NASM 2.08.01
[nasm/avx512.git] / assemble.c
blob81476db0fab17c53edff6b6f34dffb928d5ead61
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * assemble.c code generation for the Netwide Assembler
37 * the actual codes (C syntax, i.e. octal):
38 * \0 - terminates the code. (Unless it's a literal of course.)
39 * \1..\4 - that many literal bytes follow in the code stream
40 * \5 - add 4 to the primary operand number (b, low octdigit)
41 * \6 - add 4 to the secondary operand number (a, middle octdigit)
42 * \7 - add 4 to both the primary and the secondary operand number
43 * \10..\13 - a literal byte follows in the code stream, to be added
44 * to the register value of operand 0..3
45 * \14..\17 - a signed byte immediate operand, from operand 0..3
46 * \20..\23 - a byte immediate operand, from operand 0..3
47 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
48 * \30..\33 - a word immediate operand, from operand 0..3
49 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
50 * assembly mode or the operand-size override on the operand
51 * \40..\43 - a long immediate operand, from operand 0..3
52 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
53 * depending on the address size of the instruction.
54 * \50..\53 - a byte relative operand, from operand 0..3
55 * \54..\57 - a qword immediate operand, from operand 0..3
56 * \60..\63 - a word relative operand, from operand 0..3
57 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
58 * assembly mode or the operand-size override on the operand
59 * \70..\73 - a long relative operand, from operand 0..3
60 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
61 * \1ab - a ModRM, calculated on EA in operand a, with the spare
62 * field the register value of operand b.
63 * \140..\143 - an immediate word or signed byte for operand 0..3
64 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
65 * is a signed byte rather than a word. Opcode byte follows.
66 * \150..\153 - an immediate dword or signed byte for operand 0..3
67 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
68 * is a signed byte rather than a dword. Opcode byte follows.
69 * \160..\163 - this instruction uses DREX rather than REX, with the
70 * OC0 field set to 0, and the dest field taken from
71 * operand 0..3.
72 * \164..\167 - this instruction uses DREX rather than REX, with the
73 * OC0 field set to 1, and the dest field taken from
74 * operand 0..3.
75 * \171 - placement of DREX suffix in the absence of an EA
76 * \172\ab - the register number from operand a in bits 7..4, with
77 * the 4-bit immediate from operand b in bits 3..0.
78 * \173\xab - the register number from operand a in bits 7..4, with
79 * the value b in bits 3..0.
80 * \174\a - the register number from operand a in bits 7..4, and
81 * an arbitrary value in bits 3..0 (assembled as zero.)
82 * \2ab - a ModRM, calculated on EA in operand a, with the spare
83 * field equal to digit b.
84 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
85 * is not equal to the truncated and sign-extended 32-bit
86 * operand; used for 32-bit immediates in 64-bit mode.
87 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
88 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
89 * V field taken from operand 0..3.
90 * \270 - this instruction uses VEX/XOP rather than REX, with the
91 * V field set to 1111b.
93 * VEX/XOP prefixes are followed by the sequence:
94 * \tmm\wlp where mm is the M field; and wlp is:
95 * 00 0ww lpp
96 * [w0] ww = 0 for W = 0
97 * [w1] ww = 1 for W = 1
98 * [wx] ww = 2 for W don't care (always assembled as 0)
99 * [ww] ww = 3 for W used as REX.W
101 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
103 * \274..\277 - a signed byte immediate operand, from operand 0..3,
104 * which is to be extended to the operand size.
105 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
106 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
107 * \312 - (disassembler only) invalid with non-default address size.
108 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
109 * \314 - (disassembler only) invalid with REX.B
110 * \315 - (disassembler only) invalid with REX.X
111 * \316 - (disassembler only) invalid with REX.R
112 * \317 - (disassembler only) invalid with REX.W
113 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
114 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
115 * \322 - indicates that this instruction is only valid when the
116 * operand size is the default (instruction to disassembler,
117 * generates no code in the assembler)
118 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
119 * \324 - indicates 64-bit operand size requiring REX prefix.
120 * \325 - instruction which always uses spl/bpl/sil/dil
121 * \330 - a literal byte follows in the code stream, to be added
122 * to the condition code value of the instruction.
123 * \331 - instruction not valid with REP prefix. Hint for
124 * disassembler only; for SSE instructions.
125 * \332 - REP prefix (0xF2 byte) used as opcode extension.
126 * \333 - REP prefix (0xF3 byte) used as opcode extension.
127 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
128 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
129 * \336 - force a REP(E) prefix (0xF2) even if not specified.
130 * \337 - force a REPNE prefix (0xF3) even if not specified.
131 * \336-\337 are still listed as prefixes in the disassembler.
132 * \340 - reserve <operand 0> bytes of uninitialized storage.
133 * Operand 0 had better be a segmentless constant.
134 * \341 - this instruction needs a WAIT "prefix"
135 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
136 * (POP is never used for CS) depending on operand 0
137 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
138 * on operand 0
139 * \360 - no SSE prefix (== \364\331)
140 * \361 - 66 SSE prefix (== \366\331)
141 * \362 - F2 SSE prefix (== \364\332)
142 * \363 - F3 SSE prefix (== \364\333)
143 * \364 - operand-size prefix (0x66) not permitted
144 * \365 - address-size prefix (0x67) not permitted
145 * \366 - operand-size prefix (0x66) used as opcode extension
146 * \367 - address-size prefix (0x67) used as opcode extension
147 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
148 * 370 is used for Jcc, 371 is used for JMP.
149 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
150 * used for conditional jump over longer jump
153 #include "compiler.h"
155 #include <stdio.h>
156 #include <string.h>
157 #include <inttypes.h>
159 #include "nasm.h"
160 #include "nasmlib.h"
161 #include "assemble.h"
162 #include "insns.h"
163 #include "tables.h"
165 enum match_result {
167 * Matching errors. These should be sorted so that more specific
168 * errors come later in the sequence.
170 MERR_INVALOP,
171 MERR_OPSIZEMISSING,
172 MERR_OPSIZEMISMATCH,
173 MERR_BADCPU,
174 MERR_BADMODE,
176 * Matching success; the conditional ones first
178 MOK_JUMP, /* Matching OK but needs jmp_match() */
179 MOK_GOOD /* Matching unconditionally OK */
182 typedef struct {
183 int sib_present; /* is a SIB byte necessary? */
184 int bytes; /* # of bytes of offset needed */
185 int size; /* lazy - this is sib+bytes+1 */
186 uint8_t modrm, sib, rex, rip; /* the bytes themselves */
187 } ea;
189 static uint32_t cpu; /* cpu level received from nasm.c */
190 static efunc errfunc;
191 static struct ofmt *outfmt;
192 static ListGen *list;
194 static int64_t calcsize(int32_t, int64_t, int, insn *, const uint8_t *);
195 static void gencode(int32_t segment, int64_t offset, int bits,
196 insn * ins, const struct itemplate *temp,
197 int64_t insn_end);
198 static enum match_result find_match(const struct itemplate **tempp,
199 insn *instruction,
200 int32_t segment, int64_t offset, int bits);
201 static enum match_result matches(const struct itemplate *, insn *, int bits);
202 static opflags_t regflag(const operand *);
203 static int32_t regval(const operand *);
204 static int rexflags(int, opflags_t, int);
205 static int op_rexflags(const operand *, int);
206 static ea *process_ea(operand *, ea *, int, int, int, opflags_t);
207 static void add_asp(insn *, int);
209 static int has_prefix(insn * ins, enum prefix_pos pos, enum prefixes prefix)
211 return ins->prefixes[pos] == prefix;
214 static void assert_no_prefix(insn * ins, enum prefix_pos pos)
216 if (ins->prefixes[pos])
217 errfunc(ERR_NONFATAL, "invalid %s prefix",
218 prefix_name(ins->prefixes[pos]));
221 static const char *size_name(int size)
223 switch (size) {
224 case 1:
225 return "byte";
226 case 2:
227 return "word";
228 case 4:
229 return "dword";
230 case 8:
231 return "qword";
232 case 10:
233 return "tword";
234 case 16:
235 return "oword";
236 case 32:
237 return "yword";
238 default:
239 return "???";
243 static void warn_overflow(int pass, int size)
245 errfunc(ERR_WARNING | pass | ERR_WARN_NOV,
246 "%s data exceeds bounds", size_name(size));
249 static void warn_overflow_const(int64_t data, int size)
251 if (overflow_general(data, size))
252 warn_overflow(ERR_PASS1, size);
255 static void warn_overflow_opd(const struct operand *o, int size)
257 if (size < 8 && o->wrt == NO_SEG && o->segment == NO_SEG) {
258 if (overflow_general(o->offset, size))
259 warn_overflow(ERR_PASS2, size);
264 * This routine wrappers the real output format's output routine,
265 * in order to pass a copy of the data off to the listing file
266 * generator at the same time.
268 static void out(int64_t offset, int32_t segto, const void *data,
269 enum out_type type, uint64_t size,
270 int32_t segment, int32_t wrt)
272 static int32_t lineno = 0; /* static!!! */
273 static char *lnfname = NULL;
274 uint8_t p[8];
276 if (type == OUT_ADDRESS && segment == NO_SEG && wrt == NO_SEG) {
278 * This is a non-relocated address, and we're going to
279 * convert it into RAWDATA format.
