Revert "BR 2887108: Use overflow_ helper to catch inappropriate imm optimization"
[nasm/avx512.git] / output / outelf64.c
blob5713f0962ac712dc8d7a06c952f8d404efa246d0
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * outelf64.c output routines for the Netwide Assembler to produce
36 * ELF64 (x86_64 of course) object file format
39 #include "compiler.h"
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <ctype.h>
45 #include <inttypes.h>
47 #include "nasm.h"
48 #include "nasmlib.h"
49 #include "saa.h"
50 #include "raa.h"
51 #include "stdscan.h"
52 #include "eval.h"
53 #include "output/outform.h"
54 #include "output/outlib.h"
55 #include "rbtree.h"
57 #include "output/elf64.h"
58 #include "output/dwarf.h"
59 #include "output/outelf.h"
61 #ifdef OF_ELF64
63 #define SOC(ln,aa) ln - line_base + (line_range * aa) + opcode_base
65 struct Reloc {
66 struct Reloc *next;
67 int64_t address; /* relative to _start_ of section */
68 int64_t symbol; /* symbol index */
69 int64_t offset; /* symbol addend */
70 int type; /* type of relocation */
73 struct Symbol {
74 struct rbtree symv; /* symbol value and rbtree of globals */
75 int32_t strpos; /* string table position of name */
76 int32_t section; /* section ID of the symbol */
77 int type; /* symbol type */
78 int other; /* symbol visibility */
79 int32_t size; /* size of symbol */
80 int32_t globnum; /* symbol table offset if global */
81 struct Symbol *nextfwd; /* list of unresolved-size symbols */
82 char *name; /* used temporarily if in above list */
85 struct Section {
86 struct SAA *data;
87 uint64_t len, size;
88 uint32_t nrelocs;
89 int32_t index; /* index into sects array */
90 int type; /* SHT_PROGBITS or SHT_NOBITS */
91 uint64_t align; /* alignment: power of two */
92 uint64_t flags; /* section flags */
93 char *name;
94 struct SAA *rel;
95 uint64_t rellen;
96 struct Reloc *head, **tail;
97 struct rbtree *gsyms; /* global symbols in section */
100 #define SECT_DELTA 32
101 static struct Section **sects;
102 static int nsects, sectlen;
104 #define SHSTR_DELTA 256
105 static char *shstrtab;
106 static int shstrtablen, shstrtabsize;
108 static struct SAA *syms;
109 static uint32_t nlocals, nglobs, ndebugs;
111 static int32_t def_seg;
113 static struct RAA *bsym;
115 static struct SAA *strs;
116 static uint32_t strslen;
118 static struct Symbol *fwds;
120 static char elf_module[FILENAME_MAX];
122 static uint8_t elf_osabi = 0; /* Default OSABI = 0 (System V or Linux) */
123 static uint8_t elf_abiver = 0; /* Current ABI version */
125 extern struct ofmt of_elf64;
127 static struct ELF_SECTDATA {
128 void *data;
129 int64_t len;
130 bool is_saa;
131 } *elf_sects;
132 static int elf_nsect, nsections;
133 static int64_t elf_foffs;
135 static void elf_write(void);
136 static void elf_sect_write(struct Section *, const void *, size_t);
137 static void elf_sect_writeaddr(struct Section *, int64_t, size_t);
138 static void elf_section_header(int, int, uint64_t, void *, bool, uint64_t, int, int,
139 int, int);
140 static void elf_write_sections(void);
141 static struct SAA *elf_build_symtab(int32_t *, int32_t *);
142 static struct SAA *elf_build_reltab(uint64_t *, struct Reloc *);
143 static void add_sectname(char *, char *);
145 /* type values for stabs debugging sections */
146 #define N_SO 0x64 /* ID for main source file */
147 #define N_SOL 0x84 /* ID for sub-source file */
148 #define N_BINCL 0x82 /* not currently used */
149 #define N_EINCL 0xA2 /* not currently used */
150 #define N_SLINE 0x44
152 struct stabentry {
153 uint32_t n_strx;
154 uint8_t n_type;
155 uint8_t n_other;
156 uint16_t n_desc;
157 uint32_t n_value;
160 struct erel {
161 int offset, info;
164 struct symlininfo {
165 int offset;
166 int section; /* index into sects[] */
167 int segto; /* internal section number */
168 char *name; /* shallow-copied pointer of section name */
171 struct linelist {
172 struct symlininfo info;
173 int line;
174 char *filename;
175 struct linelist *next;
176 struct linelist *last;
179 struct sectlist {
180 struct SAA *psaa;
181 int section;
182 int line;
183 int offset;
184 int file;
185 struct sectlist *next;
186 struct sectlist *last;
189 /* common debug variables */
190 static int currentline = 1;
191 static int debug_immcall = 0;
193 /* stabs debug variables */
194 static struct linelist *stabslines = 0;
195 static int numlinestabs = 0;
196 static char *stabs_filename = 0;
197 static int symtabsection;
198 static uint8_t *stabbuf = 0, *stabstrbuf = 0, *stabrelbuf = 0;
199 static int stablen, stabstrlen, stabrellen;
201 /* dwarf debug variables */
202 static struct linelist *dwarf_flist = 0, *dwarf_clist = 0, *dwarf_elist = 0;
203 static struct sectlist *dwarf_fsect = 0, *dwarf_csect = 0, *dwarf_esect = 0;
204 static int dwarf_numfiles = 0, dwarf_nsections;
205 static uint8_t *arangesbuf = 0, *arangesrelbuf = 0, *pubnamesbuf = 0, *infobuf = 0, *inforelbuf = 0,
206 *abbrevbuf = 0, *linebuf = 0, *linerelbuf = 0, *framebuf = 0, *locbuf = 0;
207 static int8_t line_base = -5, line_range = 14, opcode_base = 13;
208 static int arangeslen, arangesrellen, pubnameslen, infolen, inforellen,
209 abbrevlen, linelen, linerellen, framelen, loclen;
210 static int64_t dwarf_infosym, dwarf_abbrevsym, dwarf_linesym;
213 static struct dfmt df_dwarf;
214 static struct dfmt df_stabs;
215 static struct Symbol *lastsym;
217 /* common debugging routines */
218 static void debug64_typevalue(int32_t);
219 static void debug64_deflabel(char *, int32_t, int64_t, int, char *);
220 static void debug64_directive(const char *, const char *);
222 /* stabs debugging routines */
223 static void stabs64_linenum(const char *filename, int32_t linenumber, int32_t);
224 static void stabs64_output(int, void *);
225 static void stabs64_generate(void);
226 static void stabs64_cleanup(void);
228 /* dwarf debugging routines */
229 static void dwarf64_init(void);
230 static void dwarf64_linenum(const char *filename, int32_t linenumber, int32_t);
231 static void dwarf64_output(int, void *);
232 static void dwarf64_generate(void);
233 static void dwarf64_cleanup(void);
234 static void dwarf64_findfile(const char *);
235 static void dwarf64_findsect(const int);
238 * Special section numbers which are used to define ELF special
239 * symbols, which can be used with WRT to provide PIC relocation
240 * types.
242 static int32_t elf_gotpc_sect, elf_gotoff_sect;
243 static int32_t elf_got_sect, elf_plt_sect;
244 static int32_t elf_sym_sect;
245 static int32_t elf_gottpoff_sect;
247 static void elf_init(void)
249 maxbits = 64;
250 sects = NULL;
251 nsects = sectlen = 0;
252 syms = saa_init((int32_t)sizeof(struct Symbol));
253 nlocals = nglobs = ndebugs = 0;
254 bsym = raa_init();
255 strs = saa_init(1L);
256 saa_wbytes(strs, "\0", 1L);
257 saa_wbytes(strs, elf_module, (int32_t)(strlen(elf_module) + 1));
258 strslen = 2 + strlen(elf_module);
259 shstrtab = NULL;
260 shstrtablen = shstrtabsize = 0;;
261 add_sectname("", "");
263 fwds = NULL;
265 elf_gotpc_sect = seg_alloc();
266 define_label("..gotpc", elf_gotpc_sect + 1, 0L, NULL, false, false);
267 elf_gotoff_sect = seg_alloc();
268 define_label("..gotoff", elf_gotoff_sect + 1, 0L, NULL, false, false);
269 elf_got_sect = seg_alloc();
270 define_label("..got", elf_got_sect + 1, 0L, NULL, false, false);
271 elf_plt_sect = seg_alloc();
272 define_label("..plt", elf_plt_sect + 1, 0L, NULL, false, false);
273 elf_sym_sect = seg_alloc();
274 define_label("..sym", elf_sym_sect + 1, 0L, NULL, false, false);
275 elf_gottpoff_sect = seg_alloc();
276 define_label("..gottpoff", elf_gottpoff_sect + 1, 0L, NULL, false, false);
278 def_seg = seg_alloc();
282 static void elf_cleanup(int debuginfo)
284 struct Reloc *r;
285 int i;
287 (void)debuginfo;
289 elf_write();
290 for (i = 0; i < nsects; i++) {
291 if (sects[i]->type != SHT_NOBITS)
292 saa_free(sects[i]->data);
293 if (sects[i]->head)
294 saa_free(sects[i]->rel);
295 while (sects[i]->head) {
296 r = sects[i]->head;
297 sects[i]->head = sects[i]->head->next;
298 nasm_free(r);
301 nasm_free(sects);
302 saa_free(syms);
303 raa_free(bsym);
304 saa_free(strs);
305 if (of_elf64.current_dfmt) {
306 of_elf64.current_dfmt->cleanup();
309 /* add entry to the elf .shstrtab section */
310 static void add_sectname(char *firsthalf, char *secondhalf)
312 int len = strlen(firsthalf) + strlen(secondhalf);
313 while (shstrtablen + len + 1 > shstrtabsize)
314 shstrtab = nasm_realloc(shstrtab, (shstrtabsize += SHSTR_DELTA));
315 strcpy(shstrtab + shstrtablen, firsthalf);
316 strcat(shstrtab + shstrtablen, secondhalf);
317 shstrtablen += len + 1;
320 static int elf_make_section(char *name, int type, int flags, int align)
322 struct Section *s;
324 s = nasm_malloc(sizeof(*s));
326 if (type != SHT_NOBITS)
327 s->data = saa_init(1L);
328 s->head = NULL;
329 s->tail = &s->head;
330 s->len = s->size = 0;
331 s->nrelocs = 0;
332 if (!strcmp(name, ".text"))
333 s->index = def_seg;
334 else
335 s->index = seg_alloc();
336 add_sectname("", name);
337 s->name = nasm_malloc(1 + strlen(name));
338 strcpy(s->name, name);
339 s->type = type;
340 s->flags = flags;
341 s->align = align;
342 s->gsyms = NULL;
344 if (nsects >= sectlen)
345 sects = nasm_realloc(sects, (sectlen += SECT_DELTA) * sizeof(*sects));
346 sects[nsects++] = s;
348 return nsects - 1;
351 static int32_t elf_section_names(char *name, int pass, int *bits)
353 char *p;
354 uint32_t flags, flags_and, flags_or;
355 uint64_t align;
356 int type, i;
359 * Default is 64 bits.
