1 /* outobj.c output routines for the Netwide Assembler to produce
4 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
5 * Julian Hall. All rights reserved. The software is
6 * redistributable under the license given in the file "LICENSE"
7 * distributed in the NASM archive.
21 #include "output/outform.h"
22 #include "output/outlib.h"
27 * outobj.c is divided into two sections. The first section is low level
28 * routines for creating obj records; It has nearly zero NASM specific
29 * code. The second section is high level routines for processing calls and
30 * data structures from the rest of NASM into obj format.
32 * It should be easy (though not zero work) to lift the first section out for
33 * use as an obj file writer for some other assembler or compiler.
37 * These routines are built around the ObjRecord data struture. An ObjRecord
38 * holds an object file record that may be under construction or complete.
40 * A major function of these routines is to support continuation of an obj
41 * record into the next record when the maximum record size is exceeded. The
42 * high level code does not need to worry about where the record breaks occur.
43 * It does need to do some minor extra steps to make the automatic continuation
44 * work. Those steps may be skipped for records where the high level knows no
45 * continuation could be required.
47 * 1) An ObjRecord is allocated and cleared by obj_new, or an existing ObjRecord
48 * is cleared by obj_clear.
50 * 2) The caller should fill in .type.
52 * 3) If the record is continuable and there is processing that must be done at
53 * the start of each record then the caller should fill in .ori with the
54 * address of the record initializer routine.
56 * 4) If the record is continuable and it should be saved (rather than emitted
57 * immediately) as each record is done, the caller should set .up to be a
58 * pointer to a location in which the caller keeps the master pointer to the
59 * ObjRecord. When the record is continued, the obj_bump routine will then
60 * allocate a new ObjRecord structure and update the master pointer.
62 * 5) If the .ori field was used then the caller should fill in the .parm with
63 * any data required by the initializer.
65 * 6) The caller uses the routines: obj_byte, obj_word, obj_rword, obj_dword,
66 * obj_x, obj_index, obj_value and obj_name to fill in the various kinds of
67 * data required for this record.
69 * 7) If the record is continuable, the caller should call obj_commit at each
70 * point where breaking the record is permitted.
72 * 8) To write out the record, the caller should call obj_emit2. If the
73 * caller has called obj_commit for all data written then he can get slightly
74 * faster code by calling obj_emit instead of obj_emit2.
76 * Most of these routines return an ObjRecord pointer. This will be the input
77 * pointer most of the time and will be the new location if the ObjRecord
78 * moved as a result of the call. The caller may ignore the return value in
79 * three cases: It is a "Never Reallocates" routine; or The caller knows
80 * continuation is not possible; or The caller uses the master pointer for the
84 #define RECORD_MAX (1024-3) /* maximal size of any record except type+reclen */
85 #define OBJ_PARMS 3 /* maximum .parm used by any .ori routine */
87 #define FIX_08_LOW 0x8000 /* location type for various fixup subrecords */
88 #define FIX_16_OFFSET 0x8400
89 #define FIX_16_SELECTOR 0x8800
90 #define FIX_32_POINTER 0x8C00
91 #define FIX_08_HIGH 0x9000
92 #define FIX_32_OFFSET 0xA400
93 #define FIX_48_POINTER 0xAC00
95 enum RecordID
{ /* record ID codes */
97 THEADR
= 0x80, /* module header */
98 COMENT
= 0x88, /* comment record */
100 LINNUM
= 0x94, /* line number record */
101 LNAMES
= 0x96, /* list of names */
103 SEGDEF
= 0x98, /* segment definition */
104 GRPDEF
= 0x9A, /* group definition */
105 EXTDEF
= 0x8C, /* external definition */
106 PUBDEF
= 0x90, /* public definition */
107 COMDEF
= 0xB0, /* common definition */
109 LEDATA
= 0xA0, /* logical enumerated data */
110 FIXUPP
= 0x9C, /* fixups (relocations) */
111 FIXU32
= 0x9D, /* 32-bit fixups (relocations) */
113 MODEND
= 0x8A, /* module end */
114 MODE32
= 0x8B /* module end for 32-bit objects */
117 enum ComentID
{ /* ID codes for comment records */
119 dEXTENDED
= 0xA1, /* tells that we are using translator-specific extensions */
120 dLINKPASS
= 0xA2, /* link pass 2 marker */
121 dTYPEDEF
= 0xE3, /* define a type */
122 dSYM
= 0xE6, /* symbol debug record */
123 dFILNAME
= 0xE8, /* file name record */
124 dCOMPDEF
= 0xEA /* compiler type info */
127 typedef struct ObjRecord ObjRecord
;
128 typedef void ORI(ObjRecord
* orp
);
131 ORI
*ori
; /* Initialization routine */
132 int used
; /* Current data size */
133 int committed
; /* Data size at last boundary */
134 int x_size
; /* (see obj_x) */
135 unsigned int type
; /* Record type */
136 ObjRecord
*child
; /* Associated record below this one */
137 ObjRecord
**up
; /* Master pointer to this ObjRecord */
138 ObjRecord
*back
; /* Previous part of this record */
139 uint32_t parm
[OBJ_PARMS
]; /* Parameters for ori routine */
140 uint8_t buf
[RECORD_MAX
+ 3];
143 static void obj_fwrite(ObjRecord
* orp
);
144 static void ori_ledata(ObjRecord
* orp
);
145 static void ori_pubdef(ObjRecord
* orp
);
146 static void ori_null(ObjRecord
* orp
);
147 static ObjRecord
*obj_commit(ObjRecord
* orp
);
149 static bool obj_uppercase
; /* Flag: all names in uppercase */
150 static bool obj_use32
; /* Flag: at least one segment is 32-bit */
153 * Clear an ObjRecord structure. (Never reallocates).
154 * To simplify reuse of ObjRecord's, .type, .ori and .parm are not cleared.
156 static ObjRecord
*obj_clear(ObjRecord
* orp
)
168 * Emit an ObjRecord structure. (Never reallocates).
169 * The record is written out preceeded (recursively) by its previous part (if
170 * any) and followed (recursively) by its child (if any).
171 * The previous part and the child are freed. The main ObjRecord is cleared,
174 static ObjRecord
*obj_emit(ObjRecord
* orp
)
178 nasm_free(orp
->back
);
185 obj_emit(orp
->child
);
186 nasm_free(orp
->child
);
189 return (obj_clear(orp
));
193 * Commit and Emit a record. (Never reallocates).
195 static ObjRecord
*obj_emit2(ObjRecord
* orp
)
198 return (obj_emit(orp
));
202 * Allocate and clear a new ObjRecord; Also sets .ori to ori_null
204 static ObjRecord
*obj_new(void)
208 orp
= obj_clear(nasm_malloc(sizeof(ObjRecord
)));
214 * Advance to the next record because the existing one is full or its x_size
216 * Any uncommited data is moved into the next record.
218 static ObjRecord
*obj_bump(ObjRecord
* orp
)
221 int used
= orp
->used
;
222 int committed
= orp
->committed
;
225 *orp
->up
= nxt
= obj_new();
227 nxt
->type
= orp
->type
;
230 memcpy(nxt
->parm
, orp
->parm
, sizeof(orp
->parm
));
238 nxt
->committed
= nxt
->used
;
239 memcpy(nxt
->buf
+ nxt
->committed
, orp
->buf
+ committed
, used
);
240 nxt
->used
= nxt
->committed
+ used
;
247 * Advance to the next record if necessary to allow the next field to fit.
249 static ObjRecord
*obj_check(ObjRecord
* orp
, int size
)
251 if (orp
->used
+ size
> RECORD_MAX
)
254 if (!orp
->committed
) {
257 orp
->committed
= orp
->used
;
264 * All data written so far is commited to the current record (won't be moved to
265 * the next record in case of continuation).
