 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
9416 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
9417 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
9418 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
9419 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
9420 case 0x5600 /* ldrsb */:
9421 case 0x5e00 /* ldrsh */: break;
9425 inst
.instruction
|= inst
.operands
[0].reg
;
9426 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9427 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
9433 if (!inst
.operands
[1].present
)
9435 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
9436 constraint (inst
.operands
[0].reg
== REG_LR
,
9437 _("r14 not allowed here"));
9439 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9440 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
9441 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
9448 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9449 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
9455 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9456 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9457 inst
.instruction
|= inst
.operands
[2].reg
;
9458 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
9464 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9465 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
9466 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9467 inst
.instruction
|= inst
.operands
[3].reg
;
9475 int r0off
= (inst
.instruction
== T_MNEM_mov
9476 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
9477 unsigned long opcode
;
9479 bfd_boolean low_regs
;
9481 low_regs
= (inst
.operands
[0].reg
<= 7 && inst
.operands
[1].reg
<= 7);
9482 opcode
= inst
.instruction
;
9483 if (current_it_mask
)
9484 narrow
= opcode
!= T_MNEM_movs
;
9486 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
9487 if (inst
.size_req
== 4
9488 || inst
.operands
[1].shifted
)
9491 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9492 if (opcode
== T_MNEM_movs
&& inst
.operands
[1].isreg
9493 && !inst
.operands
[1].shifted
9494 && inst
.operands
[0].reg
== REG_PC
9495 && inst
.operands
[1].reg
== REG_LR
)
9497 inst
.instruction
= T2_SUBS_PC_LR
;
9501 if (!inst
.operands
[1].isreg
)
9503 /* Immediate operand. */
9504 if (current_it_mask
== 0 && opcode
== T_MNEM_mov
)
9506 if (low_regs
&& narrow
)
9508 inst
.instruction
= THUMB_OP16 (opcode
);
9509 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9510 if (inst
.size_req
== 2)
9511 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
9513 inst
.relax
= opcode
;
9517 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9518 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9519 inst
.instruction
|= inst
.operands
[0].reg
<< r0off
;
9520 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9523 else if (inst
.operands
[1].shifted
&& inst
.operands
[1].immisreg
9524 && (inst
.instruction
== T_MNEM_mov
9525 || inst
.instruction
== T_MNEM_movs
))
9527 /* Register shifts are encoded as separate shift instructions. */
9528 bfd_boolean flags
= (inst
.instruction
== T_MNEM_movs
);
9530 if (current_it_mask
)
9535 if (inst
.size_req
== 4)
9538 if (!low_regs
|| inst
.operands
[1].imm
> 7)
9541 if (inst
.operands
[0].reg
!= inst
.operands
[1].reg
)
9544 switch (inst
.operands
[1].shift_kind
)
9547 opcode
= narrow
? T_OPCODE_LSL_R
: THUMB_OP32 (T_MNEM_lsl
);
9550 opcode
= narrow
? T_OPCODE_ASR_R
: THUMB_OP32 (T_MNEM_asr
);
9553 opcode
= narrow
? T_OPCODE_LSR_R
: THUMB_OP32 (T_MNEM_lsr
);
9556 opcode
= narrow
? T_OPCODE_ROR_R
: THUMB_OP32 (T_MNEM_ror
);
9562 inst
.instruction
= opcode
;
9565 inst
.instruction
|= inst
.operands
[0].reg
;
9566 inst
.instruction
|= inst
.operands
[1].imm
<< 3;
9571 inst
.instruction
|= CONDS_BIT
;
9573 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9574 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9575 inst
.instruction
|= inst
.operands
[1].imm
;
9580 /* Some mov with immediate shift have narrow variants.
9581 Register shifts are handled above. */
9582 if (low_regs
&& inst
.operands
[1].shifted
9583 && (inst
.instruction
== T_MNEM_mov
9584 || inst
.instruction
== T_MNEM_movs
))
9586 if (current_it_mask
)
9587 narrow
= (inst
.instruction
== T_MNEM_mov
);
9589 narrow
= (inst
.instruction
== T_MNEM_movs
);
9594 switch (inst
.operands
[1].shift_kind
)
9596 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
9597 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
9598 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
9599 default: narrow
= FALSE
; break;
9605 inst
.instruction
|= inst
.operands
[0].reg
;
9606 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9607 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
9611 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9612 inst
.instruction
|= inst
.operands
[0].reg
<< r0off
;
9613 encode_thumb32_shifted_operand (1);
9617 switch (inst
.instruction
)
9620 inst
.instruction
= T_OPCODE_MOV_HR
;
9621 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
9622 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
9623 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9627 /* We know we have low registers at this point.
9628 Generate ADD Rd, Rs, #0. */
9629 inst
.instruction
= T_OPCODE_ADD_I3
;
9630 inst
.instruction
|= inst
.operands
[0].reg
;
9631 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9637 inst
.instruction
= T_OPCODE_CMP_LR
;
9638 inst
.instruction
|= inst
.operands
[0].reg
;
9639 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9643 inst
.instruction
= T_OPCODE_CMP_HR
;
9644 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
9645 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
9646 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9653 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9654 if (inst
.operands
[1].isreg
)
9656 if (inst
.operands
[0].reg
< 8 && inst
.operands
[1].reg
< 8)
9658 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9659 since a MOV instruction produces unpredictable results. */
9660 if (inst
.instruction
== T_OPCODE_MOV_I8
)
9661 inst
.instruction
= T_OPCODE_ADD_I3
;
9663 inst
.instruction
= T_OPCODE_CMP_LR
;
9665 inst
.instruction
|= inst
.operands
[0].reg
;
9666 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9670 if (inst
.instruction
== T_OPCODE_MOV_I8
)
9671 inst
.instruction
= T_OPCODE_MOV_HR
;
9673 inst
.instruction
= T_OPCODE_CMP_HR
;
9679 constraint (inst
.operands
[0].reg
> 7,
9680 _("only lo regs allowed with immediate"));
9681 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9682 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
9692 top
= (inst
.instruction
& 0x00800000) != 0;
9693 if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
)
9695 constraint (top
, _(":lower16: not allowed this instruction"));
9696 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVW
;
9698 else if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
)
9700 constraint (!top
, _(":upper16: not allowed this instruction"));
9701 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVT
;
9704 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9705 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
9707 imm
= inst
.reloc
.exp
.X_add_number
;
9708 inst
.instruction
|= (imm
& 0xf000) << 4;
9709 inst
.instruction
|= (imm
& 0x0800) << 15;
9710 inst
.instruction
|= (imm
& 0x0700) << 4;
9711 inst
.instruction
|= (imm
& 0x00ff);
9720 int r0off
= (inst
.instruction
== T_MNEM_mvn
9721 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
9724 if (inst
.size_req
== 4
9725 || inst
.instruction
> 0xffff
9726 || inst
.operands
[1].shifted
9727 || inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
9729 else if (inst
.instruction
== T_MNEM_cmn
)
9731 else if (THUMB_SETS_FLAGS (inst
.instruction
))
9732 narrow
= (current_it_mask
== 0);
9734 narrow
= (current_it_mask
!= 0);
9736 if (!inst
.operands
[1].isreg
)
9738 /* For an immediate, we always generate a 32-bit opcode;
9739 section relaxation will shrink it later if possible. */
9740 if (inst
.instruction
< 0xffff)
9741 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9742 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9743 inst
.instruction
|= inst
.operands
[0].reg
<< r0off
;
9744 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9748 /* See if we can do this with a 16-bit instruction. */
9751 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9752 inst
.instruction
|= inst
.operands
[0].reg
;
9753 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9757 constraint (inst
.operands
[1].shifted
9758 && inst
.operands
[1].immisreg
,
9759 _("shift must be constant"));
9760 if (inst
.instruction
< 0xffff)
9761 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9762 inst
.instruction
|= inst
.operands
[0].reg
<< r0off
;
9763 encode_thumb32_shifted_operand (1);
9769 constraint (inst
.instruction
> 0xffff
9770 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
9771 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
9772 _("unshifted register required"));
9773 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
9776 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9777 inst
.instruction
|= inst
.operands
[0].reg
;
9778 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9787 if (do_vfp_nsyn_mrs () == SUCCESS
)
9790 flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
9793 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7m
),
9794 _("selected processor does not support "
9795 "requested special purpose register"));
9799 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
),
9800 _("selected processor does not support "
9801 "requested special purpose register %x"));
9802 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9803 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
9804 _("'CPSR' or 'SPSR' expected"));
9807 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9808 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
9809 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
9817 if (do_vfp_nsyn_msr () == SUCCESS
)
9820 constraint (!inst
.operands
[1].isreg
,
9821 _("Thumb encoding does not support an immediate here"));
9822 flags
= inst
.operands
[0].imm
;
9825 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
),
9826 _("selected processor does not support "
9827 "requested special purpose register"));
9831 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7m
),
9832 _("selected processor does not support "
9833 "requested special purpose register"));
9836 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
9837 inst
.instruction
|= (flags
& ~SPSR_BIT
) >> 8;
9838 inst
.instruction
|= (flags
& 0xff);
9839 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9845 if (!inst
.operands
[2].present
)
9846 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
9848 /* There is no 32-bit MULS and no 16-bit MUL. */
9849 if (unified_syntax
&& inst
.instruction
== T_MNEM_mul
)
9851 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9852 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9853 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9854 inst
.instruction
|= inst
.operands
[2].reg
<< 0;
9858 constraint (!unified_syntax
9859 && inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
9860 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
9863 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9864 inst
.instruction
|= inst
.operands
[0].reg
;
9866 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
9867 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
9868 else if (inst
.operands
[0].reg
== inst
.operands
[2].reg
)
9869 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9871 constraint (1, _("dest must overlap one source register"));
9878 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9879 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
9880 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9881 inst
.instruction
|= inst
.operands
[3].reg
;
9883 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
9884 as_tsktsk (_("rdhi and rdlo must be different"));
9892 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
9894 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9895 inst
.instruction
|= inst
.operands
[0].imm
;
9899 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9900 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
9905 constraint (inst
.operands
[0].present
,
9906 _("Thumb does not support NOP with hints"));
9907 inst
.instruction
= 0x46c0;
9918 if (THUMB_SETS_FLAGS (inst
.instruction
))
9919 narrow
= (current_it_mask
== 0);
9921 narrow
= (current_it_mask
!= 0);
9922 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
9924 if (inst
.size_req
== 4)
9929 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9930 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9931 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9935 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9936 inst
.instruction
|= inst
.operands
[0].reg
;
9937 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9942 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
9944 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
9946 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9947 inst
.instruction
|= inst
.operands
[0].reg
;
9948 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9955 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9956 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9957 inst
.instruction
|= inst
.operands
[2].reg
;
9958 if (inst
.operands
[3].present
)
9960 unsigned int val
= inst
.reloc
.exp
.X_add_number
;
9961 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9962 _("expression too complex"));
9963 inst
.instruction
|= (val
& 0x1c) << 10;
9964 inst
.instruction
|= (val
& 0x03) << 6;
9971 if (!inst
.operands
[3].present
)
9972 inst
.instruction
&= ~0x00000020;
9979 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
9983 do_t_push_pop (void)
9987 constraint (inst
.operands
[0].writeback
,
9988 _("push/pop do not support {reglist}^"));
9989 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
9990 _("expression too complex"));
9992 mask
= inst
.operands
[0].imm
;
9993 if ((mask
& ~0xff) == 0)
9994 inst
.instruction
= THUMB_OP16 (inst
.instruction
) | mask
;
9995 else if ((inst
.instruction
== T_MNEM_push
9996 && (mask
& ~0xff) == 1 << REG_LR
)
9997 || (inst
.instruction
== T_MNEM_pop
9998 && (mask
& ~0xff) == 1 << REG_PC
))
10000 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10001 inst
.instruction
|= THUMB_PP_PC_LR
;
10002 inst
.instruction
|= mask
& 0xff;
10004 else if (unified_syntax
)
10006 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10007 encode_thumb2_ldmstm(13, mask
, TRUE
);
10011 inst
.error
= _("invalid register list to push/pop instruction");
10019 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10020 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10026 if (inst
.operands
[0].reg
<= 7 && inst
.operands
[1].reg
<= 7
10027 && inst
.size_req
!= 4)
10029 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10030 inst
.instruction
|= inst
.operands
[0].reg
;
10031 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10033 else if (unified_syntax
)
10035 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10036 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10037 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10038 inst
.instruction
|= inst
.operands
[1].reg
;
10041 inst
.error
= BAD_HIREG
;
10049 Rd
= inst
.operands
[0].reg
;
10050 Rs
= (inst
.operands
[1].present
10051 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
10052 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
10054 inst
.instruction
|= Rd
<< 8;
10055 inst
.instruction
|= Rs
<< 16;
10056 if (!inst
.operands
[2].isreg
)
10058 bfd_boolean narrow
;
10060 if ((inst
.instruction
& 0x00100000) != 0)
10061 narrow
= (current_it_mask
== 0);
10063 narrow
= (current_it_mask
!= 0);
10065 if (Rd
> 7 || Rs
> 7)
10068 if (inst
.size_req
== 4 || !unified_syntax
)
10071 if (inst
.reloc
.exp
.X_op
!= O_constant
10072 || inst
.reloc
.exp
.X_add_number
!= 0)
10075 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10076 relaxation, but it doesn't seem worth the hassle. */
10079 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
10080 inst
.instruction
= THUMB_OP16 (T_MNEM_negs
);
10081 inst
.instruction
|= Rs
<< 3;
10082 inst
.instruction
|= Rd
;
10086 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
10087 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
10091 encode_thumb32_shifted_operand (2);
10097 constraint (current_it_mask
, BAD_NOT_IT
);
10098 if (inst
.operands
[0].imm
)
10099 inst
.instruction
|= 0x8;
10105 if (!inst
.operands
[1].present
)
10106 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
10108 if (unified_syntax
)
10110 bfd_boolean narrow
;
10113 switch (inst
.instruction
)
10116 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
10118 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
10120 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
10122 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
10126 if (THUMB_SETS_FLAGS (inst
.instruction
))
10127 narrow
= (current_it_mask
== 0);
10129 narrow
= (current_it_mask
!= 0);
10130 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
10132 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
10134 if (inst
.operands
[2].isreg
10135 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
10136 || inst
.operands
[2].reg
> 7))
10138 if (inst
.size_req
== 4)
10143 if (inst
.operands
[2].isreg
)
10145 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10146 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10147 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10148 inst
.instruction
|= inst
.operands
[2].reg
;
10152 inst
.operands
[1].shifted
= 1;
10153 inst
.operands
[1].shift_kind
= shift_kind
;
10154 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
10155 ? T_MNEM_movs
: T_MNEM_mov
);
10156 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10157 encode_thumb32_shifted_operand (1);
10158 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10159 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
10164 if (inst
.operands
[2].isreg
)
10166 switch (shift_kind
)
10168 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
10169 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
10170 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
10171 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
10175 inst
.instruction
|= inst
.operands
[0].reg
;
10176 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
10180 switch (shift_kind
)
10182 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
10183 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
10184 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
10187 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
10188 inst
.instruction
|= inst
.operands
[0].reg
;
10189 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10195 constraint (inst
.operands
[0].reg
> 7
10196 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
10197 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
10199 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
10201 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
10202 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
10203 _("source1 and dest must be same register"));
10205 switch (inst
.instruction
)
10207 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
10208 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
10209 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
10210 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
10214 inst
.instruction
|= inst
.operands
[0].reg
;
10215 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
10219 switch (inst
.instruction
)
10221 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
10222 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
10223 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
10224 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
10227 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
10228 inst
.instruction
|= inst
.operands
[0].reg
;
10229 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10237 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10238 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10239 inst
.instruction
|= inst
.operands
[2].reg
;
10245 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
10246 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
10247 _("expression too complex"));
10248 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
10249 inst
.instruction
|= (value
& 0xf000) >> 12;
10250 inst
.instruction
|= (value
& 0x0ff0);
10251 inst
.instruction
|= (value
& 0x000f) << 16;
10257 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10258 inst
.instruction
|= inst
.operands
[1].imm
- 1;
10259 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10261 if (inst
.operands
[3].present
)
10263 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
10264 _("expression too complex"));
10266 if (inst
.reloc
.exp
.X_add_number
!= 0)
10268 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
10269 inst
.instruction
|= 0x00200000; /* sh bit */
10270 inst
.instruction
|= (inst
.reloc
.exp
.X_add_number
& 0x1c) << 10;
10271 inst
.instruction
|= (inst
.reloc
.exp
.X_add_number
& 0x03) << 6;
10273 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
10280 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10281 inst
.instruction
|= inst
.operands
[1].imm
- 1;
10282 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10288 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10289 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10290 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10291 || inst
.operands
[2].negative
,
10294 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10295 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10296 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10297 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
10303 if (!inst
.operands
[2].present
)
10304 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
10306 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10307 || inst
.operands
[0].reg
== inst
.operands
[2].reg
10308 || inst
.operands
[0].reg
== inst
.operands
[3].reg
10309 || inst
.operands
[1].reg
== inst
.operands
[2].reg
,
10312 inst
.instruction
|= inst
.operands
[0].reg
;
10313 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10314 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10315 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
10321 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10322 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10323 inst
.instruction
|= inst
.operands
[2].reg
;
10324 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
10330 if (inst
.instruction
<= 0xffff && inst
.size_req
!= 4
10331 && inst
.operands
[0].reg
<= 7 && inst
.operands
[1].reg
<= 7
10332 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
10334 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10335 inst
.instruction
|= inst
.operands
[0].reg
;
10336 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10338 else if (unified_syntax
)
10340 if (inst
.instruction
<= 0xffff)
10341 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10342 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10343 inst
.instruction
|= inst
.operands
[1].reg
;
10344 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
10348 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
10349 _("Thumb encoding does not support rotation"));
10350 constraint (1, BAD_HIREG
);
10357 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
10365 half
= (inst
.instruction
& 0x10) != 0;
10366 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
10367 constraint (inst
.operands
[0].immisreg
,
10368 _("instruction requires register index"));
10369 constraint (inst
.operands
[0].imm
== 15,
10370 _("PC is not a valid index register"));
10371 constraint (!half
&& inst
.operands
[0].shifted
,
10372 _("instruction does not allow shifted index"));
10373 inst
.instruction
|= (inst
.operands
[0].reg
<< 16) | inst
.operands
[0].imm
;
10379 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10380 inst
.instruction
|= inst
.operands
[1].imm
;
10381 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10383 if (inst
.operands
[3].present
)
10385 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
10386 _("expression too complex"));
10387 if (inst
.reloc
.exp
.X_add_number
!= 0)
10389 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
10390 inst
.instruction
|= 0x00200000; /* sh bit */
10392 inst
.instruction
|= (inst
.reloc
.exp
.X_add_number
& 0x1c) << 10;
10393 inst
.instruction
|= (inst
.reloc
.exp
.X_add_number
& 0x03) << 6;
10395 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
10402 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10403 inst
.instruction
|= inst
.operands
[1].imm
;
10404 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10407 /* Neon instruction encoder helpers. */
10409 /* Encodings for the different types for various Neon opcodes. */
10411 /* An "invalid" code for the following tables. */
10414 struct neon_tab_entry
10417 unsigned float_or_poly
;
10418 unsigned scalar_or_imm
;
10421 /* Map overloaded Neon opcodes to their respective encodings. */
10422 #define NEON_ENC_TAB \
10423 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10424 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10425 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10426 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10427 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10428 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10429 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10430 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10431 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10432 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10433 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10434 /* Register variants of the following two instructions are encoded as
10435 vcge / vcgt with the operands reversed. */ \
10436 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10437 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
10438 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10439 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10440 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10441 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10442 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10443 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10444 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10445 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10446 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10447 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10448 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10449 X(vshl, 0x0000400, N_INV, 0x0800510), \
10450 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10451 X(vand, 0x0000110, N_INV, 0x0800030), \
10452 X(vbic, 0x0100110, N_INV, 0x0800030), \
10453 X(veor, 0x1000110, N_INV, N_INV), \
10454 X(vorn, 0x0300110, N_INV, 0x0800010), \
10455 X(vorr, 0x0200110, N_INV, 0x0800010), \
10456 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10457 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10458 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10459 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10460 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10461 X(vst1, 0x0000000, 0x0800000, N_INV), \
10462 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10463 X(vst2, 0x0000100, 0x0800100, N_INV), \
10464 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10465 X(vst3, 0x0000200, 0x0800200, N_INV), \
10466 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10467 X(vst4, 0x0000300, 0x0800300, N_INV), \
10468 X(vmovn, 0x1b20200, N_INV, N_INV), \
10469 X(vtrn, 0x1b20080, N_INV, N_INV), \
10470 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10471 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10472 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10473 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10474 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10475 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10476 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10477 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10478 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10482 #define X(OPC,I,F,S) N_MNEM_##OPC
10487 static const struct neon_tab_entry neon_enc_tab
[] =
10489 #define X(OPC,I,F,S) { (I), (F), (S) }
10494 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10495 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10496 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10497 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10498 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10499 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10500 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10501 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10502 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10503 #define NEON_ENC_SINGLE(X) \
10504 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10505 #define NEON_ENC_DOUBLE(X) \
10506 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10508 /* Define shapes for instruction operands. The following mnemonic characters
10509 are used in this table:
10511 F - VFP S<n> register
10512 D - Neon D<n> register
10513 Q - Neon Q<n> register
10517 L - D<n> register list
10519 This table is used to generate various data:
10520 - enumerations of the form NS_DDR to be used as arguments to
10522 - a table classifying shapes into single, double, quad, mixed.
10523 - a table used to drive neon_select_shape.
10526 #define NEON_SHAPE_DEF \
10527 X(3, (D, D, D), DOUBLE), \
10528 X(3, (Q, Q, Q), QUAD), \
10529 X(3, (D, D, I), DOUBLE), \
10530 X(3, (Q, Q, I), QUAD), \
10531 X(3, (D, D, S), DOUBLE), \
10532 X(3, (Q, Q, S), QUAD), \
10533 X(2, (D, D), DOUBLE), \
10534 X(2, (Q, Q), QUAD), \
10535 X(2, (D, S), DOUBLE), \
10536 X(2, (Q, S), QUAD), \
10537 X(2, (D, R), DOUBLE), \
10538 X(2, (Q, R), QUAD), \
10539 X(2, (D, I), DOUBLE), \
10540 X(2, (Q, I), QUAD), \
10541 X(3, (D, L, D), DOUBLE), \
10542 X(2, (D, Q), MIXED), \
10543 X(2, (Q, D), MIXED), \
10544 X(3, (D, Q, I), MIXED), \
10545 X(3, (Q, D, I), MIXED), \
10546 X(3, (Q, D, D), MIXED), \
10547 X(3, (D, Q, Q), MIXED), \
10548 X(3, (Q, Q, D), MIXED), \
10549 X(3, (Q, D, S), MIXED), \
10550 X(3, (D, Q, S), MIXED), \
10551 X(4, (D, D, D, I), DOUBLE), \
10552 X(4, (Q, Q, Q, I), QUAD), \
10553 X(2, (F, F), SINGLE), \
10554 X(3, (F, F, F), SINGLE), \
10555 X(2, (F, I), SINGLE), \
10556 X(2, (F, D), MIXED), \
10557 X(2, (D, F), MIXED), \
10558 X(3, (F, F, I), MIXED), \
10559 X(4, (R, R, F, F), SINGLE), \
10560 X(4, (F, F, R, R), SINGLE), \
10561 X(3, (D, R, R), DOUBLE), \
10562 X(3, (R, R, D), DOUBLE), \
10563 X(2, (S, R), SINGLE), \
10564 X(2, (R, S), SINGLE), \
10565 X(2, (F, R), SINGLE), \
10566 X(2, (R, F), SINGLE)
10568 #define S2(A,B) NS_##A##B
10569 #define S3(A,B,C) NS_##A##B##C
10570 #define S4(A,B,C,D) NS_##A##B##C##D
10572 #define X(N, L, C) S##N L
10585 enum neon_shape_class
10593 #define X(N, L, C) SC_##C
10595 static enum neon_shape_class neon_shape_class
[] =
10613 /* Register widths of above. */
10614 static unsigned neon_shape_el_size
[] =
10625 struct neon_shape_info
10628 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
10631 #define S2(A,B) { SE_##A, SE_##B }
10632 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10633 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10635 #define X(N, L, C) { N, S##N L }
10637 static struct neon_shape_info neon_shape_tab
[] =
10647 /* Bit masks used in type checking given instructions.
10648 'N_EQK' means the type must be the same as (or based on in some way) the key
10649 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10650 set, various other bits can be set as well in order to modify the meaning of
10651 the type constraint. */
10653 enum neon_type_mask
10675 N_KEY
= 0x100000, /* key element (main type specifier). */
10676 N_EQK
= 0x200000, /* given operand has the same type & size as the key. */
10677 N_VFP
= 0x400000, /* VFP mode: operand size must match register width. */
10678 N_DBL
= 0x000001, /* if N_EQK, this operand is twice the size. */
10679 N_HLF
= 0x000002, /* if N_EQK, this operand is half the size. */
10680 N_SGN
= 0x000004, /* if N_EQK, this operand is forced to be signed. */
10681 N_UNS
= 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10682 N_INT
= 0x000010, /* if N_EQK, this operand is forced to be integer. */
10683 N_FLT
= 0x000020, /* if N_EQK, this operand is forced to be float. */
10684 N_SIZ
= 0x000040, /* if N_EQK, this operand is forced to be size-only. */
10686 N_MAX_NONSPECIAL
= N_F64
10689 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10691 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10692 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10693 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10694 #define N_SUF_32 (N_SU_32 | N_F32)
10695 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10696 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10698 /* Pass this as the first type argument to neon_check_type to ignore types
10700 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10702 /* Select a "shape" for the current instruction (describing register types or
10703 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10704 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10705 function of operand parsing, so this function doesn't need to be called.
10706 Shapes should be listed in order of decreasing length. */
10708 static enum neon_shape
10709 neon_select_shape (enum neon_shape shape
, ...)
10712 enum neon_shape first_shape
= shape
;
10714 /* Fix missing optional operands. FIXME: we don't know at this point how
10715 many arguments we should have, so this makes the assumption that we have
10716 > 1. This is true of all current Neon opcodes, I think, but may not be
10717 true in the future. */
10718 if (!inst
.operands
[1].present
)
10719 inst
.operands
[1] = inst
.operands
[0];
10721 va_start (ap
, shape
);
10723 for (; shape
!= NS_NULL
; shape
= va_arg (ap
, int))
10728 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
10730 if (!inst
.operands
[j
].present
)
10736 switch (neon_shape_tab
[shape
].el
[j
])
10739 if (!(inst
.operands
[j
].isreg
10740 && inst
.operands
[j
].isvec
10741 && inst
.operands
[j
].issingle
10742 && !inst
.operands
[j
].isquad
))
10747 if (!(inst
.operands
[j
].isreg
10748 && inst
.operands
[j
].isvec
10749 && !inst
.operands
[j
].isquad
10750 && !inst
.operands
[j
].issingle
))
10755 if (!(inst
.operands
[j
].isreg
10756 && !inst
.operands
[j
].isvec
))
10761 if (!(inst
.operands
[j
].isreg
10762 && inst
.operands
[j
].isvec
10763 && inst
.operands
[j
].isquad
10764 && !inst
.operands
[j
].issingle
))
10769 if (!(!inst
.operands
[j
].isreg
10770 && !inst
.operands
[j
].isscalar
))
10775 if (!(!inst
.operands
[j
].isreg
10776 && inst
.operands
[j
].isscalar
))
10790 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
10791 first_error (_("invalid instruction shape"));
10796 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10797 means the Q bit should be set). */
10800 neon_quad (enum neon_shape shape
)
10802 return neon_shape_class
[shape
] == SC_QUAD
;
10806 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
10809 /* Allow modification to be made to types which are constrained to be
10810 based on the key element, based on bits set alongside N_EQK. */
10811 if ((typebits
& N_EQK
) != 0)
10813 if ((typebits
& N_HLF
) != 0)
10815 else if ((typebits
& N_DBL
) != 0)
10817 if ((typebits
& N_SGN
) != 0)
10818 *g_type
= NT_signed
;
10819 else if ((typebits
& N_UNS
) != 0)
10820 *g_type
= NT_unsigned
;
10821 else if ((typebits
& N_INT
) != 0)
10822 *g_type
= NT_integer
;
10823 else if ((typebits
& N_FLT
) != 0)
10824 *g_type
= NT_float
;
10825 else if ((typebits
& N_SIZ
) != 0)
10826 *g_type
= NT_untyped
;
10830 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10831 operand type, i.e. the single type specified in a Neon instruction when it
10832 is the only one given. */
10834 static struct neon_type_el
10835 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
10837 struct neon_type_el dest
= *key
;
10839 assert ((thisarg
& N_EQK
) != 0);
10841 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
10846 /* Convert Neon type and size into compact bitmask representation. */
10848 static enum neon_type_mask
10849 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
10856 case 8: return N_8
;
10857 case 16: return N_16
;
10858 case 32: return N_32
;
10859 case 64: return N_64
;
10867 case 8: return N_I8
;
10868 case 16: return N_I16
;
10869 case 32: return N_I32
;
10870 case 64: return N_I64
;
10878 case 32: return N_F32
;
10879 case 64: return N_F64
;
10887 case 8: return N_P8
;
10888 case 16: return N_P16
;
10896 case 8: return N_S8
;
10897 case 16: return N_S16
;
10898 case 32: return N_S32
;
10899 case 64: return N_S64
;
10907 case 8: return N_U8
;
10908 case 16: return N_U16
;
10909 case 32: return N_U32
;
10910 case 64: return N_U64
;
10921 /* Convert compact Neon bitmask type representation to a type and size. Only
10922 handles the case where a single bit is set in the mask. */
10925 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
10926 enum neon_type_mask mask
)
10928 if ((mask
& N_EQK
) != 0)
10931 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
10933 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_P16
)) != 0)
10935 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
10937 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
)) != 0)
10942 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
10944 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
10945 *type
= NT_unsigned
;
10946 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
10947 *type
= NT_integer
;
10948 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
10949 *type
= NT_untyped
;
10950 else if ((mask
& (N_P8
| N_P16
)) != 0)
10952 else if ((mask
& (N_F32
| N_F64
)) != 0)
10960 /* Modify a bitmask of allowed types. This is only needed for type
10964 modify_types_allowed (unsigned allowed
, unsigned mods
)
10967 enum neon_el_type type
;
10973 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
10975 if (el_type_of_type_chk (&type
, &size
, allowed
& i
) == SUCCESS
)
10977 neon_modify_type_size (mods
, &type
, &size
);
10978 destmask
|= type_chk_of_el_type (type
, size
);
10985 /* Check type and return type classification.
10986 The manual states (paraphrase): If one datatype is given, it indicates the
10988 - the second operand, if there is one
10989 - the operand, if there is no second operand
10990 - the result, if there are no operands.
10991 This isn't quite good enough though, so we use a concept of a "key" datatype
10992 which is set on a per-instruction basis, which is the one which matters when
10993 only one data type is written.
10994 Note: this function has side-effects (e.g. filling in missing operands). All
10995 Neon instructions should call it before performing bit encoding. */
10997 static struct neon_type_el
10998 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
11001 unsigned i
, pass
, key_el
= 0;
11002 unsigned types
[NEON_MAX_TYPE_ELS
];
11003 enum neon_el_type k_type
= NT_invtype
;
11004 unsigned k_size
= -1u;
11005 struct neon_type_el badtype
= {NT_invtype
, -1};
11006 unsigned key_allowed
= 0;
11008 /* Optional registers in Neon instructions are always (not) in operand 1.
11009 Fill in the missing operand here, if it was omitted. */
11010 if (els
> 1 && !inst
.operands
[1].present
)
11011 inst
.operands
[1] = inst
.operands
[0];
11013 /* Suck up all the varargs. */
11015 for (i
= 0; i
< els
; i
++)
11017 unsigned thisarg
= va_arg (ap
, unsigned);
11018 if (thisarg
== N_IGNORE_TYPE
)
11023 types
[i
] = thisarg
;
11024 if ((thisarg
& N_KEY
) != 0)
11029 if (inst
.vectype
.elems
> 0)
11030 for (i
= 0; i
< els
; i
++)
11031 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
11033 first_error (_("types specified in both the mnemonic and operands"));
11037 /* Duplicate inst.vectype elements here as necessary.
11038 FIXME: No idea if this is exactly the same as the ARM assembler,
11039 particularly when an insn takes one register and one non-register
11041 if (inst
.vectype
.elems
== 1 && els
> 1)
11044 inst
.vectype
.elems
= els
;
11045 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
11046 for (j
= 0; j
< els
; j
++)
11048 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
11051 else if (inst
.vectype
.elems
== 0 && els
> 0)
11054 /* No types were given after the mnemonic, so look for types specified
11055 after each operand. We allow some flexibility here; as long as the
11056 "key" operand has a type, we can infer the others. */
11057 for (j
= 0; j
< els
; j
++)
11058 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
11059 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
11061 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
11063 for (j
= 0; j
< els
; j
++)
11064 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
11065 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
11070 first_error (_("operand types can't be inferred"));
11074 else if (inst
.vectype
.elems
!= els
)
11076 first_error (_("type specifier has the wrong number of parts"));
11080 for (pass
= 0; pass
< 2; pass
++)
11082 for (i
= 0; i
< els
; i
++)
11084 unsigned thisarg
= types
[i
];
11085 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
11086 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
11087 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
11088 unsigned g_size
= inst
.vectype
.el
[i
].size
;
11090 /* Decay more-specific signed & unsigned types to sign-insensitive
11091 integer types if sign-specific variants are unavailable. */
11092 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
11093 && (types_allowed
& N_SU_ALL
) == 0)
11094 g_type
= NT_integer
;
11096 /* If only untyped args are allowed, decay any more specific types to
11097 them. Some instructions only care about signs for some element
11098 sizes, so handle that properly. */
11099 if ((g_size
== 8 && (types_allowed
& N_8
) != 0)
11100 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
11101 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
11102 || (g_size
== 64 && (types_allowed
& N_64
) != 0))
11103 g_type
= NT_untyped
;
11107 if ((thisarg
& N_KEY
) != 0)
11111 key_allowed
= thisarg
& ~N_KEY
;
11116 if ((thisarg
& N_VFP
) != 0)
11118 enum neon_shape_el regshape
= neon_shape_tab
[ns
].el
[i
];
11119 unsigned regwidth
= neon_shape_el_size
[regshape
], match
;
11121 /* In VFP mode, operands must match register widths. If we
11122 have a key operand, use its width, else use the width of
11123 the current operand. */
11129 if (regwidth
!= match
)
11131 first_error (_("operand size must match register width"));
11136 if ((thisarg
& N_EQK
) == 0)
11138 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
11140 if ((given_type
& types_allowed
) == 0)
11142 first_error (_("bad type in Neon instruction"));
11148 enum neon_el_type mod_k_type
= k_type
;
11149 unsigned mod_k_size
= k_size
;
11150 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
11151 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
11153 first_error (_("inconsistent types in Neon instruction"));
11161 return inst
.vectype
.el
[key_el
];
11164 /* Neon-style VFP instruction forwarding. */
11166 /* Thumb VFP instructions have 0xE in the condition field. */
11169 do_vfp_cond_or_thumb (void)
11172 inst
.instruction
|= 0xe0000000;
11174 inst
.instruction
|= inst
.cond
<< 28;
11177 /* Look up and encode a simple mnemonic, for use as a helper function for the
11178 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11179 etc. It is assumed that operand parsing has already been done, and that the
11180 operands are in the form expected by the given opcode (this isn't necessarily
11181 the same as the form in which they were parsed, hence some massaging must
11182 take place before this function is called).