361 if (!name) {
362 *bits = 64;
363 return def_seg;
366 p = nasm_skip_word(name);
367 if (*p)
368 *p++ = '\0';
369 flags_and = flags_or = type = align = 0;
371 p = nasm_skip_spaces(p);
372 while (*p) {
373 char *q = p;
374 p = nasm_skip_word(p);
375 if (*p)
376 *p++ = '\0';
377 p = nasm_skip_spaces(p);
379 if (!nasm_strnicmp(q, "align=", 6)) {
380 align = atoi(q + 6);
381 if (align == 0)
382 align = 1;
383 if ((align - 1) & align) { /* means it's not a power of two */
384 nasm_error(ERR_NONFATAL, "section alignment %"PRId64" is not"
385 " a power of two", align);
386 align = 1;
388 } else if (!nasm_stricmp(q, "alloc")) {
389 flags_and |= SHF_ALLOC;
390 flags_or |= SHF_ALLOC;
391 } else if (!nasm_stricmp(q, "noalloc")) {
392 flags_and |= SHF_ALLOC;
393 flags_or &= ~SHF_ALLOC;
394 } else if (!nasm_stricmp(q, "exec")) {
395 flags_and |= SHF_EXECINSTR;
396 flags_or |= SHF_EXECINSTR;
397 } else if (!nasm_stricmp(q, "noexec")) {
398 flags_and |= SHF_EXECINSTR;
399 flags_or &= ~SHF_EXECINSTR;
400 } else if (!nasm_stricmp(q, "write")) {
401 flags_and |= SHF_WRITE;
402 flags_or |= SHF_WRITE;
403 } else if (!nasm_stricmp(q, "tls")) {
404 flags_and |= SHF_TLS;
405 flags_or |= SHF_TLS;
406 } else if (!nasm_stricmp(q, "nowrite")) {
407 flags_and |= SHF_WRITE;
408 flags_or &= ~SHF_WRITE;
409 } else if (!nasm_stricmp(q, "progbits")) {
410 type = SHT_PROGBITS;
411 } else if (!nasm_stricmp(q, "nobits")) {
412 type = SHT_NOBITS;
413 } else if (pass == 1) {
414 nasm_error(ERR_WARNING, "Unknown section attribute '%s' ignored on"
415 " declaration of section `%s'", q, name);
419 if (!strcmp(name, ".shstrtab") ||
420 !strcmp(name, ".symtab") ||
421 !strcmp(name, ".strtab")) {
422 nasm_error(ERR_NONFATAL, "attempt to redefine reserved section"
423 "name `%s'", name);
424 return NO_SEG;
427 for (i = 0; i < nsects; i++)
428 if (!strcmp(name, sects[i]->name))
429 break;
430 if (i == nsects) {
431 const struct elf_known_section *ks = elf_known_sections;
433 while (ks->name) {
434 if (!strcmp(name, ks->name))
435 break;
436 ks++;
439 type = type ? type : ks->type;
440 align = align ? align : ks->align;
441 flags = (ks->flags & ~flags_and) | flags_or;
443 i = elf_make_section(name, type, flags, align);
444 } else if (pass == 1) {
445 if ((type && sects[i]->type != type)
446 || (align && sects[i]->align != align)
447 || (flags_and && ((sects[i]->flags & flags_and) != flags_or)))
448 nasm_error(ERR_WARNING, "incompatible section attributes ignored on"
449 " redeclaration of section `%s'", name);
452 return sects[i]->index;
455 static void elf_deflabel(char *name, int32_t segment, int64_t offset,
456 int is_global, char *special)
458 int pos = strslen;
459 struct Symbol *sym;
460 bool special_used = false;
462 #if defined(DEBUG) && DEBUG>2
463 nasm_error(ERR_DEBUG,
464 " elf_deflabel: %s, seg=%"PRIx32", off=%"PRIx64", is_global=%d, %s\n",
465 name, segment, offset, is_global, special);
466 #endif
467 if (name[0] == '.' && name[1] == '.' && name[2] != '@') {
469 * This is a NASM special symbol. We never allow it into
470 * the ELF symbol table, even if it's a valid one. If it
471 * _isn't_ a valid one, we should barf immediately.
473 if (strcmp(name, "..gotpc") && strcmp(name, "..gotoff") &&
474 strcmp(name, "..got") && strcmp(name, "..plt") &&
475 strcmp(name, "..sym") && strcmp(name, "..gottpoff"))
476 nasm_error(ERR_NONFATAL, "unrecognised special symbol `%s'", name);
477 return;
480 if (is_global == 3) {
481 struct Symbol **s;
483 * Fix up a forward-reference symbol size from the first
484 * pass.
486 for (s = &fwds; *s; s = &(*s)->nextfwd)
487 if (!strcmp((*s)->name, name)) {
488 struct tokenval tokval;
489 expr *e;
490 char *p = nasm_skip_spaces(nasm_skip_word(special));
492 stdscan_reset();
493 stdscan_set(p);
494 tokval.t_type = TOKEN_INVALID;
495 e = evaluate(stdscan, NULL, &tokval, NULL, 1, nasm_error, NULL);
496 if (e) {
497 if (!is_simple(e))
498 nasm_error(ERR_NONFATAL, "cannot use relocatable"
499 " expression as symbol size");
500 else
501 (*s)->size = reloc_value(e);
505 * Remove it from the list of unresolved sizes.
507 nasm_free((*s)->name);
508 *s = (*s)->nextfwd;
509 return;
511 return; /* it wasn't an important one */
514 saa_wbytes(strs, name, (int32_t)(1 + strlen(name)));
515 strslen += 1 + strlen(name);
517 lastsym = sym = saa_wstruct(syms);
519 memset(&sym->symv, 0, sizeof(struct rbtree));
521 sym->strpos = pos;
522 sym->type = is_global ? SYM_GLOBAL : 0;
523 sym->other = STV_DEFAULT;
524 sym->size = 0;
525 if (segment == NO_SEG)
526 sym->section = SHN_ABS;
527 else {
528 int i;
529 sym->section = SHN_UNDEF;
530 if (nsects == 0 && segment == def_seg) {
531 int tempint;
532 if (segment != elf_section_names(".text", 2, &tempint))
533 nasm_error(ERR_PANIC,
534 "strange segment conditions in ELF driver");
535 sym->section = nsects;
536 } else {
537 for (i = 0; i < nsects; i++)
538 if (segment == sects[i]->index) {
539 sym->section = i + 1;
540 break;
545 if (is_global == 2) {
546 sym->size = offset;
547 sym->symv.key = 0;
548 sym->section = SHN_COMMON;
550 * We have a common variable. Check the special text to see
551 * if it's a valid number and power of two; if so, store it
552 * as the alignment for the common variable.
554 if (special) {
555 bool err;
556 sym->symv.key = readnum(special, &err);
557 if (err)
558 nasm_error(ERR_NONFATAL, "alignment constraint `%s' is not a"
559 " valid number", special);
560 else if ((sym->symv.key | (sym->symv.key - 1))
561 != 2 * sym->symv.key - 1)
562 nasm_error(ERR_NONFATAL, "alignment constraint `%s' is not a"
563 " power of two", special);
565 special_used = true;
566 } else
567 sym->symv.key = (sym->section == SHN_UNDEF ? 0 : offset);
569 if (sym->type == SYM_GLOBAL) {
571 * If sym->section == SHN_ABS, then the first line of the
572 * else section would cause a core dump, because its a reference
573 * beyond the end of the section array.
574 * This behaviour is exhibited by this code:
575 * GLOBAL crash_nasm
576 * crash_nasm equ 0
577 * To avoid such a crash, such requests are silently discarded.
578 * This may not be the best solution.
580 if (sym->section == SHN_UNDEF || sym->section == SHN_COMMON) {
581 bsym = raa_write(bsym, segment, nglobs);
582 } else if (sym->section != SHN_ABS) {
584 * This is a global symbol; so we must add it to the rbtree
585 * of global symbols in its section.
587 * In addition, we check the special text for symbol
588 * type and size information.
590 sects[sym->section-1]->gsyms =
591 rb_insert(sects[sym->section-1]->gsyms, &sym->symv);
593 if (special) {
594 int n = strcspn(special, " \t");
596 if (!nasm_strnicmp(special, "function", n))
597 sym->type |= STT_FUNC;
598 else if (!nasm_strnicmp(special, "data", n) ||
599 !nasm_strnicmp(special, "object", n))
600 sym->type |= STT_OBJECT;
601 else if (!nasm_strnicmp(special, "notype", n))
602 sym->type |= STT_NOTYPE;
603 else
604 nasm_error(ERR_NONFATAL, "unrecognised symbol type `%.*s'",
605 n, special);
606 special += n;
608 special = nasm_skip_spaces(special);
609 if (*special) {
610 n = strcspn(special, " \t");
611 if (!nasm_strnicmp(special, "default", n))
612 sym->other = STV_DEFAULT;
613 else if (!nasm_strnicmp(special, "internal", n))
614 sym->other = STV_INTERNAL;
615 else if (!nasm_strnicmp(special, "hidden", n))
616 sym->other = STV_HIDDEN;
617 else if (!nasm_strnicmp(special, "protected", n))
618 sym->other = STV_PROTECTED;
619 else
620 n = 0;
621 special += n;
624 if (*special) {
625 struct tokenval tokval;
626 expr *e;
627 int fwd = 0;
628 char *saveme = stdscan_get();
630 while (special[n] && nasm_isspace(special[n]))
631 n++;
633 * We have a size expression; attempt to
634 * evaluate it.
