Implement -MD, -MF, -MT, -MQ
[nasm/avx512.git] / float.c
blob04468ecdb2270cea10acf06996244d5350b45686
1 /* float.c floating-point constant support for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * initial version 13/ix/96 by Simon Tatham
9 */
11 #include "compiler.h"
13 #include <ctype.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <inttypes.h>
19 #include "nasm.h"
20 #include "float.h"
23 * -----------------
24 * local variables
25 * -----------------
27 static efunc error;
28 static bool daz = false; /* denormals as zero */
29 static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */
32 * -----------
33 * constants
34 * -----------
37 /* "A limb is like a digit but bigger */
38 typedef uint32_t fp_limb;
39 typedef uint64_t fp_2limb;
41 #define LIMB_BITS 32
42 #define LIMB_BYTES (LIMB_BITS/8)
43 #define LIMB_TOP_BIT ((fp_limb)1 << (LIMB_BITS-1))
44 #define LIMB_MASK ((fp_limb)(~0))
45 #define LIMB_ALL_BYTES ((fp_limb)0x01010101)
46 #define LIMB_BYTE(x) ((x)*LIMB_ALL_BYTES)
48 /* 112 bits + 64 bits for accuracy + 16 bits for rounding */
49 #define MANT_LIMBS 6
51 /* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */
52 #define MANT_DIGITS 52
54 /* the format and the argument list depend on MANT_LIMBS */
55 #define MANT_FMT "%08x_%08x_%08x_%08x_%08x_%08x"
56 #define MANT_ARG SOME_ARG(mant, 0)
58 #define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], (a)[(i)+3], \
59 (a)[(i)+4], (a)[(i)+5]
62 * ---------------------------------------------------------------------------
63 * emit a printf()-like debug message... but only if DEBUG_FLOAT was defined
64 * ---------------------------------------------------------------------------
67 #ifdef DEBUG_FLOAT
68 #define dprintf(x) printf x
69 #else /* */
70 #define dprintf(x) do { } while (0)
71 #endif /* */
74 * ---------------------------------------------------------------------------
75 * multiply
76 * ---------------------------------------------------------------------------
78 static int float_multiply(fp_limb *to, fp_limb *from)
80 fp_2limb temp[MANT_LIMBS * 2];
81 int i, j;
84 * guaranteed that top bit of 'from' is set -- so we only have
85 * to worry about _one_ bit shift to the left
87 dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0)));
88 dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0)));
90 memset(temp, 0, sizeof temp);
92 for (i = 0; i < MANT_LIMBS; i++) {
93 for (j = 0; j < MANT_LIMBS; j++) {
94 fp_2limb n;
95 n = (fp_2limb) to[i] * (fp_2limb) from[j];
96 temp[i + j] += n >> LIMB_BITS;
97 temp[i + j + 1] += (fp_limb)n;
101 for (i = MANT_LIMBS * 2; --i;) {
102 temp[i - 1] += temp[i] >> LIMB_BITS;
103 temp[i] &= LIMB_MASK;
106 dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0),
107 SOME_ARG(temp, MANT_LIMBS)));
109 if (temp[0] & LIMB_TOP_BIT) {
110 for (i = 0; i < MANT_LIMBS; i++) {
111 to[i] = temp[i] & LIMB_MASK;
113 dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0));
114 return 0;
115 } else {
116 for (i = 0; i < MANT_LIMBS; i++) {
117 to[i] = (temp[i] << 1) + !!(temp[i + 1] & LIMB_TOP_BIT);
119 dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1));
120 return -1;
125 * ---------------------------------------------------------------------------
126 * read an exponent; returns INT32_MAX on error
127 * ---------------------------------------------------------------------------
129 static int32_t read_exponent(const char *string, int32_t max)
131 int32_t i = 0;
132 bool neg = false;
134 if (*string == '+') {
135 string++;
136 } else if (*string == '-') {
137 neg = true;
138 string++;
140 while (*string) {
141 if (*string >= '0' && *string <= '9') {
142 i = (i * 10) + (*string - '0');
145 * To ensure that underflows and overflows are
146 * handled properly we must avoid wraparounds of
147 * the signed integer value that is used to hold
148 * the exponent. Therefore we cap the exponent at
149 * +/-5000, which is slightly more/less than
150 * what's required for normal and denormal numbers
151 * in single, double, and extended precision, but
152 * sufficient to avoid signed integer wraparound.
