Version 0.99.03
[nasm/avx512.git] / nasm.h
blobf4afad365a04c3662711444fd35466b6cfc0ebb4
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #include <stdio.h>
15 #include <inttypes.h>
16 #include "version.h" /* generated NASM version macros */
17 #include "compiler.h"
18 #include "insnsi.h" /* For enum opcode */
20 #ifndef NULL
21 #define NULL 0
22 #endif
24 #ifndef FALSE
25 #define FALSE 0 /* comes in handy */
26 #endif
27 #ifndef TRUE
28 #define TRUE 1
29 #endif
31 #define NO_SEG -1L /* null segment value */
32 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
34 #ifndef FILENAME_MAX
35 #define FILENAME_MAX 256
36 #endif
38 #ifndef PREFIX_MAX
39 #define PREFIX_MAX 10
40 #endif
42 #ifndef POSTFIX_MAX
43 #define POSTFIX_MAX 10
44 #endif
46 #define IDLEN_MAX 4096
49 * Name pollution problems: <time.h> on Digital UNIX pulls in some
50 * strange hardware header file which sees fit to define R_SP. We
51 * undefine it here so as not to break the enum below.
53 #ifdef R_SP
54 #undef R_SP
55 #endif
58 * We must declare the existence of this structure type up here,
59 * since we have to reference it before we define it...
61 struct ofmt;
64 * -------------------------
65 * Error reporting functions
66 * -------------------------
70 * An error reporting function should look like this.
72 typedef void (*efunc) (int severity, const char *fmt, ...);
75 * These are the error severity codes which get passed as the first
76 * argument to an efunc.
79 #define ERR_DEBUG 0x00000008 /* put out debugging message */
80 #define ERR_WARNING 0x00000000 /* warn only: no further action */
81 #define ERR_NONFATAL 0x00000001 /* terminate assembly after phase */
82 #define ERR_FATAL 0x00000002 /* instantly fatal: exit with error */
83 #define ERR_PANIC 0x00000003 /* internal error: panic instantly
84 * and dump core for reference */
85 #define ERR_MASK 0x0000000F /* mask off the above codes */
86 #define ERR_NOFILE 0x00000010 /* don't give source file name/line */
87 #define ERR_USAGE 0x00000020 /* print a usage message */
88 #define ERR_PASS1 0x00000040 /* only print this error on pass one */
91 * These codes define specific types of suppressible warning.
94 #define ERR_WARN_MASK 0x0000FF00 /* the mask for this feature */
95 #define ERR_WARN_SHR 8 /* how far to shift right */
97 #define ERR_WARN_MNP 0x00000100 /* macro-num-parameters warning */
98 #define ERR_WARN_MSR 0x00000200 /* macro self-reference */
99 #define ERR_WARN_OL 0x00000300 /* orphan label (no colon, and
100 * alone on line) */
101 #define ERR_WARN_NOV 0x00000400 /* numeric overflow */
102 #define ERR_WARN_GNUELF 0x00000500 /* using GNU ELF extensions */
103 #define ERR_WARN_MAX 5 /* the highest numbered one */
106 * -----------------------
107 * Other function typedefs
108 * -----------------------
112 * A label-lookup function should look like this.
114 typedef int (*lfunc) (char *label, int32_t *segment, int32_t *offset);
117 * And a label-definition function like this. The boolean parameter
118 * `is_norm' states whether the label is a `normal' label (which
119 * should affect the local-label system), or something odder like
120 * an EQU or a segment-base symbol, which shouldn't.
122 typedef void (*ldfunc) (char *label, int32_t segment, int32_t offset,
123 char *special, int is_norm, int isextrn,
124 struct ofmt * ofmt, efunc error);
127 * List-file generators should look like this:
129 typedef struct {
131 * Called to initialize the listing file generator. Before this
132 * is called, the other routines will silently do nothing when
133 * called. The `char *' parameter is the file name to write the
134 * listing to.