636 stdscan_reset();
637 stdscan_set(special + n);
638 tokval.t_type = TOKEN_INVALID;
639 e = evaluate(stdscan, NULL, &tokval, &fwd, 0, nasm_error,
640 NULL);
641 if (fwd) {
642 sym->nextfwd = fwds;
643 fwds = sym;
644 sym->name = nasm_strdup(name);
645 } else if (e) {
646 if (!is_simple(e))
647 nasm_error(ERR_NONFATAL, "cannot use relocatable"
648 " expression as symbol size");
649 else
650 sym->size = reloc_value(e);
652 stdscan_set(saveme);
654 special_used = true;
657 * If TLS segment, mark symbol accordingly.
659 if (sects[sym->section - 1]->flags & SHF_TLS) {
660 sym->type &= 0xf0;
661 sym->type |= STT_TLS;
664 sym->globnum = nglobs;
665 nglobs++;
666 } else
667 nlocals++;
669 if (special && !special_used)
670 nasm_error(ERR_NONFATAL, "no special symbol features supported here");
673 static void elf_add_reloc(struct Section *sect, int32_t segment,
674 int64_t offset, int type)
676 struct Reloc *r;
677 r = *sect->tail = nasm_malloc(sizeof(struct Reloc));
678 sect->tail = &r->next;
679 r->next = NULL;
681 r->address = sect->len;
682 r->offset = offset;
683 if (segment == NO_SEG)
684 r->symbol = 0;
685 else {
686 int i;
687 r->symbol = 0;
688 for (i = 0; i < nsects; i++)
689 if (segment == sects[i]->index)
690 r->symbol = i + 2;
691 if (!r->symbol)
692 r->symbol = GLOBAL_TEMP_BASE + raa_read(bsym, segment);
694 r->type = type;
696 sect->nrelocs++;
700 * This routine deals with ..got and ..sym relocations: the more
701 * complicated kinds. In shared-library writing, some relocations
702 * with respect to global symbols must refer to the precise symbol
703 * rather than referring to an offset from the base of the section
704 * _containing_ the symbol. Such relocations call to this routine,
705 * which searches the symbol list for the symbol in question.
707 * R_386_GOT32 references require the _exact_ symbol address to be
708 * used; R_386_32 references can be at an offset from the symbol.
709 * The boolean argument `exact' tells us this.
711 * Return value is the adjusted value of `addr', having become an
712 * offset from the symbol rather than the section. Should always be
713 * zero when returning from an exact call.
715 * Limitation: if you define two symbols at the same place,
716 * confusion will occur.
718 * Inefficiency: we search, currently, using a linked list which
719 * isn't even necessarily sorted.
721 static void elf_add_gsym_reloc(struct Section *sect,
722 int32_t segment, uint64_t offset, int64_t pcrel,
723 int type, bool exact)
725 struct Reloc *r;
726 struct Section *s;
727 struct Symbol *sym;
728 struct rbtree *srb;
729 int i;
732 * First look up the segment/offset pair and find a global
733 * symbol corresponding to it. If it's not one of our segments,
734 * then it must be an external symbol, in which case we're fine
735 * doing a normal elf_add_reloc after first sanity-checking
736 * that the offset from the symbol is zero.
738 s = NULL;
739 for (i = 0; i < nsects; i++)
740 if (segment == sects[i]->index) {
741 s = sects[i];
742 break;
745 if (!s) {
746 if (exact && offset)
747 nasm_error(ERR_NONFATAL, "invalid access to an external symbol");
748 else
749 elf_add_reloc(sect, segment, offset - pcrel, type);
750 return;
753 srb = rb_search(s->gsyms, offset);
754 if (!srb || (exact && srb->key != offset)) {
755 nasm_error(ERR_NONFATAL, "unable to find a suitable global symbol"
756 " for this reference");
757 return;
759 sym = container_of(srb, struct Symbol, symv);
761 r = *sect->tail = nasm_malloc(sizeof(struct Reloc));
762 sect->tail = &r->next;
763 r->next = NULL;
765 r->address = sect->len;
766 r->offset = offset - pcrel - sym->symv.key;
767 r->symbol = GLOBAL_TEMP_BASE + sym->globnum;
768 r->type = type;
770 sect->nrelocs++;
773 static void elf_out(int32_t segto, const void *data,
774 enum out_type type, uint64_t size,
775 int32_t segment, int32_t wrt)
777 struct Section *s;
778 int64_t addr, zero;
779 int i;
780 static struct symlininfo sinfo;
782 zero = 0;
784 #if defined(DEBUG) && DEBUG>2
785 if (data)
786 nasm_error(ERR_DEBUG,
787 " elf_out line: %d type: %x seg: %"PRIx32" segto: %"PRIx32" bytes: %"PRIx64" data: %"PRIx64"\n",
788 currentline, type, segment, segto, size, *(int64_t *)data);
789 else
790 nasm_error(ERR_DEBUG,
791 " elf_out line: %d type: %x seg: %"PRIx32" segto: %"PRIx32" bytes: %"PRIx64"\n",
792 currentline, type, segment, segto, size);
793 #endif
796 * handle absolute-assembly (structure definitions)
798 if (segto == NO_SEG) {
799 if (type != OUT_RESERVE)
800 nasm_error(ERR_NONFATAL, "attempt to assemble code in [ABSOLUTE]"
801 " space");
802 return;
805 s = NULL;
806 for (i = 0; i < nsects; i++)
807 if (segto == sects[i]->index) {
808 s = sects[i];
809 break;
811 if (!s) {
812 int tempint; /* ignored */
813 if (segto != elf_section_names(".text", 2, &tempint))
814 nasm_error(ERR_PANIC, "strange segment conditions in ELF driver");
815 else {
816 s = sects[nsects - 1];
817 i = nsects - 1;
820 /* invoke current debug_output routine */
821 if (of_elf64.current_dfmt) {
822 sinfo.offset = s->len;
823 sinfo.section = i;
824 sinfo.segto = segto;
825 sinfo.name = s->name;
826 of_elf64.current_dfmt->debug_output(TY_DEBUGSYMLIN, &sinfo);
828 /* end of debugging stuff */
830 if (s->type == SHT_NOBITS && type != OUT_RESERVE) {
831 nasm_error(ERR_WARNING, "attempt to initialize memory in"
832 " BSS section `%s': ignored", s->name);
833 s->len += realsize(type, size);
834 return;
837 if (type == OUT_RESERVE) {
838 if (s->type == SHT_PROGBITS) {
839 nasm_error(ERR_WARNING, "uninitialized space declared in"
840 " non-BSS section `%s': zeroing", s->name);
841 elf_sect_write(s, NULL, size);
842 } else
843 s->len += size;
844 } else if (type == OUT_RAWDATA) {
845 if (segment != NO_SEG)
846 nasm_error(ERR_PANIC, "OUT_RAWDATA with other than NO_SEG");
847 elf_sect_write(s, data, size);
848 } else if (type == OUT_ADDRESS) {
849 addr = *(int64_t *)data;
850 if (segment == NO_SEG) {
851 /* Do nothing */
852 } else if (segment % 2) {
853 nasm_error(ERR_NONFATAL, "ELF format does not support"
854 " segment base references");
855 } else {
856 if (wrt == NO_SEG) {
857 switch ((int)size) {
858 case 1:
859 elf_add_reloc(s, segment, addr, R_X86_64_8);
860 break;
861 case 2:
862 elf_add_reloc(s, segment, addr, R_X86_64_16);
863 break;
864 case 4:
865 elf_add_reloc(s, segment, addr, R_X86_64_32);
866 break;
867 case 8:
868 elf_add_reloc(s, segment, addr, R_X86_64_64);
869 break;
870 default:
871 nasm_error(ERR_PANIC, "internal error elf64-hpa-871");
872 break;
874 addr = 0;
875 } else if (wrt == elf_gotpc_sect + 1) {
877 * The user will supply GOT relative to $$. ELF
878 * will let us have GOT relative to $. So we
879 * need to fix up the data item by $-$$.
