NASM 0.98.17
[nasm/avx512.git] / float.c
blob545ae77381e495e317b0ad1aea3898efb58d57c6
1 /* float.c floating-point constant support for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version 13/ix/96 by Simon Tatham
9 */
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
15 #include "nasm.h"
17 #define TRUE 1
18 #define FALSE 0
20 #define MANT_WORDS 6 /* 64 bits + 32 for accuracy == 96 */
21 #define MANT_DIGITS 28 /* 29 digits don't fit in 96 bits */
24 * guaranteed top bit of from is set
25 * => we only have to worry about _one_ bit shift to the left
28 static int multiply(unsigned short *to, unsigned short *from)
30 unsigned long temp[MANT_WORDS*2];
31 int i, j;
33 for (i=0; i<MANT_WORDS*2; i++)
34 temp[i] = 0;
36 for (i=0; i<MANT_WORDS; i++)
37 for (j=0; j<MANT_WORDS; j++) {
38 unsigned long n;
39 n = (unsigned long)to[i] * (unsigned long)from[j];
40 temp[i+j] += n >> 16;
41 temp[i+j+1] += n & 0xFFFF;
44 for (i=MANT_WORDS*2; --i ;) {
45 temp[i-1] += temp[i] >> 16;
46 temp[i] &= 0xFFFF;
48 if (temp[0] & 0x8000) {
49 for (i=0; i<MANT_WORDS; i++)
50 to[i] = temp[i] & 0xFFFF;
51 return 0;
52 } else {
53 for (i=0; i<MANT_WORDS; i++)
54 to[i] = (temp[i] << 1) + !!(temp[i+1] & 0x8000);
55 return -1;
59 static void flconvert(char *string, unsigned short *mant, long *exponent,
60 efunc error)
62 char digits[MANT_DIGITS];
63 char *p, *q, *r;
64 unsigned short mult[MANT_WORDS], bit;
65 unsigned short * m;
66 long tenpwr, twopwr;
67 int extratwos, started, seendot;
69 p = digits;
70 tenpwr = 0;
71 started = seendot = FALSE;
72 while (*string && *string != 'E' && *string != 'e') {
73 if (*string == '.') {
74 if (!seendot)
75 seendot = TRUE;
76 else {
77 error (ERR_NONFATAL,
78 "too many periods in floating-point constant");
79 return;
81 } else if (*string >= '0' && *string <= '9') {
82 if (*string == '0' && !started) {
83 if (seendot)
84 tenpwr--;
85 } else {
86 started = TRUE;
87 if (p < digits+sizeof(digits))
88 *p++ = *string - '0';
89 if (!seendot)
90 tenpwr++;
92 } else {
93 error (ERR_NONFATAL,
94 "floating-point constant: `%c' is invalid character",
95 *string);
96 return;
98 string++;
100 if (*string) {
101 string++; /* eat the E */
102 tenpwr += atoi(string);
106 * At this point, the memory interval [digits,p) contains a
107 * series of decimal digits zzzzzzz such that our number X
108 * satisfies
110 * X = 0.zzzzzzz * 10^tenpwr
113 bit = 0x8000;
114 for (m=mant; m<mant+MANT_WORDS; m++)
115 *m = 0;
116 m = mant;
117 q = digits;
118 started = FALSE;
119 twopwr = 0;
120 while (m < mant+MANT_WORDS) {
121 unsigned short carry = 0;
122 while (p > q && !p[-1])
123 p--;
124 if (p <= q)
125 break;
126 for (r = p; r-- > q ;) {
127 int i;
129 i = 2 * *r + carry;
130 if (i >= 10)
131 carry = 1, i -= 10;
132 else
133 carry = 0;
134 *r = i;
136 if (carry)
137 *m |= bit, started = TRUE;
138 if (started) {
139 if (bit == 1)
140 bit = 0x8000, m++;
141 else
142 bit >>= 1;
143 } else
144 twopwr--;
146 twopwr += tenpwr;
149 * At this point the `mant' array contains the first six
150 * fractional places of a base-2^16 real number, which when
151 * multiplied by 2^twopwr and 5^tenpwr gives X. So now we
152 * really do multiply by 5^tenpwr.
155 if (tenpwr < 0) {
156 for (m=mult; m<mult+MANT_WORDS; m++)
157 *m = 0xCCCC;
158 extratwos = -2;
159 tenpwr = -tenpwr;
160 } else if (tenpwr > 0) {
161 mult[0] = 0xA000;
162 for (m=mult+1; m<mult+MANT_WORDS; m++)
163 *m = 0;
164 extratwos = 3;
165 } else
166 extratwos = 0;
167 while (tenpwr) {
168 if (tenpwr & 1)
169 twopwr += extratwos + multiply (mant, mult);
170 extratwos = extratwos * 2 + multiply (mult, mult);
171 tenpwr >>= 1;
175 * Conversion is done. The elements of `mant' contain the first
176 * fractional places of a base-2^16 real number in [0.5,1)
177 * which we can multiply by 2^twopwr to get X. Or, of course,
178 * it contains zero.
180 *exponent = twopwr;
184 * Shift a mantissa to the right by i (i < 16) bits.
186 static void shr(unsigned short *mant, int i)
188 unsigned short n = 0, m;
189 int j;
191 for (j=0; j<MANT_WORDS; j++) {
192 m = (mant[j] << (16-i)) & 0xFFFF;
193 mant[j] = (mant[j] >> i) | n;
194 n = m;
199 * Round a mantissa off after i words.