136 void (*init) (char *, efunc);
139 * Called to clear stuff up and close the listing file.
141 void (*cleanup) (void);
144 * Called to output binary data. Parameters are: the offset;
145 * the data; the data type. Data types are similar to the
146 * output-format interface, only OUT_ADDRESS will _always_ be
147 * displayed as if it's relocatable, so ensure that any non-
148 * relocatable address has been converted to OUT_RAWDATA by
149 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
150 * dummy call used to give the listing generator an offset to
151 * work with when doing things like uplevel(LIST_TIMES) or
152 * uplevel(LIST_INCBIN).
154 void (*output) (int32_t, const void *, uint32_t);
157 * Called to send a text line to the listing generator. The
158 * `int' parameter is LIST_READ or LIST_MACRO depending on
159 * whether the line came directly from an input file or is the
160 * result of a multi-line macro expansion.
162 void (*line) (int, char *);
165 * Called to change one of the various levelled mechanisms in
166 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
167 * used to increase the nesting level of include files and
168 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
169 * two binary-output-suppression mechanisms for large-scale
170 * pseudo-instructions.
172 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
173 * it indicates the beginning of the expansion of a `nolist'
174 * macro, so anything under that level won't be expanded unless
175 * it includes another file.
177 void (*uplevel) (int);
180 * Reverse the effects of uplevel.
182 void (*downlevel) (int);
183 } ListGen;
186 * The expression evaluator must be passed a scanner function; a
187 * standard scanner is provided as part of nasmlib.c. The
188 * preprocessor will use a different one. Scanners, and the
189 * token-value structures they return, look like this.
191 * The return value from the scanner is always a copy of the
192 * `t_type' field in the structure.
194 struct tokenval {
195 int t_type;
196 int64_t t_integer, t_inttwo;
197 char *t_charptr;
199 typedef int (*scanner) (void *private_data, struct tokenval * tv);
202 * Token types returned by the scanner, in addition to ordinary
203 * ASCII character values, and zero for end-of-string.
205 enum { /* token types, other than chars */
206 TOKEN_INVALID = -1, /* a placeholder value */
207 TOKEN_EOS = 0, /* end of string */
208 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
209 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
210 TOKEN_ERRNUM, /* numeric constant with error in */
211 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
212 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
213 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
214 TOKEN_SHL, TOKEN_SHR, /* << and >> */
215 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
216 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
217 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
218 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
219 TOKEN_FLOAT /* floating-point constant */
222 typedef struct {
223 int32_t segment;
224 int64_t offset;
225 int known;
226 } loc_t;
229 * Expression-evaluator datatype. Expressions, within the
230 * evaluator, are stored as an array of these beasts, terminated by
231 * a record with type==0. Mostly, it's a vector type: each type
232 * denotes some kind of a component, and the value denotes the
233 * multiple of that component present in the expression. The
234 * exception is the WRT type, whose `value' field denotes the
235 * segment to which the expression is relative. These segments will
236 * be segment-base types, i.e. either odd segment values or SEG_ABS
237 * types. So it is still valid to assume that anything with a
238 * `value' field of zero is insignificant.
240 typedef struct {
241 int32_t type; /* a register, or EXPR_xxx */
242 int64_t value; /* must be >= 32 bits */
243 } expr;
246 * The evaluator can also return hints about which of two registers
247 * used in an expression should be the base register. See also the
248 * `operand' structure.
250 struct eval_hints {
251 int64_t base;
252 int type;
256 * The actual expression evaluator function looks like this. When
257 * called, it expects the first token of its expression to already
258 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
259 * it will start by calling the scanner.
261 * If a forward reference happens during evaluation, the evaluator
262 * must set `*fwref' to TRUE if `fwref' is non-NULL.
264 * `critical' is non-zero if the expression may not contain forward
265 * references. The evaluator will report its own error if this
266 * occurs; if `critical' is 1, the error will be "symbol not
267 * defined before use", whereas if `critical' is 2, the error will
268 * be "symbol undefined".