881 addr += s->len;
882 elf_add_reloc(s, segment, addr, R_X86_64_GOTPC32);
883 addr = 0;
884 } else if (wrt == elf_gotoff_sect + 1) {
885 if (size != 8) {
886 nasm_error(ERR_NONFATAL, "ELF64 requires ..gotoff "
887 "references to be qword");
888 } else {
889 elf_add_reloc(s, segment, addr, R_X86_64_GOTOFF64);
890 addr = 0;
892 } else if (wrt == elf_got_sect + 1) {
893 switch ((int)size) {
894 case 4:
895 elf_add_gsym_reloc(s, segment, addr, 0,
896 R_X86_64_GOT32, true);
897 addr = 0;
898 break;
899 case 8:
900 elf_add_gsym_reloc(s, segment, addr, 0,
901 R_X86_64_GOT64, true);
902 addr = 0;
903 break;
904 default:
905 nasm_error(ERR_NONFATAL, "invalid ..got reference");
906 break;
908 } else if (wrt == elf_sym_sect + 1) {
909 switch ((int)size) {
910 case 1:
911 elf_add_gsym_reloc(s, segment, addr, 0,
912 R_X86_64_8, false);
913 addr = 0;
914 break;
915 case 2:
916 elf_add_gsym_reloc(s, segment, addr, 0,
917 R_X86_64_16, false);
918 addr = 0;
919 break;
920 case 4:
921 elf_add_gsym_reloc(s, segment, addr, 0,
922 R_X86_64_32, false);
923 addr = 0;
924 break;
925 case 8:
926 elf_add_gsym_reloc(s, segment, addr, 0,
927 R_X86_64_64, false);
928 addr = 0;
929 break;
930 default:
931 nasm_error(ERR_PANIC, "internal error elf64-hpa-903");
932 break;
934 } else if (wrt == elf_plt_sect + 1) {
935 nasm_error(ERR_NONFATAL, "ELF format cannot produce non-PC-"
936 "relative PLT references");
937 } else {
938 nasm_error(ERR_NONFATAL, "ELF format does not support this"
939 " use of WRT");
942 elf_sect_writeaddr(s, addr, size);
943 } else if (type == OUT_REL2ADR) {
944 addr = *(int64_t *)data - size;
945 if (segment == segto)
946 nasm_error(ERR_PANIC, "intra-segment OUT_REL2ADR");
947 if (segment == NO_SEG) {
948 /* Do nothing */
949 } else if (segment % 2) {
950 nasm_error(ERR_NONFATAL, "ELF format does not support"
951 " segment base references");
952 } else {
953 if (wrt == NO_SEG) {
954 elf_add_reloc(s, segment, addr, R_X86_64_PC16);
955 addr = 0;
956 } else {
957 nasm_error(ERR_NONFATAL,
958 "Unsupported non-32-bit ELF relocation [2]");
961 elf_sect_writeaddr(s, addr, 2);
962 } else if (type == OUT_REL4ADR) {
963 addr = *(int64_t *)data - size;
964 if (segment == segto)
965 nasm_error(ERR_PANIC, "intra-segment OUT_REL4ADR");
966 if (segment == NO_SEG) {
967 /* Do nothing */
968 } else if (segment % 2) {
969 nasm_error(ERR_NONFATAL, "ELF64 format does not support"
970 " segment base references");
971 } else {
972 if (wrt == NO_SEG) {
973 elf_add_reloc(s, segment, addr, R_X86_64_PC32);
974 addr = 0;
975 } else if (wrt == elf_plt_sect + 1) {
976 elf_add_gsym_reloc(s, segment, addr+size, size,
977 R_X86_64_PLT32, true);
978 addr = 0;
979 } else if (wrt == elf_gotpc_sect + 1 ||
980 wrt == elf_got_sect + 1) {
981 elf_add_gsym_reloc(s, segment, addr+size, size,
982 R_X86_64_GOTPCREL, true);
983 addr = 0;
984 } else if (wrt == elf_gotoff_sect + 1 ||
985 wrt == elf_got_sect + 1) {
986 nasm_error(ERR_NONFATAL, "ELF64 requires ..gotoff references to be "
987 "qword absolute");
988 } else if (wrt == elf_gottpoff_sect + 1) {
989 elf_add_gsym_reloc(s, segment, addr+size, size,
990 R_X86_64_GOTTPOFF, true);
991 addr = 0;
992 } else {
993 nasm_error(ERR_NONFATAL, "ELF64 format does not support this"
994 " use of WRT");
997 elf_sect_writeaddr(s, addr, 4);
998 } else if (type == OUT_REL8ADR) {
999 addr = *(int64_t *)data - size;
1000 if (segment == segto)
1001 nasm_error(ERR_PANIC, "intra-segment OUT_REL8ADR");
1002 if (segment == NO_SEG) {
1003 /* Do nothing */
1004 } else if (segment % 2) {
1005 nasm_error(ERR_NONFATAL, "ELF64 format does not support"
1006 " segment base references");
1007 } else {
1008 if (wrt == NO_SEG) {
1009 elf_add_reloc(s, segment, addr, R_X86_64_PC64);
1010 addr = 0;
1011 } else if (wrt == elf_gotpc_sect + 1 ||
1012 wrt == elf_got_sect + 1) {
1013 elf_add_gsym_reloc(s, segment, addr+size, size,
1014 R_X86_64_GOTPCREL64, true);
1015 addr = 0;
1016 } else if (wrt == elf_gotoff_sect + 1 ||
1017 wrt == elf_got_sect + 1) {
1018 nasm_error(ERR_NONFATAL, "ELF64 requires ..gotoff references to be "
1019 "absolute");
1020 } else if (wrt == elf_gottpoff_sect + 1) {
1021 nasm_error(ERR_NONFATAL, "ELF64 requires ..gottpoff references to be "
1022 "dword");
1023 } else {
1024 nasm_error(ERR_NONFATAL, "ELF64 format does not support this"
1025 " use of WRT");
1028 elf_sect_writeaddr(s, addr, 8);
1032 static void elf_write(void)
1034 int align;
1035 char *p;
1036 int i;
1038 struct SAA *symtab;
1039 int32_t symtablen, symtablocal;
1042 * Work out how many sections we will have. We have SHN_UNDEF,
1043 * then the flexible user sections, then the fixed sections
1044 * `.shstrtab', `.symtab' and `.strtab', then optionally
1045 * relocation sections for the user sections.
1047 nsections = sec_numspecial + 1;
1048 if (of_elf64.current_dfmt == &df_stabs)
1049 nsections += 3;
1050 else if (of_elf64.current_dfmt == &df_dwarf)
1051 nsections += 10;
1053 add_sectname("", ".shstrtab");
1054 add_sectname("", ".symtab");
1055 add_sectname("", ".strtab");
1056 for (i = 0; i < nsects; i++) {
1057 nsections++; /* for the section itself */
1058 if (sects[i]->head) {
1059 nsections++; /* for its relocations */
1060 add_sectname(".rela", sects[i]->name);
1064 if (of_elf64.current_dfmt == &df_stabs) {
1065 /* in case the debug information is wanted, just add these three sections... */
1066 add_sectname("", ".stab");
1067 add_sectname("", ".stabstr");
1068 add_sectname(".rel", ".stab");
1071 else if (of_elf64.current_dfmt == &df_dwarf) {
1072 /* the dwarf debug standard specifies the following ten sections,
1073 not all of which are currently implemented,
1074 although all of them are defined. */
1075 #define debug_aranges (int64_t) (nsections-10)
1076 #define debug_info (int64_t) (nsections-7)
1077 #define debug_abbrev (int64_t) (nsections-5)
1078 #define debug_line (int64_t) (nsections-4)
1079 add_sectname("", ".debug_aranges");
1080 add_sectname(".rela", ".debug_aranges");
1081 add_sectname("", ".debug_pubnames");
1082 add_sectname("", ".debug_info");
1083 add_sectname(".rela", ".debug_info");
1084 add_sectname("", ".debug_abbrev");
1085 add_sectname("", ".debug_line");
1086 add_sectname(".rela", ".debug_line");
1087 add_sectname("", ".debug_frame");
1088 add_sectname("", ".debug_loc");
1092 * Output the ELF header.
1094 fwrite("\177ELF\2\1\1", 7, 1, ofile);
1095 fputc(elf_osabi, ofile);
1096 fputc(elf_abiver, ofile);
1097 fwritezero(7, ofile);
1098 fwriteint16_t(ET_REL, ofile); /* relocatable file */
1099 fwriteint16_t(EM_X86_64, ofile); /* processor ID */
1100 fwriteint32_t(1L, ofile); /* EV_CURRENT file format version */
1101 fwriteint64_t(0L, ofile); /* no entry point */
1102 fwriteint64_t(0L, ofile); /* no program header table */
1103 fwriteint64_t(0x40L, ofile); /* section headers straight after
1104 * ELF header plus alignment */
1105 fwriteint32_t(0L, ofile); /* 386 defines no special flags */
1106 fwriteint16_t(0x40, ofile); /* size of ELF header */
1107 fwriteint16_t(0, ofile); /* no program header table, again */
1108 fwriteint16_t(0, ofile); /* still no program header table */
1109 fwriteint16_t(sizeof(Elf64_Shdr), ofile); /* size of section header */
1110 fwriteint16_t(nsections, ofile); /* number of sections */
1111 fwriteint16_t(sec_shstrtab, ofile); /* string table section index for
1112 * section header table */
1115 * Build the symbol table and relocation tables.
1117 symtab = elf_build_symtab(&symtablen, &symtablocal);
1118 for (i = 0; i < nsects; i++)
1119 if (sects[i]->head)
1120 sects[i]->rel = elf_build_reltab(&sects[i]->rellen,
1121 sects[i]->head);
1124 * Now output the section header table.
1127 elf_foffs = 0x40 + sizeof(Elf64_Shdr) * nsections;
1128 align = ((elf_foffs + SEG_ALIGN_1) & ~SEG_ALIGN_1) - elf_foffs;
1129 elf_foffs += align;
1130 elf_nsect = 0;
1131 elf_sects = nasm_malloc(sizeof(*elf_sects) * nsections);
1133 /* SHN_UNDEF */
1134 elf_section_header(0, SHT_NULL, 0, NULL, false, 0, SHN_UNDEF, 0, 0, 0);
1135 p = shstrtab + 1;
1137 /* The normal sections */
1138 for (i = 0; i < nsects; i++) {
1139 elf_section_header(p - shstrtab, sects[i]->type, sects[i]->flags,
1140 (sects[i]->type == SHT_PROGBITS ?