11183 Checks current arch version against that in the looked-up opcode. */
11186 do_vfp_nsyn_opcode (const char *opname
)
11188 const struct asm_opcode
*opcode
;
11190 opcode
= hash_find (arm_ops_hsh
, opname
);
11195 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
11196 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
11201 inst
.instruction
= opcode
->tvalue
;
11202 opcode
->tencode ();
11206 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
11207 opcode
->aencode ();
11212 do_vfp_nsyn_add_sub (enum neon_shape rs
)
11214 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
11219 do_vfp_nsyn_opcode ("fadds");
11221 do_vfp_nsyn_opcode ("fsubs");
11226 do_vfp_nsyn_opcode ("faddd");
11228 do_vfp_nsyn_opcode ("fsubd");
11232 /* Check operand types to see if this is a VFP instruction, and if so call
11236 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
11238 enum neon_shape rs
;
11239 struct neon_type_el et
;
11244 rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
11245 et
= neon_check_type (2, rs
,
11246 N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
11250 rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
11251 et
= neon_check_type (3, rs
,
11252 N_EQK
| N_VFP
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
11259 if (et
.type
!= NT_invtype
)
11271 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
11273 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
11278 do_vfp_nsyn_opcode ("fmacs");
11280 do_vfp_nsyn_opcode ("fmscs");
11285 do_vfp_nsyn_opcode ("fmacd");
11287 do_vfp_nsyn_opcode ("fmscd");
11292 do_vfp_nsyn_mul (enum neon_shape rs
)
11295 do_vfp_nsyn_opcode ("fmuls");
11297 do_vfp_nsyn_opcode ("fmuld");
11301 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
11303 int is_neg
= (inst
.instruction
& 0x80) != 0;
11304 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_VFP
| N_KEY
);
11309 do_vfp_nsyn_opcode ("fnegs");
11311 do_vfp_nsyn_opcode ("fabss");
11316 do_vfp_nsyn_opcode ("fnegd");
11318 do_vfp_nsyn_opcode ("fabsd");
11322 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11323 insns belong to Neon, and are handled elsewhere. */
11326 do_vfp_nsyn_ldm_stm (int is_dbmode
)
11328 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
11332 do_vfp_nsyn_opcode ("fldmdbs");
11334 do_vfp_nsyn_opcode ("fldmias");
11339 do_vfp_nsyn_opcode ("fstmdbs");
11341 do_vfp_nsyn_opcode ("fstmias");
11346 do_vfp_nsyn_sqrt (void)
11348 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
11349 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
11352 do_vfp_nsyn_opcode ("fsqrts");
11354 do_vfp_nsyn_opcode ("fsqrtd");
11358 do_vfp_nsyn_div (void)
11360 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
11361 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
11362 N_F32
| N_F64
| N_KEY
| N_VFP
);
11365 do_vfp_nsyn_opcode ("fdivs");
11367 do_vfp_nsyn_opcode ("fdivd");
11371 do_vfp_nsyn_nmul (void)
11373 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
11374 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
11375 N_F32
| N_F64
| N_KEY
| N_VFP
);
11379 inst
.instruction
= NEON_ENC_SINGLE (inst
.instruction
);
11380 do_vfp_sp_dyadic ();
11384 inst
.instruction
= NEON_ENC_DOUBLE (inst
.instruction
);
11385 do_vfp_dp_rd_rn_rm ();
11387 do_vfp_cond_or_thumb ();
11391 do_vfp_nsyn_cmp (void)
11393 if (inst
.operands
[1].isreg
)
11395 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
11396 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
11400 inst
.instruction
= NEON_ENC_SINGLE (inst
.instruction
);
11401 do_vfp_sp_monadic ();
11405 inst
.instruction
= NEON_ENC_DOUBLE (inst
.instruction
);
11406 do_vfp_dp_rd_rm ();
11411 enum neon_shape rs
= neon_select_shape (NS_FI
, NS_DI
, NS_NULL
);
11412 neon_check_type (2, rs
, N_F32
| N_F64
| N_KEY
| N_VFP
, N_EQK
);
11414 switch (inst
.instruction
& 0x0fffffff)
11417 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
11420 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
11428 inst
.instruction
= NEON_ENC_SINGLE (inst
.instruction
);
11429 do_vfp_sp_compare_z ();
11433 inst
.instruction
= NEON_ENC_DOUBLE (inst
.instruction
);
11437 do_vfp_cond_or_thumb ();
11441 nsyn_insert_sp (void)
11443 inst
.operands
[1] = inst
.operands
[0];
11444 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
11445 inst
.operands
[0].reg
= 13;
11446 inst
.operands
[0].isreg
= 1;
11447 inst
.operands
[0].writeback
= 1;
11448 inst
.operands
[0].present
= 1;
11452 do_vfp_nsyn_push (void)
11455 if (inst
.operands
[1].issingle
)
11456 do_vfp_nsyn_opcode ("fstmdbs");
11458 do_vfp_nsyn_opcode ("fstmdbd");
11462 do_vfp_nsyn_pop (void)
11465 if (inst
.operands
[1].issingle
)
11466 do_vfp_nsyn_opcode ("fldmias");
11468 do_vfp_nsyn_opcode ("fldmiad");
11471 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11472 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11475 neon_dp_fixup (unsigned i
)
11479 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11493 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11497 neon_logbits (unsigned x
)
11499 return ffs (x
) - 4;
11502 #define LOW4(R) ((R) & 0xf)
11503 #define HI1(R) (((R) >> 4) & 1)
11505 /* Encode insns with bit pattern:
11507 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11508 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11510 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11511 different meaning for some instruction. */
11514 neon_three_same (int isquad
, int ubit
, int size
)
11516 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11517 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11518 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
11519 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
11520 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
11521 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
11522 inst
.instruction
|= (isquad
!= 0) << 6;
11523 inst
.instruction
|= (ubit
!= 0) << 24;
11525 inst
.instruction
|= neon_logbits (size
) << 20;
11527 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11530 /* Encode instructions of the form:
11532 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11533 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11535 Don't write size if SIZE == -1. */
11538 neon_two_same (int qbit
, int ubit
, int size
)
11540 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11541 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11542 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
11543 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
11544 inst
.instruction
|= (qbit
!= 0) << 6;
11545 inst
.instruction
|= (ubit
!= 0) << 24;
11548 inst
.instruction
|= neon_logbits (size
) << 18;
11550 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11553 /* Neon instruction encoders, in approximate order of appearance. */
11556 do_neon_dyadic_i_su (void)
11558 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11559 struct neon_type_el et
= neon_check_type (3, rs
,
11560 N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
11561 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
11565 do_neon_dyadic_i64_su (void)
11567 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11568 struct neon_type_el et
= neon_check_type (3, rs
,
11569 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
11570 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
11574 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
11577 unsigned size
= et
.size
>> 3;
11578 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11579 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11580 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
11581 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
11582 inst
.instruction
|= (isquad
!= 0) << 6;
11583 inst
.instruction
|= immbits
<< 16;
11584 inst
.instruction
|= (size
>> 3) << 7;
11585 inst
.instruction
|= (size
& 0x7) << 19;
11587 inst
.instruction
|= (uval
!= 0) << 24;
11589 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11593 do_neon_shl_imm (void)
11595 if (!inst
.operands
[2].isreg
)
11597 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
11598 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
11599 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
11600 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, inst
.operands
[2].imm
);
11604 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11605 struct neon_type_el et
= neon_check_type (3, rs
,
11606 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
11609 /* VSHL/VQSHL 3-register variants have syntax such as:
11611 whereas other 3-register operations encoded by neon_three_same have
11614 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11616 tmp
= inst
.operands
[2].reg
;
11617 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
11618 inst
.operands
[1].reg
= tmp
;
11619 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11620 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
11625 do_neon_qshl_imm (void)
11627 if (!inst
.operands
[2].isreg
)
11629 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
11630 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
11632 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
11633 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
11634 inst
.operands
[2].imm
);
11638 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11639 struct neon_type_el et
= neon_check_type (3, rs
,
11640 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
11643 /* See note in do_neon_shl_imm. */
11644 tmp
= inst
.operands
[2].reg
;
11645 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
11646 inst
.operands
[1].reg
= tmp
;
11647 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11648 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
11653 do_neon_rshl (void)
11655 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11656 struct neon_type_el et
= neon_check_type (3, rs
,
11657 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
11660 tmp
= inst
.operands
[2].reg
;
11661 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
11662 inst
.operands
[1].reg
= tmp
;
11663 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
11667 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
11669 /* Handle .I8 pseudo-instructions. */
11672 /* Unfortunately, this will make everything apart from zero out-of-range.
11673 FIXME is this the intended semantics? There doesn't seem much point in
11674 accepting .I8 if so. */
11675 immediate
|= immediate
<< 8;
11681 if (immediate
== (immediate
& 0x000000ff))
11683 *immbits
= immediate
;
11686 else if (immediate
== (immediate
& 0x0000ff00))
11688 *immbits
= immediate
>> 8;
11691 else if (immediate
== (immediate
& 0x00ff0000))
11693 *immbits
= immediate
>> 16;
11696 else if (immediate
== (immediate
& 0xff000000))
11698 *immbits
= immediate
>> 24;
11701 if ((immediate
& 0xffff) != (immediate
>> 16))
11702 goto bad_immediate
;
11703 immediate
&= 0xffff;
11706 if (immediate
== (immediate
& 0x000000ff))
11708 *immbits
= immediate
;
11711 else if (immediate
== (immediate
& 0x0000ff00))
11713 *immbits
= immediate
>> 8;
11718 first_error (_("immediate value out of range"));
11722 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11726 neon_bits_same_in_bytes (unsigned imm
)
11728 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
11729 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
11730 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
11731 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
11734 /* For immediate of above form, return 0bABCD. */
11737 neon_squash_bits (unsigned imm
)
11739 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
11740 | ((imm
& 0x01000000) >> 21);
11743 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11746 neon_qfloat_bits (unsigned imm
)
11748 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
11751 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11752 the instruction. *OP is passed as the initial value of the op field, and
11753 may be set to a different value depending on the constant (i.e.
11754 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11755 MVN). If the immediate looks like a repeated parttern then also
11756 try smaller element sizes. */
11759 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, int float_p
,
11760 unsigned *immbits
, int *op
, int size
,
11761 enum neon_el_type type
)
11763 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11765 if (type
== NT_float
&& !float_p
)
11768 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
11770 if (size
!= 32 || *op
== 1)
11772 *immbits
= neon_qfloat_bits (immlo
);
11778 if (neon_bits_same_in_bytes (immhi
)
11779 && neon_bits_same_in_bytes (immlo
))
11783 *immbits
= (neon_squash_bits (immhi
) << 4)
11784 | neon_squash_bits (immlo
);
11789 if (immhi
!= immlo
)
11795 if (immlo
== (immlo
& 0x000000ff))
11800 else if (immlo
== (immlo
& 0x0000ff00))
11802 *immbits
= immlo
>> 8;
11805 else if (immlo
== (immlo
& 0x00ff0000))
11807 *immbits
= immlo
>> 16;
11810 else if (immlo
== (immlo
& 0xff000000))
11812 *immbits
= immlo
>> 24;
11815 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
11817 *immbits
= (immlo
>> 8) & 0xff;
11820 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
11822 *immbits
= (immlo
>> 16) & 0xff;
11826 if ((immlo
& 0xffff) != (immlo
>> 16))
11833 if (immlo
== (immlo
& 0x000000ff))
11838 else if (immlo
== (immlo
& 0x0000ff00))
11840 *immbits
= immlo
>> 8;
11844 if ((immlo
& 0xff) != (immlo
>> 8))
11849 if (immlo
== (immlo
& 0x000000ff))
11851 /* Don't allow MVN with 8-bit immediate. */
11861 /* Write immediate bits [7:0] to the following locations:
11863 |28/24|23 19|18 16|15 4|3 0|
11864 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11866 This function is used by VMOV/VMVN/VORR/VBIC. */
11869 neon_write_immbits (unsigned immbits
)
11871 inst
.instruction
|= immbits
& 0xf;
11872 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
11873 inst
.instruction
|= ((immbits
>> 7) & 0x1) << 24;
11876 /* Invert low-order SIZE bits of XHI:XLO. */
11879 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
11881 unsigned immlo
= xlo
? *xlo
: 0;
11882 unsigned immhi
= xhi
? *xhi
: 0;
11887 immlo
= (~immlo
) & 0xff;
11891 immlo
= (~immlo
) & 0xffff;
11895 immhi
= (~immhi
) & 0xffffffff;
11896 /* fall through. */
11899 immlo
= (~immlo
) & 0xffffffff;
11914 do_neon_logic (void)
11916 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
11918 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11919 neon_check_type (3, rs
, N_IGNORE_TYPE
);
11920 /* U bit and size field were set as part of the bitmask. */
11921 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11922 neon_three_same (neon_quad (rs
), 0, -1);
11926 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
11927 struct neon_type_el et
= neon_check_type (2, rs
,
11928 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
11929 enum neon_opc opcode
= inst
.instruction
& 0x0fffffff;
11933 if (et
.type
== NT_invtype
)
11936 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
11938 immbits
= inst
.operands
[1].imm
;
11941 /* .i64 is a pseudo-op, so the immediate must be a repeating
11943 if (immbits
!= (inst
.operands
[1].regisimm
?
11944 inst
.operands
[1].reg
: 0))
11946 /* Set immbits to an invalid constant. */
11947 immbits
= 0xdeadbeef;
11954 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
11958 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
11962 /* Pseudo-instruction for VBIC. */
11963 neon_invert_size (&immbits
, 0, et
.size
);
11964 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
11968 /* Pseudo-instruction for VORR. */
11969 neon_invert_size (&immbits
, 0, et
.size
);
11970 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
11980 inst
.instruction
|= neon_quad (rs
) << 6;
11981 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11982 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11983 inst
.instruction
|= cmode
<< 8;
11984 neon_write_immbits (immbits
);
11986 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11991 do_neon_bitfield (void)
11993 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11994 neon_check_type (3, rs
, N_IGNORE_TYPE
);
11995 neon_three_same (neon_quad (rs
), 0, -1);
11999 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
12002 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12003 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
12005 if (et
.type
== NT_float
)
12007 inst
.instruction
= NEON_ENC_FLOAT (inst
.instruction
);
12008 neon_three_same (neon_quad (rs
), 0, -1);
12012 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12013 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
12018 do_neon_dyadic_if_su (void)
12020 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
12024 do_neon_dyadic_if_su_d (void)
12026 /* This version only allow D registers, but that constraint is enforced during
12027 operand parsing so we don't need to do anything extra here. */
12028 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
12032 do_neon_dyadic_if_i_d (void)
12034 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12035 affected if we specify unsigned args. */
12036 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
12039 enum vfp_or_neon_is_neon_bits
12042 NEON_CHECK_ARCH
= 2
12045 /* Call this function if an instruction which may have belonged to the VFP or
12046 Neon instruction sets, but turned out to be a Neon instruction (due to the
12047 operand types involved, etc.). We have to check and/or fix-up a couple of
12050 - Make sure the user hasn't attempted to make a Neon instruction
12052 - Alter the value in the condition code field if necessary.
12053 - Make sure that the arch supports Neon instructions.
12055 Which of these operations take place depends on bits from enum
12056 vfp_or_neon_is_neon_bits.
12058 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12059 current instruction's condition is COND_ALWAYS, the condition field is
12060 changed to inst.uncond_value. This is necessary because instructions shared
12061 between VFP and Neon may be conditional for the VFP variants only, and the
12062 unconditional Neon version must have, e.g., 0xF in the condition field. */
12065 vfp_or_neon_is_neon (unsigned check
)
12067 /* Conditions are always legal in Thumb mode (IT blocks). */
12068 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
12070 if (inst
.cond
!= COND_ALWAYS
)
12072 first_error (_(BAD_COND
));
12075 if (inst
.uncond_value
!= -1)
12076 inst
.instruction
|= inst
.uncond_value
<< 28;
12079 if ((check
& NEON_CHECK_ARCH
)
12080 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
12082 first_error (_(BAD_FPU
));
12090 do_neon_addsub_if_i (void)
12092 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
12095 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12098 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12099 affected if we specify unsigned args. */
12100 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
12103 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12105 V<op> A,B (A is operand 0, B is operand 2)
12110 so handle that case specially. */
12113 neon_exchange_operands (void)
12115 void *scratch
= alloca (sizeof (inst
.operands
[0]));
12116 if (inst
.operands
[1].present
)
12118 /* Swap operands[1] and operands[2]. */
12119 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
12120 inst
.operands
[1] = inst
.operands
[2];
12121 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
12125 inst
.operands
[1] = inst
.operands
[2];
12126 inst
.operands
[2] = inst
.operands
[0];
12131 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
12133 if (inst
.operands
[2].isreg
)
12136 neon_exchange_operands ();
12137 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
12141 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
12142 struct neon_type_el et
= neon_check_type (2, rs
,
12143 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
12145 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
12146 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12147 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12148 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12149 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12150 inst
.instruction
|= neon_quad (rs
) << 6;
12151 inst
.instruction
|= (et
.type
== NT_float
) << 10;
12152 inst
.instruction
|= neon_logbits (et
.size
) << 18;
12154 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12161 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, FALSE
);
12165 do_neon_cmp_inv (void)
12167 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, TRUE
);
12173 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
12176 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
12177 scalars, which are encoded in 5 bits, M : Rm.
12178 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12179 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12183 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
12185 unsigned regno
= NEON_SCALAR_REG (scalar
);
12186 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
12191 if (regno
> 7 || elno
> 3)
12193 return regno
| (elno
<< 3);
12196 if (regno
> 15 || elno
> 1)
12198 return regno
| (elno
<< 4);
12202 first_error (_("scalar out of range for multiply instruction"));
12208 /* Encode multiply / multiply-accumulate scalar instructions. */
12211 neon_mul_mac (struct neon_type_el et
, int ubit
)
12215 /* Give a more helpful error message if we have an invalid type. */
12216 if (et
.type
== NT_invtype
)
12219 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
12220 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12221 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12222 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
12223 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
12224 inst
.instruction
|= LOW4 (scalar
);
12225 inst
.instruction
|= HI1 (scalar
) << 5;
12226 inst
.instruction
|= (et
.type
== NT_float
) << 8;
12227 inst
.instruction
|= neon_logbits (et
.size
) << 20;
12228 inst
.instruction
|= (ubit
!= 0) << 24;
12230 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12234 do_neon_mac_maybe_scalar (void)
12236 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
12239 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12242 if (inst
.operands
[2].isscalar
)
12244 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
12245 struct neon_type_el et
= neon_check_type (3, rs
,
12246 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F32
| N_KEY
);
12247 inst
.instruction
= NEON_ENC_SCALAR (inst
.instruction
);
12248 neon_mul_mac (et
, neon_quad (rs
));
12252 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12253 affected if we specify unsigned args. */
12254 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
12261 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12262 struct neon_type_el et
= neon_check_type (3, rs
,
12263 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
12264 neon_three_same (neon_quad (rs
), 0, et
.size
);
12267 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
12268 same types as the MAC equivalents. The polynomial type for this instruction
12269 is encoded the same as the integer type. */
12274 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
12277 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12280 if (inst
.operands
[2].isscalar
)
12281 do_neon_mac_maybe_scalar ();
12283 neon_dyadic_misc (NT_poly
, N_I8
| N_I16
| N_I32
| N_F32
| N_P8
, 0);
12287 do_neon_qdmulh (void)
12289 if (inst
.operands
[2].isscalar
)
12291 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
12292 struct neon_type_el et
= neon_check_type (3, rs
,
12293 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
12294 inst
.instruction
= NEON_ENC_SCALAR (inst
.instruction
);
12295 neon_mul_mac (et
, neon_quad (rs
));
12299 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12300 struct neon_type_el et
= neon_check_type (3, rs
,
12301 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
12302 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12303 /* The U bit (rounding) comes from bit mask. */
12304 neon_three_same (neon_quad (rs
), 0, et
.size
);
12309 do_neon_fcmp_absolute (void)
12311 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12312 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
12313 /* Size field comes from bit mask. */
12314 neon_three_same (neon_quad (rs
), 1, -1);
12318 do_neon_fcmp_absolute_inv (void)
12320 neon_exchange_operands ();
12321 do_neon_fcmp_absolute ();
12325 do_neon_step (void)
12327 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12328 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
12329 neon_three_same (neon_quad (rs
), 0, -1);
12333 do_neon_abs_neg (void)
12335 enum neon_shape rs
;
12336 struct neon_type_el et
;
12338 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
12341 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12344 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12345 et
= neon_check_type (2, rs
, N_EQK
, N_S8
| N_S16
| N_S32
| N_F32
| N_KEY
);
12347 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12348 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12349 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12350 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12351 inst
.instruction
|= neon_quad (rs
) << 6;
12352 inst
.instruction
|= (et
.type
== NT_float
) << 10;
12353 inst
.instruction
|= neon_logbits (et
.size
) << 18;
12355 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12361 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
12362 struct neon_type_el et
= neon_check_type (2, rs
,
12363 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
12364 int imm
= inst
.operands
[2].imm
;
12365 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
12366 _("immediate out of range for insert"));
12367 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
12373 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
12374 struct neon_type_el et
= neon_check_type (2, rs
,
12375 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
12376 int imm
= inst
.operands
[2].imm
;
12377 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
12378 _("immediate out of range for insert"));
12379 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
12383 do_neon_qshlu_imm (void)
12385 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
12386 struct neon_type_el et
= neon_check_type (2, rs
,
12387 N_EQK
| N_UNS
, N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
12388 int imm
= inst
.operands
[2].imm
;
12389 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
12390 _("immediate out of range for shift"));
12391 /* Only encodes the 'U present' variant of the instruction.
12392 In this case, signed types have OP (bit 8) set to 0.
12393 Unsigned types have OP set to 1. */
12394 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
12395 /* The rest of the bits are the same as other immediate shifts. */
12396 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
12400 do_neon_qmovn (void)
12402 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
12403 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
12404 /* Saturating move where operands can be signed or unsigned, and the
12405 destination has the same signedness. */
12406 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12407 if (et
.type
== NT_unsigned
)
12408 inst
.instruction
|= 0xc0;
12410 inst
.instruction
|= 0x80;
12411 neon_two_same (0, 1, et
.size
/ 2);
12415 do_neon_qmovun (void)
12417 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
12418 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
12419 /* Saturating move with unsigned results. Operands must be signed. */
12420 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12421 neon_two_same (0, 1, et
.size
/ 2);
12425 do_neon_rshift_sat_narrow (void)
12427 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12428 or unsigned. If operands are unsigned, results must also be unsigned. */
12429 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
12430 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
12431 int imm
= inst
.operands
[2].imm
;
12432 /* This gets the bounds check, size encoding and immediate bits calculation
12436 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12437 VQMOVN.I<size> <Dd>, <Qm>. */
12440 inst
.operands
[2].present
= 0;
12441 inst
.instruction
= N_MNEM_vqmovn
;
12446 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
12447 _("immediate out of range"));
12448 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
12452 do_neon_rshift_sat_narrow_u (void)
12454 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12455 or unsigned. If operands are unsigned, results must also be unsigned. */
12456 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
12457 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
12458 int imm
= inst
.operands
[2].imm
;
12459 /* This gets the bounds check, size encoding and immediate bits calculation
12463 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12464 VQMOVUN.I<size> <Dd>, <Qm>. */
12467 inst
.operands
[2].present
= 0;
12468 inst
.instruction
= N_MNEM_vqmovun
;
12473 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
12474 _("immediate out of range"));
12475 /* FIXME: The manual is kind of unclear about what value U should have in
12476 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12478 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
12482 do_neon_movn (void)
12484 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
12485 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
12486 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12487 neon_two_same (0, 1, et
.size
/ 2);
12491 do_neon_rshift_narrow (void)
12493 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
12494 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
12495 int imm
= inst
.operands
[2].imm
;
12496 /* This gets the bounds check, size encoding and immediate bits calculation
12500 /* If immediate is zero then we are a pseudo-instruction for
12501 VMOVN.I<size> <Dd>, <Qm> */
12504 inst
.operands
[2].present
= 0;
12505 inst
.instruction
= N_MNEM_vmovn
;
12510 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
12511 _("immediate out of range for narrowing operation"));
12512 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
12516 do_neon_shll (void)
12518 /* FIXME: Type checking when lengthening. */
12519 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
12520 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
12521 unsigned imm
= inst
.operands
[2].imm
;
12523 if (imm
== et
.size
)
12525 /* Maximum shift variant. */
12526 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12527 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12528 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12529 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12530 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12531 inst
.instruction
|= neon_logbits (et
.size
) << 18;
12533 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12537 /* A more-specific type check for non-max versions. */
12538 et
= neon_check_type (2, NS_QDI
,
12539 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
12540 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
12541 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
12545 /* Check the various types for the VCVT instruction, and return which version
12546 the current instruction is. */
12549 neon_cvt_flavour (enum neon_shape rs
)
12551 #define CVT_VAR(C,X,Y) \
12552 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12553 if (et.type != NT_invtype) \
12555 inst.error = NULL; \
12558 struct neon_type_el et
;
12559 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
12560 || rs
== NS_FF
) ? N_VFP
: 0;
12561 /* The instruction versions which take an immediate take one register
12562 argument, which is extended to the width of the full register. Thus the
12563 "source" and "destination" registers must have the same width. Hack that
12564 here by making the size equal to the key (wider, in this case) operand. */
12565 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
12567 CVT_VAR (0, N_S32
, N_F32
);
12568 CVT_VAR (1, N_U32
, N_F32
);
12569 CVT_VAR (2, N_F32
, N_S32
);
12570 CVT_VAR (3, N_F32
, N_U32
);
12574 /* VFP instructions. */
12575 CVT_VAR (4, N_F32
, N_F64
);
12576 CVT_VAR (5, N_F64
, N_F32
);
12577 CVT_VAR (6, N_S32
, N_F64
| key
);
12578 CVT_VAR (7, N_U32
, N_F64
| key
);
12579 CVT_VAR (8, N_F64
| key
, N_S32
);
12580 CVT_VAR (9, N_F64
| key
, N_U32
);
12581 /* VFP instructions with bitshift. */
12582 CVT_VAR (10, N_F32
| key
, N_S16
);
12583 CVT_VAR (11, N_F32
| key
, N_U16
);
12584 CVT_VAR (12, N_F64
| key
, N_S16
);
12585 CVT_VAR (13, N_F64
| key
, N_U16
);
12586 CVT_VAR (14, N_S16
, N_F32
| key
);
12587 CVT_VAR (15, N_U16
, N_F32
| key
);
12588 CVT_VAR (16, N_S16
, N_F64
| key
);
12589 CVT_VAR (17, N_U16
, N_F64
| key
);
12595 /* Neon-syntax VFP conversions. */
12598 do_vfp_nsyn_cvt (enum neon_shape rs
, int flavour
)
12600 const char *opname
= 0;
12602 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
)
12604 /* Conversions with immediate bitshift. */
12605 const char *enc
[] =
12627 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
12629 opname
= enc
[flavour
];
12630 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
12631 _("operands 0 and 1 must be the same register"));
12632 inst
.operands
[1] = inst
.operands
[2];
12633 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
12638 /* Conversions without bitshift. */
12639 const char *enc
[] =
12653 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
12654 opname
= enc
[flavour
];
12658 do_vfp_nsyn_opcode (opname
);
12662 do_vfp_nsyn_cvtz (void)
12664 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_FD
, NS_NULL
);
12665 int flavour
= neon_cvt_flavour (rs
);
12666 const char *enc
[] =
12678 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
12679 do_vfp_nsyn_opcode (enc
[flavour
]);
12685 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
12686 NS_FD
, NS_DF
, NS_FF
, NS_NULL
);
12687 int flavour
= neon_cvt_flavour (rs
);
12689 /* VFP rather than Neon conversions. */
12692 do_vfp_nsyn_cvt (rs
, flavour
);
12701 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12704 /* Fixed-point conversion with #0 immediate is encoded as an
12705 integer conversion. */
12706 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
12708 unsigned immbits
= 32 - inst
.operands
[2].imm
;
12709 unsigned enctab
[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12710 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
12712 inst
.instruction
|= enctab
[flavour
];
12713 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12714 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12715 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12716 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12717 inst
.instruction
|= neon_quad (rs
) << 6;
12718 inst
.instruction
|= 1 << 21;
12719 inst
.instruction
|= immbits
<< 16;
12721 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12729 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080 };
12731 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12733 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12737 inst
.instruction
|= enctab
[flavour
];
12739 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12740 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12741 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12742 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12743 inst
.instruction
|= neon_quad (rs
) << 6;
12744 inst
.instruction
|= 2 << 18;
12746 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12751 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12752 do_vfp_nsyn_cvt (rs
, flavour
);
12757 neon_move_immediate (void)
12759 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
12760 struct neon_type_el et
= neon_check_type (2, rs
,
12761 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
12762 unsigned immlo
, immhi
= 0, immbits
;
12763 int op
, cmode
, float_p
;
12765 constraint (et
.type
== NT_invtype
,
12766 _("operand size must be specified for immediate VMOV"));
12768 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12769 op
= (inst
.instruction
& (1 << 5)) != 0;
12771 immlo
= inst
.operands
[1].imm
;
12772 if (inst
.operands
[1].regisimm
)
12773 immhi
= inst
.operands
[1].reg
;
12775 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
12776 _("immediate has bits set outside the operand size"));
12778 float_p
= inst
.operands
[1].immisfloat
;
12780 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
, &op
,
12781 et
.size
, et
.type
)) == FAIL
)
12783 /* Invert relevant bits only. */
12784 neon_invert_size (&immlo
, &immhi
, et
.size
);
12785 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12786 with one or the other; those cases are caught by
12787 neon_cmode_for_move_imm. */
12789 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
,
12790 &op
, et
.size
, et
.type
)) == FAIL
)
12792 first_error (_("immediate out of range"));
12797 inst
.instruction
&= ~(1 << 5);
12798 inst
.instruction
|= op
<< 5;
12800 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12801 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12802 inst
.instruction
|= neon_quad (rs
) << 6;
12803 inst
.instruction
|= cmode
<< 8;
12805 neon_write_immbits (immbits
);
12811 if (inst
.operands
[1].isreg
)
12813 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12815 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12816 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12817 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12818 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12819 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12820 inst
.instruction
|= neon_quad (rs
) << 6;
12824 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
12825 neon_move_immediate ();
12828 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12831 /* Encode instructions of form:
12833 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12834 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12839 neon_mixed_length (struct neon_type_el et
, unsigned size
)
12841 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12842 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12843 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
12844 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
12845 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
12846 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
12847 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
12848 inst
.instruction
|= neon_logbits (size
) << 20;
12850 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12854 do_neon_dyadic_long (void)
12856 /* FIXME: Type checking for lengthening op. */
12857 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12858 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
12859 neon_mixed_length (et
, et
.size
);
12863 do_neon_abal (void)
12865 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12866 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
12867 neon_mixed_length (et
, et
.size
);
12871 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
12873 if (inst
.operands
[2].isscalar
)
12875 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
12876 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
12877 inst
.instruction
= NEON_ENC_SCALAR (inst
.instruction
);
12878 neon_mul_mac (et
, et
.type
== NT_unsigned
);
12882 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12883 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
12884 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12885 neon_mixed_length (et
, et
.size
);
12890 do_neon_mac_maybe_scalar_long (void)
12892 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
12896 do_neon_dyadic_wide (void)
12898 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
12899 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
12900 neon_mixed_length (et
, et
.size
);
12904 do_neon_dyadic_narrow (void)
12906 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12907 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
12908 /* Operand sign is unimportant, and the U bit is part of the opcode,
12909 so force the operand type to integer. */
12910 et
.type
= NT_integer
;
12911 neon_mixed_length (et
, et
.size
/ 2);
12915 do_neon_mul_sat_scalar_long (void)
12917 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
12921 do_neon_vmull (void)
12923 if (inst
.operands
[2].isscalar
)
12924 do_neon_mac_maybe_scalar_long ();
12927 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12928 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_KEY
);
12929 if (et
.type
== NT_poly
)
12930 inst
.instruction
= NEON_ENC_POLY (inst
.instruction
);
12932 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12933 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12934 zero. Should be OK as-is. */
12935 neon_mixed_length (et
, et
.size
);
12942 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
12943 struct neon_type_el et
= neon_check_type (3, rs
,
12944 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
12945 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
12946 constraint (imm
>= (neon_quad (rs
) ? 16 : 8), _("shift out of range"));
12947 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12948 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12949 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
12950 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
12951 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
12952 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
12953 inst
.instruction
|= neon_quad (rs
) << 6;
12954 inst
.instruction
|= imm
<< 8;
12956 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12962 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12963 struct neon_type_el et
= neon_check_type (2, rs
,
12964 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
12965 unsigned op
= (inst
.instruction
>> 7) & 3;
12966 /* N (width of reversed regions) is encoded as part of the bitmask. We
12967 extract it here to check the elements to be reversed are smaller.
12968 Otherwise we'd get a reserved instruction. */
12969 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
12970 assert (elsize
!= 0);
12971 constraint (et
.size
>= elsize
,
12972 _("elements must be smaller than reversal region"));
12973 neon_two_same (neon_quad (rs
), 1, et
.size
);
12979 if (inst
.operands
[1].isscalar
)
12981 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
12982 struct neon_type_el et
= neon_check_type (2, rs
,
12983 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
12984 unsigned sizebits
= et
.size
>> 3;
12985 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
12986 int logsize
= neon_logbits (et
.size
);
12987 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
12989 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
12992 inst
.instruction
= NEON_ENC_SCALAR (inst
.instruction
);
12993 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12994 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12995 inst
.instruction
|= LOW4 (dm
);
12996 inst
.instruction
|= HI1 (dm
) << 5;
12997 inst
.instruction
|= neon_quad (rs
) << 6;
12998 inst
.instruction
|= x
<< 17;
12999 inst
.instruction
|= sizebits
<< 16;
13001 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
13005 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
13006 struct neon_type_el et
= neon_check_type (2, rs
,
13007 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
13008 /* Duplicate ARM register to lanes of vector. */
13009 inst
.instruction
= NEON_ENC_ARMREG (inst
.instruction
);
13012 case 8: inst
.instruction
|= 0x400000; break;
13013 case 16: inst
.instruction
|= 0x000020; break;
13014 case 32: inst
.instruction
|= 0x000000; break;
13017 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
13018 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
13019 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
13020 inst
.instruction
|= neon_quad (rs
) << 21;
13021 /* The encoding for this instruction is identical for the ARM and Thumb
13022 variants, except for the condition field. */
13023 do_vfp_cond_or_thumb ();
13027 /* VMOV has particularly many variations. It can be one of:
13028 0. VMOV<c><q> <Qd>, <Qm>
13029 1. VMOV<c><q> <Dd>, <Dm>
13030 (Register operations, which are VORR with Rm = Rn.)
13031 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13032 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13034 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13035 (ARM register to scalar.)
13036 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13037 (Two ARM registers to vector.)
13038 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13039 (Scalar to ARM register.)
13040 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13041 (Vector to two ARM registers.)
13042 8. VMOV.F32 <Sd>, <Sm>
13043 9. VMOV.F64 <Dd>, <Dm>
13044 (VFP register moves.)
13045 10. VMOV.F32 <Sd>, #imm
13046 11. VMOV.F64 <Dd>, #imm
13047 (VFP float immediate load.)
13048 12. VMOV <Rd>, <Sm>
13049 (VFP single to ARM reg.)
13050 13. VMOV <Sd>, <Rm>
13051 (ARM reg to VFP single.)
13052 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13053 (Two ARM regs to two VFP singles.)
13054 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13055 (Two VFP singles to two ARM regs.)
13057 These cases can be disambiguated using neon_select_shape, except cases 1/9
13058 and 3/11 which depend on the operand type too.
13060 All the encoded bits are hardcoded by this function.
13062 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13063 Cases 5, 7 may be used with VFPv2 and above.
13065 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13066 can specify a type where it doesn't make sense to, and is ignored).