281 uint8_t *q = p;
283 if (size > 8) {
284 errfunc(ERR_PANIC, "OUT_ADDRESS with size > 8");
285 return;
288 WRITEADDR(q, *(int64_t *)data, size);
289 data = p;
290 type = OUT_RAWDATA;
293 list->output(offset, data, type, size);
296 * this call to src_get determines when we call the
297 * debug-format-specific "linenum" function
298 * it updates lineno and lnfname to the current values
299 * returning 0 if "same as last time", -2 if lnfname
300 * changed, and the amount by which lineno changed,
301 * if it did. thus, these variables must be static
304 if (src_get(&lineno, &lnfname)) {
305 outfmt->current_dfmt->linenum(lnfname, lineno, segto);
308 outfmt->output(segto, data, type, size, segment, wrt);
311 static bool jmp_match(int32_t segment, int64_t offset, int bits,
312 insn * ins, const uint8_t *code)
314 int64_t isize;
315 uint8_t c = code[0];
317 if ((c != 0370 && c != 0371) || (ins->oprs[0].type & STRICT))
318 return false;
319 if (!optimizing)
320 return false;
321 if (optimizing < 0 && c == 0371)
322 return false;
324 isize = calcsize(segment, offset, bits, ins, code);
326 if (ins->oprs[0].opflags & OPFLAG_UNKNOWN)
327 /* Be optimistic in pass 1 */
328 return true;
330 if (ins->oprs[0].segment != segment)
331 return false;
333 isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
334 return (isize >= -128 && isize <= 127); /* is it byte size? */
337 int64_t assemble(int32_t segment, int64_t offset, int bits, uint32_t cp,
338 insn * instruction, struct ofmt *output, efunc error,
339 ListGen * listgen)
341 const struct itemplate *temp;
342 int j;
343 enum match_result m;
344 int64_t insn_end;
345 int32_t itimes;
346 int64_t start = offset;
347 int64_t wsize; /* size for DB etc. */
349 errfunc = error; /* to pass to other functions */
350 cpu = cp;
351 outfmt = output; /* likewise */
352 list = listgen; /* and again */
354 wsize = idata_bytes(instruction->opcode);
355 if (wsize == -1)
356 return 0;
358 if (wsize) {
359 extop *e;
360 int32_t t = instruction->times;
361 if (t < 0)
362 errfunc(ERR_PANIC,
363 "instruction->times < 0 (%ld) in assemble()", t);
365 while (t--) { /* repeat TIMES times */
366 list_for_each(e, instruction->eops) {
367 if (e->type == EOT_DB_NUMBER) {
368 if (wsize == 1) {
369 if (e->segment != NO_SEG)
370 errfunc(ERR_NONFATAL,
371 "one-byte relocation attempted");
372 else {
373 uint8_t out_byte = e->offset;
374 out(offset, segment, &out_byte,
375 OUT_RAWDATA, 1, NO_SEG, NO_SEG);
377 } else if (wsize > 8) {
378 errfunc(ERR_NONFATAL,
379 "integer supplied to a DT, DO or DY"
380 " instruction");
381 } else
382 out(offset, segment, &e->offset,
383 OUT_ADDRESS, wsize, e->segment, e->wrt);
384 offset += wsize;
385 } else if (e->type == EOT_DB_STRING ||
386 e->type == EOT_DB_STRING_FREE) {
387 int align;
389 out(offset, segment, e->stringval,
390 OUT_RAWDATA, e->stringlen, NO_SEG, NO_SEG);
391 align = e->stringlen % wsize;
393 if (align) {
394 align = wsize - align;
395 out(offset, segment, zero_buffer,
396 OUT_RAWDATA, align, NO_SEG, NO_SEG);
398 offset += e->stringlen + align;
401 if (t > 0 && t == instruction->times - 1) {
403 * Dummy call to list->output to give the offset to the
404 * listing module.
406 list->output(offset, NULL, OUT_RAWDATA, 0);
407 list->uplevel(LIST_TIMES);
410 if (instruction->times > 1)
411 list->downlevel(LIST_TIMES);
412 return offset - start;
415 if (instruction->opcode == I_INCBIN) {
416 const char *fname = instruction->eops->stringval;
417 FILE *fp;
419 fp = fopen(fname, "rb");
420 if (!fp) {
421 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
422 fname);
423 } else if (fseek(fp, 0L, SEEK_END) < 0) {
424 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
425 fname);
426 } else {
427 static char buf[4096];
428 size_t t = instruction->times;
429 size_t base = 0;
430 size_t len;
432 len = ftell(fp);
433 if (instruction->eops->next) {
434 base = instruction->eops->next->offset;
435 len -= base;
436 if (instruction->eops->next->next &&
437 len > (size_t)instruction->eops->next->next->offset)
438 len = (size_t)instruction->eops->next->next->offset;
441 * Dummy call to list->output to give the offset to the
442 * listing module.
444 list->output(offset, NULL, OUT_RAWDATA, 0);
445 list->uplevel(LIST_INCBIN);
446 while (t--) {
447 size_t l;
449 fseek(fp, base, SEEK_SET);
450 l = len;
451 while (l > 0) {
452 int32_t m;
453 m = fread(buf, 1, l > sizeof(buf) ? sizeof(buf) : l, fp);
454 if (!m) {
456 * This shouldn't happen unless the file
457 * actually changes while we are reading
458 * it.
460 error(ERR_NONFATAL,
461 "`incbin': unexpected EOF while"
462 " reading file `%s'", fname);
463 t = 0; /* Try to exit cleanly */
464 break;
466 out(offset, segment, buf, OUT_RAWDATA, m,
467 NO_SEG, NO_SEG);
468 l -= m;
471 list->downlevel(LIST_INCBIN);
472 if (instruction->times > 1) {
474 * Dummy call to list->output to give the offset to the
475 * listing module.
477 list->output(offset, NULL, OUT_RAWDATA, 0);
478 list->uplevel(LIST_TIMES);
479 list->downlevel(LIST_TIMES);
481 fclose(fp);
482 return instruction->times * len;
484 return 0; /* if we're here, there's an error */
487 /* Check to see if we need an address-size prefix */
488 add_asp(instruction, bits);
490 m = find_match(&temp, instruction, segment, offset, bits);
492 if (m == MOK_GOOD) {
493 /* Matches! */
494 int64_t insn_size = calcsize(segment, offset, bits,
495 instruction, temp->code);
496 itimes = instruction->times;
497 if (insn_size < 0) /* shouldn't be, on pass two */
498 error(ERR_PANIC, "errors made it through from pass one");
499 else
500 while (itimes--) {
501 for (j = 0; j < MAXPREFIX; j++) {
502 uint8_t c = 0;
503 switch (instruction->prefixes[j]) {
504 case P_WAIT:
505 c = 0x9B;
506 break;
507 case P_LOCK:
508 c = 0xF0;
509 break;
510 case P_REPNE:
511 case P_REPNZ:
512 c = 0xF2;
513 break;
514 case P_REPE:
515 case P_REPZ:
516 case P_REP:
517 c = 0xF3;
518 break;
519 case R_CS:
520 if (bits == 64) {
521 error(ERR_WARNING | ERR_PASS2,
522 "cs segment base generated, but will be ignored in 64-bit mode");
524 c = 0x2E;
525 break;
526 case R_DS:
527 if (bits == 64) {
528 error(ERR_WARNING | ERR_PASS2,
529 "ds segment base generated, but will be ignored in 64-bit mode");
531 c = 0x3E;
532 break;
533 case R_ES:
534 if (bits == 64) {
535 error(ERR_WARNING | ERR_PASS2,
536 "es segment base generated, but will be ignored in 64-bit mode");
538 c = 0x26;
539 break;
540 case R_FS:
541 c = 0x64;
542 break;
543 case R_GS:
544 c = 0x65;
545 break;
546 case R_SS:
547 if (bits == 64) {
548 error(ERR_WARNING | ERR_PASS2,
549 "ss segment base generated, but will be ignored in 64-bit mode");
551 c = 0x36;
552 break;
553 case R_SEGR6:
554 case R_SEGR7:
555 error(ERR_NONFATAL,
556 "segr6 and segr7 cannot be used as prefixes");
557 break;
558 case P_A16:
559 if (bits == 64) {
560 error(ERR_NONFATAL,
561 "16-bit addressing is not supported "
562 "in 64-bit mode");
563 } else if (bits != 16)
564 c = 0x67;
565 break;
566 case P_A32:
567 if (bits != 32)
568 c = 0x67;
569 break;
570 case P_A64:
571 if (bits != 64) {
572 error(ERR_NONFATAL,
573 "64-bit addressing is only supported "
574 "in 64-bit mode");
576 break;
577 case P_ASP:
578 c = 0x67;
579 break;
580 case P_O16:
581 if (bits != 16)
582 c = 0x66;
583 break;
584 case P_O32:
585 if (bits == 16)
586 c = 0x66;
587 break;
588 case P_O64:
589 /* REX.W */
590 break;
591 case P_OSP:
592 c = 0x66;
593 break;
594 case P_none:
595 break;
596 default:
597 error(ERR_PANIC, "invalid instruction prefix");
599 if (c != 0) {
600 out(offset, segment, &c, OUT_RAWDATA, 1,
601 NO_SEG, NO_SEG);
602 offset++;
605 insn_end = offset + insn_size;
606 gencode(segment, offset, bits, instruction,
607 temp, insn_end);
608 offset += insn_size;
609 if (itimes > 0 && itimes == instruction->times - 1) {
611 * Dummy call to list->output to give the offset to the
612 * listing module.