267 static ObjRecord
*obj_commit(ObjRecord
* orp
)
269 orp
->committed
= orp
->used
;
276 static ObjRecord
*obj_byte(ObjRecord
* orp
, uint8_t val
)
278 orp
= obj_check(orp
, 1);
279 orp
->buf
[orp
->used
] = val
;
287 static ObjRecord
*obj_word(ObjRecord
* orp
, unsigned int val
)
289 orp
= obj_check(orp
, 2);
290 orp
->buf
[orp
->used
] = val
;
291 orp
->buf
[orp
->used
+ 1] = val
>> 8;
297 * Write a reversed word
299 static ObjRecord
*obj_rword(ObjRecord
* orp
, unsigned int val
)
301 orp
= obj_check(orp
, 2);
302 orp
->buf
[orp
->used
] = val
>> 8;
303 orp
->buf
[orp
->used
+ 1] = val
;
311 static ObjRecord
*obj_dword(ObjRecord
* orp
, uint32_t val
)
313 orp
= obj_check(orp
, 4);
314 orp
->buf
[orp
->used
] = val
;
315 orp
->buf
[orp
->used
+ 1] = val
>> 8;
316 orp
->buf
[orp
->used
+ 2] = val
>> 16;
317 orp
->buf
[orp
->used
+ 3] = val
>> 24;
323 * All fields of "size x" in one obj record must be the same size (either 16
324 * bits or 32 bits). There is a one bit flag in each record which specifies
326 * This routine is used to force the current record to have the desired
327 * x_size. x_size is normally automatic (using obj_x), so that this
328 * routine should be used outside obj_x, only to provide compatibility with
329 * linkers that have bugs in their processing of the size bit.
332 static ObjRecord
*obj_force(ObjRecord
* orp
, int x
)
334 if (orp
->x_size
== (x
^ 48))
341 * This routine writes a field of size x. The caller does not need to worry at
342 * all about whether 16-bits or 32-bits are required.
344 static ObjRecord
*obj_x(ObjRecord
* orp
, uint32_t val
)
349 orp
= obj_force(orp
, 32);
350 if (orp
->x_size
== 32) {
351 ObjRecord
*nxt
= obj_dword(orp
, val
);
352 nxt
->x_size
= 32; /* x_size is cleared when a record overflows */
356 return (obj_word(orp
, val
));
362 static ObjRecord
*obj_index(ObjRecord
* orp
, unsigned int val
)
365 return (obj_byte(orp
, val
));
366 return (obj_word(orp
, (val
>> 8) | (val
<< 8) | 0x80));
370 * Writes a variable length value
372 static ObjRecord
*obj_value(ObjRecord
* orp
, uint32_t val
)
375 return (obj_byte(orp
, val
));
377 orp
= obj_byte(orp
, 129);
378 return (obj_word(orp
, val
));
381 return (obj_dword(orp
, (val
<< 8) + 132));
382 orp
= obj_byte(orp
, 136);
383 return (obj_dword(orp
, val
));
387 * Writes a counted string
389 static ObjRecord
*obj_name(ObjRecord
* orp
, const char *name
)
391 int len
= strlen(name
);
394 orp
= obj_check(orp
, len
+ 1);
395 ptr
= orp
->buf
+ orp
->used
;
397 orp
->used
+= len
+ 1;
400 *ptr
++ = toupper(*name
);
403 memcpy(ptr
, name
, len
);
408 * Initializer for an LEDATA record.
410 * parm[1] = segment index
411 * During the use of a LEDATA ObjRecord, parm[0] is constantly updated to
412 * represent the offset that would be required if the record were split at the
414 * parm[2] is a copy of parm[0] as it was when the current record was initted.
416 static void ori_ledata(ObjRecord
* orp
)
418 obj_index(orp
, orp
->parm
[1]);
419 orp
->parm
[2] = orp
->parm
[0];
420 obj_x(orp
, orp
->parm
[0]);
424 * Initializer for a PUBDEF record.
425 * parm[0] = group index
426 * parm[1] = segment index
427 * parm[2] = frame (only used when both indexes are zero)
429 static void ori_pubdef(ObjRecord
* orp
)
431 obj_index(orp
, orp
->parm
[0]);
432 obj_index(orp
, orp
->parm
[1]);
433 if (!(orp
->parm
[0] | orp
->parm
[1]))
434 obj_word(orp
, orp
->parm
[2]);
438 * Initializer for a LINNUM record.
439 * parm[0] = group index
440 * parm[1] = segment index
442 static void ori_linnum(ObjRecord
* orp
)
444 obj_index(orp
, orp
->parm
[0]);
445 obj_index(orp
, orp
->parm
[1]);
449 * Initializer for a local vars record.
451 static void ori_local(ObjRecord
* orp
)
458 * Null initializer for records that continue without any header info
460 static void ori_null(ObjRecord
* orp
)
462 (void)orp
; /* Do nothing */
466 * This concludes the low level section of outobj.c
469 static char obj_infile
[FILENAME_MAX
];
472 static evalfunc evaluate
;
473 static ldfunc deflabel
;
475 static int32_t first_seg
;
476 static bool any_segs
;
480 #define GROUP_MAX 256 /* we won't _realistically_ have more
481 * than this many segs in a group */
482 #define EXT_BLKSIZ 256 /* block size for externals list */
484 struct Segment
; /* need to know these structs exist */
488 struct LineNumber
*next
;
489 struct Segment
*segment
;
494 static struct FileName
{
495 struct FileName
*next
;
497 struct LineNumber
*lnhead
, **lntail
;
501 static struct Array
{
505 } *arrhead
, **arrtail
;
507 #define ARRAYBOT 31 /* magic number for first array index */
509 static struct Public
{
513 int32_t segment
; /* only if it's far-absolute */
514 int type
; /* only for local debug syms */
515 } *fpubhead
, **fpubtail
, *last_defined
;
517 static struct External
{
518 struct External
*next
;
521 int32_t commonelem
; /* element size if FAR, else zero */
522 int index
; /* OBJ-file external index */
524 DEFWRT_NONE
, /* no unusual default-WRT */
525 DEFWRT_STRING
, /* a string we don't yet understand */
526 DEFWRT_SEGMENT
, /* a segment */
527 DEFWRT_GROUP
/* a group */
534 struct External
*next_dws
; /* next with DEFWRT_STRING */
535 } *exthead
, **exttail
, *dws
;
537 static int externals
;
539 static struct ExtBack
{
540 struct ExtBack
*next
;
541 struct External
*exts
[EXT_BLKSIZ
];
544 static struct Segment
{
545 struct Segment
*next
;
546 int32_t index
; /* the NASM segment id */
547 int32_t obj_index
; /* the OBJ-file segment index */
548 struct Group
*grp
; /* the group it beint32_ts to */
550 int32_t align
; /* can be SEG_ABS + absolute addr */
557 bool use32
; /* is this segment 32-bit? */
558 struct Public
*pubhead
, **pubtail
, *lochead
, **loctail
;
560 char *segclass
, *overlay
; /* `class' is a C++ keyword :-) */
562 } *seghead
, **segtail
, *obj_seg_needs_update
;
564 static struct Group
{
567 int32_t index
; /* NASM segment id */
568 int32_t obj_index
; /* OBJ-file group index */
569 int32_t nentries
; /* number of elements... */
570 int32_t nindices
; /* ...and number of index elts... */
574 } segs
[GROUP_MAX
]; /* ...in this */
575 } *grphead
, **grptail
, *obj_grp_needs_update
;
577 static struct ImpDef
{
581 unsigned int impindex
;
583 } *imphead
, **imptail
;
585 static struct ExpDef
{
589 unsigned int ordinal
;
591 } *exphead
, **exptail
;
593 #define EXPDEF_FLAG_ORDINAL 0x80
594 #define EXPDEF_FLAG_RESIDENT 0x40
595 #define EXPDEF_FLAG_NODATA 0x20
596 #define EXPDEF_MASK_PARMCNT 0x1F
598 static int32_t obj_entry_seg
, obj_entry_ofs
;
602 /* The current segment */
603 static struct Segment
*current_seg
;
605 static int32_t obj_segment(char *, int, int *);
606 static void obj_write_file(int debuginfo
);
607 static int obj_directive(char *, char *, int);
609 static void obj_init(FILE * fp
, efunc errfunc
, ldfunc ldef
, evalfunc eval
)
615 first_seg
= seg_alloc();
618 fpubtail
= &fpubhead
;
629 seghead
= obj_seg_needs_update
= NULL
;
631 grphead
= obj_grp_needs_update
= NULL
;
633 obj_entry_seg
= NO_SEG
;
634 obj_uppercase
= false;
640 static int obj_set_info(enum geninfo type
, char **val
)
647 static void obj_cleanup(int debuginfo
)
649 obj_write_file(debuginfo
);
650 of_obj
.current_dfmt
->cleanup();
653 struct Segment
*segtmp
= seghead
;
654 seghead
= seghead
->next
;
655 while (segtmp
->pubhead
) {
656 struct Public
*pubtmp
= segtmp
->pubhead
;
657 segtmp
->pubhead
= pubtmp
->next
;
658 nasm_free(pubtmp
->name
);
661 nasm_free(segtmp
->segclass
);
662 nasm_free(segtmp
->overlay
);
666 struct Public
*pubtmp
= fpubhead
;
667 fpubhead
= fpubhead
->next
;
668 nasm_free(pubtmp
->name
);
672 struct External
*exttmp
= exthead
;
673 exthead
= exthead
->next
;
677 struct ImpDef
*imptmp
= imphead
;
678 imphead
= imphead
->next
;
679 nasm_free(imptmp
->extname
);
680 nasm_free(imptmp
->libname
);
681 nasm_free(imptmp
->impname
); /* nasm_free won't mind if it's NULL */
685 struct ExpDef
*exptmp
= exphead
;
686 exphead
= exphead
->next
;
687 nasm_free(exptmp
->extname
);
688 nasm_free(exptmp
->intname
);
692 struct ExtBack
*ebtmp
= ebhead
;
693 ebhead
= ebhead
->next
;
697 struct Group
*grptmp
= grphead
;
698 grphead
= grphead
->next
;
703 static void obj_ext_set_defwrt(struct External
*ext
, char *id
)
708 for (seg
= seghead
; seg
; seg
= seg
->next
)
709 if (!strcmp(seg
->name
, id
)) {
710 ext
->defwrt_type
= DEFWRT_SEGMENT
;
711 ext
->defwrt_ptr
.seg
= seg
;
716 for (grp
= grphead
; grp
; grp
= grp
->next
)
717 if (!strcmp(grp
->name
, id
)) {
718 ext
->defwrt_type
= DEFWRT_GROUP
;
719 ext
->defwrt_ptr
.grp
= grp
;
724 ext
->defwrt_type
= DEFWRT_STRING
;
725 ext
->defwrt_ptr
.string
= id
;
730 static void obj_deflabel(char *name
, int32_t segment
,
731 int64_t offset
, int is_global
, char *special
)
734 * We have three cases:
736 * (i) `segment' is a segment-base. If so, set the name field
737 * for the segment or group structure it refers to, and then
740 * (ii) `segment' is one of our segments, or a SEG_ABS segment.