270 * If `critical' has bit 8 set (in addition to its main value: 0x101
271 * and 0x102 correspond to 1 and 2) then an extended expression
272 * syntax is recognised, in which relational operators such as =, <
273 * and >= are accepted, as well as low-precedence logical operators
274 * &&, ^^ and ||.
276 * If `hints' is non-NULL, it gets filled in with some hints as to
277 * the base register in complex effective addresses.
279 #define CRITICAL 0x100
280 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
281 struct tokenval * tv, int *fwref, int critical,
282 efunc error, struct eval_hints * hints);
285 * Special values for expr->type. These come after EXPR_REG_END
286 * as defined in regs.h.
289 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
290 #define EXPR_SIMPLE (EXPR_REG_END+2)
291 #define EXPR_WRT (EXPR_REG_END+3)
292 #define EXPR_SEGBASE (EXPR_REG_END+4)
295 * Preprocessors ought to look like this:
297 typedef struct preproc_ops {
299 * Called at the start of a pass; given a file name, the number
300 * of the pass, an error reporting function, an evaluator
301 * function, and a listing generator to talk to.
303 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
306 * Called to fetch a line of preprocessed source. The line
307 * returned has been malloc'ed, and so should be freed after
308 * use.
310 char *(*getline) (void);
313 * Called at the end of a pass.
315 void (*cleanup) (int);
316 } Preproc;
318 extern Preproc nasmpp;
321 * ----------------------------------------------------------------
322 * Some lexical properties of the NASM source language, included
323 * here because they are shared between the parser and preprocessor
324 * ----------------------------------------------------------------
328 * isidstart matches any character that may start an identifier, and isidchar
329 * matches any character that may appear at places other than the start of an
330 * identifier. E.g. a period may only appear at the start of an identifier
331 * (for local labels), whereas a number may appear anywhere *but* at the
332 * start.
335 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
336 || (c)=='@' )
337 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
338 || (c)=='~' )
340 /* Ditto for numeric constants. */
342 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
343 #define isnumchar(c) ( isalnum(c) )
345 /* This returns the numeric value of a given 'digit'. */
347 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
350 * Data-type flags that get passed to listing-file routines.
352 enum {
353 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
354 LIST_INCBIN, LIST_TIMES
358 * -----------------------------------------------------------
359 * Format of the `insn' structure returned from `parser.c' and
360 * passed into `assemble.c'
361 * -----------------------------------------------------------
365 * Here we define the operand types. These are implemented as bit
366 * masks, since some are subsets of others; e.g. AX in a MOV
367 * instruction is a special operand type, whereas AX in other
368 * contexts is just another 16-bit register. (Also, consider CL in
369 * shift instructions, DX in OUT, etc.)
371 * The basic concept here is that
372 * (class & ~operand) == 0
374 * if and only if "operand" belongs to class type "class".