13072 enum neon_shape rs
= neon_select_shape (NS_RRFF
, NS_FFRR
, NS_DRR
, NS_RRD
,
13073 NS_QQ
, NS_DD
, NS_QI
, NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
, NS_RF
, NS_FR
,
13075 struct neon_type_el et
;
13076 const char *ldconst
= 0;
13080 case NS_DD
: /* case 1/9. */
13081 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
13082 /* It is not an error here if no type is given. */
13084 if (et
.type
== NT_float
&& et
.size
== 64)
13086 do_vfp_nsyn_opcode ("fcpyd");
13089 /* fall through. */
13091 case NS_QQ
: /* case 0/1. */
13093 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13095 /* The architecture manual I have doesn't explicitly state which
13096 value the U bit should have for register->register moves, but
13097 the equivalent VORR instruction has U = 0, so do that. */
13098 inst
.instruction
= 0x0200110;
13099 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13100 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13101 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13102 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13103 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
13104 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
13105 inst
.instruction
|= neon_quad (rs
) << 6;
13107 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
13111 case NS_DI
: /* case 3/11. */
13112 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
13114 if (et
.type
== NT_float
&& et
.size
== 64)
13116 /* case 11 (fconstd). */
13117 ldconst
= "fconstd";
13118 goto encode_fconstd
;
13120 /* fall through. */
13122 case NS_QI
: /* case 2/3. */
13123 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13125 inst
.instruction
= 0x0800010;
13126 neon_move_immediate ();
13127 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
13130 case NS_SR
: /* case 4. */
13132 unsigned bcdebits
= 0;
13133 struct neon_type_el et
= neon_check_type (2, NS_NULL
,
13134 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
13135 int logsize
= neon_logbits (et
.size
);
13136 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
13137 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
13139 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
13141 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
13142 && et
.size
!= 32, _(BAD_FPU
));
13143 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
13144 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
13148 case 8: bcdebits
= 0x8; break;
13149 case 16: bcdebits
= 0x1; break;
13150 case 32: bcdebits
= 0x0; break;
13154 bcdebits
|= x
<< logsize
;
13156 inst
.instruction
= 0xe000b10;
13157 do_vfp_cond_or_thumb ();
13158 inst
.instruction
|= LOW4 (dn
) << 16;
13159 inst
.instruction
|= HI1 (dn
) << 7;
13160 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13161 inst
.instruction
|= (bcdebits
& 3) << 5;
13162 inst
.instruction
|= (bcdebits
>> 2) << 21;
13166 case NS_DRR
: /* case 5 (fmdrr). */
13167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
13170 inst
.instruction
= 0xc400b10;
13171 do_vfp_cond_or_thumb ();
13172 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
13173 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
13174 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13175 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
13178 case NS_RS
: /* case 6. */
13180 struct neon_type_el et
= neon_check_type (2, NS_NULL
,
13181 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
13182 unsigned logsize
= neon_logbits (et
.size
);
13183 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
13184 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
13185 unsigned abcdebits
= 0;
13187 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
13189 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
13190 && et
.size
!= 32, _(BAD_FPU
));
13191 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
13192 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
13196 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
13197 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
13198 case 32: abcdebits
= 0x00; break;
13202 abcdebits
|= x
<< logsize
;
13203 inst
.instruction
= 0xe100b10;
13204 do_vfp_cond_or_thumb ();
13205 inst
.instruction
|= LOW4 (dn
) << 16;
13206 inst
.instruction
|= HI1 (dn
) << 7;
13207 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
13208 inst
.instruction
|= (abcdebits
& 3) << 5;
13209 inst
.instruction
|= (abcdebits
>> 2) << 21;
13213 case NS_RRD
: /* case 7 (fmrrd). */
13214 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
13217 inst
.instruction
= 0xc500b10;
13218 do_vfp_cond_or_thumb ();
13219 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
13220 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13221 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
13222 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
13225 case NS_FF
: /* case 8 (fcpys). */
13226 do_vfp_nsyn_opcode ("fcpys");
13229 case NS_FI
: /* case 10 (fconsts). */
13230 ldconst
= "fconsts";
13232 if (is_quarter_float (inst
.operands
[1].imm
))
13234 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
13235 do_vfp_nsyn_opcode (ldconst
);
13238 first_error (_("immediate out of range"));
13241 case NS_RF
: /* case 12 (fmrs). */
13242 do_vfp_nsyn_opcode ("fmrs");
13245 case NS_FR
: /* case 13 (fmsr). */
13246 do_vfp_nsyn_opcode ("fmsr");
13249 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13250 (one of which is a list), but we have parsed four. Do some fiddling to
13251 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13253 case NS_RRFF
: /* case 14 (fmrrs). */
13254 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
13255 _("VFP registers must be adjacent"));
13256 inst
.operands
[2].imm
= 2;
13257 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
13258 do_vfp_nsyn_opcode ("fmrrs");
13261 case NS_FFRR
: /* case 15 (fmsrr). */
13262 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
13263 _("VFP registers must be adjacent"));
13264 inst
.operands
[1] = inst
.operands
[2];
13265 inst
.operands
[2] = inst
.operands
[3];
13266 inst
.operands
[0].imm
= 2;
13267 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
13268 do_vfp_nsyn_opcode ("fmsrr");
13277 do_neon_rshift_round_imm (void)
13279 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13280 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
13281 int imm
= inst
.operands
[2].imm
;
13283 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13286 inst
.operands
[2].present
= 0;
13291 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
13292 _("immediate out of range for shift"));
13293 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
13298 do_neon_movl (void)
13300 struct neon_type_el et
= neon_check_type (2, NS_QD
,
13301 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
13302 unsigned sizebits
= et
.size
>> 3;
13303 inst
.instruction
|= sizebits
<< 19;
13304 neon_two_same (0, et
.type
== NT_unsigned
, -1);
13310 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13311 struct neon_type_el et
= neon_check_type (2, rs
,
13312 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
13313 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
13314 neon_two_same (neon_quad (rs
), 1, et
.size
);
13318 do_neon_zip_uzp (void)
13320 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13321 struct neon_type_el et
= neon_check_type (2, rs
,
13322 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
13323 if (rs
== NS_DD
&& et
.size
== 32)
13325 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13326 inst
.instruction
= N_MNEM_vtrn
;
13330 neon_two_same (neon_quad (rs
), 1, et
.size
);
13334 do_neon_sat_abs_neg (void)
13336 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13337 struct neon_type_el et
= neon_check_type (2, rs
,
13338 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
13339 neon_two_same (neon_quad (rs
), 1, et
.size
);
13343 do_neon_pair_long (void)
13345 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13346 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
13347 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13348 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
13349 neon_two_same (neon_quad (rs
), 1, et
.size
);
13353 do_neon_recip_est (void)
13355 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13356 struct neon_type_el et
= neon_check_type (2, rs
,
13357 N_EQK
| N_FLT
, N_F32
| N_U32
| N_KEY
);
13358 inst
.instruction
|= (et
.type
== NT_float
) << 8;
13359 neon_two_same (neon_quad (rs
), 1, et
.size
);
13365 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13366 struct neon_type_el et
= neon_check_type (2, rs
,
13367 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
13368 neon_two_same (neon_quad (rs
), 1, et
.size
);
13374 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13375 struct neon_type_el et
= neon_check_type (2, rs
,
13376 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
13377 neon_two_same (neon_quad (rs
), 1, et
.size
);
13383 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13384 struct neon_type_el et
= neon_check_type (2, rs
,
13385 N_EQK
| N_INT
, N_8
| N_KEY
);
13386 neon_two_same (neon_quad (rs
), 1, et
.size
);
13392 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13393 neon_two_same (neon_quad (rs
), 1, -1);
13397 do_neon_tbl_tbx (void)
13399 unsigned listlenbits
;
13400 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
13402 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
13404 first_error (_("bad list length for table lookup"));
13408 listlenbits
= inst
.operands
[1].imm
- 1;
13409 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13410 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13411 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
13412 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
13413 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
13414 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
13415 inst
.instruction
|= listlenbits
<< 8;
13417 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
13421 do_neon_ldm_stm (void)
13423 /* P, U and L bits are part of bitmask. */
13424 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
13425 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
13427 if (inst
.operands
[1].issingle
)
13429 do_vfp_nsyn_ldm_stm (is_dbmode
);
13433 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
13434 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13436 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
13437 _("register list must contain at least 1 and at most 16 "
13440 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
13441 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
13442 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
13443 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
13445 inst
.instruction
|= offsetbits
;
13447 do_vfp_cond_or_thumb ();
13451 do_neon_ldr_str (void)
13453 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
13455 if (inst
.operands
[0].issingle
)
13458 do_vfp_nsyn_opcode ("flds");
13460 do_vfp_nsyn_opcode ("fsts");
13465 do_vfp_nsyn_opcode ("fldd");
13467 do_vfp_nsyn_opcode ("fstd");
13471 /* "interleave" version also handles non-interleaving register VLD1/VST1
13475 do_neon_ld_st_interleave (void)
13477 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
13478 N_8
| N_16
| N_32
| N_64
);
13479 unsigned alignbits
= 0;
13481 /* The bits in this table go:
13482 0: register stride of one (0) or two (1)
13483 1,2: register list length, minus one (1, 2, 3, 4).
13484 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13485 We use -1 for invalid entries. */
13486 const int typetable
[] =
13488 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13489 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13490 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13491 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13495 if (et
.type
== NT_invtype
)
13498 if (inst
.operands
[1].immisalign
)
13499 switch (inst
.operands
[1].imm
>> 8)
13501 case 64: alignbits
= 1; break;
13503 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) == 3)
13504 goto bad_alignment
;
13508 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) == 3)
13509 goto bad_alignment
;
13514 first_error (_("bad alignment"));
13518 inst
.instruction
|= alignbits
<< 4;
13519 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13521 /* Bits [4:6] of the immediate in a list specifier encode register stride
13522 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13523 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13524 up the right value for "type" in a table based on this value and the given
13525 list style, then stick it back. */
13526 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
13527 | (((inst
.instruction
>> 8) & 3) << 3);
13529 typebits
= typetable
[idx
];
13531 constraint (typebits
== -1, _("bad list type for instruction"));
13533 inst
.instruction
&= ~0xf00;
13534 inst
.instruction
|= typebits
<< 8;
13537 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13538 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13539 otherwise. The variable arguments are a list of pairs of legal (size, align)
13540 values, terminated with -1. */
13543 neon_alignment_bit (int size
, int align
, int *do_align
, ...)
13546 int result
= FAIL
, thissize
, thisalign
;
13548 if (!inst
.operands
[1].immisalign
)
13554 va_start (ap
, do_align
);
13558 thissize
= va_arg (ap
, int);
13559 if (thissize
== -1)
13561 thisalign
= va_arg (ap
, int);
13563 if (size
== thissize
&& align
== thisalign
)
13566 while (result
!= SUCCESS
);
13570 if (result
== SUCCESS
)
13573 first_error (_("unsupported alignment for instruction"));
13579 do_neon_ld_st_lane (void)
13581 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
13582 int align_good
, do_align
= 0;
13583 int logsize
= neon_logbits (et
.size
);
13584 int align
= inst
.operands
[1].imm
>> 8;
13585 int n
= (inst
.instruction
>> 8) & 3;
13586 int max_el
= 64 / et
.size
;
13588 if (et
.type
== NT_invtype
)
13591 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
13592 _("bad list length"));
13593 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
13594 _("scalar index out of range"));
13595 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
13597 _("stride of 2 unavailable when element size is 8"));
13601 case 0: /* VLD1 / VST1. */
13602 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 16, 16,
13604 if (align_good
== FAIL
)
13608 unsigned alignbits
= 0;
13611 case 16: alignbits
= 0x1; break;
13612 case 32: alignbits
= 0x3; break;
13615 inst
.instruction
|= alignbits
<< 4;
13619 case 1: /* VLD2 / VST2. */
13620 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 16, 16, 32,
13622 if (align_good
== FAIL
)
13625 inst
.instruction
|= 1 << 4;
13628 case 2: /* VLD3 / VST3. */
13629 constraint (inst
.operands
[1].immisalign
,
13630 _("can't use alignment with this instruction"));
13633 case 3: /* VLD4 / VST4. */
13634 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
13635 16, 64, 32, 64, 32, 128, -1);
13636 if (align_good
== FAIL
)
13640 unsigned alignbits
= 0;
13643 case 8: alignbits
= 0x1; break;
13644 case 16: alignbits
= 0x1; break;
13645 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
13648 inst
.instruction
|= alignbits
<< 4;
13655 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13656 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
13657 inst
.instruction
|= 1 << (4 + logsize
);
13659 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
13660 inst
.instruction
|= logsize
<< 10;
13663 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13666 do_neon_ld_dup (void)
13668 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
13669 int align_good
, do_align
= 0;
13671 if (et
.type
== NT_invtype
)
13674 switch ((inst
.instruction
>> 8) & 3)
13676 case 0: /* VLD1. */
13677 assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
13678 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
13679 &do_align
, 16, 16, 32, 32, -1);
13680 if (align_good
== FAIL
)
13682 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
13685 case 2: inst
.instruction
|= 1 << 5; break;
13686 default: first_error (_("bad list length")); return;
13688 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13691 case 1: /* VLD2. */
13692 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
13693 &do_align
, 8, 16, 16, 32, 32, 64, -1);
13694 if (align_good
== FAIL
)
13696 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
13697 _("bad list length"));
13698 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
13699 inst
.instruction
|= 1 << 5;
13700 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13703 case 2: /* VLD3. */
13704 constraint (inst
.operands
[1].immisalign
,
13705 _("can't use alignment with this instruction"));
13706 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
13707 _("bad list length"));
13708 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
13709 inst
.instruction
|= 1 << 5;
13710 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13713 case 3: /* VLD4. */
13715 int align
= inst
.operands
[1].imm
>> 8;
13716 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
13717 16, 64, 32, 64, 32, 128, -1);
13718 if (align_good
== FAIL
)
13720 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
13721 _("bad list length"));
13722 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
13723 inst
.instruction
|= 1 << 5;
13724 if (et
.size
== 32 && align
== 128)
13725 inst
.instruction
|= 0x3 << 6;
13727 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13734 inst
.instruction
|= do_align
<< 4;
13737 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13738 apart from bits [11:4]. */
13741 do_neon_ldx_stx (void)
13743 switch (NEON_LANE (inst
.operands
[0].imm
))
13745 case NEON_INTERLEAVE_LANES
:
13746 inst
.instruction
= NEON_ENC_INTERLV (inst
.instruction
);
13747 do_neon_ld_st_interleave ();
13750 case NEON_ALL_LANES
:
13751 inst
.instruction
= NEON_ENC_DUP (inst
.instruction
);
13756 inst
.instruction
= NEON_ENC_LANE (inst
.instruction
);
13757 do_neon_ld_st_lane ();
13760 /* L bit comes from bit mask. */
13761 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13762 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13763 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13765 if (inst
.operands
[1].postind
)
13767 int postreg
= inst
.operands
[1].imm
& 0xf;
13768 constraint (!inst
.operands
[1].immisreg
,
13769 _("post-index must be a register"));
13770 constraint (postreg
== 0xd || postreg
== 0xf,
13771 _("bad register for post-index"));
13772 inst
.instruction
|= postreg
;
13774 else if (inst
.operands
[1].writeback
)
13776 inst
.instruction
|= 0xd;
13779 inst
.instruction
|= 0xf;
13782 inst
.instruction
|= 0xf9000000;
13784 inst
.instruction
|= 0xf4000000;
13788 /* Overall per-instruction processing. */
13790 /* We need to be able to fix up arbitrary expressions in some statements.
13791 This is so that we can handle symbols that are an arbitrary distance from
13792 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13793 which returns part of an address in a form which will be valid for
13794 a data instruction. We do this by pushing the expression into a symbol
13795 in the expr_section, and creating a fix for that. */
13798 fix_new_arm (fragS
* frag
,
13813 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
, reloc
);
13817 new_fix
= fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
13822 /* Mark whether the fix is to a THUMB instruction, or an ARM
13824 new_fix
->tc_fix_data
= thumb_mode
;
13827 /* Create a frg for an instruction requiring relaxation. */
13829 output_relax_insn (void)
13835 /* The size of the instruction is unknown, so tie the debug info to the
13836 start of the instruction. */
13837 dwarf2_emit_insn (0);
13839 switch (inst
.reloc
.exp
.X_op
)
13842 sym
= inst
.reloc
.exp
.X_add_symbol
;
13843 offset
= inst
.reloc
.exp
.X_add_number
;
13847 offset
= inst
.reloc
.exp
.X_add_number
;
13850 sym
= make_expr_symbol (&inst
.reloc
.exp
);
13854 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
13855 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
13856 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
13859 /* Write a 32-bit thumb instruction to buf. */
13861 put_thumb32_insn (char * buf
, unsigned long insn
)
13863 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
13864 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
13868 output_inst (const char * str
)
13874 as_bad ("%s -- `%s'", inst
.error
, str
);
13878 output_relax_insn();
13881 if (inst
.size
== 0)
13884 to
= frag_more (inst
.size
);
13886 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
13888 assert (inst
.size
== (2 * THUMB_SIZE
));
13889 put_thumb32_insn (to
, inst
.instruction
);
13891 else if (inst
.size
> INSN_SIZE
)
13893 assert (inst
.size
== (2 * INSN_SIZE
));
13894 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
13895 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
13898 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
13900 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
13901 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
13902 inst
.size
, & inst
.reloc
.exp
, inst
.reloc
.pc_rel
,
13905 dwarf2_emit_insn (inst
.size
);
13908 /* Tag values used in struct asm_opcode's tag field. */
13911 OT_unconditional
, /* Instruction cannot be conditionalized.
13912 The ARM condition field is still 0xE. */
13913 OT_unconditionalF
, /* Instruction cannot be conditionalized
13914 and carries 0xF in its ARM condition field. */
13915 OT_csuffix
, /* Instruction takes a conditional suffix. */
13916 OT_csuffixF
, /* Some forms of the instruction take a conditional
13917 suffix, others place 0xF where the condition field
13919 OT_cinfix3
, /* Instruction takes a conditional infix,
13920 beginning at character index 3. (In
13921 unified mode, it becomes a suffix.) */
13922 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
13923 tsts, cmps, cmns, and teqs. */
13924 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
13925 character index 3, even in unified mode. Used for
13926 legacy instructions where suffix and infix forms
13927 may be ambiguous. */
13928 OT_csuf_or_in3
, /* Instruction takes either a conditional
13929 suffix or an infix at character index 3. */
13930 OT_odd_infix_unc
, /* This is the unconditional variant of an
13931 instruction that takes a conditional infix
13932 at an unusual position. In unified mode,
13933 this variant will accept a suffix. */
13934 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
13935 are the conditional variants of instructions that
13936 take conditional infixes in unusual positions.
13937 The infix appears at character index
13938 (tag - OT_odd_infix_0). These are not accepted
13939 in unified mode. */
13942 /* Subroutine of md_assemble, responsible for looking up the primary
13943 opcode from the mnemonic the user wrote. STR points to the
13944 beginning of the mnemonic.
13946 This is not simply a hash table lookup, because of conditional
13947 variants. Most instructions have conditional variants, which are
13948 expressed with a _conditional affix_ to the mnemonic. If we were
13949 to encode each conditional variant as a literal string in the opcode
13950 table, it would have approximately 20,000 entries.
13952 Most mnemonics take this affix as a suffix, and in unified syntax,
13953 'most' is upgraded to 'all'. However, in the divided syntax, some
13954 instructions take the affix as an infix, notably the s-variants of
13955 the arithmetic instructions. Of those instructions, all but six
13956 have the infix appear after the third character of the mnemonic.
13958 Accordingly, the algorithm for looking up primary opcodes given
13961 1. Look up the identifier in the opcode table.
13962 If we find a match, go to step U.
13964 2. Look up the last two characters of the identifier in the
13965 conditions table. If we find a match, look up the first N-2
13966 characters of the identifier in the opcode table. If we
13967 find a match, go to step CE.
13969 3. Look up the fourth and fifth characters of the identifier in
13970 the conditions table. If we find a match, extract those
13971 characters from the identifier, and look up the remaining
13972 characters in the opcode table. If we find a match, go
13977 U. Examine the tag field of the opcode structure, in case this is
13978 one of the six instructions with its conditional infix in an
13979 unusual place. If it is, the tag tells us where to find the
13980 infix; look it up in the conditions table and set inst.cond
13981 accordingly. Otherwise, this is an unconditional instruction.
13982 Again set inst.cond accordingly. Return the opcode structure.
13984 CE. Examine the tag field to make sure this is an instruction that
13985 should receive a conditional suffix. If it is not, fail.
13986 Otherwise, set inst.cond from the suffix we already looked up,
13987 and return the opcode structure.
13989 CM. Examine the tag field to make sure this is an instruction that
13990 should receive a conditional infix after the third character.
13991 If it is not, fail. Otherwise, undo the edits to the current
13992 line of input and proceed as for case CE. */
13994 static const struct asm_opcode
*
13995 opcode_lookup (char **str
)
13999 const struct asm_opcode
*opcode
;
14000 const struct asm_cond
*cond
;
14002 bfd_boolean neon_supported
;
14004 neon_supported
= ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
);
14006 /* Scan up to the end of the mnemonic, which must end in white space,
14007 '.' (in unified mode, or for Neon instructions), or end of string. */
14008 for (base
= end
= *str
; *end
!= '\0'; end
++)
14009 if (*end
== ' ' || ((unified_syntax
|| neon_supported
) && *end
== '.'))
14015 /* Handle a possible width suffix and/or Neon type suffix. */
14020 /* The .w and .n suffixes are only valid if the unified syntax is in
14022 if (unified_syntax
&& end
[1] == 'w')
14024 else if (unified_syntax
&& end
[1] == 'n')
14029 inst
.vectype
.elems
= 0;
14031 *str
= end
+ offset
;
14033 if (end
[offset
] == '.')
14035 /* See if we have a Neon type suffix (possible in either unified or
14036 non-unified ARM syntax mode). */
14037 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
14040 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
14046 /* Look for unaffixed or special-case affixed mnemonic. */
14047 opcode
= hash_find_n (arm_ops_hsh
, base
, end
- base
);
14051 if (opcode
->tag
< OT_odd_infix_0
)
14053 inst
.cond
= COND_ALWAYS
;
14057 if (unified_syntax
)
14058 as_warn (_("conditional infixes are deprecated in unified syntax"));
14059 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
14060 cond
= hash_find_n (arm_cond_hsh
, affix
, 2);
14063 inst
.cond
= cond
->value
;
14067 /* Cannot have a conditional suffix on a mnemonic of less than two
14069 if (end
- base
< 3)
14072 /* Look for suffixed mnemonic. */
14074 cond
= hash_find_n (arm_cond_hsh
, affix
, 2);
14075 opcode
= hash_find_n (arm_ops_hsh
, base
, affix
- base
);
14076 if (opcode
&& cond
)
14079 switch (opcode
->tag
)
14081 case OT_cinfix3_legacy
:
14082 /* Ignore conditional suffixes matched on infix only mnemonics. */
14086 case OT_cinfix3_deprecated
:
14087 case OT_odd_infix_unc
:
14088 if (!unified_syntax
)
14090 /* else fall through */
14094 case OT_csuf_or_in3
:
14095 inst
.cond
= cond
->value
;
14098 case OT_unconditional
:
14099 case OT_unconditionalF
:
14102 inst
.cond
= cond
->value
;
14106 /* delayed diagnostic */
14107 inst
.error
= BAD_COND
;
14108 inst
.cond
= COND_ALWAYS
;
14117 /* Cannot have a usual-position infix on a mnemonic of less than
14118 six characters (five would be a suffix). */
14119 if (end
- base
< 6)
14122 /* Look for infixed mnemonic in the usual position. */
14124 cond
= hash_find_n (arm_cond_hsh
, affix
, 2);
14128 memcpy (save
, affix
, 2);
14129 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
14130 opcode
= hash_find_n (arm_ops_hsh
, base
, (end
- base
) - 2);
14131 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
14132 memcpy (affix
, save
, 2);
14135 && (opcode
->tag
== OT_cinfix3
14136 || opcode
->tag
== OT_cinfix3_deprecated
14137 || opcode
->tag
== OT_csuf_or_in3
14138 || opcode
->tag
== OT_cinfix3_legacy
))
14142 && (opcode
->tag
== OT_cinfix3
14143 || opcode
->tag
== OT_cinfix3_deprecated
))
14144 as_warn (_("conditional infixes are deprecated in unified syntax"));
14146 inst
.cond
= cond
->value
;
14154 md_assemble (char *str
)
14157 const struct asm_opcode
* opcode
;
14159 /* Align the previous label if needed. */
14160 if (last_label_seen
!= NULL
)
14162 symbol_set_frag (last_label_seen
, frag_now
);
14163 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
14164 S_SET_SEGMENT (last_label_seen
, now_seg
);
14167 memset (&inst
, '\0', sizeof (inst
));
14168 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
14170 opcode
= opcode_lookup (&p
);
14173 /* It wasn't an instruction, but it might be a register alias of
14174 the form alias .req reg, or a Neon .dn/.qn directive. */
14175 if (!create_register_alias (str
, p
)
14176 && !create_neon_reg_alias (str
, p
))
14177 as_bad (_("bad instruction `%s'"), str
);
14182 if (opcode
->tag
== OT_cinfix3_deprecated
)
14183 as_warn (_("s suffix on comparison instruction is deprecated"));
14185 /* The value which unconditional instructions should have in place of the
14186 condition field. */
14187 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
14191 arm_feature_set variant
;
14193 variant
= cpu_variant
;
14194 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
14195 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
14196 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
14197 /* Check that this instruction is supported for this CPU. */
14198 if (!opcode
->tvariant
14199 || (thumb_mode
== 1
14200 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
14202 as_bad (_("selected processor does not support `%s'"), str
);
14205 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
14206 && opcode
->tencode
!= do_t_branch
)
14208 as_bad (_("Thumb does not support conditional execution"));
14212 if (!ARM_CPU_HAS_FEATURE (variant
, arm_ext_v6t2
) && !inst
.size_req
)
14214 /* Implicit require narrow instructions on Thumb-1. This avoids
14215 relaxation accidentally introducing Thumb-2 instructions. */
14216 if (opcode
->tencode
!= do_t_blx
&& opcode
->tencode
!= do_t_branch23
)
14220 /* Check conditional suffixes. */
14221 if (current_it_mask
)
14224 cond
= current_cc
^ ((current_it_mask
>> 4) & 1) ^ 1;
14225 current_it_mask
<<= 1;
14226 current_it_mask
&= 0x1f;
14227 /* The BKPT instruction is unconditional even in an IT block. */
14229 && cond
!= inst
.cond
&& opcode
->tencode
!= do_t_bkpt
)
14231 as_bad (_("incorrect condition in IT block"));
14235 else if (inst
.cond
!= COND_ALWAYS
&& opcode
->tencode
!= do_t_branch
)
14237 as_bad (_("thumb conditional instrunction not in IT block"));
14241 mapping_state (MAP_THUMB
);
14242 inst
.instruction
= opcode
->tvalue
;
14244 if (!parse_operands (p
, opcode
->operands
))
14245 opcode
->tencode ();
14247 /* Clear current_it_mask at the end of an IT block. */
14248 if (current_it_mask
== 0x10)
14249 current_it_mask
= 0;
14251 if (!(inst
.error
|| inst
.relax
))
14253 assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
14254 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
14255 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
14257 as_bad (_("cannot honor width suffix -- `%s'"), str
);
14262 /* Something has gone badly wrong if we try to relax a fixed size
14264 assert (inst
.size_req
== 0 || !inst
.relax
);
14266 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
14267 *opcode
->tvariant
);
14268 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
14269 set those bits when Thumb-2 32-bit instructions are seen. ie.
14270 anything other than bl/blx.
14271 This is overly pessimistic for relaxable instructions. */
14272 if ((inst
.size
== 4 && (inst
.instruction
& 0xf800e800) != 0xf000e800)
14274 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
14277 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
14279 /* Check that this instruction is supported for this CPU. */
14280 if (!opcode
->avariant
||
14281 !ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
))
14283 as_bad (_("selected processor does not support `%s'"), str
);
14288 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
14292 mapping_state (MAP_ARM
);
14293 inst
.instruction
= opcode
->avalue
;
14294 if (opcode
->tag
== OT_unconditionalF
)
14295 inst
.instruction
|= 0xF << 28;
14297 inst
.instruction
|= inst
.cond
<< 28;
14298 inst
.size
= INSN_SIZE
;
14299 if (!parse_operands (p
, opcode
->operands
))
14300 opcode
->aencode ();
14301 /* Arm mode bx is marked as both v4T and v5 because it's still required
14302 on a hypothetical non-thumb v5 core. */
14303 if (ARM_CPU_HAS_FEATURE (*opcode
->avariant
, arm_ext_v4t
)
14304 || ARM_CPU_HAS_FEATURE (*opcode
->avariant
, arm_ext_v5
))
14305 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
14307 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
14308 *opcode
->avariant
);
14312 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14319 /* Various frobbings of labels and their addresses. */
14322 arm_start_line_hook (void)
14324 last_label_seen
= NULL
;
14328 arm_frob_label (symbolS
* sym
)
14330 last_label_seen
= sym
;
14332 ARM_SET_THUMB (sym
, thumb_mode
);
14334 #if defined OBJ_COFF || defined OBJ_ELF
14335 ARM_SET_INTERWORK (sym
, support_interwork
);
14338 /* Note - do not allow local symbols (.Lxxx) to be labeled
14339 as Thumb functions. This is because these labels, whilst
14340 they exist inside Thumb code, are not the entry points for
14341 possible ARM->Thumb calls. Also, these labels can be used
14342 as part of a computed goto or switch statement. eg gcc
14343 can generate code that looks like this:
14345 ldr r2, [pc, .Laaa]