1141 sects[i]->data : NULL), true,
1142 sects[i]->len, 0, 0, sects[i]->align, 0);
1143 p += strlen(p) + 1;
1146 /* .shstrtab */
1147 elf_section_header(p - shstrtab, SHT_STRTAB, 0, shstrtab, false,
1148 shstrtablen, 0, 0, 1, 0);
1149 p += strlen(p) + 1;
1151 /* .symtab */
1152 elf_section_header(p - shstrtab, SHT_SYMTAB, 0, symtab, true,
1153 symtablen, sec_strtab, symtablocal, 4, 24);
1154 p += strlen(p) + 1;
1156 /* .strtab */
1157 elf_section_header(p - shstrtab, SHT_STRTAB, 0, strs, true,
1158 strslen, 0, 0, 1, 0);
1159 p += strlen(p) + 1;
1161 /* The relocation sections */
1162 for (i = 0; i < nsects; i++)
1163 if (sects[i]->head) {
1164 elf_section_header(p - shstrtab, SHT_RELA, 0, sects[i]->rel, true,
1165 sects[i]->rellen, sec_symtab, i + 1, 4, 24);
1166 p += strlen(p) + 1;
1169 if (of_elf64.current_dfmt == &df_stabs) {
1170 /* for debugging information, create the last three sections
1171 which are the .stab , .stabstr and .rel.stab sections respectively */
1173 /* this function call creates the stab sections in memory */
1174 stabs64_generate();
1176 if (stabbuf && stabstrbuf && stabrelbuf) {
1177 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, stabbuf, false,
1178 stablen, sec_stabstr, 0, 4, 12);
1179 p += strlen(p) + 1;
1181 elf_section_header(p - shstrtab, SHT_STRTAB, 0, stabstrbuf, false,
1182 stabstrlen, 0, 0, 4, 0);
1183 p += strlen(p) + 1;
1185 /* link -> symtable info -> section to refer to */
1186 elf_section_header(p - shstrtab, SHT_REL, 0, stabrelbuf, false,
1187 stabrellen, symtabsection, sec_stab, 4, 16);
1188 p += strlen(p) + 1;
1191 else if (of_elf64.current_dfmt == &df_dwarf) {
1192 /* for dwarf debugging information, create the ten dwarf sections */
1194 /* this function call creates the dwarf sections in memory */
1195 if (dwarf_fsect)
1196 dwarf64_generate();
1198 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, arangesbuf, false,
1199 arangeslen, 0, 0, 1, 0);
1200 p += strlen(p) + 1;
1202 elf_section_header(p - shstrtab, SHT_RELA, 0, arangesrelbuf, false,
1203 arangesrellen, symtabsection, debug_aranges, 1, 24);
1204 p += strlen(p) + 1;
1206 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, pubnamesbuf, false,
1207 pubnameslen, 0, 0, 1, 0);
1208 p += strlen(p) + 1;
1210 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, infobuf, false,
1211 infolen, 0, 0, 1, 0);
1212 p += strlen(p) + 1;
1214 elf_section_header(p - shstrtab, SHT_RELA, 0, inforelbuf, false,
1215 inforellen, symtabsection, debug_info, 1, 24);
1216 p += strlen(p) + 1;
1218 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, abbrevbuf, false,
1219 abbrevlen, 0, 0, 1, 0);
1220 p += strlen(p) + 1;
1222 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, linebuf, false,
1223 linelen, 0, 0, 1, 0);
1224 p += strlen(p) + 1;
1226 elf_section_header(p - shstrtab, SHT_RELA, 0, linerelbuf, false,
1227 linerellen, symtabsection, debug_line, 1, 24);
1228 p += strlen(p) + 1;
1230 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, framebuf, false,
1231 framelen, 0, 0, 8, 0);
1232 p += strlen(p) + 1;
1234 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, locbuf, false,
1235 loclen, 0, 0, 1, 0);
1236 p += strlen(p) + 1;
1238 fwritezero(align, ofile);
1241 * Now output the sections.
1243 elf_write_sections();
1245 nasm_free(elf_sects);
1246 saa_free(symtab);
1249 static struct SAA *elf_build_symtab(int32_t *len, int32_t *local)
1251 struct SAA *s = saa_init(1L);
1252 struct Symbol *sym;
1253 uint8_t entry[24], *p;
1254 int i;
1256 *len = *local = 0;
1259 * First, an all-zeros entry, required by the ELF spec.
1261 saa_wbytes(s, NULL, 24L); /* null symbol table entry */
1262 *len += 24;
1263 (*local)++;
1266 * Next, an entry for the file name.
1268 p = entry;
1269 WRITELONG(p, 1); /* we know it's 1st entry in strtab */
1270 WRITESHORT(p, STT_FILE); /* type FILE */
1271 WRITESHORT(p, SHN_ABS);
1272 WRITEDLONG(p, (uint64_t) 0); /* no value */
1273 WRITEDLONG(p, (uint64_t) 0); /* no size either */
1274 saa_wbytes(s, entry, 24L);
1275 *len += 24;
1276 (*local)++;
1279 * Now some standard symbols defining the segments, for relocation
1280 * purposes.
1282 for (i = 1; i <= nsects; i++) {
1283 p = entry;
1284 WRITELONG(p, 0); /* no symbol name */
1285 WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
1286 WRITESHORT(p, i); /* section id */
1287 WRITEDLONG(p, (uint64_t) 0); /* offset zero */
1288 WRITEDLONG(p, (uint64_t) 0); /* size zero */
1289 saa_wbytes(s, entry, 24L);
1290 *len += 24;
1291 (*local)++;
1296 * Now the other local symbols.
1298 saa_rewind(syms);
1299 while ((sym = saa_rstruct(syms))) {
1300 if (sym->type & SYM_GLOBAL)
1301 continue;
1302 p = entry;
1303 WRITELONG(p, sym->strpos); /* index into symbol string table */
1304 WRITECHAR(p, sym->type); /* type and binding */
1305 WRITECHAR(p, sym->other); /* visibility */
1306 WRITESHORT(p, sym->section); /* index into section header table */
1307 WRITEDLONG(p, (int64_t)sym->symv.key); /* value of symbol */
1308 WRITEDLONG(p, (int64_t)sym->size); /* size of symbol */
1309 saa_wbytes(s, entry, 24L);
1310 *len += 24;
1311 (*local)++;
1314 * dwarf needs symbols for debug sections
1315 * which are relocation targets.
1317 if (of_elf64.current_dfmt == &df_dwarf) {
1318 dwarf_infosym = *local;
1319 p = entry;
1320 WRITELONG(p, 0); /* no symbol name */
1321 WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
1322 WRITESHORT(p, debug_info); /* section id */
1323 WRITEDLONG(p, (uint64_t) 0); /* offset zero */
1324 WRITEDLONG(p, (uint64_t) 0); /* size zero */
1325 saa_wbytes(s, entry, 24L);
1326 *len += 24;
1327 (*local)++;
1328 dwarf_abbrevsym = *local;
1329 p = entry;
1330 WRITELONG(p, 0); /* no symbol name */
1331 WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
1332 WRITESHORT(p, debug_abbrev); /* section id */
1333 WRITEDLONG(p, (uint64_t) 0); /* offset zero */
1334 WRITEDLONG(p, (uint64_t) 0); /* size zero */
1335 saa_wbytes(s, entry, 24L);
1336 *len += 24;
1337 (*local)++;
1338 dwarf_linesym = *local;
1339 p = entry;
1340 WRITELONG(p, 0); /* no symbol name */
1341 WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
1342 WRITESHORT(p, debug_line); /* section id */
1343 WRITEDLONG(p, (uint64_t) 0); /* offset zero */
1344 WRITEDLONG(p, (uint64_t) 0); /* size zero */
1345 saa_wbytes(s, entry, 24L);
1346 *len += 24;
1347 (*local)++;
1351 * Now the global symbols.
1353 saa_rewind(syms);
1354 while ((sym = saa_rstruct(syms))) {
1355 if (!(sym->type & SYM_GLOBAL))
1356 continue;
1357 p = entry;
1358 WRITELONG(p, sym->strpos);
1359 WRITECHAR(p, sym->type); /* type and binding */
1360 WRITECHAR(p, sym->other); /* visibility */
1361 WRITESHORT(p, sym->section);
1362 WRITEDLONG(p, (int64_t)sym->symv.key);
1363 WRITEDLONG(p, (int64_t)sym->size);
1364 saa_wbytes(s, entry, 24L);
1365 *len += 24;
1368 return s;
1371 static struct SAA *elf_build_reltab(uint64_t *len, struct Reloc *r)
1373 struct SAA *s;
1374 uint8_t *p, entry[24];
1375 int32_t global_offset;
1377 if (!r)
1378 return NULL;
1380 s = saa_init(1L);
1381 *len = 0;
1384 * How to onvert from a global placeholder to a real symbol index;
1385 * the +2 refers to the two special entries, the null entry and
1386 * the filename entry.