376 * The bits are assigned as follows:
378 * Bits 0-7, 29: sizes
379 * 0: 8 bits (BYTE)
380 * 1: 16 bits (WORD)
381 * 2: 32 bits (DWORD)
382 * 3: 64 bits (QWORD)
383 * 4: 80 bits (TWORD)
384 * 5: FAR
385 * 6: NEAR
386 * 7: SHORT
387 * 29: 128 bits (OWORD)
389 * Bits 8-11 modifiers
390 * 8: TO
391 * 9: COLON
392 * 10: STRICT
393 * 11: (reserved)
395 * Bits 12-15: type of operand
396 * 12: REGISTER
397 * 13: IMMEDIATE
398 * 14: MEMORY (always has REGMEM attribute as well)
399 * 15: REGMEM (valid EA operand)
401 * Bits 16-19: subclasses
402 * With REG_CDT:
403 * 16: REG_CREG (CRx)
404 * 17: REG_DREG (DRx)
405 * 18: REG_TREG (TRx)
407 * With REG_GPR:
408 * 16: REG_ACCUM (AL, AX, EAX, RAX)
409 * 17: REG_COUNT (CL, CX, ECX, RCX)
410 * 18: REG_DATA (DL, DX, EDX, RDX)
411 * 19: REG_HIGH (AH, CH, DH, BH)
413 * With REG_SREG:
414 * 16: REG_CS
415 * 17: REG_DESS (DS, ES, SS)
416 * 18: REG_FSGS
417 * 19: REG_SEG67
419 * With FPUREG:
420 * 16: FPU0
422 * With XMMREG:
423 * 16: XMM0
425 * With MEMORY:
426 * 16: MEM_OFFS (this is a simple offset)
427 * 17: IP_REL (IP-relative offset)
429 * With IMMEDIATE:
430 * 16: UNITY (1)
431 * 17: BYTENESS (-128..127)
433 * Bits 20-26: register classes
434 * 20: REG_CDT (CRx, DRx, TRx)
435 * 21: RM_GPR (REG_GPR) (integer register)
436 * 22: REG_SREG
437 * 23: IP_REG (RIP or EIP) [unused]
438 * 24: FPUREG
439 * 25: RM_MMX (MMXREG)
440 * 26: RM_XMM (XMMREG)
442 * Bits 27-29 & 31 are currently unallocated.
444 * 30: SAME_AS
445 * Special flag only used in instruction patterns; means this operand
446 * has to be identical to another operand. Currently only supported
447 * for registers.
450 typedef uint32_t opflags_t;
452 /* Size, and other attributes, of the operand */
453 #define BITS8 0x00000001L
454 #define BITS16 0x00000002L
455 #define BITS32 0x00000004L
456 #define BITS64 0x00000008L /* x64 and FPU only */
457 #define BITS80 0x00000010L /* FPU only */
458 #define BITS128 0x20000000L
459 #define FAR 0x00000020L /* grotty: this means 16:16 or */
460 /* 16:32, like in CALL/JMP */
461 #define NEAR 0x00000040L
462 #define SHORT 0x00000080L /* and this means what it says :) */
464 #define SIZE_MASK 0x200000FFL /* all the size attributes */
466 /* Modifiers */
467 #define MODIFIER_MASK 0x00000f00L
468 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
469 #define COLON 0x00000200L /* operand is followed by a colon */
470 #define STRICT 0x00000400L /* do not optimize this operand */
472 /* Type of operand: memory reference, register, etc. */
473 #define OPTYPE_MASK 0x0000f000L
474 #define REGISTER 0x00001000L /* register number in 'basereg' */
475 #define IMMEDIATE 0x00002000L
476 #define MEMORY 0x0000c000L
477 #define REGMEM 0x00008000L /* for r/m, ie EA, operands */
479 /* Register classes */
480 #define REG_EA 0x00009000L /* 'normal' reg, qualifies as EA */
481 #define RM_GPR 0x00208000L /* integer operand */
482 #define REG_GPR 0x00209000L /* integer register */
483 #define REG8 0x00209001L /* 8-bit GPR */
484 #define REG16 0x00209002L /* 16-bit GPR */
485 #define REG32 0x00209004L /* 32-bit GPR */
486 #define REG64 0x00209008L /* 64-bit GPR */
487 #define IP_REG 0x00801000L /* RIP or EIP register */
488 #define RIPREG 0x00801008L /* RIP */
489 #define EIPREG 0x00801004L /* EIP */