741 * Save the label position for later output of a PUBDEF record.
742 * (Or a MODPUB, if we work out how.)
744 * (iii) `segment' is not one of our segments. Save the label
745 * position for later output of an EXTDEF, and also store a
746 * back-reference so that we can map later references to this
747 * segment number to the external index.
749 struct External
*ext
;
753 bool used_special
= false; /* have we used the special text? */
755 #if defined(DEBUG) && DEBUG>2
757 " obj_deflabel: %s, seg=%ld, off=%ld, is_global=%d, %s\n",
758 name
, segment
, offset
, is_global
, special
);
762 * If it's a special-retry from pass two, discard it.
768 * First check for the double-period, signifying something
771 if (name
[0] == '.' && name
[1] == '.' && name
[2] != '@') {
772 if (!strcmp(name
, "..start")) {
773 obj_entry_seg
= segment
;
774 obj_entry_ofs
= offset
;
777 error(ERR_NONFATAL
, "unrecognised special symbol `%s'", name
);
783 if (obj_seg_needs_update
) {
784 obj_seg_needs_update
->name
= name
;
786 } else if (obj_grp_needs_update
) {
787 obj_grp_needs_update
->name
= name
;
790 if (segment
< SEG_ABS
&& segment
!= NO_SEG
&& segment
% 2)
793 if (segment
>= SEG_ABS
|| segment
== NO_SEG
) {
795 * SEG_ABS subcase of (ii).
800 pub
= *fpubtail
= nasm_malloc(sizeof(*pub
));
801 fpubtail
= &pub
->next
;
803 pub
->name
= nasm_strdup(name
);
804 pub
->offset
= offset
;
805 pub
->segment
= (segment
== NO_SEG
? 0 : segment
& ~SEG_ABS
);
808 error(ERR_NONFATAL
, "OBJ supports no special symbol features"
809 " for this symbol type");
814 * If `any_segs' is still false, we might need to define a
815 * default segment, if they're trying to declare a label in
818 if (!any_segs
&& segment
== first_seg
) {
819 int tempint
; /* ignored */
820 if (segment
!= obj_segment("__NASMDEFSEG", 2, &tempint
))
821 error(ERR_PANIC
, "strange segment conditions in OBJ driver");
824 for (seg
= seghead
; seg
&& is_global
; seg
= seg
->next
)
825 if (seg
->index
== segment
) {
826 struct Public
*loc
= nasm_malloc(sizeof(*loc
));
828 * Case (ii). Maybe MODPUB someday?
831 seg
->pubtail
= &loc
->next
;
833 loc
->name
= nasm_strdup(name
);
834 loc
->offset
= offset
;
838 "OBJ supports no special symbol features"
839 " for this symbol type");
847 ext
= *exttail
= nasm_malloc(sizeof(*ext
));
849 exttail
= &ext
->next
;
851 /* Place by default all externs into the current segment */
852 ext
->defwrt_type
= DEFWRT_NONE
;
854 /* 28-Apr-2002 - John Coffman
855 The following code was introduced on 12-Aug-2000, and breaks fixups
856 on code passed thru the MSC 5.1 linker (3.66) and MSC 6.00A linker
857 (5.10). It was introduced after FIXUP32 was added, and may be needed
858 for 32-bit segments. The following will get 16-bit segments working
859 again, and maybe someone can correct the 'if' condition which is
865 if (current_seg
&& current_seg
->use32
) {
866 if (current_seg
->grp
) {
867 ext
->defwrt_type
= DEFWRT_GROUP
;
868 ext
->defwrt_ptr
.grp
= current_seg
->grp
;
870 ext
->defwrt_type
= DEFWRT_SEGMENT
;
871 ext
->defwrt_ptr
.seg
= current_seg
;
876 if (is_global
== 2) {
877 ext
->commonsize
= offset
;
878 ext
->commonelem
= 1; /* default FAR */
885 * Now process the special text, if any, to find default-WRT
886 * specifications and common-variable element-size and near/far
889 while (special
&& *special
) {
893 * We might have a default-WRT specification.
895 if (!nasm_strnicmp(special
, "wrt", 3)) {
899 special
+= strspn(special
, " \t");
900 p
= nasm_strndup(special
, len
= strcspn(special
, ":"));
901 obj_ext_set_defwrt(ext
, p
);
903 if (*special
&& *special
!= ':')
904 error(ERR_NONFATAL
, "`:' expected in special symbol"
905 " text for `%s'", ext
->name
);
906 else if (*special
== ':')
911 * The NEAR or FAR keywords specify nearness or
912 * farness. FAR gives default element size 1.
914 if (!nasm_strnicmp(special
, "far", 3)) {
919 "`%s': `far' keyword may only be applied"
920 " to common variables\n", ext
->name
);
922 special
+= strspn(special
, " \t");
923 } else if (!nasm_strnicmp(special
, "near", 4)) {
928 "`%s': `far' keyword may only be applied"
929 " to common variables\n", ext
->name
);
931 special
+= strspn(special
, " \t");
935 * If it's a common, and anything else remains on the line
936 * before a further colon, evaluate it as an expression and
937 * use that as the element size. Forward references aren't
943 if (ext
->commonsize
) {
945 struct tokenval tokval
;
948 stdscan_bufptr
= special
;
949 tokval
.t_type
= TOKEN_INVALID
;
950 e
= evaluate(stdscan
, NULL
, &tokval
, NULL
, 1, error
, NULL
);
953 error(ERR_NONFATAL
, "cannot use relocatable"
954 " expression as common-variable element size");
956 ext
->commonelem
= reloc_value(e
);
958 special
= stdscan_bufptr
;
961 "`%s': element-size specifications only"
962 " apply to common variables", ext
->name
);
963 while (*special
&& *special
!= ':')
974 eb
= *ebtail
= nasm_malloc(sizeof(*eb
));
978 while (i
>= EXT_BLKSIZ
) {
982 eb
= *ebtail
= nasm_malloc(sizeof(*eb
));
989 ext
->index
= ++externals
;
991 if (special
&& !used_special
)
992 error(ERR_NONFATAL
, "OBJ supports no special symbol features"
993 " for this symbol type");
996 /* forward declaration */
997 static void obj_write_fixup(ObjRecord
* orp
, int bytes
,
998 int segrel
, int32_t seg
, int32_t wrt
,
999 struct Segment
*segto
);
1001 static void obj_out(int32_t segto
, const void *data
,
1002 enum out_type type
, uint64_t size
,
1003 int32_t segment
, int32_t wrt
)
1005 const uint8_t *ucdata
;
1007 struct Segment
*seg
;
1011 * handle absolute-assembly (structure definitions)
1013 if (segto
== NO_SEG
) {
1014 if (type
!= OUT_RESERVE
)
1015 error(ERR_NONFATAL
, "attempt to assemble code in [ABSOLUTE]"
1021 * If `any_segs' is still false, we must define a default
1025 int tempint
; /* ignored */
1026 if (segto
!= obj_segment("__NASMDEFSEG", 2, &tempint
))
1027 error(ERR_PANIC
, "strange segment conditions in OBJ driver");
1031 * Find the segment we are targetting.