1388 global_offset = -GLOBAL_TEMP_BASE + nsects + nlocals + ndebugs + 2;
1390 while (r) {
1391 int32_t sym = r->symbol;
1393 if (sym >= GLOBAL_TEMP_BASE)
1394 sym += global_offset;
1396 p = entry;
1397 WRITEDLONG(p, r->address);
1398 WRITELONG(p, r->type);
1399 WRITELONG(p, sym);
1400 WRITEDLONG(p, r->offset);
1401 saa_wbytes(s, entry, 24L);
1402 *len += 24;
1404 r = r->next;
1407 return s;
1410 static void elf_section_header(int name, int type, uint64_t flags,
1411 void *data, bool is_saa, uint64_t datalen,
1412 int link, int info, int align, int eltsize)
1414 elf_sects[elf_nsect].data = data;
1415 elf_sects[elf_nsect].len = datalen;
1416 elf_sects[elf_nsect].is_saa = is_saa;
1417 elf_nsect++;
1419 fwriteint32_t((int32_t)name, ofile);
1420 fwriteint32_t((int32_t)type, ofile);
1421 fwriteint64_t((int64_t)flags, ofile);
1422 fwriteint64_t(0L, ofile); /* no address, ever, in object files */
1423 fwriteint64_t(type == 0 ? 0L : elf_foffs, ofile);
1424 fwriteint64_t(datalen, ofile);
1425 if (data)
1426 elf_foffs += (datalen + SEG_ALIGN_1) & ~SEG_ALIGN_1;
1427 fwriteint32_t((int32_t)link, ofile);
1428 fwriteint32_t((int32_t)info, ofile);
1429 fwriteint64_t((int64_t)align, ofile);
1430 fwriteint64_t((int64_t)eltsize, ofile);
1433 static void elf_write_sections(void)
1435 int i;
1436 for (i = 0; i < elf_nsect; i++)
1437 if (elf_sects[i].data) {
1438 int32_t len = elf_sects[i].len;
1439 int32_t reallen = (len + SEG_ALIGN_1) & ~SEG_ALIGN_1;
1440 int32_t align = reallen - len;
1441 if (elf_sects[i].is_saa)
1442 saa_fpwrite(elf_sects[i].data, ofile);
1443 else
1444 fwrite(elf_sects[i].data, len, 1, ofile);
1445 fwritezero(align, ofile);
1449 static void elf_sect_write(struct Section *sect, const void *data, size_t len)
1451 saa_wbytes(sect->data, data, len);
1452 sect->len += len;
1454 static void elf_sect_writeaddr(struct Section *sect, int64_t data, size_t len)
1456 saa_writeaddr(sect->data, data, len);
1457 sect->len += len;
1460 static int32_t elf_segbase(int32_t segment)
1462 return segment;
1465 static int elf_directive(enum directives directive, char *value, int pass)
1467 bool err;
1468 int64_t n;
1469 char *p;
1471 switch (directive) {
1472 case D_OSABI:
1473 if (pass == 2)
1474 return 1; /* ignore in pass 2 */
1476 n = readnum(value, &err);
1477 if (err) {
1478 nasm_error(ERR_NONFATAL, "`osabi' directive requires a parameter");
1479 return 1;
1481 if (n < 0 || n > 255) {
1482 nasm_error(ERR_NONFATAL, "valid osabi numbers are 0 to 255");
1483 return 1;
1485 elf_osabi = n;
1486 elf_abiver = 0;
1488 if ((p = strchr(value,',')) == NULL)
1489 return 1;
1491 n = readnum(p+1, &err);
1492 if (err || n < 0 || n > 255) {
1493 nasm_error(ERR_NONFATAL, "invalid ABI version number (valid: 0 to 255)");
1494 return 1;
1497 elf_abiver = n;
1498 return 1;
1500 default:
1501 return 0;
1505 static void elf_filename(char *inname, char *outname)
1507 strcpy(elf_module, inname);
1508 standard_extension(inname, outname, ".o");
1511 extern macros_t elf_stdmac[];
1513 static int elf_set_info(enum geninfo type, char **val)
1515 (void)type;
1516 (void)val;
1517 return 0;
1519 static struct dfmt df_dwarf = {
1520 "ELF64 (x86-64) dwarf debug format for Linux/Unix",
1521 "dwarf",
1522 dwarf64_init,
1523 dwarf64_linenum,
1524 debug64_deflabel,
1525 debug64_directive,
1526 debug64_typevalue,
1527 dwarf64_output,
1528 dwarf64_cleanup
1530 static struct dfmt df_stabs = {
1531 "ELF64 (x86-64) stabs debug format for Linux/Unix",
1532 "stabs",
1533 null_debug_init,
1534 stabs64_linenum,
1535 debug64_deflabel,
1536 debug64_directive,
1537 debug64_typevalue,
1538 stabs64_output,
1539 stabs64_cleanup
1542 struct dfmt *elf64_debugs_arr[3] = { &df_dwarf, &df_stabs, NULL };
1544 struct ofmt of_elf64 = {
1545 "ELF64 (x86_64) object files (e.g. Linux)",
1546 "elf64",
1548 elf64_debugs_arr,
1549 &df_stabs,
1550 elf_stdmac,
1551 elf_init,
1552 elf_set_info,
1553 elf_out,
1554 elf_deflabel,
1555 elf_section_names,
1556 elf_segbase,
1557 elf_directive,
1558 elf_filename,
1559 elf_cleanup
1562 /* common debugging routines */
1563 static void debug64_deflabel(char *name, int32_t segment, int64_t offset,
1564 int is_global, char *special)
1566 (void)name;
1567 (void)segment;
1568 (void)offset;
1569 (void)is_global;
1570 (void)special;
1573 static void debug64_directive(const char *directive, const char *params)
1575 (void)directive;
1576 (void)params;
1579 static void debug64_typevalue(int32_t type)
1581 int32_t stype, ssize;
1582 switch (TYM_TYPE(type)) {
1583 case TY_LABEL:
1584 ssize = 0;
1585 stype = STT_NOTYPE;
1586 break;
1587 case TY_BYTE:
1588 ssize = 1;
1589 stype = STT_OBJECT;
1590 break;
1591 case TY_WORD:
1592 ssize = 2;
1593 stype = STT_OBJECT;
1594 break;
1595 case TY_DWORD:
1596 ssize = 4;
1597 stype = STT_OBJECT;
1598 break;
1599 case TY_FLOAT:
1600 ssize = 4;
1601 stype = STT_OBJECT;
1602 break;
1603 case TY_QWORD:
1604 ssize = 8;
1605 stype = STT_OBJECT;
1606 break;
1607 case TY_TBYTE:
1608 ssize = 10;
1609 stype = STT_OBJECT;
1610 break;
1611 case TY_OWORD:
1612 ssize = 16;
1613 stype = STT_OBJECT;
1614 break;
1615 case TY_YWORD:
1616 ssize = 32;
1617 stype = STT_OBJECT;
1618 break;
1619 case TY_COMMON:
1620 ssize = 0;
1621 stype = STT_COMMON;
1622 break;
1623 case TY_SEG:
1624 ssize = 0;
1625 stype = STT_SECTION;
1626 break;
1627 case TY_EXTERN:
1628 ssize = 0;
1629 stype = STT_NOTYPE;
1630 break;
1631 case TY_EQU:
1632 ssize = 0;
1633 stype = STT_NOTYPE;
1634 break;
1635 default:
1636 ssize = 0;
1637 stype = STT_NOTYPE;
1638 break;
1640 if (stype == STT_OBJECT && lastsym && !lastsym->type) {
1641 lastsym->size = ssize;
1642 lastsym->type = stype;
1646 /* stabs debugging routines */
1648 static void stabs64_linenum(const char *filename, int32_t linenumber, int32_t segto)
1650 (void)segto;
1651 if (!stabs_filename) {
1652 stabs_filename = (char *)nasm_malloc(strlen(filename) + 1);
1653 strcpy(stabs_filename, filename);
1654 } else {
1655 if (strcmp(stabs_filename, filename)) {
1656 /* yep, a memory leak...this program is one-shot anyway, so who cares...
1657 in fact, this leak comes in quite handy to maintain a list of files
1658 encountered so far in the symbol lines... */
1660 /* why not nasm_free(stabs_filename); we're done with the old one */
1662 stabs_filename = (char *)nasm_malloc(strlen(filename) + 1);
1663 strcpy(stabs_filename, filename);
1666 debug_immcall = 1;
1667 currentline = linenumber;
1671 static void stabs64_output(int type, void *param)
1673 struct symlininfo *s;
1674 struct linelist *el;
1675 if (type == TY_DEBUGSYMLIN) {
1676 if (debug_immcall) {
1677 s = (struct symlininfo *)param;
1678 if (!(sects[s->section]->flags & SHF_EXECINSTR))
1679 return; /* line info is only collected for executable sections */
1680 numlinestabs++;
1681 el = (struct linelist *)nasm_malloc(sizeof(struct linelist));
1682 el->info.offset = s->offset;
1683 el->info.section = s->section;
1684 el->info.name = s->name;
1685 el->line = currentline;
1686 el->filename = stabs_filename;
1687 el->next = 0;
1688 if (stabslines) {
1689 stabslines->last->next = el;
1690 stabslines->last = el;
1691 } else {
1692 stabslines = el;
1693 stabslines->last = el;
1697 debug_immcall = 0;
1700 #define WRITE_STAB(p,n_strx,n_type,n_other,n_desc,n_value) \
1701 do {\
1702 WRITELONG(p,n_strx); \
1703 WRITECHAR(p,n_type); \
1704 WRITECHAR(p,n_other); \
1705 WRITESHORT(p,n_desc); \
1706 WRITELONG(p,n_value); \
1707 } while (0)
1709 /* for creating the .stab , .stabstr and .rel.stab sections in memory */
1711 static void stabs64_generate(void)
1713 int i, numfiles, strsize, numstabs = 0, currfile, mainfileindex;
1714 uint8_t *sbuf, *ssbuf, *rbuf, *sptr, *rptr;
1715 char **allfiles;
1716 int *fileidx;
1718 struct linelist *ptr;
1720 ptr = stabslines;
1722 allfiles = (char **)nasm_malloc(numlinestabs * sizeof(int8_t *));
1723 for (i = 0; i < numlinestabs; i++)
1724 allfiles[i] = 0;
1725 numfiles = 0;
1726 while (ptr) {
1727 if (numfiles == 0) {
1728 allfiles[0] = ptr->filename;
1729 numfiles++;
1730 } else {
1731 for (i = 0; i < numfiles; i++) {
1732 if (!strcmp(allfiles[i], ptr->filename))
1733 break;
1735 if (i >= numfiles) {
1736 allfiles[i] = ptr->filename;
1737 numfiles++;
1740 ptr = ptr->next;
1742 strsize = 1;
1743 fileidx = (int *)nasm_malloc(numfiles * sizeof(int));
1744 for (i = 0; i < numfiles; i++) {
1745 fileidx[i] = strsize;
1746 strsize += strlen(allfiles[i]) + 1;
1748 mainfileindex = 0;
1749 for (i = 0; i < numfiles; i++) {
1750 if (!strcmp(allfiles[i], elf_module)) {