154 if (i > max)
155 i = max;
156 } else if (*string == '_') {
157 /* do nothing */
158 } else {
159 error(ERR_NONFATAL|ERR_PASS1,
160 "invalid character in floating-point constant %s: '%c'",
161 "exponent", *string);
162 return INT32_MAX;
164 string++;
167 return neg ? -i : i;
171 * ---------------------------------------------------------------------------
172 * convert
173 * ---------------------------------------------------------------------------
175 static bool ieee_flconvert(const char *string, fp_limb *mant,
176 int32_t * exponent)
178 char digits[MANT_DIGITS];
179 char *p, *q, *r;
180 fp_limb mult[MANT_LIMBS], bit;
181 fp_limb *m;
182 int32_t tenpwr, twopwr;
183 int32_t extratwos;
184 bool started, seendot, warned;
186 warned = false;
187 p = digits;
188 tenpwr = 0;
189 started = seendot = false;
191 while (*string && *string != 'E' && *string != 'e') {
192 if (*string == '.') {
193 if (!seendot) {
194 seendot = true;
195 } else {
196 error(ERR_NONFATAL|ERR_PASS1,
197 "too many periods in floating-point constant");
198 return false;
200 } else if (*string >= '0' && *string <= '9') {
201 if (*string == '0' && !started) {
202 if (seendot) {
203 tenpwr--;
205 } else {
206 started = true;
207 if (p < digits + sizeof(digits)) {
208 *p++ = *string - '0';
209 } else {
210 if (!warned) {
211 error(ERR_WARNING|ERR_WARN_FL_TOOLONG|ERR_PASS1,
212 "floating-point constant significand contains "
213 "more than %i digits", MANT_DIGITS);
214 warned = true;
217 if (!seendot) {
218 tenpwr++;
221 } else if (*string == '_') {
222 /* do nothing */
223 } else {
224 error(ERR_NONFATAL|ERR_PASS1,
225 "invalid character in floating-point constant %s: '%c'",
226 "significand", *string);
227 return false;
229 string++;
232 if (*string) {
233 int32_t e;
235 string++; /* eat the E */
236 e = read_exponent(string, 5000);
237 if (e == INT32_MAX)
238 return false;
239 tenpwr += e;
243 * At this point, the memory interval [digits,p) contains a
244 * series of decimal digits zzzzzzz, such that our number X
245 * satisfies X = 0.zzzzzzz * 10^tenpwr.
247 q = digits;
248 dprintf(("X = 0."));
249 while (q < p) {
250 dprintf(("%c", *q + '0'));
251 q++;
253 dprintf((" * 10^%i\n", tenpwr));
256 * Now convert [digits,p) to our internal representation.
258 bit = LIMB_TOP_BIT;
259 for (m = mant; m < mant + MANT_LIMBS; m++) {
260 *m = 0;
262 m = mant;
263 q = digits;
264 started = false;
265 twopwr = 0;
266 while (m < mant + MANT_LIMBS) {
267 fp_limb carry = 0;
268 while (p > q && !p[-1]) {
269 p--;
271 if (p <= q) {
272 break;
274 for (r = p; r-- > q;) {
275 int32_t i;
276 i = 2 * *r + carry;
277 if (i >= 10) {
278 carry = 1;
279 i -= 10;
280 } else {
281 carry = 0;
283 *r = i;
285 if (carry) {
286 *m |= bit;
287 started = true;
289 if (started) {
290 if (bit == 1) {
291 bit = LIMB_TOP_BIT;
292 m++;
293 } else {
294 bit >>= 1;
296 } else {
297 twopwr--;
300 twopwr += tenpwr;
303 * At this point, the 'mant' array contains the first frac-
304 * tional places of a base-2^16 real number which when mul-
305 * tiplied by 2^twopwr and 5^tenpwr gives X.
307 dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr,
308 tenpwr));
311 * Now multiply 'mant' by 5^tenpwr.
313 if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */
314 for (m = mult; m < mult + MANT_LIMBS - 1; m++) {
315 *m = LIMB_BYTE(0xcc);
317 mult[MANT_LIMBS - 1] = LIMB_BYTE(0xcc)+1;
318 extratwos = -2;
319 tenpwr = -tenpwr;
322 * If tenpwr was 1000...000b, then it becomes 1000...000b. See
323 * the "ANSI C" comment below for more details on that case.