1033 for (seg
= seghead
; seg
; seg
= seg
->next
)
1034 if (seg
->index
== segto
)
1037 error(ERR_PANIC
, "code directed to nonexistent segment?");
1040 orp
->parm
[0] = seg
->currentpos
;
1042 if (type
== OUT_RAWDATA
) {
1046 orp
= obj_check(seg
->orp
, 1);
1047 len
= RECORD_MAX
- orp
->used
;
1050 memcpy(orp
->buf
+ orp
->used
, ucdata
, len
);
1051 orp
->committed
= orp
->used
+= len
;
1052 orp
->parm
[0] = seg
->currentpos
+= len
;
1056 } else if (type
== OUT_ADDRESS
|| type
== OUT_REL2ADR
||
1057 type
== OUT_REL4ADR
) {
1060 if (segment
== NO_SEG
&& type
!= OUT_ADDRESS
)
1061 error(ERR_NONFATAL
, "relative call to absolute address not"
1062 " supported by OBJ format");
1063 if (segment
>= SEG_ABS
)
1064 error(ERR_NONFATAL
, "far-absolute relocations not supported"
1066 ldata
= *(int64_t *)data
;
1067 if (type
== OUT_REL2ADR
) {
1068 ldata
+= (size
- 2);
1070 } else if (type
== OUT_REL4ADR
) {
1071 ldata
+= (size
- 4);
1075 orp
= obj_word(orp
, ldata
);
1077 orp
= obj_dword(orp
, ldata
);
1079 if (segment
< SEG_ABS
&& (segment
!= NO_SEG
&& segment
% 2) &&
1082 * This is a 4-byte segment-base relocation such as
1083 * `MOV EAX,SEG foo'. OBJ format can't actually handle
1084 * these, but if the constant term has the 16 low bits
1085 * zero, we can just apply a 2-byte segment-base
1086 * relocation to the low word instead.
1090 error(ERR_NONFATAL
, "OBJ format cannot handle complex"
1091 " dword-size segment base references");
1093 if (segment
!= NO_SEG
)
1094 obj_write_fixup(orp
, rsize
,
1095 (type
== OUT_ADDRESS
? 0x4000 : 0),
1097 seg
->currentpos
+= size
;
1098 } else if (type
== OUT_RESERVE
) {
1100 orp
= obj_bump(orp
);
1101 seg
->currentpos
+= size
;
1106 static void obj_write_fixup(ObjRecord
* orp
, int bytes
,
1107 int segrel
, int32_t seg
, int32_t wrt
,
1108 struct Segment
*segto
)
1114 struct Segment
*s
= NULL
;
1115 struct Group
*g
= NULL
;
1116 struct External
*e
= NULL
;
1120 error(ERR_NONFATAL
, "`obj' output driver does not support"
1121 " one-byte relocations");
1127 orp
->child
= forp
= obj_new();
1128 forp
->up
= &(orp
->child
);
1129 /* We should choose between FIXUPP and FIXU32 record type */
1130 /* If we're targeting a 32-bit segment, use a FIXU32 record */
1132 forp
->type
= FIXU32
;
1134 forp
->type
= FIXUPP
;
1139 locat
= FIX_16_SELECTOR
;
1142 error(ERR_PANIC
, "OBJ: 4-byte segment base fixup got"
1143 " through sanity check");
1146 locat
= (bytes
== 2) ? FIX_16_OFFSET
: FIX_32_OFFSET
;
1149 * There is a bug in tlink that makes it process self relative
1150 * fixups incorrectly if the x_size doesn't match the location
1153 forp
= obj_force(forp
, bytes
<< 3);
1156 forp
= obj_rword(forp
, locat
| segrel
| (orp
->parm
[0] - orp
->parm
[2]));
1158 tidx
= fidx
= -1, method
= 0; /* placate optimisers */
1161 * See if we can find the segment ID in our segment list. If
1162 * so, we have a T4 (LSEG) target.
1164 for (s
= seghead
; s
; s
= s
->next
)
1165 if (s
->index
== seg
)
1168 method
= 4, tidx
= s
->obj_index
;
1170 for (g
= grphead
; g
; g
= g
->next
)
1171 if (g
->index
== seg
)
1174 method
= 5, tidx
= g
->obj_index
;
1176 int32_t i
= seg
/ 2;
1177 struct ExtBack
*eb
= ebhead
;
1178 while (i
>= EXT_BLKSIZ
) {
1186 method
= 6, e
= eb
->exts
[i
], tidx
= e
->index
;
1189 "unrecognised segment value in obj_write_fixup");
1194 * If no WRT given, assume the natural default, which is method
1197 * - we are doing an OFFSET fixup for a grouped segment, in
1198 * which case we require F1 (group).
1200 * - we are doing an OFFSET fixup for an external with a
1201 * default WRT, in which case we must honour the default WRT.
1203 if (wrt
== NO_SEG
) {
1204 if (!base
&& s
&& s
->grp
)
1205 method
|= 0x10, fidx
= s
->grp
->obj_index
;
1206 else if (!base
&& e
&& e
->defwrt_type
!= DEFWRT_NONE
) {
1207 if (e
->defwrt_type
== DEFWRT_SEGMENT
)
1208 method
|= 0x00, fidx
= e
->defwrt_ptr
.seg
->obj_index
;
1209 else if (e
->defwrt_type
== DEFWRT_GROUP
)
1210 method
|= 0x10, fidx
= e
->defwrt_ptr
.grp
->obj_index
;
1212 error(ERR_NONFATAL
, "default WRT specification for"
1213 " external `%s' unresolved", e
->name
);
1214 method
|= 0x50, fidx
= -1; /* got to do _something_ */
1217 method
|= 0x50, fidx
= -1;
1220 * See if we can find the WRT-segment ID in our segment
1221 * list. If so, we have a F0 (LSEG) frame.
1223 for (s
= seghead
; s
; s
= s
->next
)
1224 if (s
->index
== wrt
- 1)
1227 method
|= 0x00, fidx
= s
->obj_index
;
1229 for (g
= grphead
; g
; g
= g
->next
)
1230 if (g
->index
== wrt
- 1)
1233 method
|= 0x10, fidx
= g
->obj_index
;
1235 int32_t i
= wrt
/ 2;
1236 struct ExtBack
*eb
= ebhead
;
1237 while (i
>= EXT_BLKSIZ
) {
1245 method
|= 0x20, fidx
= eb
->exts
[i
]->index
;
1248 "unrecognised WRT value in obj_write_fixup");
1253 forp
= obj_byte(forp
, method
);
1255 forp
= obj_index(forp
, fidx
);
1256 forp
= obj_index(forp
, tidx
);
1260 static int32_t obj_segment(char *name
, int pass
, int *bits
)
1263 * We call the label manager here to define a name for the new
1264 * segment, and when our _own_ label-definition stub gets
1265 * called in return, it should register the new segment name
1266 * using the pointer it gets passed. That way we save memory,
1267 * by sponging off the label manager.
1269 #if defined(DEBUG) && DEBUG>=3
1270 fprintf(stderr
, " obj_segment: < %s >, pass=%d, *bits=%d\n",
1278 struct Segment
*seg
;
1280 struct External
**extp
;
1281 int obj_idx
, i
, attrs
;
1286 * Look for segment attributes.
1289 while (*name
== '.')