1751 mainfileindex = i;
1752 break;
1757 * worst case size of the stab buffer would be:
1758 * the sourcefiles changes each line, which would mean 1 SOL, 1 SYMLIN per line
1759 * plus one "ending" entry
1761 sbuf = (uint8_t *)nasm_malloc((numlinestabs * 2 + 4) *
1762 sizeof(struct stabentry));
1763 ssbuf = (uint8_t *)nasm_malloc(strsize);
1764 rbuf = (uint8_t *)nasm_malloc(numlinestabs * 16 * (2 + 3));
1765 rptr = rbuf;
1767 for (i = 0; i < numfiles; i++)
1768 strcpy((char *)ssbuf + fileidx[i], allfiles[i]);
1769 ssbuf[0] = 0;
1771 stabstrlen = strsize; /* set global variable for length of stab strings */
1773 sptr = sbuf;
1774 ptr = stabslines;
1775 numstabs = 0;
1777 if (ptr) {
1778 /* this is the first stab, its strx points to the filename of the
1779 the source-file, the n_desc field should be set to the number
1780 of remaining stabs
1782 WRITE_STAB(sptr, fileidx[0], 0, 0, 0, strlen(allfiles[0] + 12));
1784 /* this is the stab for the main source file */
1785 WRITE_STAB(sptr, fileidx[mainfileindex], N_SO, 0, 0, 0);
1787 /* relocation table entry */
1789 /* Since the symbol table has two entries before */
1790 /* the section symbols, the index in the info.section */
1791 /* member must be adjusted by adding 2 */
1793 WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
1794 WRITELONG(rptr, R_X86_64_32);
1795 WRITELONG(rptr, ptr->info.section + 2);
1797 numstabs++;
1798 currfile = mainfileindex;
1801 while (ptr) {
1802 if (strcmp(allfiles[currfile], ptr->filename)) {
1803 /* oops file has changed... */
1804 for (i = 0; i < numfiles; i++)
1805 if (!strcmp(allfiles[i], ptr->filename))
1806 break;
1807 currfile = i;
1808 WRITE_STAB(sptr, fileidx[currfile], N_SOL, 0, 0,
1809 ptr->info.offset);
1810 numstabs++;
1812 /* relocation table entry */
1814 WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
1815 WRITELONG(rptr, R_X86_64_32);
1816 WRITELONG(rptr, ptr->info.section + 2);
1819 WRITE_STAB(sptr, 0, N_SLINE, 0, ptr->line, ptr->info.offset);
1820 numstabs++;
1822 /* relocation table entry */
1824 WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
1825 WRITELONG(rptr, R_X86_64_32);
1826 WRITELONG(rptr, ptr->info.section + 2);
1828 ptr = ptr->next;
1832 /* this is an "ending" token */
1833 WRITE_STAB(sptr, 0, N_SO, 0, 0, 0);
1834 numstabs++;
1836 ((struct stabentry *)sbuf)->n_desc = numstabs;
1838 nasm_free(allfiles);
1839 nasm_free(fileidx);
1841 stablen = (sptr - sbuf);
1842 stabrellen = (rptr - rbuf);
1843 stabrelbuf = rbuf;
1844 stabbuf = sbuf;
1845 stabstrbuf = ssbuf;
1848 static void stabs64_cleanup(void)
1850 struct linelist *ptr, *del;
1851 if (!stabslines)
1852 return;
1853 ptr = stabslines;
1854 while (ptr) {
1855 del = ptr;
1856 ptr = ptr->next;
1857 nasm_free(del);
1859 if (stabbuf)
1860 nasm_free(stabbuf);
1861 if (stabrelbuf)
1862 nasm_free(stabrelbuf);
1863 if (stabstrbuf)
1864 nasm_free(stabstrbuf);
1866 /* dwarf routines */
1867 static void dwarf64_init(void)
1869 ndebugs = 3; /* 3 debug symbols */
1872 static void dwarf64_linenum(const char *filename, int32_t linenumber,
1873 int32_t segto)
1875 (void)segto;
1876 dwarf64_findfile(filename);
1877 debug_immcall = 1;
1878 currentline = linenumber;
1881 /* called from elf_out with type == TY_DEBUGSYMLIN */
1882 static void dwarf64_output(int type, void *param)
1884 int ln, aa, inx, maxln, soc;
1885 struct symlininfo *s;
1886 struct SAA *plinep;
1888 (void)type;
1890 s = (struct symlininfo *)param;
1891 /* line number info is only gathered for executable sections */
1892 if (!(sects[s->section]->flags & SHF_EXECINSTR))
1893 return;
1894 /* Check if section index has changed */
1895 if (!(dwarf_csect && (dwarf_csect->section) == (s->section)))
1897 dwarf64_findsect(s->section);
1899 /* do nothing unless line or file has changed */
1900 if (debug_immcall)
1902 ln = currentline - dwarf_csect->line;
1903 aa = s->offset - dwarf_csect->offset;
1904 inx = dwarf_clist->line;
1905 plinep = dwarf_csect->psaa;
1906 /* check for file change */
1907 if (!(inx == dwarf_csect->file))
1909 saa_write8(plinep,DW_LNS_set_file);
1910 saa_write8(plinep,inx);
1911 dwarf_csect->file = inx;
1913 /* check for line change */
1914 if (ln)
1916 /* test if in range of special op code */
1917 maxln = line_base + line_range;
1918 soc = (ln - line_base) + (line_range * aa) + opcode_base;
1919 if (ln >= line_base && ln < maxln && soc < 256)
1921 saa_write8(plinep,soc);
1923 else
1925 if (ln)
1927 saa_write8(plinep,DW_LNS_advance_line);
1928 saa_wleb128s(plinep,ln);
1930 if (aa)
1932 saa_write8(plinep,DW_LNS_advance_pc);
1933 saa_wleb128u(plinep,aa);
1936 dwarf_csect->line = currentline;
1937 dwarf_csect->offset = s->offset;
1939 /* show change handled */
1940 debug_immcall = 0;
1945 static void dwarf64_generate(void)
1947 uint8_t *pbuf;
1948 int indx;
1949 struct linelist *ftentry;
1950 struct SAA *paranges, *ppubnames, *pinfo, *pabbrev, *plines, *plinep;
1951 struct SAA *parangesrel, *plinesrel, *pinforel;
1952 struct sectlist *psect;
1953 size_t saalen, linepoff, totlen, highaddr;
1955 /* write epilogues for each line program range */
1956 /* and build aranges section */
1957 paranges = saa_init(1L);
1958 parangesrel = saa_init(1L);
1959 saa_write16(paranges,3); /* dwarf version */
1960 saa_write64(parangesrel, paranges->datalen+4);
1961 saa_write64(parangesrel, (dwarf_infosym << 32) + R_X86_64_32); /* reloc to info */
1962 saa_write64(parangesrel, 0);
1963 saa_write32(paranges,0); /* offset into info */
1964 saa_write8(paranges,8); /* pointer size */
1965 saa_write8(paranges,0); /* not segmented */
1966 saa_write32(paranges,0); /* padding */
1967 /* iterate though sectlist entries */
1968 psect = dwarf_fsect;
1969 totlen = 0;
1970 highaddr = 0;
1971 for (indx = 0; indx < dwarf_nsections; indx++)
1973 plinep = psect->psaa;
1974 /* Line Number Program Epilogue */
1975 saa_write8(plinep,2); /* std op 2 */
1976 saa_write8(plinep,(sects[psect->section]->len)-psect->offset);
1977 saa_write8(plinep,DW_LNS_extended_op);
1978 saa_write8(plinep,1); /* operand length */
1979 saa_write8(plinep,DW_LNE_end_sequence);
1980 totlen += plinep->datalen;
1981 /* range table relocation entry */
1982 saa_write64(parangesrel, paranges->datalen + 4);
1983 saa_write64(parangesrel, ((uint64_t) (psect->section + 2) << 32) + R_X86_64_64);
1984 saa_write64(parangesrel, (uint64_t) 0);
1985 /* range table entry */
1986 saa_write64(paranges,0x0000); /* range start */
1987 saa_write64(paranges,sects[psect->section]->len); /* range length */
1988 highaddr += sects[psect->section]->len;
1989 /* done with this entry */
1990 psect = psect->next;
1992 saa_write64(paranges,0); /* null address */
1993 saa_write64(paranges,0); /* null length */
1994 saalen = paranges->datalen;
1995 arangeslen = saalen + 4;
1996 arangesbuf = pbuf = nasm_malloc(arangeslen);
1997 WRITELONG(pbuf,saalen); /* initial length */
1998 saa_rnbytes(paranges, pbuf, saalen);
1999 saa_free(paranges);
2001 /* build rela.aranges section */
2002 arangesrellen = saalen = parangesrel->datalen;
2003 arangesrelbuf = pbuf = nasm_malloc(arangesrellen);
2004 saa_rnbytes(parangesrel, pbuf, saalen);
2005 saa_free(parangesrel);
2007 /* build pubnames section */
2008 ppubnames = saa_init(1L);
2009 saa_write16(ppubnames,3); /* dwarf version */
2010 saa_write32(ppubnames,0); /* offset into info */
2011 saa_write32(ppubnames,0); /* space used in info */
2012 saa_write32(ppubnames,0); /* end of list */
2013 saalen = ppubnames->datalen;
2014 pubnameslen = saalen + 4;
2015 pubnamesbuf = pbuf = nasm_malloc(pubnameslen);
2016 WRITELONG(pbuf,saalen); /* initial length */
2017 saa_rnbytes(ppubnames, pbuf, saalen);
2018 saa_free(ppubnames);
2020 /* build info section */
2021 pinfo = saa_init(1L);
2022 pinforel = saa_init(1L);
2023 saa_write16(pinfo,3); /* dwarf version */
2024 saa_write64(pinforel, pinfo->datalen + 4);
2025 saa_write64(pinforel, (dwarf_abbrevsym << 32) + R_X86_64_32); /* reloc to abbrev */
2026 saa_write64(pinforel, 0);
2027 saa_write32(pinfo,0); /* offset into abbrev */
2028 saa_write8(pinfo,8); /* pointer size */
2029 saa_write8(pinfo,1); /* abbrviation number LEB128u */
2030 saa_write64(pinforel, pinfo->datalen + 4);
2031 saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64);
2032 saa_write64(pinforel, 0);
2033 saa_write64(pinfo,0); /* DW_AT_low_pc */
2034 saa_write64(pinforel, pinfo->datalen + 4);
2035 saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64);
2036 saa_write64(pinforel, 0);
2037 saa_write64(pinfo,highaddr); /* DW_AT_high_pc */