614 list->output(offset, NULL, OUT_RAWDATA, 0);
615 list->uplevel(LIST_TIMES);
618 if (instruction->times > 1)
619 list->downlevel(LIST_TIMES);
620 return offset - start;
621 } else {
622 /* No match */
623 switch (m) {
624 case MERR_OPSIZEMISSING:
625 error(ERR_NONFATAL, "operation size not specified");
626 break;
627 case MERR_OPSIZEMISMATCH:
628 error(ERR_NONFATAL, "mismatch in operand sizes");
629 break;
630 case MERR_BADCPU:
631 error(ERR_NONFATAL, "no instruction for this cpu level");
632 break;
633 case MERR_BADMODE:
634 error(ERR_NONFATAL, "instruction not supported in %d-bit mode",
635 bits);
636 break;
637 default:
638 error(ERR_NONFATAL,
639 "invalid combination of opcode and operands");
640 break;
643 return 0;
646 int64_t insn_size(int32_t segment, int64_t offset, int bits, uint32_t cp,
647 insn * instruction, efunc error)
649 const struct itemplate *temp;
650 enum match_result m;
652 errfunc = error; /* to pass to other functions */
653 cpu = cp;
655 if (instruction->opcode == I_none)
656 return 0;
658 if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
659 instruction->opcode == I_DD || instruction->opcode == I_DQ ||
660 instruction->opcode == I_DT || instruction->opcode == I_DO ||
661 instruction->opcode == I_DY) {
662 extop *e;
663 int32_t isize, osize, wsize;
665 isize = 0;
666 wsize = idata_bytes(instruction->opcode);
668 list_for_each(e, instruction->eops) {
669 int32_t align;
671 osize = 0;
672 if (e->type == EOT_DB_NUMBER) {
673 osize = 1;
674 warn_overflow_const(e->offset, wsize);
675 } else if (e->type == EOT_DB_STRING ||
676 e->type == EOT_DB_STRING_FREE)
677 osize = e->stringlen;
679 align = (-osize) % wsize;
680 if (align < 0)
681 align += wsize;
682 isize += osize + align;
684 return isize * instruction->times;
687 if (instruction->opcode == I_INCBIN) {
688 const char *fname = instruction->eops->stringval;
689 FILE *fp;
690 int64_t val = 0;
691 size_t len;
693 fp = fopen(fname, "rb");
694 if (!fp)
695 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
696 fname);
697 else if (fseek(fp, 0L, SEEK_END) < 0)
698 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
699 fname);
700 else {
701 len = ftell(fp);
702 if (instruction->eops->next) {
703 len -= instruction->eops->next->offset;
704 if (instruction->eops->next->next &&
705 len > (size_t)instruction->eops->next->next->offset) {
706 len = (size_t)instruction->eops->next->next->offset;
709 val = instruction->times * len;
711 if (fp)
712 fclose(fp);
713 return val;
716 /* Check to see if we need an address-size prefix */
717 add_asp(instruction, bits);
719 m = find_match(&temp, instruction, segment, offset, bits);
720 if (m == MOK_GOOD) {
721 /* we've matched an instruction. */
722 int64_t isize;
723 const uint8_t *codes = temp->code;
724 int j;
726 isize = calcsize(segment, offset, bits, instruction, codes);
727 if (isize < 0)
728 return -1;
729 for (j = 0; j < MAXPREFIX; j++) {
730 switch (instruction->prefixes[j]) {
731 case P_A16:
732 if (bits != 16)
733 isize++;
734 break;
735 case P_A32:
736 if (bits != 32)
737 isize++;
738 break;
739 case P_O16:
740 if (bits != 16)
741 isize++;
742 break;
743 case P_O32:
744 if (bits == 16)
745 isize++;
746 break;
747 case P_A64:
748 case P_O64:
749 case P_none:
750 break;
751 default:
752 isize++;
753 break;
756 return isize * instruction->times;
757 } else {
758 return -1; /* didn't match any instruction */
762 static bool possible_sbyte(operand *o)
764 return o->wrt == NO_SEG && o->segment == NO_SEG &&
765 !(o->opflags & OPFLAG_UNKNOWN) &&
766 optimizing >= 0 && !(o->type & STRICT);
769 /* check that opn[op] is a signed byte of size 16 or 32 */
770 static bool is_sbyte16(operand *o)
772 int16_t v;
774 if (!possible_sbyte(o))
775 return false;
777 v = o->offset;
778 return v >= -128 && v <= 127;
781 static bool is_sbyte32(operand *o)
783 int32_t v;
785 if (!possible_sbyte(o))
786 return false;
788 v = o->offset;
789 return v >= -128 && v <= 127;
792 /* Common construct */
793 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
795 static int64_t calcsize(int32_t segment, int64_t offset, int bits,
796 insn * ins, const uint8_t *codes)
798 int64_t length = 0;
799 uint8_t c;
800 int rex_mask = ~0;
801 int op1, op2;
802 struct operand *opx;
803 uint8_t opex = 0;
805 ins->rex = 0; /* Ensure REX is reset */
807 if (ins->prefixes[PPS_OSIZE] == P_O64)
808 ins->rex |= REX_W;
810 (void)segment; /* Don't warn that this parameter is unused */
811 (void)offset; /* Don't warn that this parameter is unused */
813 while (*codes) {
814 c = *codes++;
815 op1 = (c & 3) + ((opex & 1) << 2);
816 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
817 opx = &ins->oprs[op1];
818 opex = 0; /* For the next iteration */
820 switch (c) {
821 case 01:
822 case 02:
823 case 03:
824 case 04:
825 codes += c, length += c;
826 break;
828 case 05:
829 case 06:
830 case 07:
831 opex = c;
832 break;
834 case4(010):
835 ins->rex |=
836 op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
837 codes++, length++;
838 break;
840 case4(014):
841 case4(020):
842 case4(024):
843 length++;
844 break;
846 case4(030):
847 length += 2;
848 break;
850 case4(034):
851 if (opx->type & (BITS16 | BITS32 | BITS64))
852 length += (opx->type & BITS16) ? 2 : 4;
853 else
854 length += (bits == 16) ? 2 : 4;
855 break;
857 case4(040):
858 length += 4;
859 break;
861 case4(044):
862 length += ins->addr_size >> 3;
863 break;
865 case4(050):
866 length++;
867 break;
869 case4(054):
870 length += 8; /* MOV reg64/imm */
871 break;
873 case4(060):
874 length += 2;
875 break;
877 case4(064):
878 if (opx->type & (BITS16 | BITS32 | BITS64))
879 length += (opx->type & BITS16) ? 2 : 4;
880 else
881 length += (bits == 16) ? 2 : 4;
882 break;
884 case4(070):
885 length += 4;
886 break;
888 case4(074):
889 length += 2;
890 break;
892 case4(0140):
893 length += is_sbyte16(opx) ? 1 : 2;
894 break;
896 case4(0144):
897 codes++;
898 length++;
899 break;
901 case4(0150):
902 length += is_sbyte32(opx) ? 1 : 4;
903 break;
905 case4(0154):
906 codes++;
907 length++;
908 break;
910 case4(0160):
911 length++;
912 ins->rex |= REX_D;
913 ins->drexdst = regval(opx);
914 break;
916 case4(0164):
917 length++;
918 ins->rex |= REX_D|REX_OC;
919 ins->drexdst = regval(opx);
920 break;
922 case 0171:
923 break;
925 case 0172:
926 case 0173:
927 case 0174:
928 codes++;
929 length++;
930 break;
932 case4(0250):
933 length += is_sbyte32(opx) ? 1 : 4;
934 break;
936 case4(0254):
937 length += 4;
938 break;
940 case4(0260):
941 ins->rex |= REX_V;
942 ins->drexdst = regval(opx);
943 ins->vex_cm = *codes++;
944 ins->vex_wlp = *codes++;
945 break;
947 case 0270:
948 ins->rex |= REX_V;
949 ins->drexdst = 0;
950 ins->vex_cm = *codes++;
951 ins->vex_wlp = *codes++;
952 break;
954 case4(0274):
955 length++;
956 break;
958 case4(0300):
959 break;
961 case 0310:
962 if (bits == 64)
963 return -1;
964 length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
965 break;
967 case 0311:
968 length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
969 break;
971 case 0312:
972 break;
974 case 0313:
975 if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
976 has_prefix(ins, PPS_ASIZE, P_A32))
977 return -1;
978 break;
980 case4(0314):
981 break;
983 case 0320:
984 length += (bits != 16);
985 break;
987 case 0321:
988 length += (bits == 16);
989 break;
991 case 0322:
992 break;
994 case 0323:
995 rex_mask &= ~REX_W;
996 break;
998 case 0324:
999 ins->rex |= REX_W;
1000 break;
1002 case 0325:
1003 ins->rex |= REX_NH;
1004 break;
1006 case 0330:
1007 codes++, length++;