1290 name
++; /* hack, but a documented one */
1292 while (*p
&& !nasm_isspace(*p
))
1296 while (*p
&& nasm_isspace(*p
))
1300 while (*p
&& !nasm_isspace(*p
))
1304 while (*p
&& nasm_isspace(*p
))
1312 for (seg
= seghead
; seg
; seg
= seg
->next
) {
1314 if (!strcmp(seg
->name
, name
)) {
1315 if (attrs
> 0 && pass
== 1)
1316 error(ERR_WARNING
, "segment attributes specified on"
1317 " redeclaration of segment: ignoring");
1327 *segtail
= seg
= nasm_malloc(sizeof(*seg
));
1329 segtail
= &seg
->next
;
1330 seg
->index
= (any_segs
? seg_alloc() : first_seg
);
1331 seg
->obj_index
= obj_idx
;
1335 seg
->currentpos
= 0;
1336 seg
->align
= 1; /* default */
1337 seg
->use32
= false; /* default */
1338 seg
->combine
= CMB_PUBLIC
; /* default */
1339 seg
->segclass
= seg
->overlay
= NULL
;
1340 seg
->pubhead
= NULL
;
1341 seg
->pubtail
= &seg
->pubhead
;
1342 seg
->lochead
= NULL
;
1343 seg
->loctail
= &seg
->lochead
;
1344 seg
->orp
= obj_new();
1345 seg
->orp
->up
= &(seg
->orp
);
1346 seg
->orp
->ori
= ori_ledata
;
1347 seg
->orp
->type
= LEDATA
;
1348 seg
->orp
->parm
[1] = obj_idx
;
1351 * Process the segment attributes.
1360 * `p' contains a segment attribute.
1362 if (!nasm_stricmp(p
, "private"))
1363 seg
->combine
= CMB_PRIVATE
;
1364 else if (!nasm_stricmp(p
, "public"))
1365 seg
->combine
= CMB_PUBLIC
;
1366 else if (!nasm_stricmp(p
, "common"))
1367 seg
->combine
= CMB_COMMON
;
1368 else if (!nasm_stricmp(p
, "stack"))
1369 seg
->combine
= CMB_STACK
;
1370 else if (!nasm_stricmp(p
, "use16"))
1372 else if (!nasm_stricmp(p
, "use32"))
1374 else if (!nasm_stricmp(p
, "flat")) {
1376 * This segment is an OS/2 FLAT segment. That means
1377 * that its default group is group FLAT, even if
1378 * the group FLAT does not explicitly _contain_ the
1381 * When we see this, we must create the group
1382 * `FLAT', containing no segments, if it does not
1383 * already exist; then we must set the default
1384 * group of this segment to be the FLAT group.
1387 for (grp
= grphead
; grp
; grp
= grp
->next
)
1388 if (!strcmp(grp
->name
, "FLAT"))
1391 obj_directive("group", "FLAT", 1);
1392 for (grp
= grphead
; grp
; grp
= grp
->next
)
1393 if (!strcmp(grp
->name
, "FLAT"))
1396 error(ERR_PANIC
, "failure to define FLAT?!");
1399 } else if (!nasm_strnicmp(p
, "class=", 6))
1400 seg
->segclass
= nasm_strdup(p
+ 6);
1401 else if (!nasm_strnicmp(p
, "overlay=", 8))
1402 seg
->overlay
= nasm_strdup(p
+ 8);
1403 else if (!nasm_strnicmp(p
, "align=", 6)) {
1404 seg
->align
= readnum(p
+ 6, &rn_error
);
1407 error(ERR_NONFATAL
, "segment alignment should be"
1410 switch ((int)seg
->align
) {
1415 case 256: /* PAGE */
1416 case 4096: /* PharLap extension */
1420 "OBJ format does not support alignment"
1421 " of 8: rounding up to 16");
1428 "OBJ format does not support alignment"
1429 " of %d: rounding up to 256", seg
->align
);
1436 "OBJ format does not support alignment"
1437 " of %d: rounding up to 4096", seg
->align
);
1441 error(ERR_NONFATAL
, "invalid alignment value %d",
1446 } else if (!nasm_strnicmp(p
, "absolute=", 9)) {
1447 seg
->align
= SEG_ABS
+ readnum(p
+ 9, &rn_error
);
1449 error(ERR_NONFATAL
, "argument to `absolute' segment"
1450 " attribute should be numeric");
1454 /* We need to know whenever we have at least one 32-bit segment */
1455 obj_use32
|= seg
->use32
;
1457 obj_seg_needs_update
= seg
;
1458 if (seg
->align
>= SEG_ABS
)
1459 deflabel(name
, NO_SEG
, seg
->align
- SEG_ABS
,
1460 NULL
, false, false, &of_obj
, error
);
1462 deflabel(name
, seg
->index
+ 1, 0L,
1463 NULL
, false, false, &of_obj
, error
);
1464 obj_seg_needs_update
= NULL
;
1467 * See if this segment is defined in any groups.
1469 for (grp
= grphead
; grp
; grp
= grp
->next
) {
1470 for (i
= grp
->nindices
; i
< grp
->nentries
; i
++) {
1471 if (!strcmp(grp
->segs
[i
].name
, seg
->name
)) {
1472 nasm_free(grp
->segs
[i
].name
);
1473 grp
->segs
[i
] = grp
->segs
[grp
->nindices
];
1474 grp
->segs
[grp
->nindices
++].index
= seg
->obj_index
;
1477 "segment `%s' is already part of"
1478 " a group: first one takes precedence",
1487 * Walk through the list of externals with unresolved
1488 * default-WRT clauses, and resolve any that point at this
1493 if ((*extp
)->defwrt_type
== DEFWRT_STRING
&&
1494 !strcmp((*extp
)->defwrt_ptr
.string
, seg
->name
)) {
1495 nasm_free((*extp
)->defwrt_ptr
.string
);
1496 (*extp
)->defwrt_type
= DEFWRT_SEGMENT
;
1497 (*extp
)->defwrt_ptr
.seg
= seg
;
1498 *extp
= (*extp
)->next_dws
;
1500 extp
= &(*extp
)->next_dws
;
1512 static int obj_directive(char *directive
, char *value
, int pass
)
1514 if (!strcmp(directive
, "group")) {
1518 struct Segment
*seg
;
1519 struct External
**extp
;
1524 q
++; /* hack, but a documented one */
1526 while (*q
&& !nasm_isspace(*q
))
1528 if (nasm_isspace(*q
)) {
1530 while (*q
&& nasm_isspace(*q
))
1534 * Here we used to sanity-check the group directive to
1535 * ensure nobody tried to declare a group containing no
1536 * segments. However, OS/2 does this as standard
1537 * practice, so the sanity check has been removed.
1540 * error(ERR_NONFATAL,"GROUP directive contains no segments");
1546 for (grp
= grphead
; grp
; grp
= grp
->next
) {
1548 if (!strcmp(grp
->name
, v
)) {
1549 error(ERR_NONFATAL
, "group `%s' defined twice", v
);
1554 *grptail
= grp
= nasm_malloc(sizeof(*grp
));
1556 grptail
= &grp
->next
;
1557 grp
->index
= seg_alloc();
1558 grp
->obj_index
= obj_idx
;
1559 grp
->nindices
= grp
->nentries
= 0;
1562 obj_grp_needs_update
= grp
;
1563 deflabel(v
, grp
->index
+ 1, 0L,
1564 NULL
, false, false, &of_obj
, error
);
1565 obj_grp_needs_update
= NULL
;
1569 while (*q
&& !nasm_isspace(*q
))
1571 if (nasm_isspace(*q
)) {
1573 while (*q
&& nasm_isspace(*q
))
1577 * Now p contains a segment name. Find it.
1579 for (seg
= seghead
; seg
; seg
= seg
->next
)
1580 if (!strcmp(seg
->name
, p
))
1584 * We have a segment index. Shift a name entry
1585 * to the end of the array to make room.
1587 grp
->segs
[grp
->nentries
++] = grp
->segs
[grp
->nindices
];
1588 grp
->segs
[grp
->nindices
++].index
= seg
->obj_index
;
1591 "segment `%s' is already part of"
1592 " a group: first one takes precedence",
1598 * We have an as-yet undefined segment.
1599 * Remember its name, for later.