14355 The first instruction loads the address of the jump table.
14356 The second instruction converts a table index into a byte offset.
14357 The third instruction gets the jump address out of the table.
14358 The fourth instruction performs the jump.
14360 If the address stored at .Laaa is that of a symbol which has the
14361 Thumb_Func bit set, then the linker will arrange for this address
14362 to have the bottom bit set, which in turn would mean that the
14363 address computation performed by the third instruction would end
14364 up with the bottom bit set. Since the ARM is capable of unaligned
14365 word loads, the instruction would then load the incorrect address
14366 out of the jump table, and chaos would ensue. */
14367 if (label_is_thumb_function_name
14368 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
14369 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
14371 /* When the address of a Thumb function is taken the bottom
14372 bit of that address should be set. This will allow
14373 interworking between Arm and Thumb functions to work
14376 THUMB_SET_FUNC (sym
, 1);
14378 label_is_thumb_function_name
= FALSE
;
14381 dwarf2_emit_label (sym
);
14385 arm_data_in_code (void)
14387 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
14389 *input_line_pointer
= '/';
14390 input_line_pointer
+= 5;
14391 *input_line_pointer
= 0;
14399 arm_canonicalize_symbol_name (char * name
)
14403 if (thumb_mode
&& (len
= strlen (name
)) > 5
14404 && streq (name
+ len
- 5, "/data"))
14405 *(name
+ len
- 5) = 0;
14410 /* Table of all register names defined by default. The user can
14411 define additional names with .req. Note that all register names
14412 should appear in both upper and lowercase variants. Some registers
14413 also have mixed-case names. */
14415 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
14416 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
14417 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
14418 #define REGSET(p,t) \
14419 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14420 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14421 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14422 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
14423 #define REGSETH(p,t) \
14424 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14425 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14426 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14427 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14428 #define REGSET2(p,t) \
14429 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14430 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14431 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14432 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14434 static const struct reg_entry reg_names
[] =
14436 /* ARM integer registers. */
14437 REGSET(r
, RN
), REGSET(R
, RN
),
14439 /* ATPCS synonyms. */
14440 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
14441 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
14442 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
14444 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
14445 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
14446 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
14448 /* Well-known aliases. */
14449 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
14450 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
14452 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
14453 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
14455 /* Coprocessor numbers. */
14456 REGSET(p
, CP
), REGSET(P
, CP
),
14458 /* Coprocessor register numbers. The "cr" variants are for backward
14460 REGSET(c
, CN
), REGSET(C
, CN
),
14461 REGSET(cr
, CN
), REGSET(CR
, CN
),
14463 /* FPA registers. */
14464 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
14465 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
14467 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
14468 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
14470 /* VFP SP registers. */
14471 REGSET(s
,VFS
), REGSET(S
,VFS
),
14472 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
14474 /* VFP DP Registers. */
14475 REGSET(d
,VFD
), REGSET(D
,VFD
),
14476 /* Extra Neon DP registers. */
14477 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
14479 /* Neon QP registers. */
14480 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
14482 /* VFP control registers. */
14483 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
14484 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
14485 REGDEF(fpinst
,9,VFC
), REGDEF(fpinst2
,10,VFC
),
14486 REGDEF(FPINST
,9,VFC
), REGDEF(FPINST2
,10,VFC
),
14487 REGDEF(mvfr0
,7,VFC
), REGDEF(mvfr1
,6,VFC
),
14488 REGDEF(MVFR0
,7,VFC
), REGDEF(MVFR1
,6,VFC
),
14490 /* Maverick DSP coprocessor registers. */
14491 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
14492 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
14494 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
14495 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
14496 REGDEF(dspsc
,0,DSPSC
),
14498 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
14499 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
14500 REGDEF(DSPSC
,0,DSPSC
),
14502 /* iWMMXt data registers - p0, c0-15. */
14503 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
14505 /* iWMMXt control registers - p1, c0-3. */
14506 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
14507 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
14508 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
14509 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
14511 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14512 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
14513 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
14514 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
14515 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
14517 /* XScale accumulator registers. */
14518 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
14524 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14525 within psr_required_here. */
14526 static const struct asm_psr psrs
[] =
14528 /* Backward compatibility notation. Note that "all" is no longer
14529 truly all possible PSR bits. */
14530 {"all", PSR_c
| PSR_f
},
14534 /* Individual flags. */
14539 /* Combinations of flags. */
14540 {"fs", PSR_f
| PSR_s
},
14541 {"fx", PSR_f
| PSR_x
},
14542 {"fc", PSR_f
| PSR_c
},
14543 {"sf", PSR_s
| PSR_f
},
14544 {"sx", PSR_s
| PSR_x
},
14545 {"sc", PSR_s
| PSR_c
},
14546 {"xf", PSR_x
| PSR_f
},
14547 {"xs", PSR_x
| PSR_s
},
14548 {"xc", PSR_x
| PSR_c
},
14549 {"cf", PSR_c
| PSR_f
},
14550 {"cs", PSR_c
| PSR_s
},
14551 {"cx", PSR_c
| PSR_x
},
14552 {"fsx", PSR_f
| PSR_s
| PSR_x
},
14553 {"fsc", PSR_f
| PSR_s
| PSR_c
},
14554 {"fxs", PSR_f
| PSR_x
| PSR_s
},
14555 {"fxc", PSR_f
| PSR_x
| PSR_c
},
14556 {"fcs", PSR_f
| PSR_c
| PSR_s
},
14557 {"fcx", PSR_f
| PSR_c
| PSR_x
},
14558 {"sfx", PSR_s
| PSR_f
| PSR_x
},
14559 {"sfc", PSR_s
| PSR_f
| PSR_c
},
14560 {"sxf", PSR_s
| PSR_x
| PSR_f
},
14561 {"sxc", PSR_s
| PSR_x
| PSR_c
},
14562 {"scf", PSR_s
| PSR_c
| PSR_f
},
14563 {"scx", PSR_s
| PSR_c
| PSR_x
},
14564 {"xfs", PSR_x
| PSR_f
| PSR_s
},
14565 {"xfc", PSR_x
| PSR_f
| PSR_c
},
14566 {"xsf", PSR_x
| PSR_s
| PSR_f
},
14567 {"xsc", PSR_x
| PSR_s
| PSR_c
},
14568 {"xcf", PSR_x
| PSR_c
| PSR_f
},
14569 {"xcs", PSR_x
| PSR_c
| PSR_s
},
14570 {"cfs", PSR_c
| PSR_f
| PSR_s
},
14571 {"cfx", PSR_c
| PSR_f
| PSR_x
},
14572 {"csf", PSR_c
| PSR_s
| PSR_f
},
14573 {"csx", PSR_c
| PSR_s
| PSR_x
},
14574 {"cxf", PSR_c
| PSR_x
| PSR_f
},
14575 {"cxs", PSR_c
| PSR_x
| PSR_s
},
14576 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
14577 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
14578 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
14579 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
14580 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
14581 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
14582 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
14583 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
14584 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
14585 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
14586 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
14587 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
14588 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
14589 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
14590 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
14591 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
14592 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
14593 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
14594 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
14595 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
14596 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
14597 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
14598 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
14599 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
14602 /* Table of V7M psr names. */
14603 static const struct asm_psr v7m_psrs
[] =
14605 {"apsr", 0 }, {"APSR", 0 },
14606 {"iapsr", 1 }, {"IAPSR", 1 },
14607 {"eapsr", 2 }, {"EAPSR", 2 },
14608 {"psr", 3 }, {"PSR", 3 },
14609 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14610 {"ipsr", 5 }, {"IPSR", 5 },
14611 {"epsr", 6 }, {"EPSR", 6 },
14612 {"iepsr", 7 }, {"IEPSR", 7 },
14613 {"msp", 8 }, {"MSP", 8 },
14614 {"psp", 9 }, {"PSP", 9 },
14615 {"primask", 16}, {"PRIMASK", 16},
14616 {"basepri", 17}, {"BASEPRI", 17},
14617 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14618 {"faultmask", 19}, {"FAULTMASK", 19},
14619 {"control", 20}, {"CONTROL", 20}
14622 /* Table of all shift-in-operand names. */
14623 static const struct asm_shift_name shift_names
[] =
14625 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
14626 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
14627 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
14628 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
14629 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
14630 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
}
14633 /* Table of all explicit relocation names. */
14635 static struct reloc_entry reloc_names
[] =
14637 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
14638 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
14639 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
14640 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
14641 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
14642 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
14643 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
14644 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
14645 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
14646 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
14647 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
}
14651 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14652 static const struct asm_cond conds
[] =
14656 {"cs", 0x2}, {"hs", 0x2},
14657 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14671 static struct asm_barrier_opt barrier_opt_names
[] =
14679 /* Table of ARM-format instructions. */
14681 /* Macros for gluing together operand strings. N.B. In all cases
14682 other than OPS0, the trailing OP_stop comes from default
14683 zero-initialization of the unspecified elements of the array. */
14684 #define OPS0() { OP_stop, }
14685 #define OPS1(a) { OP_##a, }
14686 #define OPS2(a,b) { OP_##a,OP_##b, }
14687 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14688 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14689 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14690 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14692 /* These macros abstract out the exact format of the mnemonic table and
14693 save some repeated characters. */
14695 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14696 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14697 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14698 THUMB_VARIANT, do_##ae, do_##te }
14700 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14701 a T_MNEM_xyz enumerator. */
14702 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14703 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14704 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14705 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14707 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14708 infix after the third character. */
14709 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14710 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14711 THUMB_VARIANT, do_##ae, do_##te }
14712 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14713 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14714 THUMB_VARIANT, do_##ae, do_##te }
14715 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14716 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14717 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14718 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14719 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14720 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14721 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14722 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14724 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14725 appear in the condition table. */
14726 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14727 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14728 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14730 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14731 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14732 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14733 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14734 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14735 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14736 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14737 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14738 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14739 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14740 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14741 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14742 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14743 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14744 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14745 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14746 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14747 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14748 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14749 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14751 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14752 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14753 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14754 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14756 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14757 field is still 0xE. Many of the Thumb variants can be executed
14758 conditionally, so this is checked separately. */
14759 #define TUE(mnem, op, top, nops, ops, ae, te) \
14760 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14761 THUMB_VARIANT, do_##ae, do_##te }
14763 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14764 condition code field. */
14765 #define TUF(mnem, op, top, nops, ops, ae, te) \
14766 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14767 THUMB_VARIANT, do_##ae, do_##te }
14769 /* ARM-only variants of all the above. */
14770 #define CE(mnem, op, nops, ops, ae) \
14771 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14773 #define C3(mnem, op, nops, ops, ae) \
14774 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14776 /* Legacy mnemonics that always have conditional infix after the third
14778 #define CL(mnem, op, nops, ops, ae) \
14779 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14780 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14782 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14783 #define cCE(mnem, op, nops, ops, ae) \
14784 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14786 /* Legacy coprocessor instructions where conditional infix and conditional
14787 suffix are ambiguous. For consistency this includes all FPA instructions,
14788 not just the potentially ambiguous ones. */
14789 #define cCL(mnem, op, nops, ops, ae) \
14790 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14791 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14793 /* Coprocessor, takes either a suffix or a position-3 infix
14794 (for an FPA corner case). */
14795 #define C3E(mnem, op, nops, ops, ae) \
14796 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14797 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14799 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14800 { #m1 #m2 #m3, OPS##nops ops, \
14801 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14802 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14804 #define CM(m1, m2, op, nops, ops, ae) \
14805 xCM_(m1, , m2, op, nops, ops, ae), \
14806 xCM_(m1, eq, m2, op, nops, ops, ae), \
14807 xCM_(m1, ne, m2, op, nops, ops, ae), \
14808 xCM_(m1, cs, m2, op, nops, ops, ae), \
14809 xCM_(m1, hs, m2, op, nops, ops, ae), \
14810 xCM_(m1, cc, m2, op, nops, ops, ae), \
14811 xCM_(m1, ul, m2, op, nops, ops, ae), \
14812 xCM_(m1, lo, m2, op, nops, ops, ae), \
14813 xCM_(m1, mi, m2, op, nops, ops, ae), \
14814 xCM_(m1, pl, m2, op, nops, ops, ae), \
14815 xCM_(m1, vs, m2, op, nops, ops, ae), \
14816 xCM_(m1, vc, m2, op, nops, ops, ae), \
14817 xCM_(m1, hi, m2, op, nops, ops, ae), \
14818 xCM_(m1, ls, m2, op, nops, ops, ae), \
14819 xCM_(m1, ge, m2, op, nops, ops, ae), \
14820 xCM_(m1, lt, m2, op, nops, ops, ae), \
14821 xCM_(m1, gt, m2, op, nops, ops, ae), \
14822 xCM_(m1, le, m2, op, nops, ops, ae), \
14823 xCM_(m1, al, m2, op, nops, ops, ae)
14825 #define UE(mnem, op, nops, ops, ae) \
14826 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14828 #define UF(mnem, op, nops, ops, ae) \
14829 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14831 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14832 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14833 use the same encoding function for each. */
14834 #define NUF(mnem, op, nops, ops, enc) \
14835 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14836 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14838 /* Neon data processing, version which indirects through neon_enc_tab for
14839 the various overloaded versions of opcodes. */
14840 #define nUF(mnem, op, nops, ops, enc) \
14841 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14842 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14844 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14846 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14847 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14848 THUMB_VARIANT, do_##enc, do_##enc }
14850 #define NCE(mnem, op, nops, ops, enc) \
14851 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14853 #define NCEF(mnem, op, nops, ops, enc) \
14854 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14856 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14857 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
14858 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
14859 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14861 #define nCE(mnem, op, nops, ops, enc) \
14862 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14864 #define nCEF(mnem, op, nops, ops, enc) \
14865 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14869 /* Thumb-only, unconditional. */
14870 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14872 static const struct asm_opcode insns
[] =
14874 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14875 #define THUMB_VARIANT &arm_ext_v4t
14876 tCE(and, 0000000, and, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14877 tC3(ands
, 0100000, ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14878 tCE(eor
, 0200000, eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14879 tC3(eors
, 0300000, eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14880 tCE(sub
, 0400000, sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
14881 tC3(subs
, 0500000, subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
14882 tCE(add
, 0800000, add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
14883 tC3(adds
, 0900000, adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
14884 tCE(adc
, 0a00000
, adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14885 tC3(adcs
, 0b00000, adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14886 tCE(sbc
, 0c00000
, sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
14887 tC3(sbcs
, 0d00000
, sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
14888 tCE(orr
, 1800000, orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14889 tC3(orrs
, 1900000, orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14890 tCE(bic
, 1c00000
, bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
14891 tC3(bics
, 1d00000
, bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
14893 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14894 for setting PSR flag bits. They are obsolete in V6 and do not
14895 have Thumb equivalents. */
14896 tCE(tst
, 1100000, tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14897 tC3w(tsts
, 1100000, tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14898 CL(tstp
, 110f000
, 2, (RR
, SH
), cmp
),
14899 tCE(cmp
, 1500000, cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
14900 tC3w(cmps
, 1500000, cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
14901 CL(cmpp
, 150f000
, 2, (RR
, SH
), cmp
),
14902 tCE(cmn
, 1700000, cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14903 tC3w(cmns
, 1700000, cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14904 CL(cmnp
, 170f000
, 2, (RR
, SH
), cmp
),
14906 tCE(mov
, 1a00000
, mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
14907 tC3(movs
, 1b00000
, movs
, 2, (RR
, SH
), mov
, t_mov_cmp
),
14908 tCE(mvn
, 1e00000
, mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
14909 tC3(mvns
, 1f00000
, mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
14911 tCE(ldr
, 4100000, ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
14912 tC3(ldrb
, 4500000, ldrb
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
14913 tCE(str
, 4000000, str
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
14914 tC3(strb
, 4400000, strb
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
14916 tCE(stm
, 8800000, stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14917 tC3(stmia
, 8800000, stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14918 tC3(stmea
, 8800000, stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14919 tCE(ldm
, 8900000, ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14920 tC3(ldmia
, 8900000, ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14921 tC3(ldmfd
, 8900000, ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14923 TCE(swi
, f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
14924 TCE(svc
, f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
14925 tCE(b
, a000000
, b
, 1, (EXPr
), branch
, t_branch
),
14926 TCE(bl
, b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
14929 tCE(adr
, 28f0000
, adr
, 2, (RR
, EXP
), adr
, t_adr
),
14930 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
14931 tCE(nop
, 1a00000
, nop
, 1, (oI255c
), nop
, t_nop
),
14933 /* Thumb-compatibility pseudo ops. */
14934 tCE(lsl
, 1a00000
, lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14935 tC3(lsls
, 1b00000
, lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14936 tCE(lsr
, 1a00020
, lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14937 tC3(lsrs
, 1b00020
, lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14938 tCE(asr
, 1a00040
, asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14939 tC3(asrs
, 1b00040
, asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14940 tCE(ror
, 1a00060
, ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14941 tC3(rors
, 1b00060
, rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14942 tCE(neg
, 2600000, neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
14943 tC3(negs
, 2700000, negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
14944 tCE(push
, 92d0000
, push
, 1, (REGLST
), push_pop
, t_push_pop
),
14945 tCE(pop
, 8bd0000
, pop
, 1, (REGLST
), push_pop
, t_push_pop
),
14947 /* These may simplify to neg. */
14948 TCE(rsb
, 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
14949 TC3(rsbs
, 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
14951 #undef THUMB_VARIANT
14952 #define THUMB_VARIANT &arm_ext_v6
14953 TCE(cpy
, 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
14955 /* V1 instructions with no Thumb analogue prior to V6T2. */
14956 #undef THUMB_VARIANT
14957 #define THUMB_VARIANT &arm_ext_v6t2
14958 TCE(teq
, 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14959 TC3w(teqs
, 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14960 CL(teqp
, 130f000
, 2, (RR
, SH
), cmp
),
14962 TC3(ldrt
, 4300000, f8500e00
, 2, (RR
, ADDR
), ldstt
, t_ldstt
),
14963 TC3(ldrbt
, 4700000, f8100e00
, 2, (RR
, ADDR
), ldstt
, t_ldstt
),
14964 TC3(strt
, 4200000, f8400e00
, 2, (RR
, ADDR
), ldstt
, t_ldstt
),
14965 TC3(strbt
, 4600000, f8000e00
, 2, (RR
, ADDR
), ldstt
, t_ldstt
),
14967 TC3(stmdb
, 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14968 TC3(stmfd
, 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14970 TC3(ldmdb
, 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14971 TC3(ldmea
, 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14973 /* V1 instructions with no Thumb analogue at all. */
14974 CE(rsc
, 0e00000
, 3, (RR
, oRR
, SH
), arit
),
14975 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
14977 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
14978 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
14979 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
14980 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
14981 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
14982 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
14983 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
14984 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
14987 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
14988 #undef THUMB_VARIANT
14989 #define THUMB_VARIANT &arm_ext_v4t
14990 tCE(mul
, 0000090, mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
14991 tC3(muls
, 0100090, muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
14993 #undef THUMB_VARIANT
14994 #define THUMB_VARIANT &arm_ext_v6t2
14995 TCE(mla
, 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
14996 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
14998 /* Generic coprocessor instructions. */
14999 TCE(cdp
, e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
15000 TCE(ldc
, c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
15001 TC3(ldcl
, c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
15002 TCE(stc
, c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
15003 TC3(stcl
, c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
15004 TCE(mcr
, e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
15005 TCE(mrc
, e100010
, ee100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
15008 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
15009 CE(swp
, 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
15010 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
15013 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
15014 TCE(mrs
, 10f0000
, f3ef8000
, 2, (APSR_RR
, RVC_PSR
), mrs
, t_mrs
),
15015 TCE(msr
, 120f000
, f3808000
, 2, (RVC_PSR
, RR_EXi
), msr
, t_msr
),
15018 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
15019 TCE(smull
, 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
15020 CM(smull
,s
, 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
15021 TCE(umull
, 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
15022 CM(umull
,s
, 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
15023 TCE(smlal
, 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
15024 CM(smlal
,s
, 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
15025 TCE(umlal
, 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
15026 CM(umlal
,s
, 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
15029 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
15030 #undef THUMB_VARIANT
15031 #define THUMB_VARIANT &arm_ext_v4t
15032 tC3(ldrh
, 01000b0
, ldrh
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
15033 tC3(strh
, 00000b0
, strh
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
15034 tC3(ldrsh
, 01000f0
, ldrsh
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
15035 tC3(ldrsb
, 01000d0
, ldrsb
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
15036 tCM(ld
,sh
, 01000f0
, ldrsh
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
15037 tCM(ld
,sb
, 01000d0
, ldrsb
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
15040 #define ARM_VARIANT &arm_ext_v4t_5
15041 /* ARM Architecture 4T. */
15042 /* Note: bx (and blx) are required on V5, even if the processor does
15043 not support Thumb. */
15044 TCE(bx
, 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
15047 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
15048 #undef THUMB_VARIANT
15049 #define THUMB_VARIANT &arm_ext_v5t
15050 /* Note: blx has 2 variants; the .value coded here is for
15051 BLX(2). Only this variant has conditional execution. */
15052 TCE(blx
, 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
15053 TUE(bkpt
, 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
15055 #undef THUMB_VARIANT
15056 #define THUMB_VARIANT &arm_ext_v6t2
15057 TCE(clz
, 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
15058 TUF(ldc2
, c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
15059 TUF(ldc2l
, c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
15060 TUF(stc2
, c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
15061 TUF(stc2l
, c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
15062 TUF(cdp2
, e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
15063 TUF(mcr2
, e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
15064 TUF(mrc2
, e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
15067 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
15068 TCE(smlabb
, 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
15069 TCE(smlatb
, 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
15070 TCE(smlabt
, 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
15071 TCE(smlatt
, 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
15073 TCE(smlawb
, 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
15074 TCE(smlawt
, 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
15076 TCE(smlalbb
, 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
15077 TCE(smlaltb
, 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
15078 TCE(smlalbt
, 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
15079 TCE(smlaltt
, 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
15081 TCE(smulbb
, 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15082 TCE(smultb
, 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15083 TCE(smulbt
, 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15084 TCE(smultt
, 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15086 TCE(smulwb
, 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15087 TCE(smulwt
, 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15089 TCE(qadd
, 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, rd_rm_rn
),
15090 TCE(qdadd
, 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, rd_rm_rn
),
15091 TCE(qsub
, 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, rd_rm_rn
),
15092 TCE(qdsub
, 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, rd_rm_rn
),
15095 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
15096 TUF(pld
, 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
15097 TC3(ldrd
, 00000d0
, e8500000
, 3, (RRnpc
, oRRnpc
, ADDRGLDRS
), ldrd
, t_ldstd
),
15098 TC3(strd
, 00000f0
, e8400000
, 3, (RRnpc
, oRRnpc
, ADDRGLDRS
), ldrd
, t_ldstd
),
15100 TCE(mcrr
, c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
15101 TCE(mrrc
, c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
15104 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
15105 TCE(bxj
, 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
15108 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
15109 #undef THUMB_VARIANT
15110 #define THUMB_VARIANT &arm_ext_v6
15111 TUF(cpsie
, 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
15112 TUF(cpsid
, 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
15113 tCE(rev
, 6bf0f30
, rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
15114 tCE(rev16
, 6bf0fb0
, rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
15115 tCE(revsh
, 6ff0fb0
, revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
15116 tCE(sxth
, 6bf0070
, sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
15117 tCE(uxth
, 6ff0070
, uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
15118 tCE(sxtb
, 6af0070
, sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
15119 tCE(uxtb
, 6ef0070
, uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
15120 TUF(setend
, 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
15122 #undef THUMB_VARIANT
15123 #define THUMB_VARIANT &arm_ext_v6t2
15124 TCE(ldrex
, 1900f9f
, e8500f00
, 2, (RRnpc
, ADDR
), ldrex
, t_ldrex
),
15125 TCE(strex
, 1800f90
, e8400000
, 3, (RRnpc
, RRnpc
, ADDR
), strex
, t_strex
),
15126 TUF(mcrr2
, c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
15127 TUF(mrrc2
, c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
15129 TCE(ssat
, 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
15130 TCE(usat
, 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
15132 /* ARM V6 not included in V7M (eg. integer SIMD). */
15133 #undef THUMB_VARIANT
15134 #define THUMB_VARIANT &arm_ext_v6_notm
15135 TUF(cps
, 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
15136 TCE(pkhbt
, 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
15137 TCE(pkhtb
, 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
15138 TCE(qadd16
, 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15139 TCE(qadd8
, 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15140 TCE(qaddsubx
, 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15141 TCE(qsub16
, 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15142 TCE(qsub8
, 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15143 TCE(qsubaddx
, 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15144 TCE(sadd16
, 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15145 TCE(sadd8
, 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15146 TCE(saddsubx
, 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15147 TCE(shadd16
, 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15148 TCE(shadd8
, 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15149 TCE(shaddsubx
, 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15150 TCE(shsub16
, 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15151 TCE(shsub8
, 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15152 TCE(shsubaddx
, 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15153 TCE(ssub16
, 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15154 TCE(ssub8
, 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15155 TCE(ssubaddx
, 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15156 TCE(uadd16
, 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15157 TCE(uadd8
, 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15158 TCE(uaddsubx
, 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15159 TCE(uhadd16
, 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15160 TCE(uhadd8
, 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15161 TCE(uhaddsubx
, 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15162 TCE(uhsub16
, 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15163 TCE(uhsub8
, 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15164 TCE(uhsubaddx
, 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15165 TCE(uqadd16
, 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15166 TCE(uqadd8
, 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15167 TCE(uqaddsubx
, 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15168 TCE(uqsub16
, 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15169 TCE(uqsub8
, 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15170 TCE(uqsubaddx
, 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15171 TCE(usub16
, 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15172 TCE(usub8
, 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15173 TCE(usubaddx
, 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15174 TUF(rfeia
, 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
15175 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
15176 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
15177 TUF(rfedb
, 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
15178 TUF(rfefd
, 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
15179 UF(rfefa
, 9900a00
, 1, (RRw
), rfe
),
15180 UF(rfeea
, 8100a00
, 1, (RRw
), rfe
),
15181 TUF(rfeed
, 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
15182 TCE(sxtah
, 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
15183 TCE(sxtab16
, 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
15184 TCE(sxtab
, 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
15185 TCE(sxtb16
, 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
15186 TCE(uxtah
, 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
15187 TCE(uxtab16
, 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
15188 TCE(uxtab
, 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
15189 TCE(uxtb16
, 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
15190 TCE(sel
, 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
15191 TCE(smlad
, 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
15192 TCE(smladx
, 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
15193 TCE(smlald
, 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
15194 TCE(smlaldx
, 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
15195 TCE(smlsd
, 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
15196 TCE(smlsdx
, 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
15197 TCE(smlsld
, 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
15198 TCE(smlsldx
, 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
15199 TCE(smmla
, 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
15200 TCE(smmlar
, 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
15201 TCE(smmls
, 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
15202 TCE(smmlsr
, 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
15203 TCE(smmul
, 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15204 TCE(smmulr
, 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15205 TCE(smuad
, 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15206 TCE(smuadx
, 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15207 TCE(smusd
, 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15208 TCE(smusdx
, 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15209 TUF(srsia
, 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
15210 UF(srsib
, 9c00500
, 2, (oRRw
, I31w
), srs
),
15211 UF(srsda
, 8400500, 2, (oRRw
, I31w
), srs
),
15212 TUF(srsdb
, 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
15213 TCE(ssat16
, 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
15214 TCE(umaal
, 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
15215 TCE(usad8
, 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
15216 TCE(usada8
, 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
15217 TCE(usat16
, 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
15220 #define ARM_VARIANT &arm_ext_v6k
15221 #undef THUMB_VARIANT
15222 #define THUMB_VARIANT &arm_ext_v6k
15223 tCE(yield
, 320f001
, yield
, 0, (), noargs
, t_hint
),
15224 tCE(wfe
, 320f002
, wfe
, 0, (), noargs
, t_hint
),
15225 tCE(wfi
, 320f003
, wfi
, 0, (), noargs
, t_hint
),
15226 tCE(sev
, 320f004
, sev
, 0, (), noargs
, t_hint
),
15228 #undef THUMB_VARIANT
15229 #define THUMB_VARIANT &arm_ext_v6_notm
15230 TCE(ldrexd
, 1b00f9f
, e8d0007f
, 3, (RRnpc
, oRRnpc
, RRnpcb
), ldrexd
, t_ldrexd
),
15231 TCE(strexd
, 1a00f90
, e8c00070
, 4, (RRnpc
, RRnpc
, oRRnpc
, RRnpcb
), strexd
, t_strexd
),
15233 #undef THUMB_VARIANT
15234 #define THUMB_VARIANT &arm_ext_v6t2
15235 TCE(ldrexb
, 1d00f9f
, e8d00f4f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
15236 TCE(ldrexh
, 1f00f9f
, e8d00f5f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
15237 TCE(strexb
, 1c00f90
, e8c00f40
, 3, (RRnpc
, RRnpc
, ADDR
), strex
, rm_rd_rn
),
15238 TCE(strexh
, 1e00f90
, e8c00f50
, 3, (RRnpc
, RRnpc
, ADDR
), strex
, rm_rd_rn
),
15239 TUF(clrex
, 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
15242 #define ARM_VARIANT &arm_ext_v6z
15243 TCE(smc
, 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
15246 #define ARM_VARIANT &arm_ext_v6t2
15247 TCE(bfc
, 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
15248 TCE(bfi
, 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
15249 TCE(sbfx
, 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
15250 TCE(ubfx
, 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
15252 TCE(mls
, 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
15253 TCE(movw
, 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
15254 TCE(movt
, 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
15255 TCE(rbit
, 6ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
15257 TC3(ldrht
, 03000b0
, f8300e00
, 2, (RR
, ADDR
), ldsttv4
, t_ldstt
),
15258 TC3(ldrsht
, 03000f0
, f9300e00
, 2, (RR
, ADDR
), ldsttv4
, t_ldstt
),
15259 TC3(ldrsbt
, 03000d0
, f9100e00
, 2, (RR
, ADDR
), ldsttv4
, t_ldstt
),
15260 TC3(strht
, 02000b0
, f8200e00
, 2, (RR
, ADDR
), ldsttv4
, t_ldstt
),
15262 UT(cbnz
, b900
, 2, (RR
, EXP
), t_cbz
),
15263 UT(cbz
, b100
, 2, (RR
, EXP
), t_cbz
),
15264 /* ARM does not really have an IT instruction, so always allow it. */
15266 #define ARM_VARIANT &arm_ext_v1
15267 TUE(it
, 0, bf08
, 1, (COND
), it
, t_it
),
15268 TUE(itt
, 0, bf0c
, 1, (COND
), it
, t_it
),
15269 TUE(ite
, 0, bf04
, 1, (COND
), it
, t_it
),
15270 TUE(ittt
, 0, bf0e
, 1, (COND
), it
, t_it
),
15271 TUE(itet
, 0, bf06
, 1, (COND
), it
, t_it
),
15272 TUE(itte
, 0, bf0a
, 1, (COND
), it
, t_it
),
15273 TUE(itee
, 0, bf02
, 1, (COND
), it
, t_it
),
15274 TUE(itttt
, 0, bf0f
, 1, (COND
), it
, t_it
),
15275 TUE(itett
, 0, bf07
, 1, (COND
), it
, t_it
),
15276 TUE(ittet
, 0, bf0b
, 1, (COND
), it
, t_it
),
15277 TUE(iteet
, 0, bf03
, 1, (COND
), it
, t_it
),
15278 TUE(ittte
, 0, bf0d
, 1, (COND
), it
, t_it
),
15279 TUE(itete
, 0, bf05
, 1, (COND
), it
, t_it
),
15280 TUE(ittee
, 0, bf09
, 1, (COND
), it
, t_it
),
15281 TUE(iteee
, 0, bf01
, 1, (COND
), it
, t_it
),
15283 /* Thumb2 only instructions. */
15285 #define ARM_VARIANT NULL
15287 TCE(addw
, 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
15288 TCE(subw
, 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
15289 TCE(tbb
, 0, e8d0f000
, 1, (TB
), 0, t_tb
),
15290 TCE(tbh
, 0, e8d0f010
, 1, (TB
), 0, t_tb
),
15292 /* Thumb-2 hardware division instructions (R and M profiles only). */
15293 #undef THUMB_VARIANT
15294 #define THUMB_VARIANT &arm_ext_div
15295 TCE(sdiv
, 0, fb90f0f0
, 3, (RR
, oRR
, RR
), 0, t_div
),
15296 TCE(udiv
, 0, fbb0f0f0
, 3, (RR
, oRR
, RR
), 0, t_div
),
15298 /* ARM V7 instructions. */
15300 #define ARM_VARIANT &arm_ext_v7
15301 #undef THUMB_VARIANT
15302 #define THUMB_VARIANT &arm_ext_v7
15303 TUF(pli
, 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
15304 TCE(dbg
, 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
15305 TUF(dmb
, 57ff050
, f3bf8f50
, 1, (oBARRIER
), barrier
, t_barrier
),
15306 TUF(dsb
, 57ff040
, f3bf8f40
, 1, (oBARRIER
), barrier
, t_barrier
),
15307 TUF(isb
, 57ff060
, f3bf8f60
, 1, (oBARRIER
), barrier
, t_barrier
),
15310 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
15311 cCE(wfs
, e200110
, 1, (RR
), rd
),
15312 cCE(rfs
, e300110
, 1, (RR
), rd
),
15313 cCE(wfc
, e400110
, 1, (RR
), rd
),
15314 cCE(rfc
, e500110
, 1, (RR
), rd
),
15316 cCL(ldfs
, c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
15317 cCL(ldfd
, c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
15318 cCL(ldfe
, c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
15319 cCL(ldfp
, c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
15321 cCL(stfs
, c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
15322 cCL(stfd
, c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
15323 cCL(stfe
, c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
15324 cCL(stfp
, c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
15326 cCL(mvfs
, e008100
, 2, (RF
, RF_IF
), rd_rm
),
15327 cCL(mvfsp
, e008120
, 2, (RF
, RF_IF
), rd_rm
),
15328 cCL(mvfsm
, e008140
, 2, (RF
, RF_IF
), rd_rm
),
15329 cCL(mvfsz
, e008160
, 2, (RF
, RF_IF
), rd_rm
),
15330 cCL(mvfd
, e008180
, 2, (RF
, RF_IF
), rd_rm
),
15331 cCL(mvfdp
, e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
15332 cCL(mvfdm
, e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
15333 cCL(mvfdz
, e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
15334 cCL(mvfe
, e088100
, 2, (RF
, RF_IF
), rd_rm
),
15335 cCL(mvfep
, e088120
, 2, (RF
, RF_IF
), rd_rm
),
15336 cCL(mvfem
, e088140
, 2, (RF
, RF_IF
), rd_rm
),
15337 cCL(mvfez
, e088160
, 2, (RF
, RF_IF
), rd_rm
),
15339 cCL(mnfs
, e108100
, 2, (RF
, RF_IF
), rd_rm
),
15340 cCL(mnfsp
, e108120
, 2, (RF
, RF_IF
), rd_rm
),
15341 cCL(mnfsm
, e108140
, 2, (RF
, RF_IF
), rd_rm
),
15342 cCL(mnfsz
, e108160
, 2, (RF
, RF_IF
), rd_rm
),
15343 cCL(mnfd
, e108180
, 2, (RF
, RF_IF
), rd_rm
),
15344 cCL(mnfdp
, e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
15345 cCL(mnfdm
, e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
15346 cCL(mnfdz
, e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
15347 cCL(mnfe
, e188100
, 2, (RF
, RF_IF
), rd_rm
),
15348 cCL(mnfep
, e188120
, 2, (RF
, RF_IF
), rd_rm
),
15349 cCL(mnfem
, e188140
, 2, (RF
, RF_IF
), rd_rm
),
15350 cCL(mnfez
, e188160
, 2, (RF
, RF_IF
), rd_rm
),
15352 cCL(abss
, e208100
, 2, (RF
, RF_IF
), rd_rm
),
15353 cCL(abssp
, e208120
, 2, (RF
, RF_IF
), rd_rm
),
15354 cCL(abssm
, e208140
, 2, (RF
, RF_IF
), rd_rm
),
15355 cCL(abssz
, e208160
, 2, (RF
, RF_IF
), rd_rm
),
15356 cCL(absd
, e208180
, 2, (RF
, RF_IF
), rd_rm
),
15357 cCL(absdp
, e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
15358 cCL(absdm
, e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
15359 cCL(absdz
, e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
15360 cCL(abse
, e288100
, 2, (RF
, RF_IF
), rd_rm
),
15361 cCL(absep
, e288120
, 2, (RF
, RF_IF
), rd_rm
),
15362 cCL(absem
, e288140
, 2, (RF
, RF_IF
), rd_rm
),
15363 cCL(absez
, e288160
, 2, (RF
, RF_IF
), rd_rm
),
15365 cCL(rnds
, e308100
, 2, (RF
, RF_IF
), rd_rm
),
15366 cCL(rndsp
, e308120
, 2, (RF
, RF_IF
), rd_rm
),
15367 cCL(rndsm
, e308140
, 2, (RF
, RF_IF
), rd_rm
),
15368 cCL(rndsz
, e308160
, 2, (RF
, RF_IF
), rd_rm
),
15369 cCL(rndd
, e308180
, 2, (RF
, RF_IF
), rd_rm
),
15370 cCL(rnddp
, e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
15371 cCL(rnddm
, e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
15372 cCL(rnddz
, e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
15373 cCL(rnde
, e388100
, 2, (RF
, RF_IF
), rd_rm
),
15374 cCL(rndep
, e388120
, 2, (RF
, RF_IF
), rd_rm
),
15375 cCL(rndem
, e388140
, 2, (RF
, RF_IF
), rd_rm
),
15376 cCL(rndez
, e388160
, 2, (RF
, RF_IF
), rd_rm
),
15378 cCL(sqts
, e408100
, 2, (RF
, RF_IF
), rd_rm
),
15379 cCL(sqtsp
, e408120
, 2, (RF
, RF_IF
), rd_rm
),
15380 cCL(sqtsm
, e408140
, 2, (RF
, RF_IF
), rd_rm
),
15381 cCL(sqtsz
, e408160
, 2, (RF
, RF_IF
), rd_rm
),
15382 cCL(sqtd
, e408180
, 2, (RF
, RF_IF
), rd_rm
),
15383 cCL(sqtdp
, e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
15384 cCL(sqtdm
, e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
15385 cCL(sqtdz
, e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
15386 cCL(sqte
, e488100
, 2, (RF
, RF_IF
), rd_rm
),
15387 cCL(sqtep
, e488120
, 2, (RF
, RF_IF
), rd_rm
),
15388 cCL(sqtem
, e488140
, 2, (RF
, RF_IF
), rd_rm
),
15389 cCL(sqtez
, e488160
, 2, (RF
, RF_IF
), rd_rm
),
15391 cCL(logs
, e508100
, 2, (RF
, RF_IF
), rd_rm
),
15392 cCL(logsp
, e508120
, 2, (RF
, RF_IF
), rd_rm
),
15393 cCL(logsm
, e508140
, 2, (RF
, RF_IF
), rd_rm
),
15394 cCL(logsz
, e508160
, 2, (RF
, RF_IF
), rd_rm
),
15395 cCL(logd
, e508180
, 2, (RF
, RF_IF
), rd_rm
),
15396 cCL(logdp
, e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
15397 cCL(logdm
, e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
15398 cCL(logdz
, e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
15399 cCL(loge
, e588100
, 2, (RF
, RF_IF
), rd_rm
),
15400 cCL(logep
, e588120
, 2, (RF
, RF_IF
), rd_rm
),
15401 cCL(logem
, e588140
, 2, (RF
, RF_IF
), rd_rm
),
15402 cCL(logez
, e588160
, 2, (RF
, RF_IF
), rd_rm
),
15404 cCL(lgns
, e608100
, 2, (RF
, RF_IF
), rd_rm
),
15405 cCL(lgnsp
, e608120
, 2, (RF
, RF_IF
), rd_rm
),
15406 cCL(lgnsm
, e608140
, 2, (RF
, RF_IF
), rd_rm
),
15407 cCL(lgnsz
, e608160
, 2, (RF
, RF_IF
), rd_rm
),
15408 cCL(lgnd
, e608180
, 2, (RF
, RF_IF
), rd_rm
),
15409 cCL(lgndp
, e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
15410 cCL(lgndm
, e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
15411 cCL(lgndz
, e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
15412 cCL(lgne
, e688100
, 2, (RF
, RF_IF
), rd_rm
),
15413 cCL(lgnep
, e688120
, 2, (RF
, RF_IF
), rd_rm
),
15414 cCL(lgnem
, e688140
, 2, (RF
, RF_IF
), rd_rm
),
15415 cCL(lgnez
, e688160
, 2, (RF
, RF_IF
), rd_rm
),
15417 cCL(exps
, e708100
, 2, (RF
, RF_IF
), rd_rm
),
15418 cCL(expsp
, e708120
, 2, (RF
, RF_IF
), rd_rm
),
15419 cCL(expsm
, e708140
, 2, (RF
, RF_IF
), rd_rm
),
15420 cCL(expsz
, e708160
, 2, (RF
, RF_IF
), rd_rm
),
15421 cCL(expd
, e708180
, 2, (RF
, RF_IF
), rd_rm
),
15422 cCL(expdp
, e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
15423 cCL(expdm
, e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
15424 cCL(expdz
, e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
15425 cCL(expe
, e788100
, 2, (RF
, RF_IF
), rd_rm
),
15426 cCL(expep
, e788120
, 2, (RF
, RF_IF
), rd_rm
),
15427 cCL(expem
, e788140
, 2, (RF
, RF_IF
), rd_rm
),
15428 cCL(expdz
, e788160
, 2, (RF
, RF_IF
), rd_rm
),
15430 cCL(sins
, e808100
, 2, (RF
, RF_IF
), rd_rm
),
15431 cCL(sinsp
, e808120
, 2, (RF
, RF_IF
), rd_rm
),
15432 cCL(sinsm
, e808140
, 2, (RF
, RF_IF
), rd_rm
),
15433 cCL(sinsz
, e808160
, 2, (RF
, RF_IF
), rd_rm
),
15434 cCL(sind
, e808180
, 2, (RF
, RF_IF
), rd_rm
),
15435 cCL(sindp
, e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
15436 cCL(sindm
, e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
15437 cCL(sindz
, e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
15438 cCL(sine
, e888100
, 2, (RF
, RF_IF
), rd_rm
),
15439 cCL(sinep
, e888120
, 2, (RF
, RF_IF
), rd_rm
),
15440 cCL(sinem
, e888140
, 2, (RF
, RF_IF
), rd_rm
),
15441 cCL(sinez
, e888160
, 2, (RF
, RF_IF
), rd_rm
),
15443 cCL(coss
, e908100
, 2, (RF
, RF_IF
), rd_rm
),
15444 cCL(cossp
, e908120
, 2, (RF
, RF_IF
), rd_rm
),
15445 cCL(cossm
, e908140
, 2, (RF
, RF_IF
), rd_rm
),
15446 cCL(cossz
, e908160
, 2, (RF
, RF_IF
), rd_rm
),
15447 cCL(cosd
, e908180
, 2, (RF
, RF_IF
), rd_rm
),
15448 cCL(cosdp
, e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
15449 cCL(cosdm
, e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
15450 cCL(cosdz
, e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
15451 cCL(cose
, e988100
, 2, (RF
, RF_IF
), rd_rm
),
15452 cCL(cosep
, e988120
, 2, (RF
, RF_IF
), rd_rm
),
15453 cCL(cosem
, e988140
, 2, (RF
, RF_IF
), rd_rm
),
15454 cCL(cosez
, e988160
, 2, (RF
, RF_IF
), rd_rm
),
15456 cCL(tans
, ea08100
, 2, (RF
, RF_IF
), rd_rm
),
15457 cCL(tansp
, ea08120
, 2, (RF
, RF_IF
), rd_rm
),
15458 cCL(tansm
, ea08140
, 2, (RF
, RF_IF
), rd_rm
),
15459 cCL(tansz
, ea08160
, 2, (RF
, RF_IF
), rd_rm
),
15460 cCL(tand
, ea08180
, 2, (RF
, RF_IF
), rd_rm
),
15461 cCL(tandp
, ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
15462 cCL(tandm
, ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
15463 cCL(tandz
, ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
15464 cCL(tane
, ea88100
, 2, (RF
, RF_IF
), rd_rm
),
15465 cCL(tanep
, ea88120
, 2, (RF
, RF_IF
), rd_rm
),
15466 cCL(tanem
, ea88140
, 2, (RF
, RF_IF
), rd_rm
),
15467 cCL(tanez
, ea88160
, 2, (RF
, RF_IF
), rd_rm
),
15469 cCL(asns
, eb08100
, 2, (RF
, RF_IF
), rd_rm
),
15470 cCL(asnsp
, eb08120
, 2, (RF
, RF_IF
), rd_rm
),
15471 cCL(asnsm
, eb08140
, 2, (RF
, RF_IF
), rd_rm
),
15472 cCL(asnsz
, eb08160
, 2, (RF
, RF_IF
), rd_rm
),
15473 cCL(asnd
, eb08180
, 2, (RF
, RF_IF
), rd_rm
),
15474 cCL(asndp
, eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
15475 cCL(asndm
, eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
15476 cCL(asndz
, eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
15477 cCL(asne
, eb88100
, 2, (RF
, RF_IF
), rd_rm
),
15478 cCL(asnep
, eb88120
, 2, (RF
, RF_IF
), rd_rm
),
15479 cCL(asnem
, eb88140
, 2, (RF
, RF_IF
), rd_rm
),
15480 cCL(asnez
, eb88160
, 2, (RF
, RF_IF
), rd_rm
),
15482 cCL(acss
, ec08100
, 2, (RF
, RF_IF
), rd_rm
),
15483 cCL(acssp
, ec08120
, 2, (RF
, RF_IF
), rd_rm
),
15484 cCL(acssm
, ec08140
, 2, (RF
, RF_IF
), rd_rm
),
15485 cCL(acssz
, ec08160
, 2, (RF
, RF_IF
), rd_rm
),
15486 cCL(acsd
, ec08180
, 2, (RF
, RF_IF
), rd_rm
),
15487 cCL(acsdp
, ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
15488 cCL(acsdm
, ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
15489 cCL(acsdz
, ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
15490 cCL(acse
, ec88100
, 2, (RF
, RF_IF
), rd_rm
),
15491 cCL(acsep
, ec88120
, 2, (RF
, RF_IF
), rd_rm
),
15492 cCL(acsem
, ec88140
, 2, (RF
, RF_IF
), rd_rm
),
15493 cCL(acsez
, ec88160
, 2, (RF
, RF_IF
), rd_rm
),
15495 cCL(atns
, ed08100
, 2, (RF
, RF_IF
), rd_rm
),
15496 cCL(atnsp
, ed08120
, 2, (RF
, RF_IF
), rd_rm
),
15497 cCL(atnsm
, ed08140
, 2, (RF
, RF_IF
), rd_rm
),
15498 cCL(atnsz
, ed08160
, 2, (RF
, RF_IF
), rd_rm
),
15499 cCL(atnd
, ed08180
, 2, (RF
, RF_IF
), rd_rm
),
15500 cCL(atndp
, ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
15501 cCL(atndm
, ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
15502 cCL(atndz
, ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
15503 cCL(atne
, ed88100
, 2, (RF
, RF_IF
), rd_rm
),
15504 cCL(atnep
, ed88120
, 2, (RF
, RF_IF
), rd_rm
),
15505 cCL(atnem
, ed88140
, 2, (RF
, RF_IF
), rd_rm
),
15506 cCL(atnez
, ed88160
, 2, (RF
, RF_IF
), rd_rm
),
15508 cCL(urds
, ee08100
, 2, (RF
, RF_IF
), rd_rm
),
15509 cCL(urdsp
, ee08120
, 2, (RF
, RF_IF
), rd_rm
),
15510 cCL(urdsm
, ee08140
, 2, (RF
, RF_IF
), rd_rm
),
15511 cCL(urdsz
, ee08160
, 2, (RF
, RF_IF
), rd_rm
),
15512 cCL(urdd
, ee08180
, 2, (RF
, RF_IF
), rd_rm
),
15513 cCL(urddp
, ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
15514 cCL(urddm
, ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
15515 cCL(urddz
, ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
15516 cCL(urde
, ee88100
, 2, (RF
, RF_IF
), rd_rm
),
15517 cCL(urdep
, ee88120
, 2, (RF
, RF_IF
), rd_rm
),
15518 cCL(urdem
, ee88140
, 2, (RF
, RF_IF
), rd_rm
),
15519 cCL(urdez
, ee88160
, 2, (RF
, RF_IF
), rd_rm
),
15521 cCL(nrms
, ef08100
, 2, (RF
, RF_IF
), rd_rm
),
15522 cCL(nrmsp
, ef08120
, 2, (RF
, RF_IF
), rd_rm
),
15523 cCL(nrmsm
, ef08140
, 2, (RF
, RF_IF
), rd_rm
),
15524 cCL(nrmsz
, ef08160
, 2, (RF
, RF_IF
), rd_rm
),
15525 cCL(nrmd
, ef08180
, 2, (RF
, RF_IF
), rd_rm
),
15526 cCL(nrmdp
, ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
15527 cCL(nrmdm
, ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
15528 cCL(nrmdz
, ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
15529 cCL(nrme
, ef88100
, 2, (RF
, RF_IF
), rd_rm
),
15530 cCL(nrmep
, ef88120
, 2, (RF
, RF_IF
), rd_rm
),
15531 cCL(nrmem
, ef88140
, 2, (RF
, RF_IF
), rd_rm
),
15532 cCL(nrmez
, ef88160
, 2, (RF
, RF_IF
), rd_rm
),
15534 cCL(adfs
, e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15535 cCL(adfsp
, e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15536 cCL(adfsm
, e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15537 cCL(adfsz
, e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15538 cCL(adfd
, e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15539 cCL(adfdp
, e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15540 cCL(adfdm
, e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15541 cCL(adfdz
, e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15542 cCL(adfe
, e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15543 cCL(adfep
, e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15544 cCL(adfem
, e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15545 cCL(adfez
, e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15547 cCL(sufs
, e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15548 cCL(sufsp
, e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15549 cCL(sufsm
, e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15550 cCL(sufsz
, e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15551 cCL(sufd
, e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15552 cCL(sufdp
, e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15553 cCL(sufdm
, e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15554 cCL(sufdz
, e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15555 cCL(sufe
, e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15556 cCL(sufep
, e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15557 cCL(sufem
, e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15558 cCL(sufez
, e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15560 cCL(rsfs
, e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15561 cCL(rsfsp
, e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15562 cCL(rsfsm
, e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15563 cCL(rsfsz
, e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15564 cCL(rsfd
, e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15565 cCL(rsfdp
, e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15566 cCL(rsfdm
, e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15567 cCL(rsfdz
, e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15568 cCL(rsfe