1008 break;
1010 case 0331:
1011 break;
1013 case 0332:
1014 case 0333:
1015 length++;
1016 break;
1018 case 0334:
1019 ins->rex |= REX_L;
1020 break;
1022 case 0335:
1023 break;
1025 case 0336:
1026 if (!ins->prefixes[PPS_LREP])
1027 ins->prefixes[PPS_LREP] = P_REP;
1028 break;
1030 case 0337:
1031 if (!ins->prefixes[PPS_LREP])
1032 ins->prefixes[PPS_LREP] = P_REPNE;
1033 break;
1035 case 0340:
1036 if (ins->oprs[0].segment != NO_SEG)
1037 errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
1038 " quantity of BSS space");
1039 else
1040 length += ins->oprs[0].offset;
1041 break;
1043 case 0341:
1044 if (!ins->prefixes[PPS_WAIT])
1045 ins->prefixes[PPS_WAIT] = P_WAIT;
1046 break;
1048 case4(0344):
1049 length++;
1050 break;
1052 case 0360:
1053 break;
1055 case 0361:
1056 case 0362:
1057 case 0363:
1058 length++;
1059 break;
1061 case 0364:
1062 case 0365:
1063 break;
1065 case 0366:
1066 case 0367:
1067 length++;
1068 break;
1070 case 0370:
1071 case 0371:
1072 case 0372:
1073 break;
1075 case 0373:
1076 length++;
1077 break;
1079 case4(0100):
1080 case4(0110):
1081 case4(0120):
1082 case4(0130):
1083 case4(0200):
1084 case4(0204):
1085 case4(0210):
1086 case4(0214):
1087 case4(0220):
1088 case4(0224):
1089 case4(0230):
1090 case4(0234):
1092 ea ea_data;
1093 int rfield;
1094 opflags_t rflags;
1095 struct operand *opy = &ins->oprs[op2];
1097 ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
1099 if (c <= 0177) {
1100 /* pick rfield from operand b (opx) */
1101 rflags = regflag(opx);
1102 rfield = nasm_regvals[opx->basereg];
1103 } else {
1104 rflags = 0;
1105 rfield = c & 7;
1107 if (!process_ea(opy, &ea_data, bits,
1108 ins->addr_size, rfield, rflags)) {
1109 errfunc(ERR_NONFATAL, "invalid effective address");
1110 return -1;
1111 } else {
1112 ins->rex |= ea_data.rex;
1113 length += ea_data.size;
1116 break;
1118 default:
1119 errfunc(ERR_PANIC, "internal instruction table corrupt"
1120 ": instruction code \\%o (0x%02X) given", c, c);
1121 break;
1125 ins->rex &= rex_mask;
1127 if (ins->rex & REX_NH) {
1128 if (ins->rex & REX_H) {
1129 errfunc(ERR_NONFATAL, "instruction cannot use high registers");
1130 return -1;
1132 ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
1135 if (ins->rex & REX_V) {
1136 int bad32 = REX_R|REX_W|REX_X|REX_B;
1138 if (ins->rex & REX_H) {
1139 errfunc(ERR_NONFATAL, "cannot use high register in vex instruction");
1140 return -1;
1142 switch (ins->vex_wlp & 030) {
1143 case 000:
1144 case 020:
1145 ins->rex &= ~REX_W;
1146 break;
1147 case 010:
1148 ins->rex |= REX_W;
1149 bad32 &= ~REX_W;
1150 break;
1151 case 030:
1152 /* Follow REX_W */
1153 break;
1156 if (bits != 64 && ((ins->rex & bad32) || ins->drexdst > 7)) {
1157 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1158 return -1;
1160 if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_R|REX_B)))
1161 length += 3;
1162 else
1163 length += 2;
1164 } else if (ins->rex & REX_D) {
1165 if (ins->rex & REX_H) {
1166 errfunc(ERR_NONFATAL, "cannot use high register in drex instruction");
1167 return -1;
1169 if (bits != 64 && ((ins->rex & (REX_R|REX_W|REX_X|REX_B)) ||
1170 ins->drexdst > 7)) {
1171 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1172 return -1;
1174 length++;
1175 } else if (ins->rex & REX_REAL) {
1176 if (ins->rex & REX_H) {
1177 errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
1178 return -1;
1179 } else if (bits == 64) {
1180 length++;
1181 } else if ((ins->rex & REX_L) &&
1182 !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
1183 cpu >= IF_X86_64) {
1184 /* LOCK-as-REX.R */
1185 assert_no_prefix(ins, PPS_LREP);
1186 length++;
1187 } else {
1188 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1189 return -1;
1193 return length;
1196 #define EMIT_REX() \
1197 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1198 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1199 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1200 ins->rex = 0; \
1201 offset += 1; \
1204 static void gencode(int32_t segment, int64_t offset, int bits,
1205 insn * ins, const struct itemplate *temp,
1206 int64_t insn_end)
1208 static char condval[] = { /* conditional opcodes */
1209 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1210 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1211 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1213 uint8_t c;
1214 uint8_t bytes[4];
1215 int64_t size;
1216 int64_t data;
1217 int op1, op2;
1218 struct operand *opx;
1219 const uint8_t *codes = temp->code;
1220 uint8_t opex = 0;
1222 while (*codes) {
1223 c = *codes++;
1224 op1 = (c & 3) + ((opex & 1) << 2);
1225 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
1226 opx = &ins->oprs[op1];
1227 opex = 0; /* For the next iteration */
1229 switch (c) {
1230 case 01:
1231 case 02:
1232 case 03:
1233 case 04:
1234 EMIT_REX();
1235 out(offset, segment, codes, OUT_RAWDATA, c, NO_SEG, NO_SEG);
1236 codes += c;
1237 offset += c;
1238 break;
1240 case 05:
1241 case 06:
1242 case 07:
1243 opex = c;
1244 break;
1246 case4(010):
1247 EMIT_REX();
1248 bytes[0] = *codes++ + (regval(opx) & 7);
1249 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1250 offset += 1;
1251 break;
1253 case4(014):
1254 /* The test for BITS8 and SBYTE here is intended to avoid
1255 warning on optimizer actions due to SBYTE, while still
1256 warn on explicit BYTE directives. Also warn, obviously,
1257 if the optimizer isn't enabled. */
1258 if (((opx->type & BITS8) ||
1259 !(opx->type & temp->opd[op1] & BYTENESS)) &&
1260 (opx->offset < -128 || opx->offset > 127)) {
1261 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1262 "signed byte value exceeds bounds");
1264 if (opx->segment != NO_SEG) {
1265 data = opx->offset;
1266 out(offset, segment, &data, OUT_ADDRESS, 1,
1267 opx->segment, opx->wrt);
1268 } else {
1269 bytes[0] = opx->offset;
1270 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1271 NO_SEG);
1273 offset += 1;
1274 break;
1276 case4(020):
1277 if (opx->offset < -256 || opx->offset > 255) {
1278 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1279 "byte value exceeds bounds");
1281 if (opx->segment != NO_SEG) {
1282 data = opx->offset;
1283 out(offset, segment, &data, OUT_ADDRESS, 1,
1284 opx->segment, opx->wrt);
1285 } else {
1286 bytes[0] = opx->offset;
1287 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1288 NO_SEG);
1290 offset += 1;
1291 break;
1293 case4(024):
1294 if (opx->offset < 0 || opx->offset > 255)
1295 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1296 "unsigned byte value exceeds bounds");
1297 if (opx->segment != NO_SEG) {
1298 data = opx->offset;
1299 out(offset, segment, &data, OUT_ADDRESS, 1,
1300 opx->segment, opx->wrt);
1301 } else {
1302 bytes[0] = opx->offset;
1303 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1304 NO_SEG);
1306 offset += 1;
1307 break;
1309 case4(030):
1310 warn_overflow_opd(opx, 2);
1311 data = opx->offset;
1312 out(offset, segment, &data, OUT_ADDRESS, 2,
1313 opx->segment, opx->wrt);
1314 offset += 2;
1315 break;
1317 case4(034):
1318 if (opx->type & (BITS16 | BITS32))
1319 size = (opx->type & BITS16) ? 2 : 4;
1320 else
1321 size = (bits == 16) ? 2 : 4;
1322 warn_overflow_opd(opx, size);
1323 data = opx->offset;
1324 out(offset, segment, &data, OUT_ADDRESS, size,
1325 opx->segment, opx->wrt);
1326 offset += size;
1327 break;
1329 case4(040):
1330 warn_overflow_opd(opx, 4);
1331 data = opx->offset;
1332 out(offset, segment, &data, OUT_ADDRESS, 4,
1333 opx->segment, opx->wrt);
1334 offset += 4;
1335 break;
1337 case4(044):