1601 grp
->segs
[grp
->nentries
++].name
= nasm_strdup(p
);
1606 * Walk through the list of externals with unresolved
1607 * default-WRT clauses, and resolve any that point at
1612 if ((*extp
)->defwrt_type
== DEFWRT_STRING
&&
1613 !strcmp((*extp
)->defwrt_ptr
.string
, grp
->name
)) {
1614 nasm_free((*extp
)->defwrt_ptr
.string
);
1615 (*extp
)->defwrt_type
= DEFWRT_GROUP
;
1616 (*extp
)->defwrt_ptr
.grp
= grp
;
1617 *extp
= (*extp
)->next_dws
;
1619 extp
= &(*extp
)->next_dws
;
1624 if (!strcmp(directive
, "uppercase")) {
1625 obj_uppercase
= true;
1628 if (!strcmp(directive
, "import")) {
1629 char *q
, *extname
, *libname
, *impname
;
1632 return 1; /* ignore in pass two */
1633 extname
= q
= value
;
1634 while (*q
&& !nasm_isspace(*q
))
1636 if (nasm_isspace(*q
)) {
1638 while (*q
&& nasm_isspace(*q
))
1643 while (*q
&& !nasm_isspace(*q
))
1645 if (nasm_isspace(*q
)) {
1647 while (*q
&& nasm_isspace(*q
))
1653 if (!*extname
|| !*libname
)
1654 error(ERR_NONFATAL
, "`import' directive requires symbol name"
1655 " and library name");
1660 imp
= *imptail
= nasm_malloc(sizeof(struct ImpDef
));
1661 imptail
= &imp
->next
;
1663 imp
->extname
= nasm_strdup(extname
);
1664 imp
->libname
= nasm_strdup(libname
);
1665 imp
->impindex
= readnum(impname
, &err
);
1666 if (!*impname
|| err
)
1667 imp
->impname
= nasm_strdup(impname
);
1669 imp
->impname
= NULL
;
1674 if (!strcmp(directive
, "export")) {
1675 char *q
, *extname
, *intname
, *v
;
1676 struct ExpDef
*export
;
1678 unsigned int ordinal
= 0;
1681 return 1; /* ignore in pass two */
1682 intname
= q
= value
;
1683 while (*q
&& !nasm_isspace(*q
))
1685 if (nasm_isspace(*q
)) {
1687 while (*q
&& nasm_isspace(*q
))
1692 while (*q
&& !nasm_isspace(*q
))
1694 if (nasm_isspace(*q
)) {
1696 while (*q
&& nasm_isspace(*q
))
1701 error(ERR_NONFATAL
, "`export' directive requires export name");
1710 while (*q
&& !nasm_isspace(*q
))
1712 if (nasm_isspace(*q
)) {
1714 while (*q
&& nasm_isspace(*q
))
1717 if (!nasm_stricmp(v
, "resident"))
1718 flags
|= EXPDEF_FLAG_RESIDENT
;
1719 else if (!nasm_stricmp(v
, "nodata"))
1720 flags
|= EXPDEF_FLAG_NODATA
;
1721 else if (!nasm_strnicmp(v
, "parm=", 5)) {
1723 flags
|= EXPDEF_MASK_PARMCNT
& readnum(v
+ 5, &err
);
1726 "value `%s' for `parm' is non-numeric", v
+ 5);
1731 ordinal
= readnum(v
, &err
);
1734 "unrecognised export qualifier `%s'", v
);
1737 flags
|= EXPDEF_FLAG_ORDINAL
;
1741 export
= *exptail
= nasm_malloc(sizeof(struct ExpDef
));
1742 exptail
= &export
->next
;
1743 export
->next
= NULL
;
1744 export
->extname
= nasm_strdup(extname
);
1745 export
->intname
= nasm_strdup(intname
);
1746 export
->ordinal
= ordinal
;
1747 export
->flags
= flags
;
1754 static int32_t obj_segbase(int32_t segment
)
1756 struct Segment
*seg
;
1759 * Find the segment in our list.
1761 for (seg
= seghead
; seg
; seg
= seg
->next
)
1762 if (seg
->index
== segment
- 1)
1767 * Might be an external with a default WRT.
1769 int32_t i
= segment
/ 2;
1770 struct ExtBack
*eb
= ebhead
;
1773 while (i
>= EXT_BLKSIZ
) {
1782 if (e
->defwrt_type
== DEFWRT_NONE
)
1783 return segment
; /* fine */
1784 else if (e
->defwrt_type
== DEFWRT_SEGMENT
)
1785 return e
->defwrt_ptr
.seg
->index
+ 1;
1786 else if (e
->defwrt_type
== DEFWRT_GROUP
)
1787 return e
->defwrt_ptr
.grp
->index
+ 1;
1789 return NO_SEG
; /* can't tell what it is */
1792 return segment
; /* not one of ours - leave it alone */
1795 if (seg
->align
>= SEG_ABS
)
1796 return seg
->align
; /* absolute segment */
1798 return seg
->grp
->index
+ 1; /* grouped segment */
1800 return segment
; /* no special treatment */
1803 static void obj_filename(char *inname
, char *outname
, efunc lerror
)
1805 strcpy(obj_infile
, inname
);
1806 standard_extension(inname
, outname
, ".obj", lerror
);
1809 static void obj_write_file(int debuginfo
)
1811 struct Segment
*seg
, *entry_seg_ptr
= 0;
1812 struct FileName
*fn
;
1813 struct LineNumber
*ln
;
1815 struct Public
*pub
, *loc
;
1816 struct External
*ext
;
1818 struct ExpDef
*export
;
1823 * Write the THEADR module header.
1827 obj_name(orp
, obj_infile
);
1831 * Write the NASM boast comment.
1834 obj_rword(orp
, 0); /* comment type zero */
1835 obj_name(orp
, nasm_comment
);
1840 * Write the IMPDEF records, if any.
1842 for (imp
= imphead
; imp
; imp
= imp
->next
) {
1843 obj_rword(orp
, 0xA0); /* comment class A0 */
1844 obj_byte(orp
, 1); /* subfunction 1: IMPDEF */
1846 obj_byte(orp
, 0); /* import by name */
1848 obj_byte(orp
, 1); /* import by ordinal */
1849 obj_name(orp
, imp
->extname
);
1850 obj_name(orp
, imp
->libname
);
1852 obj_name(orp
, imp
->impname
);
1854 obj_word(orp
, imp
->impindex
);
1859 * Write the EXPDEF records, if any.
1861 for (export
= exphead
; export
; export
= export
->next
) {
1862 obj_rword(orp
, 0xA0); /* comment class A0 */
1863 obj_byte(orp
, 2); /* subfunction 2: EXPDEF */
1864 obj_byte(orp
, export
->flags
);
1865 obj_name(orp
, export
->extname
);
1866 obj_name(orp
, export
->intname
);
1867 if (export
->flags
& EXPDEF_FLAG_ORDINAL
)
1868 obj_word(orp
, export
->ordinal
);
1872 /* we're using extended OMF if we put in debug info */
1875 obj_byte(orp
, 0x40);
1876 obj_byte(orp
, dEXTENDED
);
1881 * Write the first LNAMES record, containing LNAME one, which
1882 * is null. Also initialize the LNAME counter.
1888 * Write some LNAMES for the segment names
1890 for (seg
= seghead
; seg
; seg
= seg
->next
) {
1891 orp
= obj_name(orp
, seg
->name
);
1893 orp
= obj_name(orp
, seg
->segclass
);
1895 orp
= obj_name(orp
, seg
->overlay
);
1899 * Write some LNAMES for the group names
1901 for (grp
= grphead
; grp
; grp
= grp
->next
) {
1902 orp
= obj_name(orp
, grp
->name
);
1908 * Write the SEGDEF records.
1911 for (seg
= seghead
; seg
; seg
= seg
->next
) {
1913 uint32_t seglen
= seg
->currentpos
;
1915 acbp
= (seg
->combine
<< 2); /* C field */
1918 acbp
|= 0x01; /* P bit is Use32 flag */
1919 else if (seglen
== 0x10000L
) {
1920 seglen
= 0; /* This special case may be needed for old linkers */
1921 acbp
|= 0x02; /* B bit */
1925 if (seg
->align
>= SEG_ABS
)
1926 /* acbp |= 0x00 */ ;
1927 else if (seg
->align
>= 4096) {
1928 if (seg
->align
> 4096)
1929 error(ERR_NONFATAL
, "segment `%s' requires more alignment"
1930 " than OBJ format supports", seg
->name
);
1931 acbp
|= 0xC0; /* PharLap extension */
1932 } else if (seg
->align
>= 256) {
1934 } else if (seg
->align
>= 16) {
1936 } else if (seg
->align
>= 4) {
1938 } else if (seg
->align
>= 2) {
1943 obj_byte(orp
, acbp
);
1944 if (seg
->align
& SEG_ABS
) {
1945 obj_x(orp
, seg
->align
- SEG_ABS
); /* Frame */
1946 obj_byte(orp
, 0); /* Offset */
1949 obj_index(orp
, ++lname_idx
);
1950 obj_index(orp
, seg
->segclass
? ++lname_idx
: 1);
1951 obj_index(orp
, seg
->overlay
? ++lname_idx
: 1);
1956 * Write the GRPDEF records.