, e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15569 cCL(rsfep
, e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15570 cCL(rsfem
, e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15571 cCL(rsfez
, e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15573 cCL(mufs
, e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15574 cCL(mufsp
, e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15575 cCL(mufsm
, e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15576 cCL(mufsz
, e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15577 cCL(mufd
, e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15578 cCL(mufdp
, e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15579 cCL(mufdm
, e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15580 cCL(mufdz
, e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15581 cCL(mufe
, e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15582 cCL(mufep
, e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15583 cCL(mufem
, e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15584 cCL(mufez
, e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15586 cCL(dvfs
, e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15587 cCL(dvfsp
, e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15588 cCL(dvfsm
, e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15589 cCL(dvfsz
, e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15590 cCL(dvfd
, e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15591 cCL(dvfdp
, e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15592 cCL(dvfdm
, e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15593 cCL(dvfdz
, e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15594 cCL(dvfe
, e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15595 cCL(dvfep
, e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15596 cCL(dvfem
, e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15597 cCL(dvfez
, e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15599 cCL(rdfs
, e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15600 cCL(rdfsp
, e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15601 cCL(rdfsm
, e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15602 cCL(rdfsz
, e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15603 cCL(rdfd
, e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15604 cCL(rdfdp
, e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15605 cCL(rdfdm
, e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15606 cCL(rdfdz
, e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15607 cCL(rdfe
, e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15608 cCL(rdfep
, e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15609 cCL(rdfem
, e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15610 cCL(rdfez
, e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15612 cCL(pows
, e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15613 cCL(powsp
, e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15614 cCL(powsm
, e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15615 cCL(powsz
, e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15616 cCL(powd
, e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15617 cCL(powdp
, e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15618 cCL(powdm
, e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15619 cCL(powdz
, e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15620 cCL(powe
, e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15621 cCL(powep
, e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15622 cCL(powem
, e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15623 cCL(powez
, e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15625 cCL(rpws
, e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15626 cCL(rpwsp
, e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15627 cCL(rpwsm
, e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15628 cCL(rpwsz
, e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15629 cCL(rpwd
, e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15630 cCL(rpwdp
, e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15631 cCL(rpwdm
, e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15632 cCL(rpwdz
, e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15633 cCL(rpwe
, e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15634 cCL(rpwep
, e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15635 cCL(rpwem
, e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15636 cCL(rpwez
, e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15638 cCL(rmfs
, e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15639 cCL(rmfsp
, e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15640 cCL(rmfsm
, e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15641 cCL(rmfsz
, e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15642 cCL(rmfd
, e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15643 cCL(rmfdp
, e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15644 cCL(rmfdm
, e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15645 cCL(rmfdz
, e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15646 cCL(rmfe
, e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15647 cCL(rmfep
, e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15648 cCL(rmfem
, e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15649 cCL(rmfez
, e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15651 cCL(fmls
, e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15652 cCL(fmlsp
, e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15653 cCL(fmlsm
, e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15654 cCL(fmlsz
, e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15655 cCL(fmld
, e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15656 cCL(fmldp
, e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15657 cCL(fmldm
, e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15658 cCL(fmldz
, e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15659 cCL(fmle
, e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15660 cCL(fmlep
, e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15661 cCL(fmlem
, e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15662 cCL(fmlez
, e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15664 cCL(fdvs
, ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15665 cCL(fdvsp
, ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15666 cCL(fdvsm
, ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15667 cCL(fdvsz
, ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15668 cCL(fdvd
, ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15669 cCL(fdvdp
, ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15670 cCL(fdvdm
, ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15671 cCL(fdvdz
, ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15672 cCL(fdve
, ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15673 cCL(fdvep
, ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15674 cCL(fdvem
, ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15675 cCL(fdvez
, ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15677 cCL(frds
, eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15678 cCL(frdsp
, eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15679 cCL(frdsm
, eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15680 cCL(frdsz
, eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15681 cCL(frdd
, eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15682 cCL(frddp
, eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15683 cCL(frddm
, eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15684 cCL(frddz
, eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15685 cCL(frde
, eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15686 cCL(frdep
, eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15687 cCL(frdem
, eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15688 cCL(frdez
, eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15690 cCL(pols
, ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15691 cCL(polsp
, ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15692 cCL(polsm
, ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15693 cCL(polsz
, ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15694 cCL(pold
, ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15695 cCL(poldp
, ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15696 cCL(poldm
, ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15697 cCL(poldz
, ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15698 cCL(pole
, ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15699 cCL(polep
, ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15700 cCL(polem
, ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15701 cCL(polez
, ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15703 cCE(cmf
, e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
15704 C3E(cmfe
, ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
15705 cCE(cnf
, eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
15706 C3E(cnfe
, ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
15708 cCL(flts
, e000110
, 2, (RF
, RR
), rn_rd
),
15709 cCL(fltsp
, e000130
, 2, (RF
, RR
), rn_rd
),
15710 cCL(fltsm
, e000150
, 2, (RF
, RR
), rn_rd
),
15711 cCL(fltsz
, e000170
, 2, (RF
, RR
), rn_rd
),
15712 cCL(fltd
, e000190
, 2, (RF
, RR
), rn_rd
),
15713 cCL(fltdp
, e0001b0
, 2, (RF
, RR
), rn_rd
),
15714 cCL(fltdm
, e0001d0
, 2, (RF
, RR
), rn_rd
),
15715 cCL(fltdz
, e0001f0
, 2, (RF
, RR
), rn_rd
),
15716 cCL(flte
, e080110
, 2, (RF
, RR
), rn_rd
),
15717 cCL(fltep
, e080130
, 2, (RF
, RR
), rn_rd
),
15718 cCL(fltem
, e080150
, 2, (RF
, RR
), rn_rd
),
15719 cCL(fltez
, e080170
, 2, (RF
, RR
), rn_rd
),
15721 /* The implementation of the FIX instruction is broken on some
15722 assemblers, in that it accepts a precision specifier as well as a
15723 rounding specifier, despite the fact that this is meaningless.
15724 To be more compatible, we accept it as well, though of course it
15725 does not set any bits. */
15726 cCE(fix
, e100110
, 2, (RR
, RF
), rd_rm
),
15727 cCL(fixp
, e100130
, 2, (RR
, RF
), rd_rm
),
15728 cCL(fixm
, e100150
, 2, (RR
, RF
), rd_rm
),
15729 cCL(fixz
, e100170
, 2, (RR
, RF
), rd_rm
),
15730 cCL(fixsp
, e100130
, 2, (RR
, RF
), rd_rm
),
15731 cCL(fixsm
, e100150
, 2, (RR
, RF
), rd_rm
),
15732 cCL(fixsz
, e100170
, 2, (RR
, RF
), rd_rm
),
15733 cCL(fixdp
, e100130
, 2, (RR
, RF
), rd_rm
),
15734 cCL(fixdm
, e100150
, 2, (RR
, RF
), rd_rm
),
15735 cCL(fixdz
, e100170
, 2, (RR
, RF
), rd_rm
),
15736 cCL(fixep
, e100130
, 2, (RR
, RF
), rd_rm
),
15737 cCL(fixem
, e100150
, 2, (RR
, RF
), rd_rm
),
15738 cCL(fixez
, e100170
, 2, (RR
, RF
), rd_rm
),
15740 /* Instructions that were new with the real FPA, call them V2. */
15742 #define ARM_VARIANT &fpu_fpa_ext_v2
15743 cCE(lfm
, c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15744 cCL(lfmfd
, c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15745 cCL(lfmea
, d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15746 cCE(sfm
, c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15747 cCL(sfmfd
, d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15748 cCL(sfmea
, c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15751 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15752 /* Moves and type conversions. */
15753 cCE(fcpys
, eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15754 cCE(fmrs
, e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
15755 cCE(fmsr
, e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
15756 cCE(fmstat
, ef1fa10
, 0, (), noargs
),
15757 cCE(fsitos
, eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15758 cCE(fuitos
, eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15759 cCE(ftosis
, ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15760 cCE(ftosizs
, ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15761 cCE(ftouis
, ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15762 cCE(ftouizs
, ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15763 cCE(fmrx
, ef00a10
, 2, (RR
, RVC
), rd_rn
),
15764 cCE(fmxr
, ee00a10
, 2, (RVC
, RR
), rn_rd
),
15766 /* Memory operations. */
15767 cCE(flds
, d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
15768 cCE(fsts
, d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
15769 cCE(fldmias
, c900a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
15770 cCE(fldmfds
, c900a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
15771 cCE(fldmdbs
, d300a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
15772 cCE(fldmeas
, d300a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
15773 cCE(fldmiax
, c900b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
15774 cCE(fldmfdx
, c900b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
15775 cCE(fldmdbx
, d300b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
15776 cCE(fldmeax
, d300b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
15777 cCE(fstmias
, c800a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
15778 cCE(fstmeas
, c800a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
15779 cCE(fstmdbs
, d200a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
15780 cCE(fstmfds
, d200a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
15781 cCE(fstmiax
, c800b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
15782 cCE(fstmeax
, c800b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
15783 cCE(fstmdbx
, d200b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
15784 cCE(fstmfdx
, d200b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
15786 /* Monadic operations. */
15787 cCE(fabss
, eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15788 cCE(fnegs
, eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15789 cCE(fsqrts
, eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15791 /* Dyadic operations. */
15792 cCE(fadds
, e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15793 cCE(fsubs
, e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15794 cCE(fmuls
, e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15795 cCE(fdivs
, e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15796 cCE(fmacs
, e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15797 cCE(fmscs
, e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15798 cCE(fnmuls
, e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15799 cCE(fnmacs
, e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15800 cCE(fnmscs
, e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15803 cCE(fcmps
, eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15804 cCE(fcmpzs
, eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
15805 cCE(fcmpes
, eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15806 cCE(fcmpezs
, eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
15809 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15810 /* Moves and type conversions. */
15811 cCE(fcpyd
, eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15812 cCE(fcvtds
, eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
15813 cCE(fcvtsd
, eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15814 cCE(fmdhr
, e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
15815 cCE(fmdlr
, e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
15816 cCE(fmrdh
, e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
15817 cCE(fmrdl
, e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
15818 cCE(fsitod
, eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
15819 cCE(fuitod
, eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
15820 cCE(ftosid
, ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15821 cCE(ftosizd
, ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15822 cCE(ftouid
, ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15823 cCE(ftouizd
, ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15825 /* Memory operations. */
15826 cCE(fldd
, d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
15827 cCE(fstd
, d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
15828 cCE(fldmiad
, c900b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
15829 cCE(fldmfdd
, c900b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
15830 cCE(fldmdbd
, d300b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
15831 cCE(fldmead
, d300b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
15832 cCE(fstmiad
, c800b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
15833 cCE(fstmead
, c800b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
15834 cCE(fstmdbd
, d200b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
15835 cCE(fstmfdd
, d200b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
15837 /* Monadic operations. */
15838 cCE(fabsd
, eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15839 cCE(fnegd
, eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15840 cCE(fsqrtd
, eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15842 /* Dyadic operations. */
15843 cCE(faddd
, e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15844 cCE(fsubd
, e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15845 cCE(fmuld
, e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15846 cCE(fdivd
, e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15847 cCE(fmacd
, e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15848 cCE(fmscd
, e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15849 cCE(fnmuld
, e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15850 cCE(fnmacd
, e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15851 cCE(fnmscd
, e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15854 cCE(fcmpd
, eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15855 cCE(fcmpzd
, eb50b40
, 1, (RVD
), vfp_dp_rd
),
15856 cCE(fcmped
, eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15857 cCE(fcmpezd
, eb50bc0
, 1, (RVD
), vfp_dp_rd
),
15860 #define ARM_VARIANT &fpu_vfp_ext_v2
15861 cCE(fmsrr
, c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
15862 cCE(fmrrs
, c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
15863 cCE(fmdrr
, c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
15864 cCE(fmrrd
, c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
15866 /* Instructions which may belong to either the Neon or VFP instruction sets.
15867 Individual encoder functions perform additional architecture checks. */
15869 #define ARM_VARIANT &fpu_vfp_ext_v1xd
15870 #undef THUMB_VARIANT
15871 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
15872 /* These mnemonics are unique to VFP. */
15873 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
15874 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
15875 nCE(vnmul
, vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
15876 nCE(vnmla
, vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
15877 nCE(vnmls
, vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
15878 nCE(vcmp
, vcmp
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
15879 nCE(vcmpe
, vcmpe
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
15880 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
15881 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
15882 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
15884 /* Mnemonics shared by Neon and VFP. */
15885 nCEF(vmul
, vmul
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mul
),
15886 nCEF(vmla
, vmla
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
15887 nCEF(vmls
, vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
15889 nCEF(vadd
, vadd
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
15890 nCEF(vsub
, vsub
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
15892 NCEF(vabs
, 1b10300
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
15893 NCEF(vneg
, 1b10380
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
15895 NCE(vldm
, c900b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15896 NCE(vldmia
, c900b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15897 NCE(vldmdb
, d100b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15898 NCE(vstm
, c800b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15899 NCE(vstmia
, c800b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15900 NCE(vstmdb
, d000b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15901 NCE(vldr
, d100b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
15902 NCE(vstr
, d000b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
15904 nCEF(vcvt
, vcvt
, 3, (RNSDQ
, RNSDQ
, oI32b
), neon_cvt
),
15906 /* NOTE: All VMOV encoding is special-cased! */
15907 NCE(vmov
, 0, 1, (VMOV
), neon_mov
),
15908 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
15910 #undef THUMB_VARIANT
15911 #define THUMB_VARIANT &fpu_neon_ext_v1
15913 #define ARM_VARIANT &fpu_neon_ext_v1
15914 /* Data processing with three registers of the same length. */
15915 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15916 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
15917 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
15918 NUF(vhadd
, 0000000, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
15919 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
15920 NUF(vrhadd
, 0000100, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
15921 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
15922 NUF(vhsub
, 0000200, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
15923 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
15924 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15925 NUF(vqadd
, 0000010, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
15926 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
15927 NUF(vqsub
, 0000210, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
15928 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
15929 NUF(vrshl
, 0000500, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
15930 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
15931 NUF(vqrshl
, 0000510, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
15932 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
15933 /* If not immediate, fall back to neon_dyadic_i64_su.
15934 shl_imm should accept I8 I16 I32 I64,
15935 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15936 nUF(vshl
, vshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_shl_imm
),
15937 nUF(vshlq
, vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl_imm
),
15938 nUF(vqshl
, vqshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_qshl_imm
),
15939 nUF(vqshlq
, vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl_imm
),
15940 /* Logic ops, types optional & ignored. */
15941 nUF(vand
, vand
, 2, (RNDQ
, NILO
), neon_logic
),
15942 nUF(vandq
, vand
, 2, (RNQ
, NILO
), neon_logic
),
15943 nUF(vbic
, vbic
, 2, (RNDQ
, NILO
), neon_logic
),
15944 nUF(vbicq
, vbic
, 2, (RNQ
, NILO
), neon_logic
),
15945 nUF(vorr
, vorr
, 2, (RNDQ
, NILO
), neon_logic
),
15946 nUF(vorrq
, vorr
, 2, (RNQ
, NILO
), neon_logic
),
15947 nUF(vorn
, vorn
, 2, (RNDQ
, NILO
), neon_logic
),
15948 nUF(vornq
, vorn
, 2, (RNQ
, NILO
), neon_logic
),
15949 nUF(veor
, veor
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_logic
),
15950 nUF(veorq
, veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
15951 /* Bitfield ops, untyped. */
15952 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
15953 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
15954 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
15955 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
15956 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
15957 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
15958 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15959 nUF(vabd
, vabd
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
15960 nUF(vabdq
, vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
15961 nUF(vmax
, vmax
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
15962 nUF(vmaxq
, vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
15963 nUF(vmin
, vmin
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
15964 nUF(vminq
, vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
15965 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15966 back to neon_dyadic_if_su. */
15967 nUF(vcge
, vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
15968 nUF(vcgeq
, vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
15969 nUF(vcgt
, vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
15970 nUF(vcgtq
, vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
15971 nUF(vclt
, vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
15972 nUF(vcltq
, vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
15973 nUF(vcle
, vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
15974 nUF(vcleq
, vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
15975 /* Comparison. Type I8 I16 I32 F32. */
15976 nUF(vceq
, vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
15977 nUF(vceqq
, vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
15978 /* As above, D registers only. */
15979 nUF(vpmax
, vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
15980 nUF(vpmin
, vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
15981 /* Int and float variants, signedness unimportant. */
15982 nUF(vmlaq
, vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
15983 nUF(vmlsq
, vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
15984 nUF(vpadd
, vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
15985 /* Add/sub take types I8 I16 I32 I64 F32. */
15986 nUF(vaddq
, vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
15987 nUF(vsubq
, vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
15988 /* vtst takes sizes 8, 16, 32. */
15989 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
15990 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
15991 /* VMUL takes I8 I16 I32 F32 P8. */
15992 nUF(vmulq
, vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
15993 /* VQD{R}MULH takes S16 S32. */
15994 nUF(vqdmulh
, vqdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
15995 nUF(vqdmulhq
, vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
15996 nUF(vqrdmulh
, vqrdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
15997 nUF(vqrdmulhq
, vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
15998 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
15999 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
16000 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
16001 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
16002 NUF(vaclt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
16003 NUF(vacltq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
16004 NUF(vacle
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
16005 NUF(vacleq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
16006 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
16007 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
16008 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
16009 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
16011 /* Two address, int/float. Types S8 S16 S32 F32. */
16012 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
16013 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
16015 /* Data processing with two registers and a shift amount. */
16016 /* Right shifts, and variants with rounding.
16017 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16018 NUF(vshr
, 0800010, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
16019 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
16020 NUF(vrshr
, 0800210, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
16021 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
16022 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
16023 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
16024 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
16025 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
16026 /* Shift and insert. Sizes accepted 8 16 32 64. */
16027 NUF(vsli
, 1800510, 3, (RNDQ
, oRNDQ
, I63
), neon_sli
),
16028 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
16029 NUF(vsri
, 1800410, 3, (RNDQ
, oRNDQ
, I64
), neon_sri
),
16030 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
16031 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16032 NUF(vqshlu
, 1800610, 3, (RNDQ
, oRNDQ
, I63
), neon_qshlu_imm
),
16033 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
16034 /* Right shift immediate, saturating & narrowing, with rounding variants.
16035 Types accepted S16 S32 S64 U16 U32 U64. */
16036 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
16037 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
16038 /* As above, unsigned. Types accepted S16 S32 S64. */
16039 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
16040 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
16041 /* Right shift narrowing. Types accepted I16 I32 I64. */
16042 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
16043 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
16044 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16045 nUF(vshll
, vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
16046 /* CVT with optional immediate for fixed-point variant. */
16047 nUF(vcvtq
, vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
16049 nUF(vmvn
, vmvn
, 2, (RNDQ
, RNDQ_IMVNb
), neon_mvn
),
16050 nUF(vmvnq
, vmvn
, 2, (RNQ
, RNDQ_IMVNb
), neon_mvn
),
16052 /* Data processing, three registers of different lengths. */
16053 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16054 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
16055 NUF(vabdl
, 0800700, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
16056 NUF(vaddl
, 0800000, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
16057 NUF(vsubl
, 0800200, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
16058 /* If not scalar, fall back to neon_dyadic_long.
16059 Vector types as above, scalar types S16 S32 U16 U32. */
16060 nUF(vmlal
, vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
16061 nUF(vmlsl
, vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
16062 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16063 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
16064 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
16065 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16066 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
16067 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
16068 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
16069 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
16070 /* Saturating doubling multiplies. Types S16 S32. */
16071 nUF(vqdmlal
, vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
16072 nUF(vqdmlsl
, vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
16073 nUF(vqdmull
, vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
16074 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16075 S16 S32 U16 U32. */
16076 nUF(vmull
, vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
16078 /* Extract. Size 8. */
16079 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I15
), neon_ext
),
16080 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I15
), neon_ext
),
16082 /* Two registers, miscellaneous. */
16083 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16084 NUF(vrev64
, 1b00000
, 2, (RNDQ
, RNDQ
), neon_rev
),
16085 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
16086 NUF(vrev32
, 1b00080
, 2, (RNDQ
, RNDQ
), neon_rev
),
16087 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
16088 NUF(vrev16
, 1b00100
, 2, (RNDQ
, RNDQ
), neon_rev
),
16089 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
16090 /* Vector replicate. Sizes 8 16 32. */
16091 nCE(vdup
, vdup
, 2, (RNDQ
, RR_RNSC
), neon_dup
),
16092 nCE(vdupq
, vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
16093 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16094 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
16095 /* VMOVN. Types I16 I32 I64. */
16096 nUF(vmovn
, vmovn
, 2, (RND
, RNQ
), neon_movn
),
16097 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16098 nUF(vqmovn
, vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
16099 /* VQMOVUN. Types S16 S32 S64. */
16100 nUF(vqmovun
, vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
16101 /* VZIP / VUZP. Sizes 8 16 32. */
16102 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
16103 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
16104 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
16105 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
16106 /* VQABS / VQNEG. Types S8 S16 S32. */
16107 NUF(vqabs
, 1b00700
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
16108 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
16109 NUF(vqneg
, 1b00780
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
16110 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
16111 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16112 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
16113 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
16114 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
16115 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
16116 /* Reciprocal estimates. Types U32 F32. */
16117 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
16118 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
16119 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
16120 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
16121 /* VCLS. Types S8 S16 S32. */
16122 NUF(vcls
, 1b00400
, 2, (RNDQ
, RNDQ
), neon_cls
),
16123 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
16124 /* VCLZ. Types I8 I16 I32. */
16125 NUF(vclz
, 1b00480
, 2, (RNDQ
, RNDQ
), neon_clz
),
16126 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
16127 /* VCNT. Size 8. */
16128 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
16129 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
16130 /* Two address, untyped. */
16131 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
16132 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
16133 /* VTRN. Sizes 8 16 32. */
16134 nUF(vtrn
, vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
16135 nUF(vtrnq
, vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
16137 /* Table lookup. Size 8. */
16138 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
16139 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
16141 #undef THUMB_VARIANT
16142 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16144 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
16145 /* Neon element/structure load/store. */
16146 nUF(vld1
, vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
16147 nUF(vst1
, vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
16148 nUF(vld2
, vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
16149 nUF(vst2
, vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
16150 nUF(vld3
, vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
16151 nUF(vst3
, vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
16152 nUF(vld4
, vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
16153 nUF(vst4
, vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
16155 #undef THUMB_VARIANT
16156 #define THUMB_VARIANT &fpu_vfp_ext_v3
16158 #define ARM_VARIANT &fpu_vfp_ext_v3
16159 cCE(fconsts
, eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
16160 cCE(fconstd
, eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
16161 cCE(fshtos
, eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
16162 cCE(fshtod
, eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
16163 cCE(fsltos
, eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
16164 cCE(fsltod
, eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
16165 cCE(fuhtos
, ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
16166 cCE(fuhtod
, ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
16167 cCE(fultos
, ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
16168 cCE(fultod
, ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
16169 cCE(ftoshs
, ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
16170 cCE(ftoshd
, ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
16171 cCE(ftosls
, ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
16172 cCE(ftosld
, ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
16173 cCE(ftouhs
, ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
16174 cCE(ftouhd
, ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
16175 cCE(ftouls
, ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
16176 cCE(ftould
, ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
16178 #undef THUMB_VARIANT
16180 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
16181 cCE(mia
, e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
16182 cCE(miaph
, e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
16183 cCE(miabb
, e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
16184 cCE(miabt
, e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
16185 cCE(miatb
, e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
16186 cCE(miatt
, e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
16187 cCE(mar
, c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
16188 cCE(mra
, c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
16191 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
16192 cCE(tandcb
, e13f130
, 1, (RR
), iwmmxt_tandorc
),
16193 cCE(tandch
, e53f130
, 1, (RR
), iwmmxt_tandorc
),
16194 cCE(tandcw
, e93f130
, 1, (RR
), iwmmxt_tandorc
),
16195 cCE(tbcstb
, e400010
, 2, (RIWR
, RR
), rn_rd
),
16196 cCE(tbcsth
, e400050
, 2, (RIWR
, RR
), rn_rd
),
16197 cCE(tbcstw
, e400090
, 2, (RIWR
, RR
), rn_rd
),
16198 cCE(textrcb
, e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
16199 cCE(textrch
, e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
16200 cCE(textrcw
, e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
16201 cCE(textrmub
, e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
16202 cCE(textrmuh
, e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
16203 cCE(textrmuw
, e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
16204 cCE(textrmsb
, e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
16205 cCE(textrmsh
, e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
16206 cCE(textrmsw
, e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
16207 cCE(tinsrb
, e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
16208 cCE(tinsrh
, e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
16209 cCE(tinsrw
, e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
16210 cCE(tmcr
, e000110
, 2, (RIWC_RIWG
, RR
), rn_rd
),
16211 cCE(tmcrr
, c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
16212 cCE(tmia
, e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
16213 cCE(tmiaph
, e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
16214 cCE(tmiabb
, e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
16215 cCE(tmiabt
, e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
16216 cCE(tmiatb
, e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
16217 cCE(tmiatt
, e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
16218 cCE(tmovmskb
, e100030
, 2, (RR
, RIWR
), rd_rn
),
16219 cCE(tmovmskh
, e500030
, 2, (RR
, RIWR
), rd_rn
),
16220 cCE(tmovmskw
, e900030
, 2, (RR
, RIWR
), rd_rn
),
16221 cCE(tmrc
, e100110
, 2, (RR
, RIWC_RIWG
), rd_rn
),
16222 cCE(tmrrc
, c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
16223 cCE(torcb
, e13f150
, 1, (RR
), iwmmxt_tandorc
),
16224 cCE(torch
, e53f150
, 1, (RR
), iwmmxt_tandorc
),
16225 cCE(torcw
, e93f150
, 1, (RR
), iwmmxt_tandorc
),
16226 cCE(waccb
, e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
16227 cCE(wacch
, e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
16228 cCE(waccw
, e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
16229 cCE(waddbss
, e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16230 cCE(waddb
, e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16231 cCE(waddbus
, e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16232 cCE(waddhss
, e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16233 cCE(waddh
, e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16234 cCE(waddhus
, e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16235 cCE(waddwss
, eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16236 cCE(waddw
, e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16237 cCE(waddwus
, e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16238 cCE(waligni
, e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
16239 cCE(walignr0
, e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16240 cCE(walignr1
, e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16241 cCE(walignr2
, ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16242 cCE(walignr3
, eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16243 cCE(wand
, e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16244 cCE(wandn
, e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16245 cCE(wavg2b
, e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16246 cCE(wavg2br
, e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16247 cCE(wavg2h
, ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16248 cCE(wavg2hr
, ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16249 cCE(wcmpeqb
, e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16250 cCE(wcmpeqh
, e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16251 cCE(wcmpeqw
, e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16252 cCE(wcmpgtub
, e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16253 cCE(wcmpgtuh
, e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16254 cCE(wcmpgtuw
, e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16255 cCE(wcmpgtsb
, e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16256 cCE(wcmpgtsh
, e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16257 cCE(wcmpgtsw
, eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16258 cCE(wldrb
, c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
16259 cCE(wldrh
, c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
16260 cCE(wldrw
, c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
16261 cCE(wldrd
, c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
16262 cCE(wmacs
, e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16263 cCE(wmacsz
, e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16264 cCE(wmacu
, e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16265 cCE(wmacuz
, e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16266 cCE(wmadds
, ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16267 cCE(wmaddu
, e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16268 cCE(wmaxsb
, e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16269 cCE(wmaxsh
, e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16270 cCE(wmaxsw
, ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16271 cCE(wmaxub
, e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16272 cCE(wmaxuh
, e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16273 cCE(wmaxuw
, e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16274 cCE(wminsb
, e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16275 cCE(wminsh
, e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16276 cCE(wminsw
, eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16277 cCE(wminub
, e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16278 cCE(wminuh
, e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16279 cCE(wminuw
, e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16280 cCE(wmov
, e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
16281 cCE(wmulsm
, e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16282 cCE(wmulsl
, e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16283 cCE(wmulum
, e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16284 cCE(wmulul
, e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16285 cCE(wor
, e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16286 cCE(wpackhss
, e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16287 cCE(wpackhus
, e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16288 cCE(wpackwss
, eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16289 cCE(wpackwus
, e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16290 cCE(wpackdss
, ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16291 cCE(wpackdus
, ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16292 cCE(wrorh
, e700040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16293 cCE(wrorhg
, e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16294 cCE(wrorw
, eb00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16295 cCE(wrorwg
, eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16296 cCE(wrord
, ef00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16297 cCE(wrordg
, ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16298 cCE(wsadb
, e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16299 cCE(wsadbz
, e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16300 cCE(wsadh
, e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16301 cCE(wsadhz
, e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16302 cCE(wshufh
, e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
16303 cCE(wsllh
, e500040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16304 cCE(wsllhg
, e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16305 cCE(wsllw
, e900040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16306 cCE(wsllwg
, e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16307 cCE(wslld
, ed00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16308 cCE(wslldg
, ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16309 cCE(wsrah
, e400040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16310 cCE(wsrahg
, e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16311 cCE(wsraw
, e800040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16312 cCE(wsrawg
, e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16313 cCE(wsrad
, ec00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16314 cCE(wsradg
, ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16315 cCE(wsrlh
, e600040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16316 cCE(wsrlhg
, e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16317 cCE(wsrlw
, ea00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16318 cCE(wsrlwg
, ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16319 cCE(wsrld
, ee00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
16320 cCE(wsrldg
, ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
16321 cCE(wstrb
, c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
16322 cCE(wstrh
, c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
16323 cCE(wstrw
, c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
16324 cCE(wstrd
, c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
16325 cCE(wsubbss
, e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16326 cCE(wsubb
, e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16327 cCE(wsubbus
, e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16328 cCE(wsubhss
, e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16329 cCE(wsubh
, e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16330 cCE(wsubhus
, e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16331 cCE(wsubwss
, eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16332 cCE(wsubw
, e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16333 cCE(wsubwus
, e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16334 cCE(wunpckehub
,e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
16335 cCE(wunpckehuh
,e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
16336 cCE(wunpckehuw
,e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
16337 cCE(wunpckehsb
,e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
16338 cCE(wunpckehsh
,e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
16339 cCE(wunpckehsw
,ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
16340 cCE(wunpckihb
, e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16341 cCE(wunpckihh
, e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16342 cCE(wunpckihw
, e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16343 cCE(wunpckelub
,e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
16344 cCE(wunpckeluh
,e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
16345 cCE(wunpckeluw
,e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
16346 cCE(wunpckelsb
,e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
16347 cCE(wunpckelsh
,e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
16348 cCE(wunpckelsw
,ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
16349 cCE(wunpckilb
, e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16350 cCE(wunpckilh
, e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16351 cCE(wunpckilw
, e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16352 cCE(wxor
, e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16353 cCE(wzero
, e300000
, 1, (RIWR
), iwmmxt_wzero
),
16356 #define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16357 cCE(torvscb
, e13f190
, 1, (RR
), iwmmxt_tandorc
),
16358 cCE(torvsch
, e53f190
, 1, (RR
), iwmmxt_tandorc
),
16359 cCE(torvscw
, e93f190
, 1, (RR
), iwmmxt_tandorc
),
16360 cCE(wabsb
, e2001c0
, 2, (RIWR
, RIWR
), rd_rn
),
16361 cCE(wabsh
, e6001c0
, 2, (RIWR
, RIWR
), rd_rn
),
16362 cCE(wabsw
, ea001c0
, 2, (RIWR
, RIWR
), rd_rn
),
16363 cCE(wabsdiffb
, e1001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16364 cCE(wabsdiffh
, e5001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16365 cCE(wabsdiffw
, e9001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16366 cCE(waddbhusl
, e2001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16367 cCE(waddbhusm
, e6001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16368 cCE(waddhc
, e600180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16369 cCE(waddwc
, ea00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16370 cCE(waddsubhx
, ea001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16371 cCE(wavg4
, e400000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16372 cCE(wavg4r
, e500000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16373 cCE(wmaddsn
, ee00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16374 cCE(wmaddsx
, eb00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16375 cCE(wmaddun
, ec00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16376 cCE(wmaddux
, e900100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16377 cCE(wmerge
, e000080
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_wmerge
),
16378 cCE(wmiabb
, e0000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16379 cCE(wmiabt
, e1000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16380 cCE(wmiatb
, e2000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16381 cCE(wmiatt
, e3000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16382 cCE(wmiabbn
, e4000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16383 cCE(wmiabtn
, e5000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16384 cCE(wmiatbn
, e6000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16385 cCE(wmiattn
, e7000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16386 cCE(wmiawbb
, e800120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16387 cCE(wmiawbt
, e900120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16388 cCE(wmiawtb
, ea00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16389 cCE(wmiawtt
, eb00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16390 cCE(wmiawbbn
, ec00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16391 cCE(wmiawbtn
, ed00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16392 cCE(wmiawtbn
, ee00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16393 cCE(wmiawttn
, ef00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16394 cCE(wmulsmr
, ef00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16395 cCE(wmulumr
, ed00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16396 cCE(wmulwumr
, ec000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16397 cCE(wmulwsmr
, ee000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16398 cCE(wmulwum
, ed000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16399 cCE(wmulwsm
, ef000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16400 cCE(wmulwl
, eb000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16401 cCE(wqmiabb
, e8000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16402 cCE(wqmiabt
, e9000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16403 cCE(wqmiatb
, ea000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16404 cCE(wqmiatt
, eb000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16405 cCE(wqmiabbn
, ec000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16406 cCE(wqmiabtn
, ed000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16407 cCE(wqmiatbn
, ee000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16408 cCE(wqmiattn
, ef000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16409 cCE(wqmulm
, e100080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16410 cCE(wqmulmr
, e300080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16411 cCE(wqmulwm
, ec000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16412 cCE(wqmulwmr
, ee000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16413 cCE(wsubaddhx
, ed001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
16416 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
16417 cCE(cfldrs
, c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
16418 cCE(cfldrd
, c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
16419 cCE(cfldr32
, c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
16420 cCE(cfldr64
, c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
16421 cCE(cfstrs
, c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
16422 cCE(cfstrd
, c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
16423 cCE(cfstr32
, c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
16424 cCE(cfstr64
, c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
16425 cCE(cfmvsr
, e000450
, 2, (RMF
, RR
), rn_rd
),
16426 cCE(cfmvrs
, e100450
, 2, (RR
, RMF
), rd_rn
),
16427 cCE(cfmvdlr
, e000410
, 2, (RMD
, RR
), rn_rd
),
16428 cCE(cfmvrdl
, e100410
, 2, (RR
, RMD
), rd_rn
),
16429 cCE(cfmvdhr
, e000430
, 2, (RMD
, RR
), rn_rd
),
16430 cCE(cfmvrdh
, e100430
, 2, (RR
, RMD
), rd_rn
),
16431 cCE(cfmv64lr
, e000510
, 2, (RMDX
, RR
), rn_rd
),
16432 cCE(cfmvr64l
, e100510
, 2, (RR
, RMDX
), rd_rn
),
16433 cCE(cfmv64hr
, e000530
, 2, (RMDX
, RR
), rn_rd
),
16434 cCE(cfmvr64h
, e100530
, 2, (RR
, RMDX
), rd_rn
),
16435 cCE(cfmval32
, e200440
, 2, (RMAX
, RMFX
), rd_rn
),
16436 cCE(cfmv32al
, e100440
, 2, (RMFX
, RMAX
), rd_rn
),
16437 cCE(cfmvam32
, e200460
, 2, (RMAX
, RMFX
), rd_rn
),
16438 cCE(cfmv32am
, e100460
, 2, (RMFX
, RMAX
), rd_rn
),
16439 cCE(cfmvah32
, e200480
, 2, (RMAX
, RMFX
), rd_rn
),
16440 cCE(cfmv32ah
, e100480
, 2, (RMFX
, RMAX
), rd_rn
),
16441 cCE(cfmva32
, e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
16442 cCE(cfmv32a
, e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
16443 cCE(cfmva64
, e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
16444 cCE(cfmv64a
, e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
16445 cCE(cfmvsc32
, e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
16446 cCE(cfmv32sc
, e1004e0
, 2, (RMDX
, RMDS
), rd
),
16447 cCE(cfcpys
, e000400
, 2, (RMF
, RMF
), rd_rn
),
16448 cCE(cfcpyd
, e000420
, 2, (RMD
, RMD
), rd_rn
),
16449 cCE(cfcvtsd
, e000460
, 2, (RMD
, RMF
), rd_rn
),
16450 cCE(cfcvtds
, e000440
, 2, (RMF
, RMD
), rd_rn
),
16451 cCE(cfcvt32s
, e000480
, 2, (RMF
, RMFX
), rd_rn
),
16452 cCE(cfcvt32d
, e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
16453 cCE(cfcvt64s
, e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
16454 cCE(cfcvt64d
, e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
16455 cCE(cfcvts32
, e100580
, 2, (RMFX
, RMF
), rd_rn
),
16456 cCE(cfcvtd32
, e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
16457 cCE(cftruncs32
,e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
16458 cCE(cftruncd32
,e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
16459 cCE(cfrshl32
, e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
16460 cCE(cfrshl64
, e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
16461 cCE(cfsh32
, e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
16462 cCE(cfsh64
, e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
16463 cCE(cfcmps
, e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
16464 cCE(cfcmpd
, e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
16465 cCE(cfcmp32
, e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
16466 cCE(cfcmp64
, e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
16467 cCE(cfabss
, e300400
, 2, (RMF
, RMF
), rd_rn
),
16468 cCE(cfabsd
, e300420
, 2, (RMD
, RMD
), rd_rn
),
16469 cCE(cfnegs
, e300440
, 2, (RMF
, RMF
), rd_rn
),
16470 cCE(cfnegd
, e300460
, 2, (RMD
, RMD
), rd_rn
),
16471 cCE(cfadds
, e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
16472 cCE(cfaddd
, e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
16473 cCE(cfsubs
, e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
16474 cCE(cfsubd
, e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
16475 cCE(cfmuls
, e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
16476 cCE(cfmuld
, e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
16477 cCE(cfabs32
, e300500
, 2, (RMFX
, RMFX
), rd_rn
),
16478 cCE(cfabs64
, e300520
, 2, (RMDX
, RMDX
), rd_rn
),
16479 cCE(cfneg32
, e300540
, 2, (RMFX
, RMFX
), rd_rn
),
16480 cCE(cfneg64
, e300560
, 2, (RMDX
, RMDX
), rd_rn
),
16481 cCE(cfadd32
, e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
16482 cCE(cfadd64
, e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
16483 cCE(cfsub32
, e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
16484 cCE(cfsub64
, e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
16485 cCE(cfmul32
, e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
16486 cCE(cfmul64
, e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
16487 cCE(cfmac32
, e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
16488 cCE(cfmsc32
, e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
16489 cCE(cfmadd32
, e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
16490 cCE(cfmsub32
, e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
16491 cCE(cfmadda32
, e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
16492 cCE(cfmsuba32
, e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
16495 #undef THUMB_VARIANT
16522 /* MD interface: bits in the object file. */
16524 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16525 for use in the a.out file, and stores them in the array pointed to by buf.