1338 data = opx->offset;
1339 size = ins->addr_size >> 3;
1340 warn_overflow_opd(opx, size);
1341 out(offset, segment, &data, OUT_ADDRESS, size,
1342 opx->segment, opx->wrt);
1343 offset += size;
1344 break;
1346 case4(050):
1347 if (opx->segment != segment)
1348 errfunc(ERR_NONFATAL,
1349 "short relative jump outside segment");
1350 data = opx->offset - insn_end;
1351 if (data > 127 || data < -128)
1352 errfunc(ERR_NONFATAL, "short jump is out of range");
1353 bytes[0] = data;
1354 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1355 offset += 1;
1356 break;
1358 case4(054):
1359 data = (int64_t)opx->offset;
1360 out(offset, segment, &data, OUT_ADDRESS, 8,
1361 opx->segment, opx->wrt);
1362 offset += 8;
1363 break;
1365 case4(060):
1366 if (opx->segment != segment) {
1367 data = opx->offset;
1368 out(offset, segment, &data,
1369 OUT_REL2ADR, insn_end - offset,
1370 opx->segment, opx->wrt);
1371 } else {
1372 data = opx->offset - insn_end;
1373 out(offset, segment, &data,
1374 OUT_ADDRESS, 2, NO_SEG, NO_SEG);
1376 offset += 2;
1377 break;
1379 case4(064):
1380 if (opx->type & (BITS16 | BITS32 | BITS64))
1381 size = (opx->type & BITS16) ? 2 : 4;
1382 else
1383 size = (bits == 16) ? 2 : 4;
1384 if (opx->segment != segment) {
1385 data = opx->offset;
1386 out(offset, segment, &data,
1387 size == 2 ? OUT_REL2ADR : OUT_REL4ADR,
1388 insn_end - offset, opx->segment, opx->wrt);
1389 } else {
1390 data = opx->offset - insn_end;
1391 out(offset, segment, &data,
1392 OUT_ADDRESS, size, NO_SEG, NO_SEG);
1394 offset += size;
1395 break;
1397 case4(070):
1398 if (opx->segment != segment) {
1399 data = opx->offset;
1400 out(offset, segment, &data,
1401 OUT_REL4ADR, insn_end - offset,
1402 opx->segment, opx->wrt);
1403 } else {
1404 data = opx->offset - insn_end;
1405 out(offset, segment, &data,
1406 OUT_ADDRESS, 4, NO_SEG, NO_SEG);
1408 offset += 4;
1409 break;
1411 case4(074):
1412 if (opx->segment == NO_SEG)
1413 errfunc(ERR_NONFATAL, "value referenced by FAR is not"
1414 " relocatable");
1415 data = 0;
1416 out(offset, segment, &data, OUT_ADDRESS, 2,
1417 outfmt->segbase(1 + opx->segment),
1418 opx->wrt);
1419 offset += 2;
1420 break;
1422 case4(0140):
1423 data = opx->offset;
1424 warn_overflow_opd(opx, 2);
1425 if (is_sbyte16(opx)) {
1426 bytes[0] = data;
1427 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1428 NO_SEG);
1429 offset++;
1430 } else {
1431 out(offset, segment, &data, OUT_ADDRESS, 2,
1432 opx->segment, opx->wrt);
1433 offset += 2;
1435 break;
1437 case4(0144):
1438 EMIT_REX();
1439 bytes[0] = *codes++;
1440 if (is_sbyte16(opx))
1441 bytes[0] |= 2; /* s-bit */
1442 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1443 offset++;
1444 break;
1446 case4(0150):
1447 data = opx->offset;
1448 warn_overflow_opd(opx, 4);
1449 if (is_sbyte32(opx)) {
1450 bytes[0] = data;
1451 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1452 NO_SEG);
1453 offset++;
1454 } else {
1455 out(offset, segment, &data, OUT_ADDRESS, 4,
1456 opx->segment, opx->wrt);
1457 offset += 4;
1459 break;
1461 case4(0154):
1462 EMIT_REX();
1463 bytes[0] = *codes++;
1464 if (is_sbyte32(opx))
1465 bytes[0] |= 2; /* s-bit */
1466 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1467 offset++;
1468 break;
1470 case4(0160):
1471 case4(0164):
1472 break;
1474 case 0171:
1475 bytes[0] =
1476 (ins->drexdst << 4) |
1477 (ins->rex & REX_OC ? 0x08 : 0) |
1478 (ins->rex & (REX_R|REX_X|REX_B));
1479 ins->rex = 0;
1480 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1481 offset++;
1482 break;
1484 case 0172:
1485 c = *codes++;
1486 opx = &ins->oprs[c >> 3];
1487 bytes[0] = nasm_regvals[opx->basereg] << 4;
1488 opx = &ins->oprs[c & 7];
1489 if (opx->segment != NO_SEG || opx->wrt != NO_SEG) {
1490 errfunc(ERR_NONFATAL,
1491 "non-absolute expression not permitted as argument %d",
1492 c & 7);
1493 } else {
1494 if (opx->offset & ~15) {
1495 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1496 "four-bit argument exceeds bounds");
1498 bytes[0] |= opx->offset & 15;
1500 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1501 offset++;
1502 break;
1504 case 0173:
1505 c = *codes++;
1506 opx = &ins->oprs[c >> 4];
1507 bytes[0] = nasm_regvals[opx->basereg] << 4;
1508 bytes[0] |= c & 15;
1509 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1510 offset++;
1511 break;
1513 case 0174:
1514 c = *codes++;
1515 opx = &ins->oprs[c];
1516 bytes[0] = nasm_regvals[opx->basereg] << 4;
1517 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1518 offset++;
1519 break;
1521 case4(0250):
1522 data = opx->offset;
1523 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1524 (int32_t)data != (int64_t)data) {
1525 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1526 "signed dword immediate exceeds bounds");
1528 if (is_sbyte32(opx)) {
1529 bytes[0] = data;
1530 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1531 NO_SEG);
1532 offset++;
1533 } else {
1534 out(offset, segment, &data, OUT_ADDRESS, 4,
1535 opx->segment, opx->wrt);
1536 offset += 4;
1538 break;
1540 case4(0254):
1541 data = opx->offset;
1542 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1543 (int32_t)data != (int64_t)data) {
1544 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1545 "signed dword immediate exceeds bounds");
1547 out(offset, segment, &data, OUT_ADDRESS, 4,
1548 opx->segment, opx->wrt);
1549 offset += 4;
1550 break;
1552 case4(0260):
1553 case 0270:
1554 codes += 2;
1555 if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B))) {
1556 bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
1557 bytes[1] = (ins->vex_cm & 31) | ((~ins->rex & 7) << 5);
1558 bytes[2] = ((ins->rex & REX_W) << (7-3)) |
1559 ((~ins->drexdst & 15)<< 3) | (ins->vex_wlp & 07);
1560 out(offset, segment, &bytes, OUT_RAWDATA, 3, NO_SEG, NO_SEG);
1561 offset += 3;
1562 } else {
1563 bytes[0] = 0xc5;
1564 bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
1565 ((~ins->drexdst & 15) << 3) | (ins->vex_wlp & 07);
1566 out(offset, segment, &bytes, OUT_RAWDATA, 2, NO_SEG, NO_SEG);
1567 offset += 2;
1569 break;
1571 case4(0274):
1573 uint64_t uv, um;
1574 int s;
1576 if (ins->rex & REX_W)
1577 s = 64;
1578 else if (ins->prefixes[PPS_OSIZE] == P_O16)
1579 s = 16;
1580 else if (ins->prefixes[PPS_OSIZE] == P_O32)
1581 s = 32;
1582 else
1583 s = bits;
1585 um = (uint64_t)2 << (s-1);
1586 uv = opx->offset;
1588 if (uv > 127 && uv < (uint64_t)-128 &&
1589 (uv < um-128 || uv > um-1)) {
1590 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1591 "signed byte value exceeds bounds");
1593 if (opx->segment != NO_SEG) {
1594 data = uv;
1595 out(offset, segment, &data, OUT_ADDRESS, 1,
1596 opx->segment, opx->wrt);
1597 } else {
1598 bytes[0] = uv;
1599 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1600 NO_SEG);
1602 offset += 1;
1603 break;
1606 case4(0300):
1607 break;
1609 case 0310:
1610 if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
1611 *bytes = 0x67;
1612 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1613 offset += 1;
1614 } else
1615 offset += 0;
1616 break;
1618 case 0311:
1619 if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
1620 *bytes = 0x67;
1621 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1622 offset += 1;
1623 } else
1624 offset += 0;
1625 break;
1627 case 0312:
1628 break;
1630 case 0313:
1631 ins->rex = 0;
1632 break;
1634 case4(0314):
1635 break;
1637 case 0320:
1638 if (bits != 16) {
1639 *bytes = 0x66;
1640 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1641 offset += 1;
1642 } else
1643 offset += 0;
1644 break;