490 #define FPUREG 0x01001000L /* floating point stack registers */
491 #define FPU0 0x01011000L /* FPU stack register zero */
492 #define RM_MMX 0x02008000L /* MMX operand */
493 #define MMXREG 0x02009000L /* MMX register */
494 #define RM_XMM 0x04008000L /* XMM (SSE) operand */
495 #define XMMREG 0x04009000L /* XMM (SSE) register */
496 #define XMM0 0x04019000L /* XMM register zero */
497 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
498 #define REG_CREG 0x00111004L /* CRn */
499 #define REG_DREG 0x00121004L /* DRn */
500 #define REG_TREG 0x00141004L /* TRn */
501 #define REG_SREG 0x00401002L /* any segment register */
502 #define REG_CS 0x00411002L /* CS */
503 #define REG_DESS 0x00421002L /* DS, ES, SS */
504 #define REG_FSGS 0x00441002L /* FS, GS */
505 #define REG_SEG67 0x00481002L /* Unimplemented segment registers */
507 #define REG_RIP 0x00801008L /* RIP relative addressing */
508 #define REG_EIP 0x00801004L /* EIP relative addressing */
510 /* Special GPRs */
511 #define REG_SMASK 0x000f0000L /* a mask for the following */
512 #define REG_ACCUM 0x00219000L /* accumulator: AL, AX, EAX, RAX */
513 #define REG_AL 0x00219001L
514 #define REG_AX 0x00219002L
515 #define REG_EAX 0x00219004L
516 #define REG_RAX 0x00219008L
517 #define REG_COUNT 0x00229000L /* counter: CL, CX, ECX, RCX */
518 #define REG_CL 0x00229001L
519 #define REG_CX 0x00229002L
520 #define REG_ECX 0x00229004L
521 #define REG_RCX 0x00229008L
522 #define REG_DL 0x00249001L /* data: DL, DX, EDX, RDX */
523 #define REG_DX 0x00249002L
524 #define REG_EDX 0x00249004L
525 #define REG_RDX 0x00249008L
526 #define REG_HIGH 0x00289001L /* high regs: AH, CH, DH, BH */
528 /* special types of EAs */
529 #define MEM_OFFS 0x0001c000L /* simple [address] offset - absolute! */
530 #define IP_REL 0x0002c000L /* IP-relative offset */
532 /* memory which matches any type of r/m operand */
533 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM)
535 /* special type of immediate operand */
536 #define UNITY 0x00012000L /* for shift/rotate instructions */
537 #define SBYTE 0x00022000L /* for op r16/32,immediate instrs. */
539 /* special flags */
540 #define SAME_AS 0x40000000L
542 /* Register names automatically generated from regs.dat */
543 #include "regs.h"
545 enum ccode { /* condition code names */
546 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
547 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
548 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
549 C_none = -1
553 * REX flags
555 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
556 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
557 #define REX_H 0x80 /* High register present, REX forbidden */
558 #define REX_P 0x40 /* REX prefix present/required */
559 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
560 #define REX_W 0x08 /* 64-bit operand size */
561 #define REX_R 0x04 /* ModRM reg extension */
562 #define REX_X 0x02 /* SIB index extension */
563 #define REX_B 0x01 /* ModRM r/m extension */
564 #define REX_REAL 0x4f /* Actual REX prefix bits */
567 * Note that because segment registers may be used as instruction
568 * prefixes, we must ensure the enumerations for prefixes and
569 * register names do not overlap.