16526 This knows about the endian-ness of the target machine and does
16527 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16528 2 (short) and 4 (long) Floating numbers are put out as a series of
16529 LITTLENUMS (shorts, here at least). */
16532 md_number_to_chars (char * buf
, valueT val
, int n
)
16534 if (target_big_endian
)
16535 number_to_chars_bigendian (buf
, val
, n
);
16537 number_to_chars_littleendian (buf
, val
, n
);
16541 md_chars_to_number (char * buf
, int n
)
16544 unsigned char * where
= (unsigned char *) buf
;
16546 if (target_big_endian
)
16551 result
|= (*where
++ & 255);
16559 result
|= (where
[n
] & 255);
16566 /* MD interface: Sections. */
16568 /* Estimate the size of a frag before relaxing. Assume everything fits in
16572 md_estimate_size_before_relax (fragS
* fragp
,
16573 segT segtype ATTRIBUTE_UNUSED
)
16579 /* Convert a machine dependent frag. */
16582 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
16584 unsigned long insn
;
16585 unsigned long old_op
;
16593 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
16595 old_op
= bfd_get_16(abfd
, buf
);
16596 if (fragp
->fr_symbol
) {
16597 exp
.X_op
= O_symbol
;
16598 exp
.X_add_symbol
= fragp
->fr_symbol
;
16600 exp
.X_op
= O_constant
;
16602 exp
.X_add_number
= fragp
->fr_offset
;
16603 opcode
= fragp
->fr_subtype
;
16606 case T_MNEM_ldr_pc
:
16607 case T_MNEM_ldr_pc2
:
16608 case T_MNEM_ldr_sp
:
16609 case T_MNEM_str_sp
:
16616 if (fragp
->fr_var
== 4)
16618 insn
= THUMB_OP32(opcode
);
16619 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
16621 insn
|= (old_op
& 0x700) << 4;
16625 insn
|= (old_op
& 7) << 12;
16626 insn
|= (old_op
& 0x38) << 13;
16628 insn
|= 0x00000c00;
16629 put_thumb32_insn (buf
, insn
);
16630 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
16634 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
16636 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
16639 if (fragp
->fr_var
== 4)
16641 insn
= THUMB_OP32 (opcode
);
16642 insn
|= (old_op
& 0xf0) << 4;
16643 put_thumb32_insn (buf
, insn
);
16644 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
16648 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
16649 exp
.X_add_number
-= 4;
16657 if (fragp
->fr_var
== 4)
16659 int r0off
= (opcode
== T_MNEM_mov
16660 || opcode
== T_MNEM_movs
) ? 0 : 8;
16661 insn
= THUMB_OP32 (opcode
);
16662 insn
= (insn
& 0xe1ffffff) | 0x10000000;
16663 insn
|= (old_op
& 0x700) << r0off
;
16664 put_thumb32_insn (buf
, insn
);
16665 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
16669 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
16674 if (fragp
->fr_var
== 4)
16676 insn
= THUMB_OP32(opcode
);
16677 put_thumb32_insn (buf
, insn
);
16678 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
16681 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
16685 if (fragp
->fr_var
== 4)
16687 insn
= THUMB_OP32(opcode
);
16688 insn
|= (old_op
& 0xf00) << 14;
16689 put_thumb32_insn (buf
, insn
);
16690 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
16693 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
16696 case T_MNEM_add_sp
:
16697 case T_MNEM_add_pc
:
16698 case T_MNEM_inc_sp
:
16699 case T_MNEM_dec_sp
:
16700 if (fragp
->fr_var
== 4)
16702 /* ??? Choose between add and addw. */
16703 insn
= THUMB_OP32 (opcode
);
16704 insn
|= (old_op
& 0xf0) << 4;
16705 put_thumb32_insn (buf
, insn
);
16706 if (opcode
== T_MNEM_add_pc
)
16707 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
16709 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
16712 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
16720 if (fragp
->fr_var
== 4)
16722 insn
= THUMB_OP32 (opcode
);
16723 insn
|= (old_op
& 0xf0) << 4;
16724 insn
|= (old_op
& 0xf) << 16;
16725 put_thumb32_insn (buf
, insn
);
16726 if (insn
& (1 << 20))
16727 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
16729 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
16732 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
16738 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
16740 fixp
->fx_file
= fragp
->fr_file
;
16741 fixp
->fx_line
= fragp
->fr_line
;
16742 fragp
->fr_fix
+= fragp
->fr_var
;
16745 /* Return the size of a relaxable immediate operand instruction.
16746 SHIFT and SIZE specify the form of the allowable immediate. */
16748 relax_immediate (fragS
*fragp
, int size
, int shift
)
16754 /* ??? Should be able to do better than this. */
16755 if (fragp
->fr_symbol
)
16758 low
= (1 << shift
) - 1;
16759 mask
= (1 << (shift
+ size
)) - (1 << shift
);
16760 offset
= fragp
->fr_offset
;
16761 /* Force misaligned offsets to 32-bit variant. */
16764 if (offset
& ~mask
)
16769 /* Get the address of a symbol during relaxation. */
16771 relaxed_symbol_addr(fragS
*fragp
, long stretch
)
16777 sym
= fragp
->fr_symbol
;
16778 sym_frag
= symbol_get_frag (sym
);
16779 know (S_GET_SEGMENT (sym
) != absolute_section
16780 || sym_frag
== &zero_address_frag
);
16781 addr
= S_GET_VALUE (sym
) + fragp
->fr_offset
;
16783 /* If frag has yet to be reached on this pass, assume it will
16784 move by STRETCH just as we did. If this is not so, it will
16785 be because some frag between grows, and that will force
16789 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
16795 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
16798 relax_adr (fragS
*fragp
, asection
*sec
, long stretch
)
16803 /* Assume worst case for symbols not known to be in the same section. */
16804 if (!S_IS_DEFINED(fragp
->fr_symbol
)
16805 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
))
16808 val
= relaxed_symbol_addr(fragp
, stretch
);
16809 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
16810 addr
= (addr
+ 4) & ~3;
16811 /* Force misaligned targets to 32-bit variant. */
16815 if (val
< 0 || val
> 1020)
16820 /* Return the size of a relaxable add/sub immediate instruction. */
16822 relax_addsub (fragS
*fragp
, asection
*sec
)
16827 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
16828 op
= bfd_get_16(sec
->owner
, buf
);
16829 if ((op
& 0xf) == ((op
>> 4) & 0xf))
16830 return relax_immediate (fragp
, 8, 0);
16832 return relax_immediate (fragp
, 3, 0);
16836 /* Return the size of a relaxable branch instruction. BITS is the
16837 size of the offset field in the narrow instruction. */
16840 relax_branch (fragS
*fragp
, asection
*sec
, int bits
, long stretch
)
16846 /* Assume worst case for symbols not known to be in the same section. */
16847 if (!S_IS_DEFINED(fragp
->fr_symbol
)
16848 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
))
16851 val
= relaxed_symbol_addr(fragp
, stretch
);
16852 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
16855 /* Offset is a signed value *2 */
16857 if (val
>= limit
|| val
< -limit
)
16863 /* Relax a machine dependent frag. This returns the amount by which
16864 the current size of the frag should change. */
16867 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
16872 oldsize
= fragp
->fr_var
;
16873 switch (fragp
->fr_subtype
)
16875 case T_MNEM_ldr_pc2
:
16876 newsize
= relax_adr(fragp
, sec
, stretch
);
16878 case T_MNEM_ldr_pc
:
16879 case T_MNEM_ldr_sp
:
16880 case T_MNEM_str_sp
:
16881 newsize
= relax_immediate(fragp
, 8, 2);
16885 newsize
= relax_immediate(fragp
, 5, 2);
16889 newsize
= relax_immediate(fragp
, 5, 1);
16893 newsize
= relax_immediate(fragp
, 5, 0);
16896 newsize
= relax_adr(fragp
, sec
, stretch
);
16902 newsize
= relax_immediate(fragp
, 8, 0);
16905 newsize
= relax_branch(fragp
, sec
, 11, stretch
);
16908 newsize
= relax_branch(fragp
, sec
, 8, stretch
);
16910 case T_MNEM_add_sp
:
16911 case T_MNEM_add_pc
:
16912 newsize
= relax_immediate (fragp
, 8, 2);
16914 case T_MNEM_inc_sp
:
16915 case T_MNEM_dec_sp
:
16916 newsize
= relax_immediate (fragp
, 7, 2);
16922 newsize
= relax_addsub (fragp
, sec
);
16928 fragp
->fr_var
= newsize
;
16929 /* Freeze wide instructions that are at or before the same location as
16930 in the previous pass. This avoids infinite loops.
16931 Don't freeze them unconditionally because targets may be artificialy
16932 misaligned by the expansion of preceeding frags. */
16933 if (stretch
<= 0 && newsize
> 2)
16935 md_convert_frag (sec
->owner
, sec
, fragp
);
16939 return newsize
- oldsize
;
16942 /* Round up a section size to the appropriate boundary. */
16945 md_section_align (segT segment ATTRIBUTE_UNUSED
,
16948 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16949 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
16951 /* For a.out, force the section size to be aligned. If we don't do
16952 this, BFD will align it for us, but it will not write out the
16953 final bytes of the section. This may be a bug in BFD, but it is
16954 easier to fix it here since that is how the other a.out targets
16958 align
= bfd_get_section_alignment (stdoutput
, segment
);
16959 size
= ((size
+ (1 << align
) - 1) & ((valueT
) -1 << align
));
16966 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16967 of an rs_align_code fragment. */
16970 arm_handle_align (fragS
* fragP
)
16972 static char const arm_noop
[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16973 static char const thumb_noop
[2] = { 0xc0, 0x46 };
16974 static char const arm_bigend_noop
[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16975 static char const thumb_bigend_noop
[2] = { 0x46, 0xc0 };
16977 int bytes
, fix
, noop_size
;
16981 if (fragP
->fr_type
!= rs_align_code
)
16984 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
16985 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
16988 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
16989 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
16991 if (fragP
->tc_frag_data
)
16993 if (target_big_endian
)
16994 noop
= thumb_bigend_noop
;
16997 noop_size
= sizeof (thumb_noop
);
17001 if (target_big_endian
)
17002 noop
= arm_bigend_noop
;
17005 noop_size
= sizeof (arm_noop
);
17008 if (bytes
& (noop_size
- 1))
17010 fix
= bytes
& (noop_size
- 1);
17011 memset (p
, 0, fix
);
17016 while (bytes
>= noop_size
)
17018 memcpy (p
, noop
, noop_size
);
17020 bytes
-= noop_size
;
17024 fragP
->fr_fix
+= fix
;
17025 fragP
->fr_var
= noop_size
;
17028 /* Called from md_do_align. Used to create an alignment
17029 frag in a code section. */
17032 arm_frag_align_code (int n
, int max
)
17036 /* We assume that there will never be a requirement
17037 to support alignments greater than 32 bytes. */
17038 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
17039 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
17041 p
= frag_var (rs_align_code
,
17042 MAX_MEM_FOR_RS_ALIGN_CODE
,
17044 (relax_substateT
) max
,
17051 /* Perform target specific initialisation of a frag. */
17054 arm_init_frag (fragS
* fragP
)
17056 /* Record whether this frag is in an ARM or a THUMB area. */
17057 fragP
->tc_frag_data
= thumb_mode
;
17061 /* When we change sections we need to issue a new mapping symbol. */
17064 arm_elf_change_section (void)
17067 segment_info_type
*seginfo
;
17069 /* Link an unlinked unwind index table section to the .text section. */
17070 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
17071 && elf_linked_to_section (now_seg
) == NULL
)
17072 elf_linked_to_section (now_seg
) = text_section
;
17074 if (!SEG_NORMAL (now_seg
))
17077 flags
= bfd_get_section_flags (stdoutput
, now_seg
);
17079 /* We can ignore sections that only contain debug info. */
17080 if ((flags
& SEC_ALLOC
) == 0)
17083 seginfo
= seg_info (now_seg
);
17084 mapstate
= seginfo
->tc_segment_info_data
.mapstate
;
17085 marked_pr_dependency
= seginfo
->tc_segment_info_data
.marked_pr_dependency
;
17089 arm_elf_section_type (const char * str
, size_t len
)
17091 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
17092 return SHT_ARM_EXIDX
;
17097 /* Code to deal with unwinding tables. */
17099 static void add_unwind_adjustsp (offsetT
);
17101 /* Cenerate and deferred unwind frame offset. */
17104 flush_pending_unwind (void)
17108 offset
= unwind
.pending_offset
;
17109 unwind
.pending_offset
= 0;
17111 add_unwind_adjustsp (offset
);
17114 /* Add an opcode to this list for this function. Two-byte opcodes should
17115 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17119 add_unwind_opcode (valueT op
, int length
)
17121 /* Add any deferred stack adjustment. */
17122 if (unwind
.pending_offset
)
17123 flush_pending_unwind ();
17125 unwind
.sp_restored
= 0;
17127 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
17129 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
17130 if (unwind
.opcodes
)
17131 unwind
.opcodes
= xrealloc (unwind
.opcodes
,
17132 unwind
.opcode_alloc
);
17134 unwind
.opcodes
= xmalloc (unwind
.opcode_alloc
);
17139 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
17141 unwind
.opcode_count
++;
17145 /* Add unwind opcodes to adjust the stack pointer. */
17148 add_unwind_adjustsp (offsetT offset
)
17152 if (offset
> 0x200)
17154 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17159 /* Long form: 0xb2, uleb128. */
17160 /* This might not fit in a word so add the individual bytes,
17161 remembering the list is built in reverse order. */
17162 o
= (valueT
) ((offset
- 0x204) >> 2);
17164 add_unwind_opcode (0, 1);
17166 /* Calculate the uleb128 encoding of the offset. */
17170 bytes
[n
] = o
& 0x7f;
17176 /* Add the insn. */
17178 add_unwind_opcode (bytes
[n
- 1], 1);
17179 add_unwind_opcode (0xb2, 1);
17181 else if (offset
> 0x100)
17183 /* Two short opcodes. */
17184 add_unwind_opcode (0x3f, 1);
17185 op
= (offset
- 0x104) >> 2;
17186 add_unwind_opcode (op
, 1);
17188 else if (offset
> 0)
17190 /* Short opcode. */
17191 op
= (offset
- 4) >> 2;
17192 add_unwind_opcode (op
, 1);
17194 else if (offset
< 0)
17197 while (offset
> 0x100)
17199 add_unwind_opcode (0x7f, 1);
17202 op
= ((offset
- 4) >> 2) | 0x40;
17203 add_unwind_opcode (op
, 1);
17207 /* Finish the list of unwind opcodes for this function. */
17209 finish_unwind_opcodes (void)
17213 if (unwind
.fp_used
)
17215 /* Adjust sp as necessary. */
17216 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
17217 flush_pending_unwind ();
17219 /* After restoring sp from the frame pointer. */
17220 op
= 0x90 | unwind
.fp_reg
;
17221 add_unwind_opcode (op
, 1);
17224 flush_pending_unwind ();
17228 /* Start an exception table entry. If idx is nonzero this is an index table
17232 start_unwind_section (const segT text_seg
, int idx
)
17234 const char * text_name
;
17235 const char * prefix
;
17236 const char * prefix_once
;
17237 const char * group_name
;
17241 size_t sec_name_len
;
17248 prefix
= ELF_STRING_ARM_unwind
;
17249 prefix_once
= ELF_STRING_ARM_unwind_once
;
17250 type
= SHT_ARM_EXIDX
;
17254 prefix
= ELF_STRING_ARM_unwind_info
;
17255 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
17256 type
= SHT_PROGBITS
;
17259 text_name
= segment_name (text_seg
);
17260 if (streq (text_name
, ".text"))
17263 if (strncmp (text_name
, ".gnu.linkonce.t.",
17264 strlen (".gnu.linkonce.t.")) == 0)
17266 prefix
= prefix_once
;
17267 text_name
+= strlen (".gnu.linkonce.t.");
17270 prefix_len
= strlen (prefix
);
17271 text_len
= strlen (text_name
);
17272 sec_name_len
= prefix_len
+ text_len
;
17273 sec_name
= xmalloc (sec_name_len
+ 1);
17274 memcpy (sec_name
, prefix
, prefix_len
);
17275 memcpy (sec_name
+ prefix_len
, text_name
, text_len
);
17276 sec_name
[prefix_len
+ text_len
] = '\0';
17282 /* Handle COMDAT group. */
17283 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
17285 group_name
= elf_group_name (text_seg
);
17286 if (group_name
== NULL
)
17288 as_bad ("Group section `%s' has no group signature",
17289 segment_name (text_seg
));
17290 ignore_rest_of_line ();
17293 flags
|= SHF_GROUP
;
17297 obj_elf_change_section (sec_name
, type
, flags
, 0, group_name
, linkonce
, 0);
17299 /* Set the setion link for index tables. */
17301 elf_linked_to_section (now_seg
) = text_seg
;
17305 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17306 personality routine data. Returns zero, or the index table value for
17307 and inline entry. */
17310 create_unwind_entry (int have_data
)
17315 /* The current word of data. */
17317 /* The number of bytes left in this word. */
17320 finish_unwind_opcodes ();
17322 /* Remember the current text section. */
17323 unwind
.saved_seg
= now_seg
;
17324 unwind
.saved_subseg
= now_subseg
;
17326 start_unwind_section (now_seg
, 0);
17328 if (unwind
.personality_routine
== NULL
)
17330 if (unwind
.personality_index
== -2)
17333 as_bad (_("handerdata in cantunwind frame"));
17334 return 1; /* EXIDX_CANTUNWIND. */
17337 /* Use a default personality routine if none is specified. */
17338 if (unwind
.personality_index
== -1)
17340 if (unwind
.opcode_count
> 3)
17341 unwind
.personality_index
= 1;
17343 unwind
.personality_index
= 0;
17346 /* Space for the personality routine entry. */
17347 if (unwind
.personality_index
== 0)
17349 if (unwind
.opcode_count
> 3)
17350 as_bad (_("too many unwind opcodes for personality routine 0"));
17354 /* All the data is inline in the index table. */
17357 while (unwind
.opcode_count
> 0)
17359 unwind
.opcode_count
--;
17360 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
17364 /* Pad with "finish" opcodes. */
17366 data
= (data
<< 8) | 0xb0;
17373 /* We get two opcodes "free" in the first word. */
17374 size
= unwind
.opcode_count
- 2;
17377 /* An extra byte is required for the opcode count. */
17378 size
= unwind
.opcode_count
+ 1;
17380 size
= (size
+ 3) >> 2;
17382 as_bad (_("too many unwind opcodes"));
17384 frag_align (2, 0, 0);
17385 record_alignment (now_seg
, 2);
17386 unwind
.table_entry
= expr_build_dot ();
17388 /* Allocate the table entry. */
17389 ptr
= frag_more ((size
<< 2) + 4);
17390 where
= frag_now_fix () - ((size
<< 2) + 4);
17392 switch (unwind
.personality_index
)
17395 /* ??? Should this be a PLT generating relocation? */
17396 /* Custom personality routine. */
17397 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
17398 BFD_RELOC_ARM_PREL31
);
17403 /* Set the first byte to the number of additional words. */
17408 /* ABI defined personality routines. */
17410 /* Three opcodes bytes are packed into the first word. */
17417 /* The size and first two opcode bytes go in the first word. */
17418 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
17423 /* Should never happen. */
17427 /* Pack the opcodes into words (MSB first), reversing the list at the same
17429 while (unwind
.opcode_count
> 0)
17433 md_number_to_chars (ptr
, data
, 4);
17438 unwind
.opcode_count
--;
17440 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
17443 /* Finish off the last word. */
17446 /* Pad with "finish" opcodes. */
17448 data
= (data
<< 8) | 0xb0;
17450 md_number_to_chars (ptr
, data
, 4);
17455 /* Add an empty descriptor if there is no user-specified data. */
17456 ptr
= frag_more (4);
17457 md_number_to_chars (ptr
, 0, 4);
17464 /* Initialize the DWARF-2 unwind information for this procedure. */
17467 tc_arm_frame_initial_instructions (void)
17469 cfi_add_CFA_def_cfa (REG_SP
, 0);
17471 #endif /* OBJ_ELF */
17473 /* Convert REGNAME to a DWARF-2 register number. */
17476 tc_arm_regname_to_dw2regnum (char *regname
)
17478 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
17488 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
17492 expr
.X_op
= O_secrel
;
17493 expr
.X_add_symbol
= symbol
;
17494 expr
.X_add_number
= 0;
17495 emit_expr (&expr
, size
);
17499 /* MD interface: Symbol and relocation handling. */
17501 /* Return the address within the segment that a PC-relative fixup is
17502 relative to. For ARM, PC-relative fixups applied to instructions
17503 are generally relative to the location of the fixup plus 8 bytes.
17504 Thumb branches are offset by 4, and Thumb loads relative to PC
17505 require special handling. */
17508 md_pcrel_from_section (fixS
* fixP
, segT seg
)
17510 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
17512 /* If this is pc-relative and we are going to emit a relocation
17513 then we just want to put out any pipeline compensation that the linker
17514 will need. Otherwise we want to use the calculated base.
17515 For WinCE we skip the bias for externals as well, since this
17516 is how the MS ARM-CE assembler behaves and we want to be compatible. */
17518 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
17519 || (arm_force_relocation (fixP
)
17521 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
17526 switch (fixP
->fx_r_type
)
17528 /* PC relative addressing on the Thumb is slightly odd as the
17529 bottom two bits of the PC are forced to zero for the
17530 calculation. This happens *after* application of the
17531 pipeline offset. However, Thumb adrl already adjusts for
17532 this, so we need not do it again. */
17533 case BFD_RELOC_ARM_THUMB_ADD
:
17536 case BFD_RELOC_ARM_THUMB_OFFSET
:
17537 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
17538 case BFD_RELOC_ARM_T32_ADD_PC12
:
17539 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
17540 return (base
+ 4) & ~3;
17542 /* Thumb branches are simply offset by +4. */
17543 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
17544 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
17545 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
17546 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
17547 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
17548 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
17549 case BFD_RELOC_THUMB_PCREL_BLX
:
17552 /* ARM mode branches are offset by +8. However, the Windows CE
17553 loader expects the relocation not to take this into account. */
17554 case BFD_RELOC_ARM_PCREL_BRANCH
:
17555 case BFD_RELOC_ARM_PCREL_CALL
:
17556 case BFD_RELOC_ARM_PCREL_JUMP
:
17557 case BFD_RELOC_ARM_PCREL_BLX
:
17558 case BFD_RELOC_ARM_PLT32
:
17560 /* When handling fixups immediately, because we have already
17561 discovered the value of a symbol, or the address of the frag involved
17562 we must account for the offset by +8, as the OS loader will never see the reloc.
17563 see fixup_segment() in write.c
17564 The S_IS_EXTERNAL test handles the case of global symbols.
17565 Those need the calculated base, not just the pipe compensation the linker will need. */
17567 && fixP
->fx_addsy
!= NULL
17568 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
17569 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
17576 /* ARM mode loads relative to PC are also offset by +8. Unlike
17577 branches, the Windows CE loader *does* expect the relocation
17578 to take this into account. */
17579 case BFD_RELOC_ARM_OFFSET_IMM
:
17580 case BFD_RELOC_ARM_OFFSET_IMM8
:
17581 case BFD_RELOC_ARM_HWLITERAL
:
17582 case BFD_RELOC_ARM_LITERAL
:
17583 case BFD_RELOC_ARM_CP_OFF_IMM
:
17587 /* Other PC-relative relocations are un-offset. */
17593 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17594 Otherwise we have no need to default values of symbols. */
17597 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
17600 if (name
[0] == '_' && name
[1] == 'G'
17601 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
17605 if (symbol_find (name
))
17606 as_bad ("GOT already in the symbol table");
17608 GOT_symbol
= symbol_new (name
, undefined_section
,
17609 (valueT
) 0, & zero_address_frag
);
17619 /* Subroutine of md_apply_fix. Check to see if an immediate can be
17620 computed as two separate immediate values, added together. We
17621 already know that this value cannot be computed by just one ARM
17624 static unsigned int
17625 validate_immediate_twopart (unsigned int val
,
17626 unsigned int * highpart
)
17631 for (i
= 0; i
< 32; i
+= 2)
17632 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
17638 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
17640 else if (a
& 0xff0000)
17642 if (a
& 0xff000000)
17644 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
17648 assert (a
& 0xff000000);
17649 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
17652 return (a
& 0xff) | (i
<< 7);
17659 validate_offset_imm (unsigned int val
, int hwse
)
17661 if ((hwse
&& val
> 255) || val
> 4095)
17666 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17667 negative immediate constant by altering the instruction. A bit of
17672 by inverting the second operand, and
17675 by negating the second operand. */
17678 negate_data_op (unsigned long * instruction
,
17679 unsigned long value
)
17682 unsigned long negated
, inverted
;
17684 negated
= encode_arm_immediate (-value
);
17685 inverted
= encode_arm_immediate (~value
);
17687 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
17690 /* First negates. */
17691 case OPCODE_SUB
: /* ADD <-> SUB */
17692 new_inst
= OPCODE_ADD
;
17697 new_inst
= OPCODE_SUB
;
17701 case OPCODE_CMP
: /* CMP <-> CMN */
17702 new_inst
= OPCODE_CMN
;
17707 new_inst
= OPCODE_CMP
;
17711 /* Now Inverted ops. */
17712 case OPCODE_MOV
: /* MOV <-> MVN */
17713 new_inst
= OPCODE_MVN
;
17718 new_inst
= OPCODE_MOV
;
17722 case OPCODE_AND
: /* AND <-> BIC */
17723 new_inst
= OPCODE_BIC
;
17728 new_inst
= OPCODE_AND
;
17732 case OPCODE_ADC
: /* ADC <-> SBC */
17733 new_inst
= OPCODE_SBC
;
17738 new_inst
= OPCODE_ADC
;
17742 /* We cannot do anything. */
17747 if (value
== (unsigned) FAIL
)
17750 *instruction
&= OPCODE_MASK
;
17751 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
17755 /* Like negate_data_op, but for Thumb-2. */
17757 static unsigned int
17758 thumb32_negate_data_op (offsetT
*instruction
, unsigned int value
)
17762 unsigned int negated
, inverted
;
17764 negated
= encode_thumb32_immediate (-value
);
17765 inverted
= encode_thumb32_immediate (~value
);
17767 rd
= (*instruction
>> 8) & 0xf;
17768 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
17771 /* ADD <-> SUB. Includes CMP <-> CMN. */
17772 case T2_OPCODE_SUB
:
17773 new_inst
= T2_OPCODE_ADD
;
17777 case T2_OPCODE_ADD
:
17778 new_inst
= T2_OPCODE_SUB
;
17782 /* ORR <-> ORN. Includes MOV <-> MVN. */
17783 case T2_OPCODE_ORR
:
17784 new_inst
= T2_OPCODE_ORN
;
17788 case T2_OPCODE_ORN
:
17789 new_inst
= T2_OPCODE_ORR
;
17793 /* AND <-> BIC. TST has no inverted equivalent. */
17794 case T2_OPCODE_AND
:
17795 new_inst
= T2_OPCODE_BIC
;
17802 case T2_OPCODE_BIC
:
17803 new_inst
= T2_OPCODE_AND
;
17808 case T2_OPCODE_ADC
:
17809 new_inst
= T2_OPCODE_SBC
;
17813 case T2_OPCODE_SBC
:
17814 new_inst
= T2_OPCODE_ADC
;
17818 /* We cannot do anything. */
17823 if (value
== (unsigned int)FAIL
)
17826 *instruction
&= T2_OPCODE_MASK
;
17827 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
17831 /* Read a 32-bit thumb instruction from buf. */
17832 static unsigned long
17833 get_thumb32_insn (char * buf
)
17835 unsigned long insn
;
17836 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
17837 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
17843 /* We usually want to set the low bit on the address of thumb function
17844 symbols. In particular .word foo - . should have the low bit set.