1959 for (grp
= grphead
; grp
; grp
= grp
->next
) {
1962 if (grp
->nindices
!= grp
->nentries
) {
1963 for (i
= grp
->nindices
; i
< grp
->nentries
; i
++) {
1964 error(ERR_NONFATAL
, "group `%s' contains undefined segment"
1965 " `%s'", grp
->name
, grp
->segs
[i
].name
);
1966 nasm_free(grp
->segs
[i
].name
);
1967 grp
->segs
[i
].name
= NULL
;
1970 obj_index(orp
, ++lname_idx
);
1971 for (i
= 0; i
< grp
->nindices
; i
++) {
1972 obj_byte(orp
, 0xFF);
1973 obj_index(orp
, grp
->segs
[i
].index
);
1979 * Write the PUBDEF records: first the ones in the segments,
1980 * then the far-absolutes.
1983 orp
->ori
= ori_pubdef
;
1984 for (seg
= seghead
; seg
; seg
= seg
->next
) {
1985 orp
->parm
[0] = seg
->grp
? seg
->grp
->obj_index
: 0;
1986 orp
->parm
[1] = seg
->obj_index
;
1987 for (pub
= seg
->pubhead
; pub
; pub
= pub
->next
) {
1988 orp
= obj_name(orp
, pub
->name
);
1989 orp
= obj_x(orp
, pub
->offset
);
1990 orp
= obj_byte(orp
, 0); /* type index */
1997 for (pub
= fpubhead
; pub
; pub
= pub
->next
) { /* pub-crawl :-) */
1998 if (orp
->parm
[2] != (uint32_t)pub
->segment
) {
2000 orp
->parm
[2] = pub
->segment
;
2002 orp
= obj_name(orp
, pub
->name
);
2003 orp
= obj_x(orp
, pub
->offset
);
2004 orp
= obj_byte(orp
, 0); /* type index */
2010 * Write the EXTDEF and COMDEF records, in order.
2012 orp
->ori
= ori_null
;
2013 for (ext
= exthead
; ext
; ext
= ext
->next
) {
2014 if (ext
->commonsize
== 0) {
2015 if (orp
->type
!= EXTDEF
) {
2019 orp
= obj_name(orp
, ext
->name
);
2020 orp
= obj_index(orp
, 0);
2022 if (orp
->type
!= COMDEF
) {
2026 orp
= obj_name(orp
, ext
->name
);
2027 orp
= obj_index(orp
, 0);
2028 if (ext
->commonelem
) {
2029 orp
= obj_byte(orp
, 0x61); /* far communal */
2030 orp
= obj_value(orp
, (ext
->commonsize
/ ext
->commonelem
));
2031 orp
= obj_value(orp
, ext
->commonelem
);
2033 orp
= obj_byte(orp
, 0x62); /* near communal */
2034 orp
= obj_value(orp
, ext
->commonsize
);
2042 * Write a COMENT record stating that the linker's first pass
2043 * may stop processing at this point. Exception is if our
2044 * MODEND record specifies a start point, in which case,
2045 * according to some variants of the documentation, this COMENT
2046 * should be omitted. So we'll omit it just in case.
2047 * But, TASM puts it in all the time so if we are using
2048 * TASM debug stuff we are putting it in
2050 if (debuginfo
|| obj_entry_seg
== NO_SEG
) {
2052 obj_byte(orp
, 0x40);
2053 obj_byte(orp
, dLINKPASS
);
2059 * 1) put out the compiler type
2060 * 2) Put out the type info. The only type we are using is near label #19
2064 struct Array
*arrtmp
= arrhead
;
2066 obj_byte(orp
, 0x40);
2067 obj_byte(orp
, dCOMPDEF
);
2072 obj_byte(orp
, 0x40);
2073 obj_byte(orp
, dTYPEDEF
);
2074 obj_word(orp
, 0x18); /* type # for linking */
2075 obj_word(orp
, 6); /* size of type */
2076 obj_byte(orp
, 0x2a); /* absolute type for debugging */
2078 obj_byte(orp
, 0x40);
2079 obj_byte(orp
, dTYPEDEF
);
2080 obj_word(orp
, 0x19); /* type # for linking */
2081 obj_word(orp
, 0); /* size of type */
2082 obj_byte(orp
, 0x24); /* absolute type for debugging */
2083 obj_byte(orp
, 0); /* near/far specifier */
2085 obj_byte(orp
, 0x40);
2086 obj_byte(orp
, dTYPEDEF
);
2087 obj_word(orp
, 0x1A); /* type # for linking */
2088 obj_word(orp
, 0); /* size of type */
2089 obj_byte(orp
, 0x24); /* absolute type for debugging */
2090 obj_byte(orp
, 1); /* near/far specifier */
2092 obj_byte(orp
, 0x40);
2093 obj_byte(orp
, dTYPEDEF
);
2094 obj_word(orp
, 0x1b); /* type # for linking */
2095 obj_word(orp
, 0); /* size of type */
2096 obj_byte(orp
, 0x23); /* absolute type for debugging */
2101 obj_byte(orp
, 0x40);
2102 obj_byte(orp
, dTYPEDEF
);
2103 obj_word(orp
, 0x1c); /* type # for linking */
2104 obj_word(orp
, 0); /* size of type */
2105 obj_byte(orp
, 0x23); /* absolute type for debugging */
2110 obj_byte(orp
, 0x40);
2111 obj_byte(orp
, dTYPEDEF
);
2112 obj_word(orp
, 0x1d); /* type # for linking */
2113 obj_word(orp
, 0); /* size of type */
2114 obj_byte(orp
, 0x23); /* absolute type for debugging */
2119 obj_byte(orp
, 0x40);
2120 obj_byte(orp
, dTYPEDEF
);
2121 obj_word(orp
, 0x1e); /* type # for linking */
2122 obj_word(orp
, 0); /* size of type */
2123 obj_byte(orp
, 0x23); /* absolute type for debugging */
2129 /* put out the array types */
2130 for (i
= ARRAYBOT
; i
< arrindex
; i
++) {
2131 obj_byte(orp
, 0x40);
2132 obj_byte(orp
, dTYPEDEF
);
2133 obj_word(orp
, i
); /* type # for linking */
2134 obj_word(orp
, arrtmp
->size
); /* size of type */
2135 obj_byte(orp
, 0x1A); /* absolute type for debugging (array) */
2136 obj_byte(orp
, arrtmp
->basetype
); /* base type */
2138 arrtmp
= arrtmp
->next
;
2142 * write out line number info with a LINNUM record
2143 * switch records when we switch segments, and output the
2144 * file in a pseudo-TASM fashion. The record switch is naive; that
2145 * is that one file may have many records for the same segment
2146 * if there are lots of segment switches
2148 if (fnhead
&& debuginfo
) {
2149 seg
= fnhead
->lnhead
->segment
;
2151 for (fn
= fnhead
; fn
; fn
= fn
->next
) {
2152 /* write out current file name */
2154 orp
->ori
= ori_null
;
2155 obj_byte(orp
, 0x40);
2156 obj_byte(orp
, dFILNAME
);
2158 obj_name(orp
, fn
->name
);
2162 /* write out line numbers this file */
2165 orp
->ori
= ori_linnum
;
2166 for (ln
= fn
->lnhead
; ln
; ln
= ln
->next
) {
2167 if (seg
!= ln
->segment
) {
2168 /* if we get here have to flush the buffer and start
2169 * a new record for a new segment
2174 orp
->parm
[0] = seg
->grp
? seg
->grp
->obj_index
: 0;
2175 orp
->parm
[1] = seg
->obj_index
;
2176 orp
= obj_word(orp
, ln
->lineno
);
2177 orp
= obj_x(orp
, ln
->offset
);
2184 * we are going to locate the entry point segment now
2185 * rather than wait until the MODEND record, because,
2186 * then we can output a special symbol to tell where the
2190 if (obj_entry_seg
!= NO_SEG
) {
2191 for (seg
= seghead
; seg
; seg
= seg
->next
) {
2192 if (seg
->index
== obj_entry_seg
) {
2193 entry_seg_ptr
= seg
;
2198 error(ERR_NONFATAL
, "entry point is not in this module");
2202 * get ready to put out symbol records
2205 orp
->ori
= ori_local
;
2208 * put out a symbol for the entry point
2209 * no dots in this symbol, because, borland does
2210 * not (officially) support dots in label names
2211 * and I don't know what various versions of TLINK will do
2213 if (debuginfo
&& obj_entry_seg
!= NO_SEG
) {
2214 orp
= obj_name(orp
, "start_of_program");
2215 orp
= obj_word(orp
, 0x19); /* type: near label */
2216 orp
= obj_index(orp
, seg
->grp
? seg
->grp
->obj_index
: 0);
2217 orp
= obj_index(orp
, seg
->obj_index
);
2218 orp
= obj_x(orp
, obj_entry_ofs
);
2223 * put out the local labels
2225 for (seg
= seghead
; seg
&& debuginfo
; seg
= seg
->next
) {
2226 /* labels this seg */
2227 for (loc
= seg
->lochead
; loc
; loc
= loc
->next
) {
2228 orp
= obj_name(orp
, loc
->name
);
2229 orp
= obj_word(orp
, loc
->type
);
2230 orp
= obj_index(orp
, seg
->grp
? seg
->grp
->obj_index
: 0);
2231 orp
= obj_index(orp
, seg
->obj_index
);
2232 orp
= obj_x(orp
, loc
->offset
);
2240 * Write the LEDATA/FIXUPP pairs.