571 enum prefixes { /* instruction prefixes */
572 PREFIX_ENUM_START = REG_ENUM_LIMIT,
573 P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32,
574 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES
577 enum { /* extended operand types */
578 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
581 enum { /* special EA flags */
582 EAF_BYTEOFFS = 1, /* force offset part to byte size */
583 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
584 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
585 EAF_REL = 8, /* IP-relative addressing */
586 EAF_ABS = 16, /* non-IP-relative addressing */
587 EAF_FSGS = 32 /* fs/gs segment override present */
590 enum eval_hint { /* values for `hinttype' */
591 EAH_NOHINT = 0, /* no hint at all - our discretion */
592 EAH_MAKEBASE = 1, /* try to make given reg the base */
593 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
596 typedef struct { /* operand to an instruction */
597 int32_t type; /* type of operand */
598 int addr_size; /* 0 means default; 16; 32; 64 */
599 enum reg_enum basereg, indexreg; /* address registers */
600 int scale; /* index scale */
601 int hintbase;
602 enum eval_hint hinttype; /* hint as to real base register */
603 int32_t segment; /* immediate segment, if needed */
604 int64_t offset; /* any immediate number */
605 int32_t wrt; /* segment base it's relative to */
606 int eaflags; /* special EA flags */
607 int opflags; /* see OPFLAG_* defines below */
608 } operand;
610 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
611 #define OPFLAG_EXTERN 2 /* operand is an external reference */
613 typedef struct extop { /* extended operand */
614 struct extop *next; /* linked list */
615 int32_t type; /* defined above */
616 char *stringval; /* if it's a string, then here it is */
617 int stringlen; /* ... and here's how long it is */
618 int32_t segment; /* if it's a number/address, then... */
619 int64_t offset; /* ... it's given here ... */
620 int32_t wrt; /* ... and here */
621 } extop;
623 #define MAXPREFIX 4
624 #define MAX_OPERANDS 4
626 typedef struct { /* an instruction itself */
627 char *label; /* the label defined, or NULL */
628 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
629 int nprefix; /* number of entries in above */
630 enum opcode opcode; /* the opcode - not just the string */
631 enum ccode condition; /* the condition code, if Jcc/SETcc */
632 int operands; /* how many operands? 0-3
633 * (more if db et al) */
634 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
635 extop *eops; /* extended operands */
636 int eops_float; /* true if DD and floating */
637 int32_t times; /* repeat count (TIMES prefix) */
638 int forw_ref; /* is there a forward reference? */
639 int rex; /* Special REX Prefix */
640 int drexdst; /* Destination register for DREX suffix */
641 } insn;
643 enum geninfo { GI_SWITCH };
645 * ------------------------------------------------------------
646 * The data structure defining an output format driver, and the
647 * interfaces to the functions therein.
648 * ------------------------------------------------------------
651 struct ofmt {
653 * This is a short (one-liner) description of the type of
654 * output generated by the driver.
656 const char *fullname;
659 * This is a single keyword used to select the driver.
661 const char *shortname;
665 * this is reserved for out module specific help.
666 * It is set to NULL in all the out modules and is not implemented
667 * in the main program
669 const char *helpstring;
672 * this is a pointer to the first element of the debug information
674 struct dfmt **debug_formats;
677 * and a pointer to the element that is being used
678 * note: this is set to the default at compile time and changed if the
679 * -F option is selected. If developing a set of new debug formats for
680 * an output format, be sure to set this to whatever default you want
683 struct dfmt *current_dfmt;
686 * This, if non-NULL, is a NULL-terminated list of `char *'s
687 * pointing to extra standard macros supplied by the object
688 * format (e.g. a sensible initial default value of __SECT__,
689 * and user-level equivalents for any format-specific
690 * directives).
692 const char **stdmac;
695 * This procedure is called at the start of an output session.
696 * It tells the output format what file it will be writing to,
697 * what routine to report errors through, and how to interface
698 * to the label manager and expression evaluator if necessary.
699 * It also gives it a chance to do other initialisation.
701 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
704 * This procedure is called to pass generic information to the
705 * object file. The first parameter gives the information type
706 * (currently only command line switches)
707 * and the second parameter gives the value. This function returns
708 * 1 if recognized, 0 if unrecognized
710 int (*setinfo) (enum geninfo type, char **string);
713 * This procedure is called by assemble() to write actual
714 * generated code or data to the object file. Typically it
715 * doesn't have to actually _write_ it, just store it for
716 * later.
718 * The `type' argument specifies the type of output data, and
719 * usually the size as well: its contents are described below.
721 void (*output) (int32_t segto, const void *data, uint32_t type,
722 int32_t segment, int32_t wrt);
725 * This procedure is called once for every symbol defined in
726 * the module being assembled. It gives the name and value of
727 * the symbol, in NASM's terms, and indicates whether it has
728 * been declared to be global. Note that the parameter "name",
729 * when passed, will point to a piece of static storage
730 * allocated inside the label manager - it's safe to keep using
731 * that pointer, because the label manager doesn't clean up
732 * until after the output driver has.