17845 Generic code tries to fold the difference of two symbols to
17846 a constant. Prevent this and force a relocation when the first symbols
17847 is a thumb function. */
17849 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
17851 if (op
== O_subtract
17852 && l
->X_op
== O_symbol
17853 && r
->X_op
== O_symbol
17854 && THUMB_IS_FUNC (l
->X_add_symbol
))
17856 l
->X_op
= O_subtract
;
17857 l
->X_op_symbol
= r
->X_add_symbol
;
17858 l
->X_add_number
-= r
->X_add_number
;
17861 /* Process as normal. */
17866 md_apply_fix (fixS
* fixP
,
17870 offsetT value
= * valP
;
17872 unsigned int newimm
;
17873 unsigned long temp
;
17875 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
17877 assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
17879 /* Note whether this will delete the relocation. */
17881 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
17884 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17885 consistency with the behavior on 32-bit hosts. Remember value
17887 value
&= 0xffffffff;
17888 value
^= 0x80000000;
17889 value
-= 0x80000000;
17892 fixP
->fx_addnumber
= value
;
17894 /* Same treatment for fixP->fx_offset. */
17895 fixP
->fx_offset
&= 0xffffffff;
17896 fixP
->fx_offset
^= 0x80000000;
17897 fixP
->fx_offset
-= 0x80000000;
17899 switch (fixP
->fx_r_type
)
17901 case BFD_RELOC_NONE
:
17902 /* This will need to go in the object file. */
17906 case BFD_RELOC_ARM_IMMEDIATE
:
17907 /* We claim that this fixup has been processed here,
17908 even if in fact we generate an error because we do
17909 not have a reloc for it, so tc_gen_reloc will reject it. */
17913 && ! S_IS_DEFINED (fixP
->fx_addsy
))
17915 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17916 _("undefined symbol %s used as an immediate value"),
17917 S_GET_NAME (fixP
->fx_addsy
));
17921 newimm
= encode_arm_immediate (value
);
17922 temp
= md_chars_to_number (buf
, INSN_SIZE
);
17924 /* If the instruction will fail, see if we can fix things up by
17925 changing the opcode. */
17926 if (newimm
== (unsigned int) FAIL
17927 && (newimm
= negate_data_op (&temp
, value
)) == (unsigned int) FAIL
)
17929 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17930 _("invalid constant (%lx) after fixup"),
17931 (unsigned long) value
);
17935 newimm
|= (temp
& 0xfffff000);
17936 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
17939 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
17941 unsigned int highpart
= 0;
17942 unsigned int newinsn
= 0xe1a00000; /* nop. */
17944 newimm
= encode_arm_immediate (value
);
17945 temp
= md_chars_to_number (buf
, INSN_SIZE
);
17947 /* If the instruction will fail, see if we can fix things up by
17948 changing the opcode. */
17949 if (newimm
== (unsigned int) FAIL
17950 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
17952 /* No ? OK - try using two ADD instructions to generate
17954 newimm
= validate_immediate_twopart (value
, & highpart
);
17956 /* Yes - then make sure that the second instruction is
17958 if (newimm
!= (unsigned int) FAIL
)
17960 /* Still No ? Try using a negated value. */
17961 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
17962 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
17963 /* Otherwise - give up. */
17966 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17967 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17972 /* Replace the first operand in the 2nd instruction (which
17973 is the PC) with the destination register. We have
17974 already added in the PC in the first instruction and we
17975 do not want to do it again. */
17976 newinsn
&= ~ 0xf0000;
17977 newinsn
|= ((newinsn
& 0x0f000) << 4);
17980 newimm
|= (temp
& 0xfffff000);
17981 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
17983 highpart
|= (newinsn
& 0xfffff000);
17984 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
17988 case BFD_RELOC_ARM_OFFSET_IMM
:
17989 if (!fixP
->fx_done
&& seg
->use_rela_p
)
17992 case BFD_RELOC_ARM_LITERAL
:
17998 if (validate_offset_imm (value
, 0) == FAIL
)
18000 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
18001 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18002 _("invalid literal constant: pool needs to be closer"));
18004 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18005 _("bad immediate value for offset (%ld)"),
18010 newval
= md_chars_to_number (buf
, INSN_SIZE
);
18011 newval
&= 0xff7ff000;
18012 newval
|= value
| (sign
? INDEX_UP
: 0);
18013 md_number_to_chars (buf
, newval
, INSN_SIZE
);
18016 case BFD_RELOC_ARM_OFFSET_IMM8
:
18017 case BFD_RELOC_ARM_HWLITERAL
:
18023 if (validate_offset_imm (value
, 1) == FAIL
)
18025 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
18026 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18027 _("invalid literal constant: pool needs to be closer"));
18029 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
18034 newval
= md_chars_to_number (buf
, INSN_SIZE
);
18035 newval
&= 0xff7ff0f0;
18036 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
18037 md_number_to_chars (buf
, newval
, INSN_SIZE
);
18040 case BFD_RELOC_ARM_T32_OFFSET_U8
:
18041 if (value
< 0 || value
> 1020 || value
% 4 != 0)
18042 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18043 _("bad immediate value for offset (%ld)"), (long) value
);
18046 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
18048 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
18051 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
18052 /* This is a complicated relocation used for all varieties of Thumb32
18053 load/store instruction with immediate offset:
18055 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18056 *4, optional writeback(W)
18057 (doubleword load/store)
18059 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18060 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18061 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18062 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18063 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18065 Uppercase letters indicate bits that are already encoded at
18066 this point. Lowercase letters are our problem. For the
18067 second block of instructions, the secondary opcode nybble
18068 (bits 8..11) is present, and bit 23 is zero, even if this is
18069 a PC-relative operation. */
18070 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18072 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
18074 if ((newval
& 0xf0000000) == 0xe0000000)
18076 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18078 newval
|= (1 << 23);
18081 if (value
% 4 != 0)
18083 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18084 _("offset not a multiple of 4"));
18090 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18091 _("offset out of range"));
18096 else if ((newval
& 0x000f0000) == 0x000f0000)
18098 /* PC-relative, 12-bit offset. */
18100 newval
|= (1 << 23);
18105 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18106 _("offset out of range"));
18111 else if ((newval
& 0x00000100) == 0x00000100)
18113 /* Writeback: 8-bit, +/- offset. */
18115 newval
|= (1 << 9);
18120 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18121 _("offset out of range"));
18126 else if ((newval
& 0x00000f00) == 0x00000e00)
18128 /* T-instruction: positive 8-bit offset. */
18129 if (value
< 0 || value
> 0xff)
18131 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18132 _("offset out of range"));
18140 /* Positive 12-bit or negative 8-bit offset. */
18144 newval
|= (1 << 23);
18154 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18155 _("offset out of range"));
18162 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
18163 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
18166 case BFD_RELOC_ARM_SHIFT_IMM
:
18167 newval
= md_chars_to_number (buf
, INSN_SIZE
);
18168 if (((unsigned long) value
) > 32
18170 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
18172 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18173 _("shift expression is too large"));
18178 /* Shifts of zero must be done as lsl. */
18180 else if (value
== 32)
18182 newval
&= 0xfffff07f;
18183 newval
|= (value
& 0x1f) << 7;
18184 md_number_to_chars (buf
, newval
, INSN_SIZE
);
18187 case BFD_RELOC_ARM_T32_IMMEDIATE
:
18188 case BFD_RELOC_ARM_T32_ADD_IMM
:
18189 case BFD_RELOC_ARM_T32_IMM12
:
18190 case BFD_RELOC_ARM_T32_ADD_PC12
:
18191 /* We claim that this fixup has been processed here,
18192 even if in fact we generate an error because we do
18193 not have a reloc for it, so tc_gen_reloc will reject it. */
18197 && ! S_IS_DEFINED (fixP
->fx_addsy
))
18199 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18200 _("undefined symbol %s used as an immediate value"),
18201 S_GET_NAME (fixP
->fx_addsy
));
18205 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18207 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
18210 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
18211 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
18213 newimm
= encode_thumb32_immediate (value
);
18214 if (newimm
== (unsigned int) FAIL
)
18215 newimm
= thumb32_negate_data_op (&newval
, value
);
18217 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
18218 && newimm
== (unsigned int) FAIL
)
18220 /* Turn add/sum into addw/subw. */
18221 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
18222 newval
= (newval
& 0xfeffffff) | 0x02000000;
18224 /* 12 bit immediate for addw/subw. */
18228 newval
^= 0x00a00000;
18231 newimm
= (unsigned int) FAIL
;
18236 if (newimm
== (unsigned int)FAIL
)
18238 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18239 _("invalid constant (%lx) after fixup"),
18240 (unsigned long) value
);
18244 newval
|= (newimm
& 0x800) << 15;
18245 newval
|= (newimm
& 0x700) << 4;
18246 newval
|= (newimm
& 0x0ff);
18248 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
18249 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
18252 case BFD_RELOC_ARM_SMC
:
18253 if (((unsigned long) value
) > 0xffff)
18254 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18255 _("invalid smc expression"));
18256 newval
= md_chars_to_number (buf
, INSN_SIZE
);
18257 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
18258 md_number_to_chars (buf
, newval
, INSN_SIZE
);
18261 case BFD_RELOC_ARM_SWI
:
18262 if (fixP
->tc_fix_data
!= 0)
18264 if (((unsigned long) value
) > 0xff)
18265 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18266 _("invalid swi expression"));
18267 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18269 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18273 if (((unsigned long) value
) > 0x00ffffff)
18274 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18275 _("invalid swi expression"));
18276 newval
= md_chars_to_number (buf
, INSN_SIZE
);
18278 md_number_to_chars (buf
, newval
, INSN_SIZE
);
18282 case BFD_RELOC_ARM_MULTI
:
18283 if (((unsigned long) value
) > 0xffff)
18284 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18285 _("invalid expression in load/store multiple"));
18286 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
18287 md_number_to_chars (buf
, newval
, INSN_SIZE
);
18291 case BFD_RELOC_ARM_PCREL_CALL
:
18292 newval
= md_chars_to_number (buf
, INSN_SIZE
);
18293 if ((newval
& 0xf0000000) == 0xf0000000)
18297 goto arm_branch_common
;
18299 case BFD_RELOC_ARM_PCREL_JUMP
:
18300 case BFD_RELOC_ARM_PLT32
:
18302 case BFD_RELOC_ARM_PCREL_BRANCH
:
18304 goto arm_branch_common
;
18306 case BFD_RELOC_ARM_PCREL_BLX
:
18309 /* We are going to store value (shifted right by two) in the
18310 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18311 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18312 also be be clear. */
18314 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18315 _("misaligned branch destination"));
18316 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
18317 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
18318 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18319 _("branch out of range"));
18321 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18323 newval
= md_chars_to_number (buf
, INSN_SIZE
);
18324 newval
|= (value
>> 2) & 0x00ffffff;
18325 /* Set the H bit on BLX instructions. */
18329 newval
|= 0x01000000;
18331 newval
&= ~0x01000000;
18333 md_number_to_chars (buf
, newval
, INSN_SIZE
);
18337 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CBZ */
18338 /* CBZ can only branch forward. */
18340 /* Attempts to use CBZ to branch to the next instruction
18341 (which, strictly speaking, are prohibited) will be turned into
18344 FIXME: It may be better to remove the instruction completely and
18345 perform relaxation. */
18348 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18349 newval
= 0xbf00; /* NOP encoding T1 */
18350 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18355 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18356 _("branch out of range"));
18358 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18360 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18361 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
18362 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18367 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
18368 if ((value
& ~0xff) && ((value
& ~0xff) != ~0xff))
18369 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18370 _("branch out of range"));
18372 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18374 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18375 newval
|= (value
& 0x1ff) >> 1;
18376 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18380 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
18381 if ((value
& ~0x7ff) && ((value
& ~0x7ff) != ~0x7ff))
18382 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18383 _("branch out of range"));
18385 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18387 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18388 newval
|= (value
& 0xfff) >> 1;
18389 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18393 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
18394 if ((value
& ~0x1fffff) && ((value
& ~0x1fffff) != ~0x1fffff))
18395 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18396 _("conditional branch out of range"));
18398 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18401 addressT S
, J1
, J2
, lo
, hi
;
18403 S
= (value
& 0x00100000) >> 20;
18404 J2
= (value
& 0x00080000) >> 19;
18405 J1
= (value
& 0x00040000) >> 18;
18406 hi
= (value
& 0x0003f000) >> 12;
18407 lo
= (value
& 0x00000ffe) >> 1;
18409 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18410 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
18411 newval
|= (S
<< 10) | hi
;
18412 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
18413 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18414 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
18418 case BFD_RELOC_THUMB_PCREL_BLX
:
18419 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
18420 if ((value
& ~0x3fffff) && ((value
& ~0x3fffff) != ~0x3fffff))
18421 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18422 _("branch out of range"));
18424 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
18425 /* For a BLX instruction, make sure that the relocation is rounded up
18426 to a word boundary. This follows the semantics of the instruction
18427 which specifies that bit 1 of the target address will come from bit
18428 1 of the base address. */
18429 value
= (value
+ 1) & ~ 1;
18431 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18435 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18436 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
18437 newval
|= (value
& 0x7fffff) >> 12;
18438 newval2
|= (value
& 0xfff) >> 1;
18439 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18440 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
18444 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
18445 if ((value
& ~0x1ffffff) && ((value
& ~0x1ffffff) != ~0x1ffffff))
18446 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18447 _("branch out of range"));
18449 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18452 addressT S
, I1
, I2
, lo
, hi
;
18454 S
= (value
& 0x01000000) >> 24;
18455 I1
= (value
& 0x00800000) >> 23;
18456 I2
= (value
& 0x00400000) >> 22;
18457 hi
= (value
& 0x003ff000) >> 12;
18458 lo
= (value
& 0x00000ffe) >> 1;
18463 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18464 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
18465 newval
|= (S
<< 10) | hi
;
18466 newval2
|= (I1
<< 13) | (I2
<< 11) | lo
;
18467 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18468 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
18473 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18474 md_number_to_chars (buf
, value
, 1);
18478 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18479 md_number_to_chars (buf
, value
, 2);
18483 case BFD_RELOC_ARM_TLS_GD32
:
18484 case BFD_RELOC_ARM_TLS_LE32
:
18485 case BFD_RELOC_ARM_TLS_IE32
:
18486 case BFD_RELOC_ARM_TLS_LDM32
:
18487 case BFD_RELOC_ARM_TLS_LDO32
:
18488 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
18491 case BFD_RELOC_ARM_GOT32
:
18492 case BFD_RELOC_ARM_GOTOFF
:
18493 case BFD_RELOC_ARM_TARGET2
:
18494 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18495 md_number_to_chars (buf
, 0, 4);
18499 case BFD_RELOC_RVA
:
18501 case BFD_RELOC_ARM_TARGET1
:
18502 case BFD_RELOC_ARM_ROSEGREL32
:
18503 case BFD_RELOC_ARM_SBREL32
:
18504 case BFD_RELOC_32_PCREL
:
18506 case BFD_RELOC_32_SECREL
:
18508 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18510 /* For WinCE we only do this for pcrel fixups. */
18511 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
18513 md_number_to_chars (buf
, value
, 4);
18517 case BFD_RELOC_ARM_PREL31
:
18518 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18520 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
18521 if ((value
^ (value
>> 1)) & 0x40000000)
18523 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18524 _("rel31 relocation overflow"));
18526 newval
|= value
& 0x7fffffff;
18527 md_number_to_chars (buf
, newval
, 4);
18532 case BFD_RELOC_ARM_CP_OFF_IMM
:
18533 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
18534 if (value
< -1023 || value
> 1023 || (value
& 3))
18535 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18536 _("co-processor offset out of range"));
18541 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
18542 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
18543 newval
= md_chars_to_number (buf
, INSN_SIZE
);
18545 newval
= get_thumb32_insn (buf
);
18546 newval
&= 0xff7fff00;
18547 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
18548 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
18549 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
18550 md_number_to_chars (buf
, newval
, INSN_SIZE
);
18552 put_thumb32_insn (buf
, newval
);
18555 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
18556 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
18557 if (value
< -255 || value
> 255)
18558 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18559 _("co-processor offset out of range"));
18561 goto cp_off_common
;
18563 case BFD_RELOC_ARM_THUMB_OFFSET
:
18564 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18565 /* Exactly what ranges, and where the offset is inserted depends
18566 on the type of instruction, we can establish this from the
18568 switch (newval
>> 12)
18570 case 4: /* PC load. */
18571 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18572 forced to zero for these loads; md_pcrel_from has already
18573 compensated for this. */
18575 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18576 _("invalid offset, target not word aligned (0x%08lX)"),
18577 (((unsigned long) fixP
->fx_frag
->fr_address
18578 + (unsigned long) fixP
->fx_where
) & ~3)
18579 + (unsigned long) value
);
18581 if (value
& ~0x3fc)
18582 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18583 _("invalid offset, value too big (0x%08lX)"),
18586 newval
|= value
>> 2;
18589 case 9: /* SP load/store. */
18590 if (value
& ~0x3fc)
18591 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18592 _("invalid offset, value too big (0x%08lX)"),
18594 newval
|= value
>> 2;
18597 case 6: /* Word load/store. */
18599 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18600 _("invalid offset, value too big (0x%08lX)"),
18602 newval
|= value
<< 4; /* 6 - 2. */
18605 case 7: /* Byte load/store. */
18607 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18608 _("invalid offset, value too big (0x%08lX)"),
18610 newval
|= value
<< 6;
18613 case 8: /* Halfword load/store. */
18615 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18616 _("invalid offset, value too big (0x%08lX)"),
18618 newval
|= value
<< 5; /* 6 - 1. */
18622 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18623 "Unable to process relocation for thumb opcode: %lx",
18624 (unsigned long) newval
);
18627 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18630 case BFD_RELOC_ARM_THUMB_ADD
:
18631 /* This is a complicated relocation, since we use it for all of
18632 the following immediate relocations:
18636 9bit ADD/SUB SP word-aligned
18637 10bit ADD PC/SP word-aligned
18639 The type of instruction being processed is encoded in the
18646 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18648 int rd
= (newval
>> 4) & 0xf;
18649 int rs
= newval
& 0xf;
18650 int subtract
= !!(newval
& 0x8000);
18652 /* Check for HI regs, only very restricted cases allowed:
18653 Adjusting SP, and using PC or SP to get an address. */
18654 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
18655 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
18656 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18657 _("invalid Hi register with immediate"));
18659 /* If value is negative, choose the opposite instruction. */
18663 subtract
= !subtract
;
18665 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18666 _("immediate value out of range"));
18671 if (value
& ~0x1fc)
18672 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18673 _("invalid immediate for stack address calculation"));
18674 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
18675 newval
|= value
>> 2;
18677 else if (rs
== REG_PC
|| rs
== REG_SP
)
18679 if (subtract
|| value
& ~0x3fc)
18680 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18681 _("invalid immediate for address calculation (value = 0x%08lX)"),
18682 (unsigned long) value
);
18683 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
18685 newval
|= value
>> 2;
18690 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18691 _("immediate value out of range"));
18692 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
18693 newval
|= (rd
<< 8) | value
;
18698 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18699 _("immediate value out of range"));
18700 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
18701 newval
|= rd
| (rs
<< 3) | (value
<< 6);
18704 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18707 case BFD_RELOC_ARM_THUMB_IMM
:
18708 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18709 if (value
< 0 || value
> 255)
18710 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18711 _("invalid immediate: %ld is too large"),
18714 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18717 case BFD_RELOC_ARM_THUMB_SHIFT
:
18718 /* 5bit shift value (0..32). LSL cannot take 32. */
18719 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
18720 temp
= newval
& 0xf800;
18721 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
18722 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18723 _("invalid shift value: %ld"), (long) value
);
18724 /* Shifts of zero must be encoded as LSL. */
18726 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
18727 /* Shifts of 32 are encoded as zero. */
18728 else if (value
== 32)
18730 newval
|= value
<< 6;
18731 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18734 case BFD_RELOC_VTABLE_INHERIT
:
18735 case BFD_RELOC_VTABLE_ENTRY
:
18739 case BFD_RELOC_ARM_MOVW
:
18740 case BFD_RELOC_ARM_MOVT
:
18741 case BFD_RELOC_ARM_THUMB_MOVW
:
18742 case BFD_RELOC_ARM_THUMB_MOVT
:
18743 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18745 /* REL format relocations are limited to a 16-bit addend. */
18746 if (!fixP
->fx_done
)
18748 if (value
< -0x1000 || value
> 0xffff)
18749 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18750 _("offset too big"));
18752 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
18753 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
18758 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
18759 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
18761 newval
= get_thumb32_insn (buf
);
18762 newval
&= 0xfbf08f00;
18763 newval
|= (value
& 0xf000) << 4;
18764 newval
|= (value
& 0x0800) << 15;
18765 newval
|= (value
& 0x0700) << 4;
18766 newval
|= (value
& 0x00ff);
18767 put_thumb32_insn (buf
, newval
);
18771 newval
= md_chars_to_number (buf
, 4);
18772 newval
&= 0xfff0f000;
18773 newval
|= value
& 0x0fff;
18774 newval
|= (value
& 0xf000) << 4;
18775 md_number_to_chars (buf
, newval
, 4);
18780 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
18781 case BFD_RELOC_ARM_ALU_PC_G0
:
18782 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
18783 case BFD_RELOC_ARM_ALU_PC_G1
:
18784 case BFD_RELOC_ARM_ALU_PC_G2
:
18785 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
18786 case BFD_RELOC_ARM_ALU_SB_G0
:
18787 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
18788 case BFD_RELOC_ARM_ALU_SB_G1
:
18789 case BFD_RELOC_ARM_ALU_SB_G2
:
18790 assert (!fixP
->fx_done
);
18791 if (!seg
->use_rela_p
)
18794 bfd_vma encoded_addend
;
18795 bfd_vma addend_abs
= abs (value
);
18797 /* Check that the absolute value of the addend can be
18798 expressed as an 8-bit constant plus a rotation. */
18799 encoded_addend
= encode_arm_immediate (addend_abs
);
18800 if (encoded_addend
== (unsigned int) FAIL
)
18801 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18802 _("the offset 0x%08lX is not representable"),
18803 (unsigned long) addend_abs
);
18805 /* Extract the instruction. */
18806 insn
= md_chars_to_number (buf
, INSN_SIZE
);
18808 /* If the addend is positive, use an ADD instruction.
18809 Otherwise use a SUB. Take care not to destroy the S bit. */
18810 insn
&= 0xff1fffff;
18816 /* Place the encoded addend into the first 12 bits of the
18818 insn
&= 0xfffff000;
18819 insn
|= encoded_addend
;
18821 /* Update the instruction. */
18822 md_number_to_chars (buf
, insn
, INSN_SIZE
);
18826 case BFD_RELOC_ARM_LDR_PC_G0
:
18827 case BFD_RELOC_ARM_LDR_PC_G1
:
18828 case BFD_RELOC_ARM_LDR_PC_G2
:
18829 case BFD_RELOC_ARM_LDR_SB_G0
:
18830 case BFD_RELOC_ARM_LDR_SB_G1
:
18831 case BFD_RELOC_ARM_LDR_SB_G2
:
18832 assert (!fixP
->fx_done
);
18833 if (!seg
->use_rela_p
)
18836 bfd_vma addend_abs
= abs (value
);
18838 /* Check that the absolute value of the addend can be
18839 encoded in 12 bits. */
18840 if (addend_abs
>= 0x1000)
18841 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18842 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18843 (unsigned long) addend_abs
);
18845 /* Extract the instruction. */
18846 insn
= md_chars_to_number (buf
, INSN_SIZE
);
18848 /* If the addend is negative, clear bit 23 of the instruction.
18849 Otherwise set it. */
18851 insn
&= ~(1 << 23);
18855 /* Place the absolute value of the addend into the first 12 bits
18856 of the instruction. */
18857 insn
&= 0xfffff000;
18858 insn
|= addend_abs
;
18860 /* Update the instruction. */
18861 md_number_to_chars (buf
, insn
, INSN_SIZE
);
18865 case BFD_RELOC_ARM_LDRS_PC_G0
:
18866 case BFD_RELOC_ARM_LDRS_PC_G1
:
18867 case BFD_RELOC_ARM_LDRS_PC_G2
:
18868 case BFD_RELOC_ARM_LDRS_SB_G0
:
18869 case BFD_RELOC_ARM_LDRS_SB_G1
:
18870 case BFD_RELOC_ARM_LDRS_SB_G2
:
18871 assert (!fixP
->fx_done
);
18872 if (!seg
->use_rela_p
)
18875 bfd_vma addend_abs
= abs (value
);
18877 /* Check that the absolute value of the addend can be
18878 encoded in 8 bits. */
18879 if (addend_abs
>= 0x100)
18880 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18881 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18882 (unsigned long) addend_abs
);
18884 /* Extract the instruction. */
18885 insn
= md_chars_to_number (buf
, INSN_SIZE
);
18887 /* If the addend is negative, clear bit 23 of the instruction.
18888 Otherwise set it. */
18890 insn
&= ~(1 << 23);
18894 /* Place the first four bits of the absolute value of the addend
18895 into the first 4 bits of the instruction, and the remaining
18896 four into bits 8 .. 11. */
18897 insn
&= 0xfffff0f0;
18898 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
18900 /* Update the instruction. */
18901 md_number_to_chars (buf
, insn
, INSN_SIZE
);
18905 case BFD_RELOC_ARM_LDC_PC_G0
:
18906 case BFD_RELOC_ARM_LDC_PC_G1
:
18907 case BFD_RELOC_ARM_LDC_PC_G2
:
18908 case BFD_RELOC_ARM_LDC_SB_G0
:
18909 case BFD_RELOC_ARM_LDC_SB_G1
:
18910 case BFD_RELOC_ARM_LDC_SB_G2
:
18911 assert (!fixP
->fx_done
);
18912 if (!seg
->use_rela_p
)
18915 bfd_vma addend_abs
= abs (value
);
18917 /* Check that the absolute value of the addend is a multiple of
18918 four and, when divided by four, fits in 8 bits. */
18919 if (addend_abs
& 0x3)
18920 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18921 _("bad offset 0x%08lX (must be word-aligned)"),
18922 (unsigned long) addend_abs
);
18924 if ((addend_abs
>> 2) > 0xff)
18925 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18926 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18927 (unsigned long) addend_abs
);
18929 /* Extract the instruction. */
18930 insn
= md_chars_to_number (buf
, INSN_SIZE
);
18932 /* If the addend is negative, clear bit 23 of the instruction.
18933 Otherwise set it. */
18935 insn
&= ~(1 << 23);
18939 /* Place the addend (divided by four) into the first eight
18940 bits of the instruction. */
18941 insn
&= 0xfffffff0;
18942 insn
|= addend_abs
>> 2;
18944 /* Update the instruction. */
18945 md_number_to_chars (buf
, insn
, INSN_SIZE
);
18949 case BFD_RELOC_UNUSED
:
18951 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18952 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
18956 /* Translate internal representation of relocation info to BFD target
18960 tc_gen_reloc (asection
*section
, fixS
*fixp
)
18963 bfd_reloc_code_real_type code
;
18965 reloc
= xmalloc (sizeof (arelent
));
18967 reloc
->sym_ptr_ptr
= xmalloc (sizeof (asymbol
*));
18968 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
18969 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
18971 if (fixp
->fx_pcrel
)
18973 if (section
->use_rela_p
)
18974 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
18976 fixp
->fx_offset
= reloc
->address
;
18978 reloc
->addend
= fixp
->fx_offset
;
18980 switch (fixp
->fx_r_type
)
18983 if (fixp
->fx_pcrel
)
18985 code
= BFD_RELOC_8_PCREL
;
18990 if (fixp
->fx_pcrel
)
18992 code
= BFD_RELOC_16_PCREL
;
18997 if (fixp
->fx_pcrel
)
18999 code
= BFD_RELOC_32_PCREL
;
19003 case BFD_RELOC_ARM_MOVW
:
19004 if (fixp
->fx_pcrel
)
19006 code
= BFD_RELOC_ARM_MOVW_PCREL
;
19010 case BFD_RELOC_ARM_MOVT
:
19011 if (fixp
->fx_pcrel
)
19013 code
= BFD_RELOC_ARM_MOVT_PCREL
;
19017 case BFD_RELOC_ARM_THUMB_MOVW
:
19018 if (fixp
->fx_pcrel
)
19020 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
19024 case BFD_RELOC_ARM_THUMB_MOVT
:
19025 if (fixp
->fx_pcrel
)
19027 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
19031 case BFD_RELOC_NONE
:
19032 case BFD_RELOC_ARM_PCREL_BRANCH
:
19033 case BFD_RELOC_ARM_PCREL_BLX
:
19034 case BFD_RELOC_RVA
:
19035 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
19036 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
19037 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
19038 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
19039 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
19040 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
19041 case BFD_RELOC_THUMB_PCREL_BLX
:
19042 case BFD_RELOC_VTABLE_ENTRY
:
19043 case BFD_RELOC_VTABLE_INHERIT
:
19045 case BFD_RELOC_32_SECREL
:
19047 code
= fixp
->fx_r_type
;
19050 case BFD_RELOC_ARM_LITERAL
:
19051 case BFD_RELOC_ARM_HWLITERAL
:
19052 /* If this is called then the a literal has
19053 been referenced across a section boundary. */
19054 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
19055 _("literal referenced across section boundary"));
19059 case BFD_RELOC_ARM_GOT32
:
19060 case BFD_RELOC_ARM_GOTOFF
:
19061 case BFD_RELOC_ARM_PLT32
:
19062 case BFD_RELOC_ARM_TARGET1
:
19063 case BFD_RELOC_ARM_ROSEGREL32
:
19064 case BFD_RELOC_ARM_SBREL32
:
19065 case BFD_RELOC_ARM_PREL31
:
19066 case BFD_RELOC_ARM_TARGET2
:
19067 case BFD_RELOC_ARM_TLS_LE32
:
19068 case BFD_RELOC_ARM_TLS_LDO32
:
19069 case BFD_RELOC_ARM_PCREL_CALL
:
19070 case BFD_RELOC_ARM_PCREL_JUMP
:
19071 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
19072 case BFD_RELOC_ARM_ALU_PC_G0
:
19073 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
19074 case BFD_RELOC_ARM_ALU_PC_G1
:
19075 case BFD_RELOC_ARM_ALU_PC_G2
:
19076 case BFD_RELOC_ARM_LDR_PC_G0
:
19077 case BFD_RELOC_ARM_LDR_PC_G1
:
19078 case BFD_RELOC_ARM_LDR_PC_G2
:
19079 case BFD_RELOC_ARM_LDRS_PC_G0
:
19080 case BFD_RELOC_ARM_LDRS_PC_G1
:
19081 case BFD_RELOC_ARM_LDRS_PC_G2
:
19082 case BFD_RELOC_ARM_LDC_PC_G0
:
19083 case BFD_RELOC_ARM_LDC_PC_G1
:
19084 case BFD_RELOC_ARM_LDC_PC_G2
:
19085 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
19086 case BFD_RELOC_ARM_ALU_SB_G0
:
19087 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
19088 case BFD_RELOC_ARM_ALU_SB_G1
:
19089 case BFD_RELOC_ARM_ALU_SB_G2
:
19090 case BFD_RELOC_ARM_LDR_SB_G0
:
19091 case BFD_RELOC_ARM_LDR_SB_G1
:
19092 case BFD_RELOC_ARM_LDR_SB_G2
:
19093 case BFD_RELOC_ARM_LDRS_SB_G0
:
19094 case BFD_RELOC_ARM_LDRS_SB_G1
:
19095 case BFD_RELOC_ARM_LDRS_SB_G2
:
19096 case BFD_RELOC_ARM_LDC_SB_G0
:
19097 case BFD_RELOC_ARM_LDC_SB_G1
:
19098 case BFD_RELOC_ARM_LDC_SB_G2
:
19099 code
= fixp
->fx_r_type
;
19102 case BFD_RELOC_ARM_TLS_GD32
:
19103 case BFD_RELOC_ARM_TLS_IE32
:
19104 case BFD_RELOC_ARM_TLS_LDM32
:
19105 /* BFD will include the symbol's address in the addend.
19106 But we don't want that, so subtract it out again here. */
19107 if (!S_IS_COMMON (fixp
->fx_addsy
))
19108 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
19109 code
= fixp
->fx_r_type
;
19113 case BFD_RELOC_ARM_IMMEDIATE
:
19114 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
19115 _("internal relocation (type: IMMEDIATE) not fixed up"));
19118 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
19119 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
19120 _("ADRL used for a symbol not defined in the same file"));
19123 case BFD_RELOC_ARM_OFFSET_IMM
:
19124 if (section
->use_rela_p
)
19126 code
= fixp
->fx_r_type
;
19130 if (fixp
->fx_addsy
!= NULL
19131 && !S_IS_DEFINED (fixp
->fx_addsy
)
19132 && S_IS_LOCAL (fixp
->fx_addsy
))
19134 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
19135 _("undefined local label `%s'"),
19136 S_GET_NAME (fixp
->fx_addsy
));
19140 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
19141 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19148 switch (fixp
->fx_r_type
)
19150 case BFD_RELOC_NONE
: type
= "NONE"; break;
19151 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
19152 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
19153 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
19154 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
19155 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
19156 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
19157 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
19158 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
19159 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
19160 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
19161 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
19162 default: type
= _("<unknown>"); break;
19164 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
19165 _("cannot represent %s relocation in this object file format"),
19172 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
19174 && fixp
->fx_addsy
== GOT_symbol
)
19176 code
= BFD_RELOC_ARM_GOTPC
;
19177 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
19181 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
19183 if (reloc
->howto
== NULL
)
19185 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
19186 _("cannot represent %s relocation in this object file format"),
19187 bfd_get_reloc_code_name (code
));
19191 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19192 vtable entry to be used in the relocation's section offset. */
19193 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
19194 reloc
->address
= fixp
->fx_offset
;
19199 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
19202 cons_fix_new_arm (fragS
* frag
,
19207 bfd_reloc_code_real_type type
;
19211 FIXME: @@ Should look at CPU word size. */
19215 type
= BFD_RELOC_8
;
19218 type
= BFD_RELOC_16
;
19222 type
= BFD_RELOC_32
;
19225 type
= BFD_RELOC_64
;
19230 if (exp
->X_op
== O_secrel
)
19232 exp
->X_op
= O_symbol
;
19233 type
= BFD_RELOC_32_SECREL
;
19237 fix_new_exp (frag
, where
, (int) size
, exp
, pcrel
, type
);
19240 #if defined OBJ_COFF || defined OBJ_ELF
19242 arm_validate_fix (fixS
* fixP
)
19244 /* If the destination of the branch is a defined symbol which does not have
19245 the THUMB_FUNC attribute, then we must be calling a function which has
19246 the (interfacearm) attribute. We look for the Thumb entry point to that
19247 function and change the branch to refer to that function instead. */
19248 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
19249 && fixP
->fx_addsy
!= NULL
19250 && S_IS_DEFINED (fixP
->fx_addsy
)
19251 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
19253 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
19259 arm_force_relocation (struct fix
* fixp
)
19261 #if defined (OBJ_COFF) && defined (TE_PE)
19262 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
19266 /* Resolve these relocations even if the symbol is extern or weak. */
19267 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
19268 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
19269 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
19270 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
19271 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
19272 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
19273 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
)
19276 /* Always leave these relocations for the linker. */
19277 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
19278 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
19279 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
19282 /* Always generate relocations against function symbols. */
19283 if (fixp
->fx_r_type
== BFD_RELOC_32
19285 && (symbol_get_bfdsym (fixp
->fx_addsy
)->flags
& BSF_FUNCTION
))
19288 return generic_force_reloc (fixp
);
19291 #if defined (OBJ_ELF) || defined (OBJ_COFF)
19292 /* Relocations against function names must be left unadjusted,
19293 so that the linker can use this information to generate interworking
19294 stubs. The MIPS version of this function
19295 also prevents relocations that are mips-16 specific, but I do not
19296 know why it does this.