1646 case 0321:
1647 if (bits == 16) {
1648 *bytes = 0x66;
1649 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1650 offset += 1;
1651 } else
1652 offset += 0;
1653 break;
1655 case 0322:
1656 case 0323:
1657 break;
1659 case 0324:
1660 ins->rex |= REX_W;
1661 break;
1663 case 0325:
1664 break;
1666 case 0330:
1667 *bytes = *codes++ ^ condval[ins->condition];
1668 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1669 offset += 1;
1670 break;
1672 case 0331:
1673 break;
1675 case 0332:
1676 case 0333:
1677 *bytes = c - 0332 + 0xF2;
1678 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1679 offset += 1;
1680 break;
1682 case 0334:
1683 if (ins->rex & REX_R) {
1684 *bytes = 0xF0;
1685 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1686 offset += 1;
1688 ins->rex &= ~(REX_L|REX_R);
1689 break;
1691 case 0335:
1692 break;
1694 case 0336:
1695 case 0337:
1696 break;
1698 case 0340:
1699 if (ins->oprs[0].segment != NO_SEG)
1700 errfunc(ERR_PANIC, "non-constant BSS size in pass two");
1701 else {
1702 int64_t size = ins->oprs[0].offset;
1703 if (size > 0)
1704 out(offset, segment, NULL,
1705 OUT_RESERVE, size, NO_SEG, NO_SEG);
1706 offset += size;
1708 break;
1710 case 0341:
1711 break;
1713 case 0344:
1714 case 0345:
1715 bytes[0] = c & 1;
1716 switch (ins->oprs[0].basereg) {
1717 case R_CS:
1718 bytes[0] += 0x0E;
1719 break;
1720 case R_DS:
1721 bytes[0] += 0x1E;
1722 break;
1723 case R_ES:
1724 bytes[0] += 0x06;
1725 break;
1726 case R_SS:
1727 bytes[0] += 0x16;
1728 break;
1729 default:
1730 errfunc(ERR_PANIC,
1731 "bizarre 8086 segment register received");
1733 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1734 offset++;
1735 break;
1737 case 0346:
1738 case 0347:
1739 bytes[0] = c & 1;
1740 switch (ins->oprs[0].basereg) {
1741 case R_FS:
1742 bytes[0] += 0xA0;
1743 break;
1744 case R_GS:
1745 bytes[0] += 0xA8;
1746 break;
1747 default:
1748 errfunc(ERR_PANIC,
1749 "bizarre 386 segment register received");
1751 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1752 offset++;
1753 break;
1755 case 0360:
1756 break;
1758 case 0361:
1759 bytes[0] = 0x66;
1760 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1761 offset += 1;
1762 break;
1764 case 0362:
1765 case 0363:
1766 bytes[0] = c - 0362 + 0xf2;
1767 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1768 offset += 1;
1769 break;
1771 case 0364:
1772 case 0365:
1773 break;
1775 case 0366:
1776 case 0367:
1777 *bytes = c - 0366 + 0x66;
1778 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1779 offset += 1;
1780 break;
1782 case 0370:
1783 case 0371:
1784 case 0372:
1785 break;
1787 case 0373:
1788 *bytes = bits == 16 ? 3 : 5;
1789 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1790 offset += 1;
1791 break;
1793 case4(0100):
1794 case4(0110):
1795 case4(0120):
1796 case4(0130):
1797 case4(0200):
1798 case4(0204):
1799 case4(0210):
1800 case4(0214):
1801 case4(0220):
1802 case4(0224):
1803 case4(0230):
1804 case4(0234):
1806 ea ea_data;
1807 int rfield;
1808 opflags_t rflags;
1809 uint8_t *p;
1810 int32_t s;
1811 enum out_type type;
1812 struct operand *opy = &ins->oprs[op2];
1814 if (c <= 0177) {
1815 /* pick rfield from operand b (opx) */
1816 rflags = regflag(opx);
1817 rfield = nasm_regvals[opx->basereg];
1818 } else {
1819 /* rfield is constant */
1820 rflags = 0;
1821 rfield = c & 7;
1824 if (!process_ea(opy, &ea_data, bits, ins->addr_size,
1825 rfield, rflags)) {
1826 errfunc(ERR_NONFATAL, "invalid effective address");
1830 p = bytes;
1831 *p++ = ea_data.modrm;
1832 if (ea_data.sib_present)
1833 *p++ = ea_data.sib;
1835 /* DREX suffixes come between the SIB and the displacement */
1836 if (ins->rex & REX_D) {
1837 *p++ = (ins->drexdst << 4) |
1838 (ins->rex & REX_OC ? 0x08 : 0) |
1839 (ins->rex & (REX_R|REX_X|REX_B));
1840 ins->rex = 0;
1843 s = p - bytes;
1844 out(offset, segment, bytes, OUT_RAWDATA, s, NO_SEG, NO_SEG);
1847 * Make sure the address gets the right offset in case
1848 * the line breaks in the .lst file (BR 1197827)
1850 offset += s;
1851 s = 0;
1853 switch (ea_data.bytes) {
1854 case 0:
1855 break;
1856 case 1:
1857 case 2:
1858 case 4:
1859 case 8:
1860 data = opy->offset;
1861 warn_overflow_opd(opy, ea_data.bytes);
1862 s += ea_data.bytes;
1863 if (ea_data.rip) {
1864 if (opy->segment == segment) {
1865 data -= insn_end;
1866 out(offset, segment, &data, OUT_ADDRESS,
1867 ea_data.bytes, NO_SEG, NO_SEG);
1868 } else {
1869 out(offset, segment, &data, OUT_REL4ADR,
1870 insn_end - offset, opy->segment, opy->wrt);
1872 } else {
1873 type = OUT_ADDRESS;
1874 out(offset, segment, &data, OUT_ADDRESS,
1875 ea_data.bytes, opy->segment, opy->wrt);
1877 break;
1878 default:
1879 /* Impossible! */
1880 errfunc(ERR_PANIC,
1881 "Invalid amount of bytes (%d) for offset?!",
1882 ea_data.bytes);
1883 break;
1885 offset += s;
1887 break;
1889 default:
1890 errfunc(ERR_PANIC, "internal instruction table corrupt"
1891 ": instruction code \\%o (0x%02X) given", c, c);
1892 break;
1897 static opflags_t regflag(const operand * o)
1899 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1900 errfunc(ERR_PANIC, "invalid operand passed to regflag()");
1902 return nasm_reg_flags[o->basereg];
1905 static int32_t regval(const operand * o)
1907 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1908 errfunc(ERR_PANIC, "invalid operand passed to regval()");
1910 return nasm_regvals[o->basereg];
1913 static int op_rexflags(const operand * o, int mask)
1915 opflags_t flags;
1916 int val;
1918 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1919 errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
1922 flags = nasm_reg_flags[o->basereg];
1923 val = nasm_regvals[o->basereg];
1925 return rexflags(val, flags, mask);
1928 static int rexflags(int val, opflags_t flags, int mask)
1930 int rex = 0;
1932 if (val >= 8)
1933 rex |= REX_B|REX_X|REX_R;
1934 if (flags & BITS64)
1935 rex |= REX_W;
1936 if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
1937 rex |= REX_H;
1938 else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
1939 rex |= REX_P;
1941 return rex & mask;
1944 static enum match_result find_match(const struct itemplate **tempp,
1945 insn *instruction,
1946 int32_t segment, int64_t offset, int bits)
1948 const struct itemplate *temp;
1949 enum match_result m, merr;
1950 opflags_t xsizeflags[MAX_OPERANDS];
1951 bool opsizemissing = false;
1952 int i;
1954 for (i = 0; i < instruction->operands; i++)
1955 xsizeflags[i] = instruction->oprs[i].type & SIZE_MASK;
1957 merr = MERR_INVALOP;
1959 for (temp = nasm_instructions[instruction->opcode];
1960 temp->opcode != I_none; temp++) {
1961 m = matches(temp, instruction, bits);
1962 if (m == MOK_JUMP) {
1963 if (jmp_match(segment, offset, bits, instruction, temp->code))
1964 m = MOK_GOOD;
1965 else
1966 m = MERR_INVALOP;
1967 } else if (m == MERR_OPSIZEMISSING &&
1968 (temp->flags & IF_SMASK) != IF_SX) {
1970 * Missing operand size and a candidate for fuzzy matching...
1972 for (i = 0; i < temp->operands; i++) {
1973 if ((temp->opd[i] & SAME_AS) == 0)
1974 xsizeflags[i] |= temp->opd[i] & SIZE_MASK;
1976 opsizemissing = true;
1978 if (m > merr)
1979 merr = m;
1980 if (merr == MOK_GOOD)
1981 goto done;
1984 /* No match, but see if we can get a fuzzy operand size match... */
1985 if (!opsizemissing)
1986 goto done;
1988 for (i = 0; i < instruction->operands; i++) {
1990 * We ignore extrinsic operand sizes on registers, so we should
1991 * never try to fuzzy-match on them. This also resolves the case
1992 * when we have e.g. "xmmrm128" in two different positions.