734 * Values of `is_global' are: 0 means the symbol is local; 1
735 * means the symbol is global; 2 means the symbol is common (in
736 * which case `offset' holds the _size_ of the variable).
737 * Anything else is available for the output driver to use
738 * internally.
740 * This routine explicitly _is_ allowed to call the label
741 * manager to define further symbols, if it wants to, even
742 * though it's been called _from_ the label manager. That much
743 * re-entrancy is guaranteed in the label manager. However, the
744 * label manager will in turn call this routine, so it should
745 * be prepared to be re-entrant itself.
747 * The `special' parameter contains special information passed
748 * through from the command that defined the label: it may have
749 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
750 * be obvious to the output format from the other parameters.
752 void (*symdef) (char *name, int32_t segment, int32_t offset, int is_global,
753 char *special);
756 * This procedure is called when the source code requests a
757 * segment change. It should return the corresponding segment
758 * _number_ for the name, or NO_SEG if the name is not a valid
759 * segment name.
761 * It may also be called with NULL, in which case it is to
762 * return the _default_ section number for starting assembly in.
764 * It is allowed to modify the string it is given a pointer to.
766 * It is also allowed to specify a default instruction size for
767 * the segment, by setting `*bits' to 16 or 32. Or, if it
768 * doesn't wish to define a default, it can leave `bits' alone.
770 int32_t (*section) (char *name, int pass, int *bits);
773 * This procedure is called to modify the segment base values
774 * returned from the SEG operator. It is given a segment base
775 * value (i.e. a segment value with the low bit set), and is
776 * required to produce in return a segment value which may be
777 * different. It can map segment bases to absolute numbers by
778 * means of returning SEG_ABS types.
780 * It should return NO_SEG if the segment base cannot be
781 * determined; the evaluator (which calls this routine) is
782 * responsible for throwing an error condition if that occurs
783 * in pass two or in a critical expression.
785 int32_t (*segbase) (int32_t segment);
788 * This procedure is called to allow the output driver to
789 * process its own specific directives. When called, it has the
790 * directive word in `directive' and the parameter string in
791 * `value'. It is called in both assembly passes, and `pass'
792 * will be either 1 or 2.
794 * This procedure should return zero if it does not _recognise_
795 * the directive, so that the main program can report an error.
796 * If it recognises the directive but then has its own errors,
797 * it should report them itself and then return non-zero. It
798 * should also return non-zero if it correctly processes the
799 * directive.
801 int (*directive) (char *directive, char *value, int pass);
804 * This procedure is called before anything else - even before
805 * the "init" routine - and is passed the name of the input
806 * file from which this output file is being generated. It
807 * should return its preferred name for the output file in
808 * `outname', if outname[0] is not '\0', and do nothing to
809 * `outname' otherwise. Since it is called before the driver is
810 * properly initialized, it has to be passed its error handler
811 * separately.
813 * This procedure may also take its own copy of the input file
814 * name for use in writing the output file: it is _guaranteed_
815 * that it will be called before the "init" routine.
817 * The parameter `outname' points to an area of storage
818 * guaranteed to be at least FILENAME_MAX in size.
820 void (*filename) (char *inname, char *outname, efunc error);
823 * This procedure is called after assembly finishes, to allow
824 * the output driver to clean itself up and free its memory.
825 * Typically, it will also be the point at which the object
826 * file actually gets _written_.
828 * One thing the cleanup routine should always do is to close
829 * the output file pointer.
831 void (*cleanup) (int debuginfo);
835 * values for the `type' parameter to an output function. Each one
836 * must have the actual number of _bytes_ added to it.
838 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
839 * which will be a relative jump. For this we need to know the
840 * distance in bytes from the start of the relocated record until
841 * the end of the containing instruction. _This_ is what is stored
842 * in the size part of the parameter, in this case.
844 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
845 * and the contents of the "data" parameter is irrelevant.