19299 There is one other problem that ought to be addressed here, but
19300 which currently is not: Taking the address of a label (rather
19301 than a function) and then later jumping to that address. Such
19302 addresses also ought to have their bottom bit set (assuming that
19303 they reside in Thumb code), but at the moment they will not. */
19306 arm_fix_adjustable (fixS
* fixP
)
19308 if (fixP
->fx_addsy
== NULL
)
19311 /* Preserve relocations against symbols with function type. */
19312 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
19315 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
19316 && fixP
->fx_subsy
== NULL
)
19319 /* We need the symbol name for the VTABLE entries. */
19320 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
19321 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
19324 /* Don't allow symbols to be discarded on GOT related relocs. */
19325 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
19326 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
19327 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
19328 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
19329 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
19330 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
19331 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
19332 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
19333 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
19336 /* Similarly for group relocations. */
19337 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
19338 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
19339 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
19344 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19349 elf32_arm_target_format (void)
19352 return (target_big_endian
19353 ? "elf32-bigarm-symbian"
19354 : "elf32-littlearm-symbian");
19355 #elif defined (TE_VXWORKS)
19356 return (target_big_endian
19357 ? "elf32-bigarm-vxworks"
19358 : "elf32-littlearm-vxworks");
19360 if (target_big_endian
)
19361 return "elf32-bigarm";
19363 return "elf32-littlearm";
19368 armelf_frob_symbol (symbolS
* symp
,
19371 elf_frob_symbol (symp
, puntp
);
19375 /* MD interface: Finalization. */
19377 /* A good place to do this, although this was probably not intended
19378 for this kind of use. We need to dump the literal pool before
19379 references are made to a null symbol pointer. */
19384 literal_pool
* pool
;
19386 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
19388 /* Put it at the end of the relevent section. */
19389 subseg_set (pool
->section
, pool
->sub_section
);
19391 arm_elf_change_section ();
19397 /* Adjust the symbol table. This marks Thumb symbols as distinct from
19401 arm_adjust_symtab (void)
19406 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
19408 if (ARM_IS_THUMB (sym
))
19410 if (THUMB_IS_FUNC (sym
))
19412 /* Mark the symbol as a Thumb function. */
19413 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
19414 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
19415 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
19417 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
19418 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
19420 as_bad (_("%s: unexpected function type: %d"),
19421 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
19423 else switch (S_GET_STORAGE_CLASS (sym
))
19426 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
19429 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
19432 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
19440 if (ARM_IS_INTERWORK (sym
))
19441 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
19448 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
19450 if (ARM_IS_THUMB (sym
))
19452 elf_symbol_type
* elf_sym
;
19454 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
19455 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
19457 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
19458 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
19460 /* If it's a .thumb_func, declare it as so,
19461 otherwise tag label as .code 16. */
19462 if (THUMB_IS_FUNC (sym
))
19463 elf_sym
->internal_elf_sym
.st_info
=
19464 ELF_ST_INFO (bind
, STT_ARM_TFUNC
);
19465 else if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
19466 elf_sym
->internal_elf_sym
.st_info
=
19467 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
19474 /* MD interface: Initialization. */
19477 set_constant_flonums (void)
19481 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
19482 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
19486 /* Auto-select Thumb mode if it's the only available instruction set for the
19487 given architecture. */
19490 autoselect_thumb_from_cpu_variant (void)
19492 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
19493 opcode_select (16);
19502 if ( (arm_ops_hsh
= hash_new ()) == NULL
19503 || (arm_cond_hsh
= hash_new ()) == NULL
19504 || (arm_shift_hsh
= hash_new ()) == NULL
19505 || (arm_psr_hsh
= hash_new ()) == NULL
19506 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
19507 || (arm_reg_hsh
= hash_new ()) == NULL
19508 || (arm_reloc_hsh
= hash_new ()) == NULL
19509 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
19510 as_fatal (_("virtual memory exhausted"));
19512 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
19513 hash_insert (arm_ops_hsh
, insns
[i
].template, (PTR
) (insns
+ i
));
19514 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
19515 hash_insert (arm_cond_hsh
, conds
[i
].template, (PTR
) (conds
+ i
));
19516 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
19517 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (PTR
) (shift_names
+ i
));
19518 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
19519 hash_insert (arm_psr_hsh
, psrs
[i
].template, (PTR
) (psrs
+ i
));
19520 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
19521 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template, (PTR
) (v7m_psrs
+ i
));
19522 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
19523 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (PTR
) (reg_names
+ i
));
19525 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
19527 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template,
19528 (PTR
) (barrier_opt_names
+ i
));
19530 for (i
= 0; i
< sizeof (reloc_names
) / sizeof (struct reloc_entry
); i
++)
19531 hash_insert (arm_reloc_hsh
, reloc_names
[i
].name
, (PTR
) (reloc_names
+ i
));
19534 set_constant_flonums ();
19536 /* Set the cpu variant based on the command-line options. We prefer
19537 -mcpu= over -march= if both are set (as for GCC); and we prefer
19538 -mfpu= over any other way of setting the floating point unit.
19539 Use of legacy options with new options are faulted. */
19542 if (mcpu_cpu_opt
|| march_cpu_opt
)
19543 as_bad (_("use of old and new-style options to set CPU type"));
19545 mcpu_cpu_opt
= legacy_cpu
;
19547 else if (!mcpu_cpu_opt
)
19548 mcpu_cpu_opt
= march_cpu_opt
;
19553 as_bad (_("use of old and new-style options to set FPU type"));
19555 mfpu_opt
= legacy_fpu
;
19557 else if (!mfpu_opt
)
19559 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
19560 /* Some environments specify a default FPU. If they don't, infer it
19561 from the processor. */
19563 mfpu_opt
= mcpu_fpu_opt
;
19565 mfpu_opt
= march_fpu_opt
;
19567 mfpu_opt
= &fpu_default
;
19573 if (mcpu_cpu_opt
!= NULL
)
19574 mfpu_opt
= &fpu_default
;
19575 else if (mcpu_fpu_opt
!= NULL
&& ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt
, arm_ext_v5
))
19576 mfpu_opt
= &fpu_arch_vfp_v2
;
19578 mfpu_opt
= &fpu_arch_fpa
;
19584 mcpu_cpu_opt
= &cpu_default
;
19585 selected_cpu
= cpu_default
;
19589 selected_cpu
= *mcpu_cpu_opt
;
19591 mcpu_cpu_opt
= &arm_arch_any
;
19594 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
19596 autoselect_thumb_from_cpu_variant ();
19598 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
19600 #if defined OBJ_COFF || defined OBJ_ELF
19602 unsigned int flags
= 0;
19604 #if defined OBJ_ELF
19605 flags
= meabi_flags
;
19607 switch (meabi_flags
)
19609 case EF_ARM_EABI_UNKNOWN
:
19611 /* Set the flags in the private structure. */
19612 if (uses_apcs_26
) flags
|= F_APCS26
;
19613 if (support_interwork
) flags
|= F_INTERWORK
;
19614 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
19615 if (pic_code
) flags
|= F_PIC
;
19616 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
19617 flags
|= F_SOFT_FLOAT
;
19619 switch (mfloat_abi_opt
)
19621 case ARM_FLOAT_ABI_SOFT
:
19622 case ARM_FLOAT_ABI_SOFTFP
:
19623 flags
|= F_SOFT_FLOAT
;
19626 case ARM_FLOAT_ABI_HARD
:
19627 if (flags
& F_SOFT_FLOAT
)
19628 as_bad (_("hard-float conflicts with specified fpu"));
19632 /* Using pure-endian doubles (even if soft-float). */
19633 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
19634 flags
|= F_VFP_FLOAT
;
19636 #if defined OBJ_ELF
19637 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
19638 flags
|= EF_ARM_MAVERICK_FLOAT
;
19641 case EF_ARM_EABI_VER4
:
19642 case EF_ARM_EABI_VER5
:
19643 /* No additional flags to set. */
19650 bfd_set_private_flags (stdoutput
, flags
);
19652 /* We have run out flags in the COFF header to encode the
19653 status of ATPCS support, so instead we create a dummy,
19654 empty, debug section called .arm.atpcs. */
19659 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
19663 bfd_set_section_flags
19664 (stdoutput
, sec
, SEC_READONLY
| SEC_DEBUGGING
/* | SEC_HAS_CONTENTS */);
19665 bfd_set_section_size (stdoutput
, sec
, 0);
19666 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
19672 /* Record the CPU type as well. */
19673 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
))
19674 mach
= bfd_mach_arm_iWMMXt2
;
19675 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
19676 mach
= bfd_mach_arm_iWMMXt
;
19677 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
19678 mach
= bfd_mach_arm_XScale
;
19679 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
19680 mach
= bfd_mach_arm_ep9312
;
19681 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
19682 mach
= bfd_mach_arm_5TE
;
19683 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
19685 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
19686 mach
= bfd_mach_arm_5T
;
19688 mach
= bfd_mach_arm_5
;
19690 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
19692 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
19693 mach
= bfd_mach_arm_4T
;
19695 mach
= bfd_mach_arm_4
;
19697 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
19698 mach
= bfd_mach_arm_3M
;
19699 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
19700 mach
= bfd_mach_arm_3
;
19701 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
19702 mach
= bfd_mach_arm_2a
;
19703 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
19704 mach
= bfd_mach_arm_2
;
19706 mach
= bfd_mach_arm_unknown
;
19708 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
19711 /* Command line processing. */
19714 Invocation line includes a switch not recognized by the base assembler.
19715 See if it's a processor-specific option.
19717 This routine is somewhat complicated by the need for backwards
19718 compatibility (since older releases of gcc can't be changed).
19719 The new options try to make the interface as compatible as
19722 New options (supported) are:
19724 -mcpu=<cpu name> Assemble for selected processor
19725 -march=<architecture name> Assemble for selected architecture
19726 -mfpu=<fpu architecture> Assemble for selected FPU.
19727 -EB/-mbig-endian Big-endian
19728 -EL/-mlittle-endian Little-endian
19729 -k Generate PIC code
19730 -mthumb Start in Thumb mode
19731 -mthumb-interwork Code supports ARM/Thumb interworking
19733 For now we will also provide support for:
19735 -mapcs-32 32-bit Program counter
19736 -mapcs-26 26-bit Program counter
19737 -macps-float Floats passed in FP registers
19738 -mapcs-reentrant Reentrant code
19740 (sometime these will probably be replaced with -mapcs=<list of options>
19741 and -matpcs=<list of options>)
19743 The remaining options are only supported for back-wards compatibility.
19744 Cpu variants, the arm part is optional:
19745 -m[arm]1 Currently not supported.
19746 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19747 -m[arm]3 Arm 3 processor
19748 -m[arm]6[xx], Arm 6 processors
19749 -m[arm]7[xx][t][[d]m] Arm 7 processors
19750 -m[arm]8[10] Arm 8 processors
19751 -m[arm]9[20][tdmi] Arm 9 processors
19752 -mstrongarm[110[0]] StrongARM processors
19753 -mxscale XScale processors
19754 -m[arm]v[2345[t[e]]] Arm architectures
19755 -mall All (except the ARM1)
19757 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19758 -mfpe-old (No float load/store multiples)
19759 -mvfpxd VFP Single precision
19761 -mno-fpu Disable all floating point instructions
19763 The following CPU names are recognized:
19764 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19765 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19766 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19767 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19768 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19769 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19770 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19774 const char * md_shortopts
= "m:k";
19776 #ifdef ARM_BI_ENDIAN
19777 #define OPTION_EB (OPTION_MD_BASE + 0)
19778 #define OPTION_EL (OPTION_MD_BASE + 1)
19780 #if TARGET_BYTES_BIG_ENDIAN
19781 #define OPTION_EB (OPTION_MD_BASE + 0)
19783 #define OPTION_EL (OPTION_MD_BASE + 1)
19787 struct option md_longopts
[] =
19790 {"EB", no_argument
, NULL
, OPTION_EB
},
19793 {"EL", no_argument
, NULL
, OPTION_EL
},
19795 {NULL
, no_argument
, NULL
, 0}
19798 size_t md_longopts_size
= sizeof (md_longopts
);
19800 struct arm_option_table
19802 char *option
; /* Option name to match. */
19803 char *help
; /* Help information. */
19804 int *var
; /* Variable to change. */
19805 int value
; /* What to change it to. */
19806 char *deprecated
; /* If non-null, print this message. */
19809 struct arm_option_table arm_opts
[] =
19811 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
19812 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
19813 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19814 &support_interwork
, 1, NULL
},
19815 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
19816 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
19817 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
19819 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
19820 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
19821 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
19822 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
19825 /* These are recognized by the assembler, but have no affect on code. */
19826 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
19827 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
19828 {NULL
, NULL
, NULL
, 0, NULL
}
19831 struct arm_legacy_option_table
19833 char *option
; /* Option name to match. */
19834 const arm_feature_set
**var
; /* Variable to change. */
19835 const arm_feature_set value
; /* What to change it to. */
19836 char *deprecated
; /* If non-null, print this message. */
19839 const struct arm_legacy_option_table arm_legacy_opts
[] =
19841 /* DON'T add any new processors to this list -- we want the whole list
19842 to go away... Add them to the processors table instead. */
19843 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
19844 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
19845 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
19846 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
19847 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
19848 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
19849 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
19850 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
19851 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
19852 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
19853 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
19854 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
19855 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
19856 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
19857 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
19858 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
19859 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
19860 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
19861 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
19862 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
19863 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
19864 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
19865 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
19866 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
19867 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
19868 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
19869 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
19870 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
19871 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
19872 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
19873 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
19874 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
19875 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
19876 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
19877 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
19878 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
19879 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
19880 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
19881 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
19882 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
19883 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
19884 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
19885 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
19886 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
19887 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
19888 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
19889 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
19890 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
19891 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
19892 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
19893 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
19894 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
19895 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
19896 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
19897 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
19898 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
19899 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
19900 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
19901 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
19902 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
19903 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
19904 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
19905 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
19906 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
19907 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
19908 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
19909 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
19910 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
19911 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
19912 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
19913 N_("use -mcpu=strongarm110")},
19914 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
19915 N_("use -mcpu=strongarm1100")},
19916 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
19917 N_("use -mcpu=strongarm1110")},
19918 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
19919 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
19920 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
19922 /* Architecture variants -- don't add any more to this list either. */
19923 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
19924 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
19925 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
19926 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
19927 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
19928 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
19929 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
19930 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
19931 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
19932 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
19933 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
19934 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
19935 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
19936 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
19937 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
19938 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
19939 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
19940 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
19942 /* Floating point variants -- don't add any more to this list either. */
19943 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
19944 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
19945 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
19946 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
19947 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
19949 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
19952 struct arm_cpu_option_table
19955 const arm_feature_set value
;
19956 /* For some CPUs we assume an FPU unless the user explicitly sets
19958 const arm_feature_set default_fpu
;
19959 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19961 const char *canonical_name
;
19964 /* This list should, at a minimum, contain all the cpu names
19965 recognized by GCC. */
19966 static const struct arm_cpu_option_table arm_cpus
[] =
19968 {"all", ARM_ANY
, FPU_ARCH_FPA
, NULL
},
19969 {"arm1", ARM_ARCH_V1
, FPU_ARCH_FPA
, NULL
},
19970 {"arm2", ARM_ARCH_V2
, FPU_ARCH_FPA
, NULL
},
19971 {"arm250", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
},
19972 {"arm3", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
},
19973 {"arm6", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19974 {"arm60", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19975 {"arm600", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19976 {"arm610", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19977 {"arm620", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19978 {"arm7", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19979 {"arm7m", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
19980 {"arm7d", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19981 {"arm7dm", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
19982 {"arm7di", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19983 {"arm7dmi", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
19984 {"arm70", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19985 {"arm700", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19986 {"arm700i", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19987 {"arm710", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19988 {"arm710t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19989 {"arm720", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19990 {"arm720t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19991 {"arm740t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19992 {"arm710c", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19993 {"arm7100", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19994 {"arm7500", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19995 {"arm7500fe", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19996 {"arm7t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19997 {"arm7tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19998 {"arm7tdmi-s", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19999 {"arm8", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
20000 {"arm810", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
20001 {"strongarm", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
20002 {"strongarm1", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
20003 {"strongarm110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
20004 {"strongarm1100", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
20005 {"strongarm1110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
20006 {"arm9", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
20007 {"arm920", ARM_ARCH_V4T
, FPU_ARCH_FPA
, "ARM920T"},
20008 {"arm920t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
20009 {"arm922t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
20010 {"arm940t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
20011 {"arm9tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
20012 /* For V5 or later processors we default to using VFP; but the user
20013 should really set the FPU type explicitly. */
20014 {"arm9e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
20015 {"arm9e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
20016 {"arm926ej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"},
20017 {"arm926ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"},
20018 {"arm926ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
},
20019 {"arm946e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
20020 {"arm946e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM946E-S"},
20021 {"arm946e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
20022 {"arm966e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
20023 {"arm966e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM966E-S"},
20024 {"arm966e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
20025 {"arm968e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
20026 {"arm10t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
20027 {"arm10tdmi", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
20028 {"arm10e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
20029 {"arm1020", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM1020E"},
20030 {"arm1020t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
20031 {"arm1020e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
20032 {"arm1022e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
20033 {"arm1026ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM1026EJ-S"},
20034 {"arm1026ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
},
20035 {"arm1136js", ARM_ARCH_V6
, FPU_NONE
, "ARM1136J-S"},
20036 {"arm1136j-s", ARM_ARCH_V6
, FPU_NONE
, NULL
},
20037 {"arm1136jfs", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
, "ARM1136JF-S"},
20038 {"arm1136jf-s", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
, NULL
},
20039 {"mpcore", ARM_ARCH_V6K
, FPU_ARCH_VFP_V2
, NULL
},
20040 {"mpcorenovfp", ARM_ARCH_V6K
, FPU_NONE
, NULL
},
20041 {"arm1156t2-s", ARM_ARCH_V6T2
, FPU_NONE
, NULL
},
20042 {"arm1156t2f-s", ARM_ARCH_V6T2
, FPU_ARCH_VFP_V2
, NULL
},
20043 {"arm1176jz-s", ARM_ARCH_V6ZK
, FPU_NONE
, NULL
},
20044 {"arm1176jzf-s", ARM_ARCH_V6ZK
, FPU_ARCH_VFP_V2
, NULL
},
20045 {"cortex-a8", ARM_ARCH_V7A
, ARM_FEATURE(0, FPU_VFP_V3
20046 | FPU_NEON_EXT_V1
),
20048 {"cortex-r4", ARM_ARCH_V7R
, FPU_NONE
, NULL
},
20049 {"cortex-m3", ARM_ARCH_V7M
, FPU_NONE
, NULL
},
20050 /* ??? XSCALE is really an architecture. */
20051 {"xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
},
20052 /* ??? iwmmxt is not a processor. */
20053 {"iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP_V2
, NULL
},
20054 {"iwmmxt2", ARM_ARCH_IWMMXT2
,FPU_ARCH_VFP_V2
, NULL
},
20055 {"i80200", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
},
20057 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
), FPU_ARCH_MAVERICK
, "ARM920T"},
20058 {NULL
, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
20061 struct arm_arch_option_table
20064 const arm_feature_set value
;
20065 const arm_feature_set default_fpu
;
20068 /* This list should, at a minimum, contain all the architecture names
20069 recognized by GCC. */
20070 static const struct arm_arch_option_table arm_archs
[] =
20072 {"all", ARM_ANY
, FPU_ARCH_FPA
},
20073 {"armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
},
20074 {"armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
},
20075 {"armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
},
20076 {"armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
},
20077 {"armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
},
20078 {"armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
},
20079 {"armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
},
20080 {"armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
},
20081 {"armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
},
20082 {"armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
},
20083 {"armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
},
20084 {"armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
},
20085 {"armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
},
20086 {"armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
},
20087 {"armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
},
20088 {"armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
},
20089 {"armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
},
20090 {"armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
},
20091 {"armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
},
20092 {"armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
},
20093 {"armv6zk", ARM_ARCH_V6ZK
, FPU_ARCH_VFP
},
20094 {"armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
},
20095 {"armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
},
20096 {"armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
},
20097 {"armv6zkt2", ARM_ARCH_V6ZKT2
, FPU_ARCH_VFP
},
20098 {"armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
},
20099 /* The official spelling of the ARMv7 profile variants is the dashed form.
20100 Accept the non-dashed form for compatibility with old toolchains. */
20101 {"armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
},
20102 {"armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
},
20103 {"armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
},
20104 {"armv7-a", ARM_ARCH_V7A
, FPU_ARCH_VFP
},
20105 {"armv7-r", ARM_ARCH_V7R
, FPU_ARCH_VFP
},
20106 {"armv7-m", ARM_ARCH_V7M
, FPU_ARCH_VFP
},
20107 {"xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
},
20108 {"iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
},
20109 {"iwmmxt2", ARM_ARCH_IWMMXT2
,FPU_ARCH_VFP
},
20110 {NULL
, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
20113 /* ISA extensions in the co-processor space. */
20114 struct arm_option_cpu_value_table
20117 const arm_feature_set value
;
20120 static const struct arm_option_cpu_value_table arm_extensions
[] =
20122 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK
)},
20123 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE
)},
20124 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT
)},
20125 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2
)},
20126 {NULL
, ARM_ARCH_NONE
}
20129 /* This list should, at a minimum, contain all the fpu names
20130 recognized by GCC. */
20131 static const struct arm_option_cpu_value_table arm_fpus
[] =
20133 {"softfpa", FPU_NONE
},
20134 {"fpe", FPU_ARCH_FPE
},
20135 {"fpe2", FPU_ARCH_FPE
},
20136 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
20137 {"fpa", FPU_ARCH_FPA
},
20138 {"fpa10", FPU_ARCH_FPA
},
20139 {"fpa11", FPU_ARCH_FPA
},
20140 {"arm7500fe", FPU_ARCH_FPA
},
20141 {"softvfp", FPU_ARCH_VFP
},
20142 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
20143 {"vfp", FPU_ARCH_VFP_V2
},
20144 {"vfp9", FPU_ARCH_VFP_V2
},
20145 {"vfp3", FPU_ARCH_VFP_V3
},
20146 {"vfp10", FPU_ARCH_VFP_V2
},
20147 {"vfp10-r0", FPU_ARCH_VFP_V1
},
20148 {"vfpxd", FPU_ARCH_VFP_V1xD
},
20149 {"arm1020t", FPU_ARCH_VFP_V1
},
20150 {"arm1020e", FPU_ARCH_VFP_V2
},
20151 {"arm1136jfs", FPU_ARCH_VFP_V2
},
20152 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
20153 {"maverick", FPU_ARCH_MAVERICK
},
20154 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
20155 {NULL
, ARM_ARCH_NONE
}
20158 struct arm_option_value_table
20164 static const struct arm_option_value_table arm_float_abis
[] =
20166 {"hard", ARM_FLOAT_ABI_HARD
},
20167 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
20168 {"soft", ARM_FLOAT_ABI_SOFT
},
20173 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
20174 static const struct arm_option_value_table arm_eabis
[] =
20176 {"gnu", EF_ARM_EABI_UNKNOWN
},
20177 {"4", EF_ARM_EABI_VER4
},
20178 {"5", EF_ARM_EABI_VER5
},
20183 struct arm_long_option_table
20185 char * option
; /* Substring to match. */
20186 char * help
; /* Help information. */
20187 int (* func
) (char * subopt
); /* Function to decode sub-option. */
20188 char * deprecated
; /* If non-null, print this message. */
20192 arm_parse_extension (char * str
, const arm_feature_set
**opt_p
)
20194 arm_feature_set
*ext_set
= xmalloc (sizeof (arm_feature_set
));
20196 /* Copy the feature set, so that we can modify it. */
20197 *ext_set
= **opt_p
;
20200 while (str
!= NULL
&& *str
!= 0)
20202 const struct arm_option_cpu_value_table
* opt
;
20208 as_bad (_("invalid architectural extension"));
20213 ext
= strchr (str
, '+');
20216 optlen
= ext
- str
;
20218 optlen
= strlen (str
);
20222 as_bad (_("missing architectural extension"));
20226 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
20227 if (strncmp (opt
->name
, str
, optlen
) == 0)
20229 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->value
);
20233 if (opt
->name
== NULL
)
20235 as_bad (_("unknown architectural extnsion `%s'"), str
);
20246 arm_parse_cpu (char * str
)
20248 const struct arm_cpu_option_table
* opt
;
20249 char * ext
= strchr (str
, '+');
20253 optlen
= ext
- str
;
20255 optlen
= strlen (str
);
20259 as_bad (_("missing cpu name `%s'"), str
);
20263 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
20264 if (strncmp (opt
->name
, str
, optlen
) == 0)
20266 mcpu_cpu_opt
= &opt
->value
;
20267 mcpu_fpu_opt
= &opt
->default_fpu
;
20268 if (opt
->canonical_name
)
20269 strcpy(selected_cpu_name
, opt
->canonical_name
);
20273 for (i
= 0; i
< optlen
; i
++)
20274 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
20275 selected_cpu_name
[i
] = 0;
20279 return arm_parse_extension (ext
, &mcpu_cpu_opt
);
20284 as_bad (_("unknown cpu `%s'"), str
);
20289 arm_parse_arch (char * str
)
20291 const struct arm_arch_option_table
*opt
;
20292 char *ext
= strchr (str
, '+');
20296 optlen
= ext
- str
;
20298 optlen
= strlen (str
);
20302 as_bad (_("missing architecture name `%s'"), str
);
20306 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
20307 if (streq (opt
->name
, str
))
20309 march_cpu_opt
= &opt
->value
;
20310 march_fpu_opt
= &opt
->default_fpu
;
20311 strcpy(selected_cpu_name
, opt
->name
);
20314 return arm_parse_extension (ext
, &march_cpu_opt
);
20319 as_bad (_("unknown architecture `%s'\n"), str
);
20324 arm_parse_fpu (char * str
)
20326 const struct arm_option_cpu_value_table
* opt
;
20328 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
20329 if (streq (opt
->name
, str
))
20331 mfpu_opt
= &opt
->value
;
20335 as_bad (_("unknown floating point format `%s'\n"), str
);
20340 arm_parse_float_abi (char * str
)
20342 const struct arm_option_value_table
* opt
;
20344 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
20345 if (streq (opt
->name
, str
))
20347 mfloat_abi_opt
= opt
->value
;
20351 as_bad (_("unknown floating point abi `%s'\n"), str
);
20357 arm_parse_eabi (char * str
)
20359 const struct arm_option_value_table
*opt
;
20361 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
20362 if (streq (opt
->name
, str
))
20364 meabi_flags
= opt
->value
;
20367 as_bad (_("unknown EABI `%s'\n"), str
);
20372 struct arm_long_option_table arm_long_opts
[] =
20374 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20375 arm_parse_cpu
, NULL
},
20376 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20377 arm_parse_arch
, NULL
},
20378 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20379 arm_parse_fpu
, NULL
},
20380 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20381 arm_parse_float_abi
, NULL
},
20383 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
20384 arm_parse_eabi
, NULL
},
20386 {NULL
, NULL
, 0, NULL
}
20390 md_parse_option (int c
, char * arg
)
20392 struct arm_option_table
*opt
;
20393 const struct arm_legacy_option_table
*fopt
;
20394 struct arm_long_option_table
*lopt
;
20400 target_big_endian
= 1;
20406 target_big_endian
= 0;
20411 /* Listing option. Just ignore these, we don't support additional
20416 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
20418 if (c
== opt
->option
[0]
20419 && ((arg
== NULL
&& opt
->option
[1] == 0)
20420 || streq (arg
, opt
->option
+ 1)))
20422 #if WARN_DEPRECATED
20423 /* If the option is deprecated, tell the user. */
20424 if (opt
->deprecated
!= NULL
)
20425 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
20426 arg
? arg
: "", _(opt
->deprecated
));
20429 if (opt
->var
!= NULL
)
20430 *opt
->var
= opt
->value
;
20436 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
20438 if (c
== fopt
->option
[0]
20439 && ((arg
== NULL
&& fopt
->option
[1] == 0)
20440 || streq (arg
, fopt
->option
+ 1)))
20442 #if WARN_DEPRECATED
20443 /* If the option is deprecated, tell the user. */
20444 if (fopt
->deprecated
!= NULL
)
20445 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
20446 arg
? arg
: "", _(fopt
->deprecated
));
20449 if (fopt
->var
!= NULL
)
20450 *fopt
->var
= &fopt
->value
;
20456 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
20458 /* These options are expected to have an argument. */
20459 if (c
== lopt
->option
[0]
20461 && strncmp (arg
, lopt
->option
+ 1,
20462 strlen (lopt
->option
+ 1)) == 0)
20464 #if WARN_DEPRECATED
20465 /* If the option is deprecated, tell the user. */
20466 if (lopt
->deprecated
!= NULL
)
20467 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
20468 _(lopt
->deprecated
));
20471 /* Call the sup-option parser. */
20472 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
20483 md_show_usage (FILE * fp
)
20485 struct arm_option_table
*opt
;
20486 struct arm_long_option_table
*lopt
;
20488 fprintf (fp
, _(" ARM-specific assembler options:\n"));
20490 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
20491 if (opt
->help
!= NULL
)
20492 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
20494 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
20495 if (lopt
->help
!= NULL
)
20496 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
20500 -EB assemble code for a big-endian cpu\n"));
20505 -EL assemble code for a little-endian cpu\n"));
20514 arm_feature_set flags
;
20515 } cpu_arch_ver_table
;
20517 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20518 least features first. */
20519 static const cpu_arch_ver_table cpu_arch_ver
[] =
20524 {4, ARM_ARCH_V5TE
},
20525 {5, ARM_ARCH_V5TEJ
},
20529 {9, ARM_ARCH_V6T2
},
20530 {10, ARM_ARCH_V7A
},
20531 {10, ARM_ARCH_V7R
},
20532 {10, ARM_ARCH_V7M
},
20536 /* Set the public EABI object attributes. */
20538 aeabi_set_public_attributes (void)
20541 arm_feature_set flags
;
20542 arm_feature_set tmp
;
20543 const cpu_arch_ver_table
*p
;
20545 /* Choose the architecture based on the capabilities of the requested cpu
20546 (if any) and/or the instructions actually used. */
20547 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
20548 ARM_MERGE_FEATURE_SETS (flags
, flags
, *mfpu_opt
);
20549 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_cpu
);
20550 /*Allow the user to override the reported architecture. */
20553 ARM_CLEAR_FEATURE (flags
, flags
, arm_arch_any
);
20554 ARM_MERGE_FEATURE_SETS (flags
, flags
, *object_arch
);
20559 for (p
= cpu_arch_ver
; p
->val
; p
++)
20561 if (ARM_CPU_HAS_FEATURE (tmp
, p
->flags
))
20564 ARM_CLEAR_FEATURE (tmp
, tmp
, p
->flags
);
20568 /* Tag_CPU_name. */
20569 if (selected_cpu_name
[0])
20573 p
= selected_cpu_name
;
20574 if (strncmp(p
, "armv", 4) == 0)
20579 for (i
= 0; p
[i
]; i
++)
20580 p
[i
] = TOUPPER (p
[i
]);
20582 bfd_elf_add_proc_attr_string (stdoutput
, 5, p
);
20584 /* Tag_CPU_arch. */
20585 bfd_elf_add_proc_attr_int (stdoutput
, 6, arch
);
20586 /* Tag_CPU_arch_profile. */
20587 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7a
))
20588 bfd_elf_add_proc_attr_int (stdoutput
, 7, 'A');
20589 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7r
))
20590 bfd_elf_add_proc_attr_int (stdoutput
, 7, 'R');
20591 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7m
))
20592 bfd_elf_add_proc_attr_int (stdoutput
, 7, 'M');
20593 /* Tag_ARM_ISA_use. */
20594 if (ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_full
))
20595 bfd_elf_add_proc_attr_int (stdoutput
, 8, 1);
20596 /* Tag_THUMB_ISA_use. */
20597 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_full
))
20598 bfd_elf_add_proc_attr_int (stdoutput
, 9,
20599 ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_t2
) ? 2 : 1);
20600 /* Tag_VFP_arch. */
20601 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_vfp_ext_v3
)
20602 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_vfp_ext_v3
))
20603 bfd_elf_add_proc_attr_int (stdoutput
, 10, 3);
20604 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_vfp_ext_v2
)
20605 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_vfp_ext_v2
))
20606 bfd_elf_add_proc_attr_int (stdoutput
, 10, 2);
20607 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_vfp_ext_v1
)
20608 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_vfp_ext_v1
)
20609 || ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_vfp_ext_v1xd
)
20610 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_vfp_ext_v1xd
))
20611 bfd_elf_add_proc_attr_int (stdoutput
, 10, 1);
20612 /* Tag_WMMX_arch. */
20613 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_cext_iwmmxt
)
20614 || ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_cext_iwmmxt
))
20615 bfd_elf_add_proc_attr_int (stdoutput
, 11, 1);
20616 /* Tag_NEON_arch. */
20617 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_neon_ext_v1
)
20618 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_neon_ext_v1
))
20619 bfd_elf_add_proc_attr_int (stdoutput
, 12, 1);
20622 /* Add the default contents for the .ARM.attributes section. */
20626 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
20629 aeabi_set_public_attributes ();
20631 #endif /* OBJ_ELF */
20634 /* Parse a .cpu directive. */
20637 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
20639 const struct arm_cpu_option_table
*opt
;
20643 name
= input_line_pointer
;
20644 while (*input_line_pointer
&& !ISSPACE(*input_line_pointer
))
20645 input_line_pointer
++;
20646 saved_char
= *input_line_pointer
;
20647 *input_line_pointer
= 0;
20649 /* Skip the first "all" entry. */
20650 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
20651 if (streq (opt
->name
, name
))
20653 mcpu_cpu_opt
= &opt
->value
;
20654 selected_cpu
= opt
->value
;
20655 if (opt
->canonical_name
)
20656 strcpy(selected_cpu_name
, opt
->canonical_name
);
20660 for (i
= 0; opt
->name
[i
]; i
++)
20661 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
20662 selected_cpu_name
[i
] = 0;
20664 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
20665 *input_line_pointer
= saved_char
;
20666 demand_empty_rest_of_line ();
20669 as_bad (_("unknown cpu `%s'"), name
);
20670 *input_line_pointer
= saved_char
;
20671 ignore_rest_of_line ();
20675 /* Parse a .arch directive. */
20678 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
20680 const struct arm_arch_option_table
*opt
;
20684 name
= input_line_pointer
;
20685 while (*input_line_pointer
&& !ISSPACE(*input_line_pointer
))
20686 input_line_pointer
++;
20687 saved_char
= *input_line_pointer
;
20688 *input_line_pointer
= 0;
20690 /* Skip the first "all" entry. */
20691 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
20692 if (streq (opt
->name
, name
))
20694 mcpu_cpu_opt
= &opt
->value
;
20695 selected_cpu
= opt
->value
;
20696 strcpy(selected_cpu_name
, opt
->name
);
20697 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
20698 *input_line_pointer
= saved_char
;
20699 demand_empty_rest_of_line ();
20703 as_bad (_("unknown architecture `%s'\n"), name
);
20704 *input_line_pointer
= saved_char
;
20705 ignore_rest_of_line ();
20709 /* Parse a .object_arch directive. */
20712 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED
)
20714 const struct arm_arch_option_table
*opt
;
20718 name
= input_line_pointer
;
20719 while (*input_line_pointer
&& !ISSPACE(*input_line_pointer
))
20720 input_line_pointer
++;
20721 saved_char
= *input_line_pointer
;
20722 *input_line_pointer
= 0;
20724 /* Skip the first "all" entry. */
20725 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
20726 if (streq (opt
->name
, name
))
20728 object_arch
= &opt
->value
;
20729 *input_line_pointer
= saved_char
;
20730 demand_empty_rest_of_line ();
20734 as_bad (_("unknown architecture `%s'\n"), name
);
20735 *input_line_pointer
= saved_char
;
20736 ignore_rest_of_line ();
20740 /* Parse a .fpu directive. */
20743 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
20745 const struct arm_option_cpu_value_table
*opt
;
20749 name
= input_line_pointer
;
20750 while (*input_line_pointer
&& !ISSPACE(*input_line_pointer
))
20751 input_line_pointer
++;
20752 saved_char
= *input_line_pointer
;
20753 *input_line_pointer
= 0;
20755 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
20756 if (streq (opt
->name
, name
))
20758 mfpu_opt
= &opt
->value
;
20759 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
20760 *input_line_pointer
= saved_char
;
20761 demand_empty_rest_of_line ();
20765 as_bad (_("unknown floating point format `%s'\n"), name
);
20766 *input_line_pointer
= saved_char
;
20767 ignore_rest_of_line ();
20770 /* Copy symbol information. */
20772 arm_copy_symbol_attributes (symbolS
*dest
, symbolS
*src
)
20774 ARM_GET_FLAG (dest
) = ARM_GET_FLAG (src
);