1994 if (is_class(REGISTER, instruction->oprs[i].type))
1995 continue;
1997 /* This tests if xsizeflags[i] has more than one bit set */
1998 if ((xsizeflags[i] & (xsizeflags[i]-1)))
1999 goto done; /* No luck */
2001 instruction->oprs[i].type |= xsizeflags[i]; /* Set the size */
2004 /* Try matching again... */
2005 for (temp = nasm_instructions[instruction->opcode];
2006 temp->opcode != I_none; temp++) {
2007 m = matches(temp, instruction, bits);
2008 if (m == MOK_JUMP) {
2009 if (jmp_match(segment, offset, bits, instruction, temp->code))
2010 m = MOK_GOOD;
2011 else
2012 m = MERR_INVALOP;
2014 if (m > merr)
2015 merr = m;
2016 if (merr == MOK_GOOD)
2017 goto done;
2020 done:
2021 *tempp = temp;
2022 return merr;
2025 static enum match_result matches(const struct itemplate *itemp,
2026 insn *instruction, int bits)
2028 int i, size[MAX_OPERANDS], asize, oprs;
2029 bool opsizemissing = false;
2032 * Check the opcode
2034 if (itemp->opcode != instruction->opcode)
2035 return MERR_INVALOP;
2038 * Count the operands
2040 if (itemp->operands != instruction->operands)
2041 return MERR_INVALOP;
2044 * Check that no spurious colons or TOs are present
2046 for (i = 0; i < itemp->operands; i++)
2047 if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
2048 return MERR_INVALOP;
2051 * Process size flags
2053 switch (itemp->flags & IF_SMASK) {
2054 case IF_SB:
2055 asize = BITS8;
2056 break;
2057 case IF_SW:
2058 asize = BITS16;
2059 break;
2060 case IF_SD:
2061 asize = BITS32;
2062 break;
2063 case IF_SQ:
2064 asize = BITS64;
2065 break;
2066 case IF_SO:
2067 asize = BITS128;
2068 break;
2069 case IF_SY:
2070 asize = BITS256;
2071 break;
2072 case IF_SZ:
2073 switch (bits) {
2074 case 16:
2075 asize = BITS16;
2076 break;
2077 case 32:
2078 asize = BITS32;
2079 break;
2080 case 64:
2081 asize = BITS64;
2082 break;
2083 default:
2084 asize = 0;
2085 break;
2087 break;
2088 default:
2089 asize = 0;
2090 break;
2093 if (itemp->flags & IF_ARMASK) {
2094 /* S- flags only apply to a specific operand */
2095 i = ((itemp->flags & IF_ARMASK) >> IF_ARSHFT) - 1;
2096 memset(size, 0, sizeof size);
2097 size[i] = asize;
2098 } else {
2099 /* S- flags apply to all operands */
2100 for (i = 0; i < MAX_OPERANDS; i++)
2101 size[i] = asize;
2105 * Check that the operand flags all match up,
2106 * it's a bit tricky so lets be verbose:
2108 * 1) Find out the size of operand. If instruction
2109 * doesn't have one specified -- we're trying to
2110 * guess it either from template (IF_S* flag) or
2111 * from code bits.
2113 * 2) If template operand (i) has SAME_AS flag [used for registers only]
2114 * (ie the same operand as was specified somewhere in template, and
2115 * this referred operand index is being achieved via ~SAME_AS)
2116 * we are to be sure that both registers (in template and instruction)
2117 * do exactly match.
2119 * 3) If template operand do not match the instruction OR
2120 * template has an operand size specified AND this size differ
2121 * from which instruction has (perhaps we got it from code bits)
2122 * we are:
2123 * a) Check that only size of instruction and operand is differ
2124 * other characteristics do match
2125 * b) Perhaps it's a register specified in instruction so
2126 * for such a case we just mark that operand as "size
2127 * missing" and this will turn on fuzzy operand size
2128 * logic facility (handled by a caller)
2130 for (i = 0; i < itemp->operands; i++) {
2131 opflags_t type = instruction->oprs[i].type;
2132 if (!(type & SIZE_MASK))
2133 type |= size[i];
2135 if (itemp->opd[i] & SAME_AS) {
2136 int j = itemp->opd[i] & ~SAME_AS;
2137 if (type != instruction->oprs[j].type ||
2138 instruction->oprs[i].basereg != instruction->oprs[j].basereg)
2139 return MERR_INVALOP;
2140 } else if (itemp->opd[i] & ~type ||
2141 ((itemp->opd[i] & SIZE_MASK) &&
2142 ((itemp->opd[i] ^ type) & SIZE_MASK))) {
2143 if ((itemp->opd[i] & ~type & ~SIZE_MASK) || (type & SIZE_MASK)) {
2144 return MERR_INVALOP;
2145 } else if (!is_class(REGISTER, type)) {
2147 * Note: we don't honor extrinsic operand sizes for registers,
2148 * so "missing operand size" for a register should be
2149 * considered a wildcard match rather than an error.
2151 opsizemissing = true;
2156 if (opsizemissing)
2157 return MERR_OPSIZEMISSING;
2160 * Check operand sizes
2162 if (itemp->flags & (IF_SM | IF_SM2)) {
2163 oprs = (itemp->flags & IF_SM2 ? 2 : itemp->operands);
2164 for (i = 0; i < oprs; i++) {
2165 asize = itemp->opd[i] & SIZE_MASK;
2166 if (asize) {
2167 for (i = 0; i < oprs; i++)
2168 size[i] = asize;
2169 break;
2172 } else {
2173 oprs = itemp->operands;
2176 for (i = 0; i < itemp->operands; i++) {
2177 if (!(itemp->opd[i] & SIZE_MASK) &&
2178 (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
2179 return MERR_OPSIZEMISMATCH;
2183 * Check template is okay at the set cpu level
2185 if (((itemp->flags & IF_PLEVEL) > cpu))
2186 return MERR_BADCPU;
2189 * Verify the appropriate long mode flag.
2191 if ((itemp->flags & (bits == 64 ? IF_NOLONG : IF_LONG)))
2192 return MERR_BADMODE;
2195 * Check if special handling needed for Jumps
2197 if ((itemp->code[0] & 0374) == 0370)
2198 return MOK_JUMP;
2200 return MOK_GOOD;
2203 static ea *process_ea(operand * input, ea * output, int bits,
2204 int addrbits, int rfield, opflags_t rflags)
2206 bool forw_ref = !!(input->opflags & OPFLAG_UNKNOWN);
2208 output->rip = false;
2210 /* REX flags for the rfield operand */
2211 output->rex |= rexflags(rfield, rflags, REX_R|REX_P|REX_W|REX_H);
2213 if (is_class(REGISTER, input->type)) { /* register direct */
2214 int i;
2215 opflags_t f;
2217 if (input->basereg < EXPR_REG_START /* Verify as Register */
2218 || input->basereg >= REG_ENUM_LIMIT)
2219 return NULL;
2220 f = regflag(input);
2221 i = nasm_regvals[input->basereg];
2223 if (REG_EA & ~f)
2224 return NULL; /* Invalid EA register */
2226 output->rex |= op_rexflags(input, REX_B|REX_P|REX_W|REX_H);
2228 output->sib_present = false; /* no SIB necessary */
2229 output->bytes = 0; /* no offset necessary either */
2230 output->modrm = 0xC0 | ((rfield & 7) << 3) | (i & 7);
2231 } else { /* it's a memory reference */
2232 if (input->basereg == -1
2233 && (input->indexreg == -1 || input->scale == 0)) {
2234 /* it's a pure offset */
2235 if (bits == 64 && (~input->type & IP_REL)) {
2236 int scale, index, base;
2237 output->sib_present = true;
2238 scale = 0;
2239 index = 4;
2240 base = 5;
2241 output->sib = (scale << 6) | (index << 3) | base;
2242 output->bytes = 4;
2243 output->modrm = 4 | ((rfield & 7) << 3);
2244 output->rip = false;
2245 } else {
2246 output->sib_present = false;
2247 output->bytes = (addrbits != 16 ? 4 : 2);
2248 output->modrm = (addrbits != 16 ? 5 : 6) | ((rfield & 7) << 3);
2249 output->rip = bits == 64;
2251 } else { /* it's an indirection */
2252 int i = input->indexreg, b = input->basereg, s = input->scale;
2253 int32_t o = input->offset, seg = input->segment;
2254 int hb = input->hintbase, ht = input->hinttype;
2255 int t, it, bt; /* register numbers */
2256 opflags_t x, ix, bx; /* register flags */
2258 if (s == 0)
2259 i = -1; /* make this easy, at least */
2261 if (i >= EXPR_REG_START && i < REG_ENUM_LIMIT) {
2262 it = nasm_regvals[i];
2263 ix = nasm_reg_flags[i];
2264 } else {
2265 it = -1;
2266 ix = 0;
2269 if (b >= EXPR_REG_START && b < REG_ENUM_LIMIT) {
2270 bt = nasm_regvals[b];
2271 bx = nasm_reg_flags[b];
2272 } else {
2273 bt = -1;
2274 bx = 0;
2277 /* check for a 32/64-bit memory reference... */
2278 if ((ix|bx) & (BITS32|BITS64)) {
2279 /* it must be a 32/64-bit memory reference. Firstly we have
2280 * to check that all registers involved are type E/Rxx. */
2281 int32_t sok = BITS32|BITS64;
2283 if (it != -1) {
2284 if (!(REG64 & ~ix) || !(REG32 & ~ix))
2285 sok &= ix;
2286 else
2287 return NULL;
2290 if (bt != -1) {
2291 if (REG_GPR & ~bx)
2292 return NULL; /* Invalid register */
