rbtree: add rb_search_exact()
[nasm.git] / nasmlib / rbtree.c
blob773338bb4d283cb45cd2075662f9c07c4d5f5d0f
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2020 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * rbtree.c
37 * Simple implementation of a "left-leaning threaded red-black tree"
38 * with 64-bit integer keys. The search operation will return the
39 * highest node <= the key; only search and insert are supported, but
40 * additional standard llrbtree operations can be coded up at will.
42 * See http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf for
43 * information about left-leaning red-black trees.
45 * The "threaded" part means that left and right pointers that would
46 * otherwise be NULL are pointers to the in-order predecessor or
47 * successor node. The only pointers that are NULL are the very left-
48 * and rightmost, for which no corresponding side node exists.
50 * This, among other things, allows for efficient predecessor and
51 * successor operations without requiring dedicated space for a parent
52 * pointer.
54 * This implementation is robust for identical key values; such keys
55 * will not have their insertion order preserved, and after insertion
56 * of unrelated keys a lookup may return a different node for the
57 * duplicated key, but the prev/next operations will always enumerate
58 * all entries.
60 * The NULL pointers at the end are considered predecessor/successor
61 * pointers, so if the corresponding flags are clear it is always safe
62 * to access the pointed-to object without an explicit NULL pointer
63 * check.
66 #include "rbtree.h"
67 #include "nasmlib.h"
69 struct rbtree *rb_search(const struct rbtree *tree, uint64_t key)
71 const struct rbtree *best = NULL;
73 if (tree) {
74 while (true) {
75 if (tree->key > key) {
76 if (tree->m.flags & RBTREE_NODE_PRED)
77 break;
78 tree = tree->m.left;
79 } else {
80 best = tree;
81 if (tree->key == key || (tree->m.flags & RBTREE_NODE_SUCC))
82 break;
83 tree = tree->m.right;
87 return (struct rbtree *)best;
90 struct rbtree *rb_search_exact(const struct rbtree *tree, uint64_t key)
92 struct rbtree *rv;
94 rv = rb_search(tree, key);
95 return (rv && rv->key == key) ? rv : NULL;
98 /* Reds two left in a row? */
99 static inline bool is_red_left_left(struct rbtree *h)
101 return !(h->m.flags & RBTREE_NODE_PRED) &&
102 !(h->m.left->m.flags & (RBTREE_NODE_BLACK|RBTREE_NODE_PRED)) &&
103 !(h->m.left->m.left->m.flags & RBTREE_NODE_BLACK);
106 /* Node to the right is red? */
107 static inline bool is_red_right(struct rbtree *h)
109 return !(h->m.flags & RBTREE_NODE_SUCC) &&
110 !(h->m.right->m.flags & RBTREE_NODE_BLACK);
113 /* Both the left and right hand nodes are red? */
114 static inline bool is_red_both(struct rbtree *h)
116 return !(h->m.flags & (RBTREE_NODE_PRED|RBTREE_NODE_SUCC))
117 && !(h->m.left->m.flags & h->m.right->m.flags & RBTREE_NODE_BLACK);
120 static inline struct rbtree *rotate_left(struct rbtree *h)
122 struct rbtree *x = h->m.right;
123 enum rbtree_node_flags hf = h->m.flags;
124 enum rbtree_node_flags xf = x->m.flags;
126 if (xf & RBTREE_NODE_PRED) {
127 h->m.right = x;
128 h->m.flags = (hf & RBTREE_NODE_PRED) | RBTREE_NODE_SUCC;
129 } else {
130 h->m.right = x->m.left;
131 h->m.flags = hf & RBTREE_NODE_PRED;
133 x->m.flags = (hf & RBTREE_NODE_BLACK) | (xf & RBTREE_NODE_SUCC);
134 x->m.left = h;
136 return x;
139 static inline struct rbtree *rotate_right(struct rbtree *h)
141 struct rbtree *x = h->m.left;
142 enum rbtree_node_flags hf = h->m.flags;
143 enum rbtree_node_flags xf = x->m.flags;
145 if (xf & RBTREE_NODE_SUCC) {
146 h->m.left = x;
147 h->m.flags = (hf & RBTREE_NODE_SUCC) | RBTREE_NODE_PRED;
148 } else {
149 h->m.left = x->m.right;
150 h->m.flags = hf & RBTREE_NODE_SUCC;
152 x->m.flags = (hf & RBTREE_NODE_BLACK) | (xf & RBTREE_NODE_PRED);
153 x->m.right = h;
155 return x;
158 static inline void color_flip(struct rbtree *h)
160 h->m.flags ^= RBTREE_NODE_BLACK;
161 h->m.left->m.flags ^= RBTREE_NODE_BLACK;
162 h->m.right->m.flags ^= RBTREE_NODE_BLACK;
165 static struct rbtree *
166 _rb_insert(struct rbtree *tree, struct rbtree *node);
168 struct rbtree *rb_insert(struct rbtree *tree, struct rbtree *node)
170 /* Initialize node as if it was the sole member of the tree */
172 nasm_zero(node->m);
173 node->m.flags = RBTREE_NODE_PRED|RBTREE_NODE_SUCC;
175 if (unlikely(!tree))
176 return node;
178 return _rb_insert(tree, node);
181 static struct rbtree *
182 _rb_insert(struct rbtree *tree, struct rbtree *node)
184 /* Recursive part of the algorithm */
186 /* Red on both sides? */
187 if (is_red_both(tree))
188 color_flip(tree);
190 if (node->key < tree->key) {
191 node->m.right = tree; /* Potential successor */
192 if (tree->m.flags & RBTREE_NODE_PRED) {
193 node->m.left = tree->m.left;
194 tree->m.flags &= ~RBTREE_NODE_PRED;
195 tree->m.left = node;
196 } else {
197 tree->m.left = _rb_insert(tree->m.left, node);
199 } else {
200 node->m.left = tree; /* Potential predecessor */
201 if (tree->m.flags & RBTREE_NODE_SUCC) {
202 node->m.right = tree->m.right;
203 tree->m.flags &= ~RBTREE_NODE_SUCC;
204 tree->m.right = node;
205 } else {
206 tree->m.right = _rb_insert(tree->m.right, node);
210 if (is_red_right(tree))
211 tree = rotate_left(tree);
213 if (is_red_left_left(tree))
214 tree = rotate_right(tree);
216 return tree;
219 struct rbtree *rb_first(const struct rbtree *tree)
221 if (unlikely(!tree))
222 return NULL;
224 while (!(tree->m.flags & RBTREE_NODE_PRED))
225 tree = tree->m.left;
227 return (struct rbtree *)tree;
230 struct rbtree *rb_last(const struct rbtree *tree)
232 if (unlikely(!tree))
233 return NULL;
235 while (!(tree->m.flags & RBTREE_NODE_SUCC))
236 tree = tree->m.right;
238 return (struct rbtree *)tree;
241 struct rbtree *rb_prev(const struct rbtree *node)
243 struct rbtree *np = node->m.left;
245 if (node->m.flags & RBTREE_NODE_PRED)
246 return np;
247 else
248 return rb_last(np);
251 struct rbtree *rb_next(const struct rbtree *node)
253 struct rbtree *np = node->m.right;
255 if (node->m.flags & RBTREE_NODE_SUCC)
256 return np;
257 else
258 return rb_first(np);