325 * Because we already truncated tenpwr to +5000...-5000 inside
326 * the exponent parsing code, this shouldn't happen though.
328 } else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */
329 mult[0] = (fp_limb)5 << (LIMB_BITS-3); /* 0xA000... */
330 for (m = mult + 1; m < mult + MANT_LIMBS; m++) {
331 *m = 0;
333 extratwos = 3;
334 } else {
335 extratwos = 0;
337 while (tenpwr) {
338 dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG,
339 twopwr, tenpwr, extratwos));
340 if (tenpwr & 1) {
341 dprintf(("mant*mult\n"));
342 twopwr += extratwos + float_multiply(mant, mult);
344 dprintf(("mult*mult\n"));
345 extratwos = extratwos * 2 + float_multiply(mult, mult);
346 tenpwr >>= 1;
349 * In ANSI C, the result of right-shifting a signed integer is
350 * considered implementation-specific. To ensure that the loop
351 * terminates even if tenpwr was 1000...000b to begin with, we
352 * manually clear the MSB, in case a 1 was shifted in.
354 * Because we already truncated tenpwr to +5000...-5000 inside
355 * the exponent parsing code, this shouldn't matter; neverthe-
356 * less it is the right thing to do here.
358 tenpwr &= (uint32_t) - 1 >> 1;
362 * At this point, the 'mant' array contains the first frac-
363 * tional places of a base-2^16 real number in [0.5,1) that
364 * when multiplied by 2^twopwr gives X. Or it contains zero
365 * of course. We are done.
367 *exponent = twopwr;
368 return true;
372 * ---------------------------------------------------------------------------
373 * operations of specific bits
374 * ---------------------------------------------------------------------------
377 /* Set a bit, using *bigendian* bit numbering (0 = MSB) */
378 static void set_bit(fp_limb *mant, int bit)
380 mant[bit/LIMB_BITS] |= LIMB_TOP_BIT >> (bit & (LIMB_BITS-1));
383 /* Test a single bit */
384 static int test_bit(const fp_limb *mant, int bit)
386 return (mant[bit/LIMB_BITS] >> (~bit & (LIMB_BITS-1))) & 1;
389 /* Report if the mantissa value is all zero */
390 static bool is_zero(const fp_limb *mant)
392 int i;
394 for (i = 0; i < MANT_LIMBS; i++)
395 if (mant[i])
396 return false;
398 return true;
402 * ---------------------------------------------------------------------------
403 * round a mantissa off after i words
404 * ---------------------------------------------------------------------------
407 #define ROUND_COLLECT_BITS \
408 do { \
409 m = mant[i] & (2*bit-1); \
410 for (j = i+1; j < MANT_LIMBS; j++) \
411 m = m | mant[j]; \
412 } while (0)
414 #define ROUND_ABS_DOWN \
415 do { \
416 mant[i] &= ~(bit-1); \
417 for (j = i+1; j < MANT_LIMBS; j++) \
418 mant[j] = 0; \
419 return false; \
420 } while (0)
422 #define ROUND_ABS_UP \
423 do { \
424 mant[i] = (mant[i] & ~(bit-1)) + bit; \
425 for (j = i+1; j < MANT_LIMBS; j++) \
426 mant[j] = 0; \
427 while (i > 0 && !mant[i]) \
428 ++mant[--i]; \
429 return !mant[0]; \
430 } while (0)
432 static bool ieee_round(bool minus, fp_limb *mant, int bits)
434 fp_limb m = 0;
435 int32_t j;
436 int i = bits / LIMB_BITS;
437 int p = bits % LIMB_BITS;
438 fp_limb bit = LIMB_TOP_BIT >> p;
440 if (rc == FLOAT_RC_NEAR) {
441 if (mant[i] & bit) {
442 mant[i] &= ~bit;
443 ROUND_COLLECT_BITS;
444 mant[i] |= bit;
445 if (m) {
446 ROUND_ABS_UP;
447 } else {