2038 saa_write64(pinforel, pinfo->datalen + 4);
2039 saa_write64(pinforel, (dwarf_linesym << 32) + R_X86_64_32); /* reloc to line */
2040 saa_write64(pinforel, 0);
2041 saa_write32(pinfo,0); /* DW_AT_stmt_list */
2042 saa_wbytes(pinfo, elf_module, strlen(elf_module)+1);
2043 saa_wbytes(pinfo, nasm_signature, strlen(nasm_signature)+1);
2044 saa_write16(pinfo,DW_LANG_Mips_Assembler);
2045 saa_write8(pinfo,2); /* abbrviation number LEB128u */
2046 saa_write64(pinforel, pinfo->datalen + 4);
2047 saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64);
2048 saa_write64(pinforel, 0);
2049 saa_write64(pinfo,0); /* DW_AT_low_pc */
2050 saa_write64(pinfo,0); /* DW_AT_frame_base */
2051 saa_write8(pinfo,0); /* end of entries */
2052 saalen = pinfo->datalen;
2053 infolen = saalen + 4;
2054 infobuf = pbuf = nasm_malloc(infolen);
2055 WRITELONG(pbuf,saalen); /* initial length */
2056 saa_rnbytes(pinfo, pbuf, saalen);
2057 saa_free(pinfo);
2059 /* build rela.info section */
2060 inforellen = saalen = pinforel->datalen;
2061 inforelbuf = pbuf = nasm_malloc(inforellen);
2062 saa_rnbytes(pinforel, pbuf, saalen);
2063 saa_free(pinforel);
2065 /* build abbrev section */
2066 pabbrev = saa_init(1L);
2067 saa_write8(pabbrev,1); /* entry number LEB128u */
2068 saa_write8(pabbrev,DW_TAG_compile_unit); /* tag LEB128u */
2069 saa_write8(pabbrev,1); /* has children */
2070 /* the following attributes and forms are all LEB128u values */
2071 saa_write8(pabbrev,DW_AT_low_pc);
2072 saa_write8(pabbrev,DW_FORM_addr);
2073 saa_write8(pabbrev,DW_AT_high_pc);
2074 saa_write8(pabbrev,DW_FORM_addr);
2075 saa_write8(pabbrev,DW_AT_stmt_list);
2076 saa_write8(pabbrev,DW_FORM_data4);
2077 saa_write8(pabbrev,DW_AT_name);
2078 saa_write8(pabbrev,DW_FORM_string);
2079 saa_write8(pabbrev,DW_AT_producer);
2080 saa_write8(pabbrev,DW_FORM_string);
2081 saa_write8(pabbrev,DW_AT_language);
2082 saa_write8(pabbrev,DW_FORM_data2);
2083 saa_write16(pabbrev,0); /* end of entry */
2084 /* LEB128u usage same as above */
2085 saa_write8(pabbrev,2); /* entry number */
2086 saa_write8(pabbrev,DW_TAG_subprogram);
2087 saa_write8(pabbrev,0); /* no children */
2088 saa_write8(pabbrev,DW_AT_low_pc);
2089 saa_write8(pabbrev,DW_FORM_addr);
2090 saa_write8(pabbrev,DW_AT_frame_base);
2091 saa_write8(pabbrev,DW_FORM_data4);
2092 saa_write16(pabbrev,0); /* end of entry */
2093 abbrevlen = saalen = pabbrev->datalen;
2094 abbrevbuf = pbuf = nasm_malloc(saalen);
2095 saa_rnbytes(pabbrev, pbuf, saalen);
2096 saa_free(pabbrev);
2098 /* build line section */
2099 /* prolog */
2100 plines = saa_init(1L);
2101 saa_write8(plines,1); /* Minimum Instruction Length */
2102 saa_write8(plines,1); /* Initial value of 'is_stmt' */
2103 saa_write8(plines,line_base); /* Line Base */
2104 saa_write8(plines,line_range); /* Line Range */
2105 saa_write8(plines,opcode_base); /* Opcode Base */
2106 /* standard opcode lengths (# of LEB128u operands) */
2107 saa_write8(plines,0); /* Std opcode 1 length */
2108 saa_write8(plines,1); /* Std opcode 2 length */
2109 saa_write8(plines,1); /* Std opcode 3 length */
2110 saa_write8(plines,1); /* Std opcode 4 length */
2111 saa_write8(plines,1); /* Std opcode 5 length */
2112 saa_write8(plines,0); /* Std opcode 6 length */
2113 saa_write8(plines,0); /* Std opcode 7 length */
2114 saa_write8(plines,0); /* Std opcode 8 length */
2115 saa_write8(plines,1); /* Std opcode 9 length */
2116 saa_write8(plines,0); /* Std opcode 10 length */
2117 saa_write8(plines,0); /* Std opcode 11 length */
2118 saa_write8(plines,1); /* Std opcode 12 length */
2119 /* Directory Table */
2120 saa_write8(plines,0); /* End of table */
2121 /* File Name Table */
2122 ftentry = dwarf_flist;
2123 for (indx = 0;indx<dwarf_numfiles;indx++)
2125 saa_wbytes(plines, ftentry->filename, (int32_t)(strlen(ftentry->filename) + 1));
2126 saa_write8(plines,0); /* directory LEB128u */
2127 saa_write8(plines,0); /* time LEB128u */
2128 saa_write8(plines,0); /* size LEB128u */
2129 ftentry = ftentry->next;
2131 saa_write8(plines,0); /* End of table */
2132 linepoff = plines->datalen;
2133 linelen = linepoff + totlen + 10;
2134 linebuf = pbuf = nasm_malloc(linelen);
2135 WRITELONG(pbuf,linelen-4); /* initial length */
2136 WRITESHORT(pbuf,3); /* dwarf version */
2137 WRITELONG(pbuf,linepoff); /* offset to line number program */
2138 /* write line header */
2139 saalen = linepoff;
2140 saa_rnbytes(plines, pbuf, saalen); /* read a given no. of bytes */
2141 pbuf += linepoff;
2142 saa_free(plines);
2143 /* concatonate line program ranges */
2144 linepoff += 13;
2145 plinesrel = saa_init(1L);
2146 psect = dwarf_fsect;
2147 for (indx = 0; indx < dwarf_nsections; indx++)
2149 saa_write64(plinesrel, linepoff);
2150 saa_write64(plinesrel, ((uint64_t) (psect->section + 2) << 32) + R_X86_64_64);
2151 saa_write64(plinesrel, (uint64_t) 0);
2152 plinep = psect->psaa;
2153 saalen = plinep->datalen;
2154 saa_rnbytes(plinep, pbuf, saalen);
2155 pbuf += saalen;
2156 linepoff += saalen;
2157 saa_free(plinep);
2158 /* done with this entry */
2159 psect = psect->next;
2163 /* build rela.lines section */
2164 linerellen =saalen = plinesrel->datalen;
2165 linerelbuf = pbuf = nasm_malloc(linerellen);
2166 saa_rnbytes(plinesrel, pbuf, saalen);
2167 saa_free(plinesrel);
2169 /* build frame section */
2170 framelen = 4;
2171 framebuf = pbuf = nasm_malloc(framelen);
2172 WRITELONG(pbuf,framelen-4); /* initial length */
2174 /* build loc section */
2175 loclen = 16;
2176 locbuf = pbuf = nasm_malloc(loclen);
2177 WRITEDLONG(pbuf,0); /* null beginning offset */
2178 WRITEDLONG(pbuf,0); /* null ending offset */
2181 static void dwarf64_cleanup(void)
2183 if (arangesbuf)
2184 nasm_free(arangesbuf);
2185 if (arangesrelbuf)
2186 nasm_free(arangesrelbuf);
2187 if (pubnamesbuf)
2188 nasm_free(pubnamesbuf);
2189 if (infobuf)
2190 nasm_free(infobuf);
2191 if (inforelbuf)
2192 nasm_free(inforelbuf);
2193 if (abbrevbuf)
2194 nasm_free(abbrevbuf);
2195 if (linebuf)
2196 nasm_free(linebuf);
2197 if (linerelbuf)
2198 nasm_free(linerelbuf);
2199 if (framebuf)
2200 nasm_free(framebuf);
2201 if (locbuf)
2202 nasm_free(locbuf);
2204 static void dwarf64_findfile(const char * fname)
2206 int finx;
2207 struct linelist *match;
2209 /* return if fname is current file name */
2210 if (dwarf_clist && !(strcmp(fname, dwarf_clist->filename))) return;
2211 /* search for match */
2212 else
2214 match = 0;
2215 if (dwarf_flist)
2217 match = dwarf_flist;
2218 for (finx = 0; finx < dwarf_numfiles; finx++)
2220 if (!(strcmp(fname, match->filename)))
2222 dwarf_clist = match;
2223 return;
2227 /* add file name to end of list */
2228 dwarf_clist = (struct linelist *)nasm_malloc(sizeof(struct linelist));
2229 dwarf_numfiles++;
2230 dwarf_clist->line = dwarf_numfiles;
2231 dwarf_clist->filename = nasm_malloc(strlen(fname) + 1);
2232 strcpy(dwarf_clist->filename,fname);
2233 dwarf_clist->next = 0;
2234 /* if first entry */
2235 if (!dwarf_flist)
2237 dwarf_flist = dwarf_elist = dwarf_clist;
2238 dwarf_clist->last = 0;
2240 /* chain to previous entry */
2241 else
2243 dwarf_elist->next = dwarf_clist;
2244 dwarf_elist = dwarf_clist;
2248 /* */
2249 static void dwarf64_findsect(const int index)
2251 int sinx;
2252 struct sectlist *match;
2253 struct SAA *plinep;
2254 /* return if index is current section index */
2255 if (dwarf_csect && (dwarf_csect->section == index))
2257 return;
2259 /* search for match */
2260 else
2262 match = 0;
2263 if (dwarf_fsect)
2265 match = dwarf_fsect;
2266 for (sinx = 0; sinx < dwarf_nsections; sinx++)
2268 if ((match->section == index))
2270 dwarf_csect = match;
2271 return;
2273 match = match->next;
2276 /* add entry to end of list */
2277 dwarf_csect = (struct sectlist *)nasm_malloc(sizeof(struct sectlist));
2278 dwarf_nsections++;
2279 dwarf_csect->psaa = plinep = saa_init(1L);
2280 dwarf_csect->line = 1;
2281 dwarf_csect->offset = 0;
2282 dwarf_csect->file = 1;
2283 dwarf_csect->section = index;
2284 dwarf_csect->next = 0;
2285 /* set relocatable address at start of line program */
2286 saa_write8(plinep,DW_LNS_extended_op);
2287 saa_write8(plinep,9); /* operand length */
2288 saa_write8(plinep,DW_LNE_set_address);
2289 saa_write64(plinep,0); /* Start Address */
2290 /* if first entry */
2291 if (!dwarf_fsect)
2293 dwarf_fsect = dwarf_esect = dwarf_csect;
2294 dwarf_csect->last = 0;
2296 /* chain to previous entry */
2297 else
2299 dwarf_esect->next = dwarf_csect;
2300 dwarf_esect = dwarf_csect;
2305 #endif /* OF_ELF */