2242 for (seg
= seghead
; seg
; seg
= seg
->next
) {
2244 nasm_free(seg
->orp
);
2248 * Write the MODEND module end marker.
2250 orp
->type
= obj_use32
? MODE32
: MODEND
;
2251 orp
->ori
= ori_null
;
2252 if (entry_seg_ptr
) {
2253 orp
->type
= entry_seg_ptr
->use32
? MODE32
: MODEND
;
2254 obj_byte(orp
, 0xC1);
2255 seg
= entry_seg_ptr
;
2257 obj_byte(orp
, 0x10);
2258 obj_index(orp
, seg
->grp
->obj_index
);
2261 * the below changed to prevent TLINK crashing.
2262 * Previous more efficient version read:
2264 * obj_byte (orp, 0x50);
2266 obj_byte(orp
, 0x00);
2267 obj_index(orp
, seg
->obj_index
);
2269 obj_index(orp
, seg
->obj_index
);
2270 obj_x(orp
, obj_entry_ofs
);
2277 static void obj_fwrite(ObjRecord
* orp
)
2279 unsigned int cksum
, len
;
2283 if (orp
->x_size
== 32)
2286 len
= orp
->committed
+ 1;
2287 cksum
+= (len
& 0xFF) + ((len
>> 8) & 0xFF);
2288 fwriteint16_t(len
, ofp
);
2289 fwrite(orp
->buf
, 1, len
- 1, ofp
);
2290 for (ptr
= orp
->buf
; --len
; ptr
++)
2292 fputc((-cksum
) & 0xFF, ofp
);
2295 extern macros_t obj_stdmac
[];
2297 void dbgbi_init(struct ofmt
*of
, void *id
, FILE * fp
, efunc error
)
2306 arrindex
= ARRAYBOT
;
2310 static void dbgbi_cleanup(void)
2312 struct Segment
*segtmp
;
2314 struct FileName
*fntemp
= fnhead
;
2315 while (fnhead
->lnhead
) {
2316 struct LineNumber
*lntemp
= fnhead
->lnhead
;
2317 fnhead
->lnhead
= lntemp
->next
;
2320 fnhead
= fnhead
->next
;
2321 nasm_free(fntemp
->name
);
2324 for (segtmp
= seghead
; segtmp
; segtmp
= segtmp
->next
) {
2325 while (segtmp
->lochead
) {
2326 struct Public
*loctmp
= segtmp
->lochead
;
2327 segtmp
->lochead
= loctmp
->next
;
2328 nasm_free(loctmp
->name
);
2333 struct Array
*arrtmp
= arrhead
;
2334 arrhead
= arrhead
->next
;
2339 static void dbgbi_linnum(const char *lnfname
, int32_t lineno
, int32_t segto
)
2341 struct FileName
*fn
;
2342 struct LineNumber
*ln
;
2343 struct Segment
*seg
;
2345 if (segto
== NO_SEG
)
2349 * If `any_segs' is still false, we must define a default
2353 int tempint
; /* ignored */
2354 if (segto
!= obj_segment("__NASMDEFSEG", 2, &tempint
))
2355 error(ERR_PANIC
, "strange segment conditions in OBJ driver");
2359 * Find the segment we are targetting.
2361 for (seg
= seghead
; seg
; seg
= seg
->next
)
2362 if (seg
->index
== segto
)
2365 error(ERR_PANIC
, "lineno directed to nonexistent segment?");
2367 /* for (fn = fnhead; fn; fn = fnhead->next) */
2368 for (fn
= fnhead
; fn
; fn
= fn
->next
) /* fbk - Austin Lunnen - John Fine */
2369 if (!nasm_stricmp(lnfname
, fn
->name
))
2372 fn
= nasm_malloc(sizeof(*fn
));
2373 fn
->name
= nasm_malloc(strlen(lnfname
) + 1);
2374 strcpy(fn
->name
, lnfname
);
2376 fn
->lntail
= &fn
->lnhead
;
2381 ln
= nasm_malloc(sizeof(*ln
));
2383 ln
->offset
= seg
->currentpos
;
2384 ln
->lineno
= lineno
;
2387 fn
->lntail
= &ln
->next
;
2390 static void dbgbi_deflabel(char *name
, int32_t segment
,
2391 int64_t offset
, int is_global
, char *special
)
2393 struct Segment
*seg
;
2398 * If it's a special-retry from pass two, discard it.
2404 * First check for the double-period, signifying something
2407 if (name
[0] == '.' && name
[1] == '.' && name
[2] != '@') {
2414 if (obj_seg_needs_update
) {
2416 } else if (obj_grp_needs_update
) {
2419 if (segment
< SEG_ABS
&& segment
!= NO_SEG
&& segment
% 2)
2422 if (segment
>= SEG_ABS
|| segment
== NO_SEG
) {
2427 * If `any_segs' is still false, we might need to define a
2428 * default segment, if they're trying to declare a label in
2429 * `first_seg'. But the label should exist due to a prior
2430 * call to obj_deflabel so we can skip that.
2433 for (seg
= seghead
; seg
; seg
= seg
->next
)
2434 if (seg
->index
== segment
) {
2435 struct Public
*loc
= nasm_malloc(sizeof(*loc
));
2437 * Case (ii). Maybe MODPUB someday?
2439 last_defined
= *seg
->loctail
= loc
;
2440 seg
->loctail
= &loc
->next
;
2442 loc
->name
= nasm_strdup(name
);
2443 loc
->offset
= offset
;
2446 static void dbgbi_typevalue(int32_t type
)
2449 int elem
= TYM_ELEMENTS(type
);
2450 type
= TYM_TYPE(type
);
2457 last_defined
->type
= 8; /* uint8_t */
2461 last_defined
->type
= 10; /* unsigned word */
2465 last_defined
->type
= 12; /* unsigned dword */
2469 last_defined
->type
= 14; /* float */
2473 last_defined
->type
= 15; /* qword */
2477 last_defined
->type
= 16; /* TBYTE */
2481 last_defined
->type
= 0x19; /*label */
2487 struct Array
*arrtmp
= nasm_malloc(sizeof(*arrtmp
));
2488 int vtype
= last_defined
->type
;
2489 arrtmp
->size
= vsize
* elem
;
2490 arrtmp
->basetype
= vtype
;
2491 arrtmp
->next
= NULL
;
2492 last_defined
->type
= arrindex
++;
2494 arrtail
= &(arrtmp
->next
);
2496 last_defined
= NULL
;
2498 static void dbgbi_output(int output_type
, void *param
)
2503 static struct dfmt borland_debug_form
= {
2504 "Borland Debug Records",
2515 static struct dfmt
*borland_debug_arr
[3] = {
2516 &borland_debug_form
,
2521 struct ofmt of_obj
= {
2522 "MS-DOS 16-bit/32-bit OMF object files",
2526 &borland_debug_form
,