2293 if (~sok & bx & SIZE_MASK)
2294 return NULL; /* Invalid size */
2295 sok &= bx;
2298 /* While we're here, ensure the user didn't specify
2299 WORD or QWORD. */
2300 if (input->disp_size == 16 || input->disp_size == 64)
2301 return NULL;
2303 if (addrbits == 16 ||
2304 (addrbits == 32 && !(sok & BITS32)) ||
2305 (addrbits == 64 && !(sok & BITS64)))
2306 return NULL;
2308 /* now reorganize base/index */
2309 if (s == 1 && bt != it && bt != -1 && it != -1 &&
2310 ((hb == b && ht == EAH_NOTBASE)
2311 || (hb == i && ht == EAH_MAKEBASE))) {
2312 /* swap if hints say so */
2313 t = bt, bt = it, it = t;
2314 x = bx, bx = ix, ix = x;
2316 if (bt == it) /* convert EAX+2*EAX to 3*EAX */
2317 bt = -1, bx = 0, s++;
2318 if (bt == -1 && s == 1 && !(hb == it && ht == EAH_NOTBASE)) {
2319 /* make single reg base, unless hint */
2320 bt = it, bx = ix, it = -1, ix = 0;
2322 if (((s == 2 && it != REG_NUM_ESP
2323 && !(input->eaflags & EAF_TIMESTWO)) || s == 3
2324 || s == 5 || s == 9) && bt == -1)
2325 bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
2326 if (it == -1 && (bt & 7) != REG_NUM_ESP
2327 && (input->eaflags & EAF_TIMESTWO))
2328 it = bt, ix = bx, bt = -1, bx = 0, s = 1;
2329 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2330 if (s == 1 && it == REG_NUM_ESP) {
2331 /* swap ESP into base if scale is 1 */
2332 t = it, it = bt, bt = t;
2333 x = ix, ix = bx, bx = x;
2335 if (it == REG_NUM_ESP
2336 || (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
2337 return NULL; /* wrong, for various reasons */
2339 output->rex |= rexflags(it, ix, REX_X);
2340 output->rex |= rexflags(bt, bx, REX_B);
2342 if (it == -1 && (bt & 7) != REG_NUM_ESP) {
2343 /* no SIB needed */
2344 int mod, rm;
2346 if (bt == -1) {
2347 rm = 5;
2348 mod = 0;
2349 } else {
2350 rm = (bt & 7);
2351 if (rm != REG_NUM_EBP && o == 0 &&
2352 seg == NO_SEG && !forw_ref &&
2353 !(input->eaflags &
2354 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2355 mod = 0;
2356 else if (input->eaflags & EAF_BYTEOFFS ||
2357 (o >= -128 && o <= 127 && seg == NO_SEG
2358 && !forw_ref
2359 && !(input->eaflags & EAF_WORDOFFS)))
2360 mod = 1;
2361 else
2362 mod = 2;
2365 output->sib_present = false;
2366 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2367 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2368 } else {
2369 /* we need a SIB */
2370 int mod, scale, index, base;
2372 if (it == -1)
2373 index = 4, s = 1;
2374 else
2375 index = (it & 7);
2377 switch (s) {
2378 case 1:
2379 scale = 0;
2380 break;
2381 case 2:
2382 scale = 1;
2383 break;
2384 case 4:
2385 scale = 2;
2386 break;
2387 case 8:
2388 scale = 3;
2389 break;
2390 default: /* then what the smeg is it? */
2391 return NULL; /* panic */
2394 if (bt == -1) {
2395 base = 5;
2396 mod = 0;
2397 } else {
2398 base = (bt & 7);
2399 if (base != REG_NUM_EBP && o == 0 &&
2400 seg == NO_SEG && !forw_ref &&
2401 !(input->eaflags &
2402 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2403 mod = 0;
2404 else if (input->eaflags & EAF_BYTEOFFS ||
2405 (o >= -128 && o <= 127 && seg == NO_SEG
2406 && !forw_ref
2407 && !(input->eaflags & EAF_WORDOFFS)))
2408 mod = 1;
2409 else
2410 mod = 2;
2413 output->sib_present = true;
2414 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2415 output->modrm = (mod << 6) | ((rfield & 7) << 3) | 4;
2416 output->sib = (scale << 6) | (index << 3) | base;
2418 } else { /* it's 16-bit */
2419 int mod, rm;
2421 /* check for 64-bit long mode */
2422 if (addrbits == 64)
2423 return NULL;
2425 /* check all registers are BX, BP, SI or DI */
2426 if ((b != -1 && b != R_BP && b != R_BX && b != R_SI
2427 && b != R_DI) || (i != -1 && i != R_BP && i != R_BX
2428 && i != R_SI && i != R_DI))
2429 return NULL;
2431 /* ensure the user didn't specify DWORD/QWORD */
2432 if (input->disp_size == 32 || input->disp_size == 64)
2433 return NULL;
2435 if (s != 1 && i != -1)
2436 return NULL; /* no can do, in 16-bit EA */
2437 if (b == -1 && i != -1) {
2438 int tmp = b;
2439 b = i;
2440 i = tmp;
2441 } /* swap */
2442 if ((b == R_SI || b == R_DI) && i != -1) {
2443 int tmp = b;
2444 b = i;
2445 i = tmp;
2447 /* have BX/BP as base, SI/DI index */
2448 if (b == i)
2449 return NULL; /* shouldn't ever happen, in theory */
2450 if (i != -1 && b != -1 &&
2451 (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
2452 return NULL; /* invalid combinations */
2453 if (b == -1) /* pure offset: handled above */
2454 return NULL; /* so if it gets to here, panic! */
2456 rm = -1;
2457 if (i != -1)
2458 switch (i * 256 + b) {
2459 case R_SI * 256 + R_BX:
2460 rm = 0;
2461 break;
2462 case R_DI * 256 + R_BX:
2463 rm = 1;
2464 break;
2465 case R_SI * 256 + R_BP:
2466 rm = 2;
2467 break;
2468 case R_DI * 256 + R_BP:
2469 rm = 3;
2470 break;
2471 } else
2472 switch (b) {
2473 case R_SI:
2474 rm = 4;
2475 break;
2476 case R_DI:
2477 rm = 5;
2478 break;
2479 case R_BP:
2480 rm = 6;
2481 break;
2482 case R_BX:
2483 rm = 7;
2484 break;
2486 if (rm == -1) /* can't happen, in theory */
2487 return NULL; /* so panic if it does */
2489 if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
2490 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2491 mod = 0;
2492 else if (input->eaflags & EAF_BYTEOFFS ||
2493 (o >= -128 && o <= 127 && seg == NO_SEG
2494 && !forw_ref
2495 && !(input->eaflags & EAF_WORDOFFS)))
2496 mod = 1;
2497 else
2498 mod = 2;
2500 output->sib_present = false; /* no SIB - it's 16-bit */
2501 output->bytes = mod; /* bytes of offset needed */
2502 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2507 output->size = 1 + output->sib_present + output->bytes;
2508 return output;
2511 static void add_asp(insn *ins, int addrbits)
2513 int j, valid;
2514 int defdisp;
2516 valid = (addrbits == 64) ? 64|32 : 32|16;
2518 switch (ins->prefixes[PPS_ASIZE]) {
2519 case P_A16:
2520 valid &= 16;
2521 break;
2522 case P_A32:
2523 valid &= 32;
2524 break;
2525 case P_A64:
2526 valid &= 64;
2527 break;
2528 case P_ASP:
2529 valid &= (addrbits == 32) ? 16 : 32;
2530 break;
2531 default:
2532 break;
2535 for (j = 0; j < ins->operands; j++) {
2536 if (is_class(MEMORY, ins->oprs[j].type)) {
2537 opflags_t i, b;
2539 /* Verify as Register */
2540 if (ins->oprs[j].indexreg < EXPR_REG_START
2541 || ins->oprs[j].indexreg >= REG_ENUM_LIMIT)
2542 i = 0;
2543 else
2544 i = nasm_reg_flags[ins->oprs[j].indexreg];
2546 /* Verify as Register */
2547 if (ins->oprs[j].basereg < EXPR_REG_START
2548 || ins->oprs[j].basereg >= REG_ENUM_LIMIT)
2549 b = 0;
2550 else
2551 b = nasm_reg_flags[ins->oprs[j].basereg];
2553 if (ins->oprs[j].scale == 0)
2554 i = 0;
2556 if (!i && !b) {
2557 int ds = ins->oprs[j].disp_size;
2558 if ((addrbits != 64 && ds > 8) ||
2559 (addrbits == 64 && ds == 16))
2560 valid &= ds;
2561 } else {
2562 if (!(REG16 & ~b))
2563 valid &= 16;
2564 if (!(REG32 & ~b))
2565 valid &= 32;
2566 if (!(REG64 & ~b))
2567 valid &= 64;
2569 if (!(REG16 & ~i))
2570 valid &= 16;
2571 if (!(REG32 & ~i))
2572 valid &= 32;
2573 if (!(REG64 & ~i))
2574 valid &= 64;
2579 if (valid & addrbits) {
2580 ins->addr_size = addrbits;
2581 } else if (valid & ((addrbits == 32) ? 16 : 32)) {
2582 /* Add an address size prefix */
2583 enum prefixes pref = (addrbits == 32) ? P_A16 : P_A32;
2584 ins->prefixes[PPS_ASIZE] = pref;
2585 ins->addr_size = (addrbits == 32) ? 16 : 32;
2586 } else {
2587 /* Impossible... */
2588 errfunc(ERR_NONFATAL, "impossible combination of address sizes");
2589 ins->addr_size = addrbits; /* Error recovery */
2592 defdisp = ins->addr_size == 16 ? 16 : 32;
2594 for (j = 0; j < ins->operands; j++) {
2595 if (!(MEM_OFFS & ~ins->oprs[j].type) &&
2596 (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp)
2597 != ins->addr_size) {
2598 /* mem_offs sizes must match the address size; if not,
2599 strip the MEM_OFFS bit and match only EA instructions */
2600 ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);