448 if (test_bit(mant, bits-1)) {
449 ROUND_ABS_UP;
450 } else {
451 ROUND_ABS_DOWN;
454 } else {
455 ROUND_ABS_DOWN;
457 } else if (rc == FLOAT_RC_ZERO ||
458 rc == (minus ? FLOAT_RC_UP : FLOAT_RC_DOWN)) {
459 ROUND_ABS_DOWN;
460 } else {
461 /* rc == (minus ? FLOAT_RC_DOWN : FLOAT_RC_UP) */
462 /* Round toward +/- infinity */
463 ROUND_COLLECT_BITS;
464 if (m) {
465 ROUND_ABS_UP;
466 } else {
467 ROUND_ABS_DOWN;
470 return false;
473 /* Returns a value >= 16 if not a valid hex digit */
474 static unsigned int hexval(char c)
476 unsigned int v = (unsigned char) c;
478 if (v >= '0' && v <= '9')
479 return v - '0';
480 else
481 return (v|0x20) - 'a' + 10;
484 /* Handle floating-point numbers with radix 2^bits and binary exponent */
485 static bool ieee_flconvert_bin(const char *string, int bits,
486 fp_limb *mant, int32_t *exponent)
488 static const int log2tbl[16] =
489 { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
490 fp_limb mult[MANT_LIMBS + 1], *mp;
491 int ms;
492 int32_t twopwr;
493 bool seendot, seendigit;
494 unsigned char c;
495 int radix = 1 << bits;
496 fp_limb v;
498 twopwr = 0;
499 seendot = seendigit = false;
500 ms = 0;
501 mp = NULL;
503 memset(mult, 0, sizeof mult);
505 while ((c = *string++) != '\0') {
506 if (c == '.') {
507 if (!seendot)
508 seendot = true;
509 else {
510 error(ERR_NONFATAL|ERR_PASS1,
511 "too many periods in floating-point constant");
512 return false;
514 } else if ((v = hexval(c)) < (unsigned int)radix) {
515 if (!seendigit && v) {
516 int l = log2tbl[v];
518 seendigit = true;
519 mp = mult;
520 ms = (LIMB_BITS-1)-l;
522 twopwr = seendot ? twopwr-bits+l : l+1-bits;
525 if (seendigit) {
526 if (ms <= 0) {
527 *mp |= v >> -ms;
528 mp++;
529 if (mp > &mult[MANT_LIMBS])
530 mp = &mult[MANT_LIMBS]; /* Guard slot */
531 ms += LIMB_BITS;
533 *mp |= v << ms;
534 ms -= bits;
536 if (!seendot)
537 twopwr += bits;
538 } else {
539 if (seendot)
540 twopwr -= bits;
542 } else if (c == 'p' || c == 'P') {
543 int32_t e;
544 e = read_exponent(string, 20000);
545 if (e == INT32_MAX)
546 return false;
547 twopwr += e;
548 break;
549 } else if (c == '_') {
550 /* ignore */
551 } else {
552 error(ERR_NONFATAL|ERR_PASS1,
553 "floating-point constant: `%c' is invalid character", c);
554 return false;
558 if (!seendigit) {
559 memset(mant, 0, sizeof mult); /* Zero */
560 *exponent = 0;
561 } else {
562 memcpy(mant, mult, sizeof mult);
563 *exponent = twopwr;
566 return true;
570 * Shift a mantissa to the right by i bits.
572 static void ieee_shr(fp_limb *mant, int i)
574 fp_limb n, m;
575 int j = 0;
576 int sr, sl, offs;
578 sr = i % LIMB_BITS; sl = LIMB_BITS-sr;
579 offs = i/LIMB_BITS;
581 if (sr == 0) {
582 if (offs)
583 for (j = MANT_LIMBS-1; j >= offs; j--)
584 mant[j] = mant[j-offs];
585 } else {
586 n = mant[MANT_LIMBS-1-offs] >> sr;
587 for (j = MANT_LIMBS-1; j > offs; j--) {
588 m = mant[j-offs-1];
589 mant[j] = (m << sl) | n;
590 n = m >> sr;
592 mant[j--] = n;
594 while (j >= 0)
595 mant[j--] = 0;
598 /* Produce standard IEEE formats, with implicit or explicit integer
599 bit; this makes the following assumptions:
601 - the sign bit is the MSB, followed by the exponent,
602 followed by the integer bit if present.
603 - the sign bit plus exponent fit in 16 bits.