847 * The "data" parameter for the output function points to a "int32_t",
848 * containing the address in question, unless the type is
849 * OUT_RAWDATA, in which case it points to an "uint8_t"
850 * array.
852 #define OUT_RAWDATA 0x00000000UL
853 #define OUT_ADDRESS 0x10000000UL
854 #define OUT_REL2ADR 0x20000000UL
855 #define OUT_REL4ADR 0x30000000UL
856 #define OUT_RESERVE 0x40000000UL
857 #define OUT_TYPMASK 0xF0000000UL
858 #define OUT_SIZMASK 0x0FFFFFFFUL
861 * ------------------------------------------------------------
862 * The data structure defining a debug format driver, and the
863 * interfaces to the functions therein.
864 * ------------------------------------------------------------
867 struct dfmt {
870 * This is a short (one-liner) description of the type of
871 * output generated by the driver.
873 const char *fullname;
876 * This is a single keyword used to select the driver.
878 const char *shortname;
881 * init - called initially to set up local pointer to object format,
882 * void pointer to implementation defined data, file pointer (which
883 * probably won't be used, but who knows?), and error function.
885 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
888 * linenum - called any time there is output with a change of
889 * line number or file.
891 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
894 * debug_deflabel - called whenever a label is defined. Parameters
895 * are the same as to 'symdef()' in the output format. This function
896 * would be called before the output format version.
899 void (*debug_deflabel) (char *name, int32_t segment, int32_t offset,
900 int is_global, char *special);
902 * debug_directive - called whenever a DEBUG directive other than 'LINE'
903 * is encountered. 'directive' contains the first parameter to the
904 * DEBUG directive, and params contains the rest. For example,
905 * 'DEBUG VAR _somevar:int' would translate to a call to this
906 * function with 'directive' equal to "VAR" and 'params' equal to
907 * "_somevar:int".
909 void (*debug_directive) (const char *directive, const char *params);
912 * typevalue - called whenever the assembler wishes to register a type
913 * for the last defined label. This routine MUST detect if a type was
914 * already registered and not re-register it.
916 void (*debug_typevalue) (int32_t type);
919 * debug_output - called whenever output is required
920 * 'type' is the type of info required, and this is format-specific
922 void (*debug_output) (int type, void *param);
925 * cleanup - called after processing of file is complete
927 void (*cleanup) (void);
931 * The type definition macros
932 * for debugging
934 * low 3 bits: reserved
935 * next 5 bits: type
936 * next 24 bits: number of elements for arrays (0 for labels)
939 #define TY_UNKNOWN 0x00
940 #define TY_LABEL 0x08
941 #define TY_BYTE 0x10
942 #define TY_WORD 0x18
943 #define TY_DWORD 0x20
944 #define TY_FLOAT 0x28
945 #define TY_QWORD 0x30
946 #define TY_TBYTE 0x38
947 #define TY_COMMON 0xE0
948 #define TY_SEG 0xE8
949 #define TY_EXTERN 0xF0
950 #define TY_EQU 0xF8
952 #define TYM_TYPE(x) ((x) & 0xF8)
953 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
955 #define TYS_ELEMENTS(x) ((x) << 8)
958 * -----
959 * Special tokens
960 * -----
963 enum special_tokens {
964 S_ABS, S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
965 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD
969 * -----
970 * Other
971 * -----
975 * This is a useful #define which I keep meaning to use more often:
976 * the number of elements of a statically defined array.
979 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
982 * -----
983 * Global modes
984 * -----
988 * This declaration passes the "pass" number to all other modules
989 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
990 * where 0 = optimizing pass
991 * 1 = pass 1
992 * 2 = pass 2
995 extern int pass0;
997 extern int tasm_compatible_mode;
998 extern int optimizing;
999 extern int globalbits; /* 16, 32 or 64-bit mode */
1000 extern int globalrel; /* default to relative addressing? */
1001 extern int maxbits; /* max bits supported by output */
1003 #endif