201 static int round(unsigned short *mant, int i)
203 if (mant[i] & 0x8000) {
204 do {
205 ++mant[--i];
206 mant[i] &= 0xFFFF;
207 } while (i > 0 && !mant[i]);
208 return !i && !mant[i];
210 return 0;
213 #define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) )
215 static int to_double(char *str, long sign, unsigned char *result,
216 efunc error)
218 unsigned short mant[MANT_WORDS];
219 long exponent;
221 sign = (sign < 0 ? 0x8000L : 0L);
223 flconvert (str, mant, &exponent, error);
224 if (mant[0] & 0x8000) {
226 * Non-zero.
228 exponent--;
229 if (exponent >= -1022 && exponent <= 1024) {
231 * Normalised.
233 exponent += 1023;
234 shr(mant, 11);
235 round(mant, 4);
236 if (mant[0] & 0x20) /* did we scale up by one? */
237 shr(mant, 1), exponent++;
238 mant[0] &= 0xF; /* remove leading one */
239 put(result+6,(exponent << 4) | mant[0] | sign);
240 put(result+4,mant[1]);
241 put(result+2,mant[2]);
242 put(result+0,mant[3]);
243 } else if (exponent < -1022 && exponent >= -1074) {
245 * Denormal.
247 int shift = -(exponent+1011);
248 int sh = shift % 16, wds = shift / 16;
249 shr(mant, sh);
250 if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
251 shr(mant, 1);
252 if (sh==0)
253 mant[0] |= 0x8000;
254 exponent++;
256 put(result+6,(wds == 0 ? mant[0] : 0) | sign);
257 put(result+4,(wds <= 1 ? mant[1-wds] : 0));
258 put(result+2,(wds <= 2 ? mant[2-wds] : 0));
259 put(result+0,(wds <= 3 ? mant[3-wds] : 0));
260 } else {
261 if (exponent > 0) {
262 error(ERR_NONFATAL, "overflow in floating-point constant");
263 return 0;
264 } else
265 memset (result, 0, 8);
267 } else {
269 * Zero.
271 memset (result, 0, 8);
273 return 1; /* success */
276 static int to_float(char *str, long sign, unsigned char *result,
277 efunc error)
279 unsigned short mant[MANT_WORDS];
280 long exponent;
282 sign = (sign < 0 ? 0x8000L : 0L);
284 flconvert (str, mant, &exponent, error);
285 if (mant[0] & 0x8000) {
287 * Non-zero.
289 exponent--;
290 if (exponent >= -126 && exponent <= 128) {
292 * Normalised.
294 exponent += 127;
295 shr(mant, 8);
296 round(mant, 2);
297 if (mant[0] & 0x100) /* did we scale up by one? */
298 shr(mant, 1), exponent++;
299 mant[0] &= 0x7F; /* remove leading one */
300 put(result+2,(exponent << 7) | mant[0] | sign);
301 put(result+0,mant[1]);
302 } else if (exponent < -126 && exponent >= -149) {
304 * Denormal.
306 int shift = -(exponent+118);
307 int sh = shift % 16, wds = shift / 16;
308 shr(mant, sh);
309 if (round(mant, 2-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
310 shr(mant, 1);
311 if (sh==0)
312 mant[0] |= 0x8000;
313 exponent++;
315 put(result+2,(wds == 0 ? mant[0] : 0) | sign);
316 put(result+0,(wds <= 1 ? mant[1-wds] : 0));
317 } else {
318 if (exponent > 0) {
319 error(ERR_NONFATAL, "overflow in floating-point constant");
320 return 0;
321 } else
322 memset (result, 0, 4);
324 } else {
325 memset (result, 0, 4);
327 return 1;
330 static int to_ldoub(char *str, long sign, unsigned char *result,
331 efunc error)
333 unsigned short mant[MANT_WORDS];
334 long exponent;
336 sign = (sign < 0 ? 0x8000L : 0L);
338 flconvert (str, mant, &exponent, error);
339 if (mant[0] & 0x8000) {
341 * Non-zero.
343 exponent--;
344 if (exponent >= -16383 && exponent <= 16384) {
346 * Normalised.
348 exponent += 16383;
349 if (round(mant, 4)) /* did we scale up by one? */
350 shr(mant, 1), mant[0] |= 0x8000, exponent++;
351 put(result+8,exponent | sign);
352 put(result+6,mant[0]);
353 put(result+4,mant[1]);
354 put(result+2,mant[2]);
355 put(result+0,mant[3]);
356 } else if (exponent < -16383 && exponent >= -16446) {
358 * Denormal.
360 int shift = -(exponent+16383);
361 int sh = shift % 16, wds = shift / 16;
362 shr(mant, sh);
363 if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
364 shr(mant, 1);
365 if (sh==0)
366 mant[0] |= 0x8000;
367 exponent++;
369 put(result+8,sign);
370 put(result+6,(wds == 0 ? mant[0] : 0));
371 put(result+4,(wds <= 1 ? mant[1-wds] : 0));
372 put(result+2,(wds <= 2 ? mant[2-wds] : 0));
373 put(result+0,(wds <= 3 ? mant[3-wds] : 0));
374 } else {
375 if (exponent > 0) {
376 error(ERR_NONFATAL, "overflow in floating-point constant");
377 return 0;
378 } else
379 memset (result, 0, 10);
381 } else {
383 * Zero.
385 memset (result, 0, 10);
387 return 1;
390 int float_const (char *number, long sign, unsigned char *result, int bytes,
391 efunc error)
393 if (bytes == 4)
394 return to_float (number, sign, result, error);
395 else if (bytes == 8)
396 return to_double (number, sign, result, error);
397 else if (bytes == 10)
398 return to_ldoub (number, sign, result, error);
399 else {
400 error(ERR_PANIC, "strange value %d passed to float_const", bytes);
401 return 0;