604 - the exponent bias is 2^(n-1)-1 for an n-bit exponent */
606 struct ieee_format {
607 int bytes;
608 int mantissa; /* Fractional bits in the mantissa */
609 int explicit; /* Explicit integer */
610 int exponent; /* Bits in the exponent */
614 * The 16- and 128-bit formats are expected to be in IEEE 754r.
615 * AMD SSE5 uses the 16-bit format.
617 * The 32- and 64-bit formats are the original IEEE 754 formats.
619 * The 80-bit format is x87-specific, but widely used.
621 * The 8-bit format appears to be the consensus 8-bit floating-point
622 * format. It is apparently used in graphics applications.
624 static const struct ieee_format ieee_8 = { 1, 3, 0, 4 };
625 static const struct ieee_format ieee_16 = { 2, 10, 0, 5 };
626 static const struct ieee_format ieee_32 = { 4, 23, 0, 8 };
627 static const struct ieee_format ieee_64 = { 8, 52, 0, 11 };
628 static const struct ieee_format ieee_80 = { 10, 63, 1, 15 };
629 static const struct ieee_format ieee_128 = { 16, 112, 0, 15 };
631 /* Types of values we can generate */
632 enum floats {
633 FL_ZERO,
634 FL_DENORMAL,
635 FL_NORMAL,
636 FL_INFINITY,
637 FL_QNAN,
638 FL_SNAN
641 static int to_float(const char *str, int s, uint8_t * result,
642 const struct ieee_format *fmt)
644 fp_limb mant[MANT_LIMBS];
645 int32_t exponent = 0;
646 int32_t expmax = 1 << (fmt->exponent - 1);
647 fp_limb one_mask = LIMB_TOP_BIT >>
648 ((fmt->exponent+fmt->explicit) % LIMB_BITS);
649 int one_pos = (fmt->exponent+fmt->explicit)/LIMB_BITS;
650 int i;
651 int shift;
652 enum floats type;
653 bool ok;
654 bool minus = s < 0;
655 int bits = fmt->bytes * 8;
657 if (str[0] == '_') {
658 /* Special tokens */
660 switch (str[2]) {
661 case 'n': /* __nan__ */
662 case 'N':
663 case 'q': /* __qnan__ */
664 case 'Q':
665 type = FL_QNAN;
666 break;
667 case 's': /* __snan__ */
668 case 'S':
669 type = FL_SNAN;
670 break;
671 case 'i': /* __infinity__ */
672 case 'I':
673 type = FL_INFINITY;
674 break;
675 default:
676 error(ERR_NONFATAL|ERR_PASS1,
677 "internal error: unknown FP constant token `%s'\n", str);
678 type = FL_QNAN;
679 break;
681 } else {
682 if (str[0] == '0') {
683 switch (str[1]) {
684 case 'x': case 'X':
685 case 'h': case 'H':
686 ok = ieee_flconvert_bin(str+2, 4, mant, &exponent);
687 break;
688 case 'o': case 'O':
689 case 'q': case 'Q':
690 ok = ieee_flconvert_bin(str+2, 3, mant, &exponent);
691 break;
692 case 'b': case 'B':
693 case 'y': case 'Y':
694 ok = ieee_flconvert_bin(str+2, 1, mant, &exponent);
695 break;
696 case 'd': case 'D':
697 case 't': case 'T':
698 ok = ieee_flconvert(str+2, mant, &exponent);
699 break;
700 default:
701 /* Leading zero was just a zero? */
702 ok = ieee_flconvert(str, mant, &exponent);
703 break;
705 } else if (str[0] == '$') {
706 ok = ieee_flconvert_bin(str+1, 4, mant, &exponent);
707 } else {
708 ok = ieee_flconvert(str, mant, &exponent);
711 if (!ok) {
712 type = FL_QNAN;
713 } else if (mant[0] & LIMB_TOP_BIT) {
715 * Non-zero.
717 exponent--;
718 if (exponent >= 2 - expmax && exponent <= expmax) {
719 type = FL_NORMAL;
720 } else if (exponent > 0) {
721 if (pass0 == 1)
722 error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
723 "overflow in floating-point constant");
724 type = FL_INFINITY;
725 } else {
726 /* underflow or denormal; the denormal code handles
727 actual underflow. */
728 type = FL_DENORMAL;
730 } else {
731 /* Zero */
732 type = FL_ZERO;
736 switch (type) {
737 case FL_ZERO:
738 zero:
739 memset(mant, 0, sizeof mant);
740 break;
742 case FL_DENORMAL:
744 shift = -(exponent + expmax - 2 - fmt->exponent)
745 + fmt->explicit;
746 ieee_shr(mant, shift);
747 ieee_round(minus, mant, bits);
748 if (mant[one_pos] & one_mask) {
749 /* One's position is set, we rounded up into normal range */
750 exponent = 1;
751 if (!fmt->explicit)
752 mant[one_pos] &= ~one_mask; /* remove explicit one */
753 mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
754 } else {
755 if (daz || is_zero(mant)) {
756 /* Flush denormals to zero */
757 error(ERR_WARNING|ERR_WARN_FL_UNDERFLOW|ERR_PASS1,
758 "underflow in floating-point constant");
759 goto zero;
760 } else {
761 error(ERR_WARNING|ERR_WARN_FL_DENORM|ERR_PASS1,
762 "denormal floating-point constant");
765 break;
768 case FL_NORMAL:
769 exponent += expmax - 1;
770 ieee_shr(mant, fmt->exponent+fmt->explicit);
771 ieee_round(minus, mant, bits);
772 /* did we scale up by one? */
773 if (test_bit(mant, fmt->exponent+fmt->explicit-1)) {
774 ieee_shr(mant, 1);
775 exponent++;
776 if (exponent >= (expmax << 1)-1) {
777 error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
778 "overflow in floating-point constant");
779 type = FL_INFINITY;
780 goto overflow;
784 if (!fmt->explicit)
785 mant[one_pos] &= ~one_mask; /* remove explicit one */
786 mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
787 break;
789 case FL_INFINITY:
790 case FL_QNAN:
791 case FL_SNAN:
792 overflow:
793 memset(mant, 0, sizeof mant);
794 mant[0] = (((fp_limb)1 << fmt->exponent)-1)
795 << (LIMB_BITS-1 - fmt->exponent);
796 if (fmt->explicit)
797 mant[one_pos] |= one_mask;
798 if (type == FL_QNAN)
799 set_bit(mant, fmt->exponent+fmt->explicit+1);
800 else if (type == FL_SNAN)
801 set_bit(mant, fmt->exponent+fmt->explicit+fmt->mantissa);
802 break;
805 mant[0] |= minus ? LIMB_TOP_BIT : 0;
807 for (i = fmt->bytes - 1; i >= 0; i--)
808 *result++ = mant[i/LIMB_BYTES] >> (((LIMB_BYTES-1)-(i%LIMB_BYTES))*8);
810 return 1; /* success */
813 int float_const(const char *number, int sign, uint8_t * result,
814 int bytes, efunc err)
816 error = err;
818 switch (bytes) {
819 case 1:
820 return to_float(number, sign, result, &ieee_8);
821 case 2:
822 return to_float(number, sign, result, &ieee_16);
823 case 4:
824 return to_float(number, sign, result, &ieee_32);
825 case 8:
826 return to_float(number, sign, result, &ieee_64);
827 case 10:
828 return to_float(number, sign, result, &ieee_80);
829 case 16:
830 return to_float(number, sign, result, &ieee_128);
831 default:
832 error(ERR_PANIC, "strange value %d passed to float_const", bytes);
833 return 0;
837 /* Set floating-point options */
838 int float_option(const char *option)
840 if (!nasm_stricmp(option, "daz")) {
841 daz = true;
842 return 0;
843 } else if (!nasm_stricmp(option, "nodaz")) {
844 daz = false;
845 return 0;
846 } else if (!nasm_stricmp(option, "near")) {
847 rc = FLOAT_RC_NEAR;
848 return 0;
849 } else if (!nasm_stricmp(option, "down")) {
850 rc = FLOAT_RC_DOWN;
851 return 0;
852 } else if (!nasm_stricmp(option, "up")) {
853 rc = FLOAT_RC_UP;
854 return 0;
855 } else if (!nasm_stricmp(option, "zero")) {
856 rc = FLOAT_RC_ZERO;
857 return 0;
858 } else if (!nasm_stricmp(option, "default")) {
859 rc = FLOAT_RC_NEAR;
860 daz = false;
861 return 0;
862 } else {
863 return -1; /* Unknown option */