NASM 2.07
[nasm/avx512.git] / nasm.h
blob0e6482ba13d804d8c1f731976e88b24c976c0536
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
49 #define NO_SEG -1L /* null segment value */
50 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
52 #ifndef FILENAME_MAX
53 #define FILENAME_MAX 256
54 #endif
56 #ifndef PREFIX_MAX
57 #define PREFIX_MAX 10
58 #endif
60 #ifndef POSTFIX_MAX
61 #define POSTFIX_MAX 10
62 #endif
64 #define IDLEN_MAX 4096
67 * Name pollution problems: <time.h> on Digital UNIX pulls in some
68 * strange hardware header file which sees fit to define R_SP. We
69 * undefine it here so as not to break the enum below.
71 #ifdef R_SP
72 #undef R_SP
73 #endif
76 * We must declare the existence of this structure type up here,
77 * since we have to reference it before we define it...
79 struct ofmt;
82 * values for the `type' parameter to an output function.
84 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
85 * which will be a relative jump. For this we need to know the
86 * distance in bytes from the start of the relocated record until
87 * the end of the containing instruction. _This_ is what is stored
88 * in the size part of the parameter, in this case.
90 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
91 * and the contents of the "data" parameter is irrelevant.
93 * The "data" parameter for the output function points to a "int32_t",
94 * containing the address in question, unless the type is
95 * OUT_RAWDATA, in which case it points to an "uint8_t"
96 * array.
98 enum out_type {
99 OUT_RAWDATA, /* Plain bytes */
100 OUT_ADDRESS, /* An address (symbol value) */
101 OUT_RESERVE, /* Reserved bytes (RESB et al) */
102 OUT_REL2ADR, /* 2-byte relative address */
103 OUT_REL4ADR, /* 4-byte relative address */
104 OUT_REL8ADR, /* 8-byte relative address */
108 * -----------------------
109 * Other function typedefs
110 * -----------------------
114 * A label-lookup function should look like this.
116 typedef bool (*lfunc) (char *label, int32_t *segment, int64_t *offset);
119 * And a label-definition function like this. The boolean parameter
120 * `is_norm' states whether the label is a `normal' label (which
121 * should affect the local-label system), or something odder like
122 * an EQU or a segment-base symbol, which shouldn't.
124 typedef void (*ldfunc) (char *label, int32_t segment, int64_t offset,
125 char *special, bool is_norm, bool isextrn,
126 struct ofmt * ofmt, efunc error);
129 * List-file generators should look like this:
131 typedef struct {
133 * Called to initialize the listing file generator. Before this
134 * is called, the other routines will silently do nothing when
135 * called. The `char *' parameter is the file name to write the
136 * listing to.
138 void (*init) (char *, efunc);
141 * Called to clear stuff up and close the listing file.
143 void (*cleanup) (void);
146 * Called to output binary data. Parameters are: the offset;
147 * the data; the data type. Data types are similar to the
148 * output-format interface, only OUT_ADDRESS will _always_ be
149 * displayed as if it's relocatable, so ensure that any non-
150 * relocatable address has been converted to OUT_RAWDATA by
151 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
152 * dummy call used to give the listing generator an offset to
153 * work with when doing things like uplevel(LIST_TIMES) or
154 * uplevel(LIST_INCBIN).
156 void (*output) (int32_t, const void *, enum out_type, uint64_t);
159 * Called to send a text line to the listing generator. The
160 * `int' parameter is LIST_READ or LIST_MACRO depending on
161 * whether the line came directly from an input file or is the
162 * result of a multi-line macro expansion.
164 void (*line) (int, char *);
167 * Called to change one of the various levelled mechanisms in
168 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
169 * used to increase the nesting level of include files and
170 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
171 * two binary-output-suppression mechanisms for large-scale
172 * pseudo-instructions.
174 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
175 * it indicates the beginning of the expansion of a `nolist'
176 * macro, so anything under that level won't be expanded unless
177 * it includes another file.
179 void (*uplevel) (int);
182 * Reverse the effects of uplevel.
184 void (*downlevel) (int);
187 * Called on a warning or error, with the error message.
189 void (*error)(int severity, const char *pfx, const char *msg);
190 } ListGen;
193 * Token types returned by the scanner, in addition to ordinary
194 * ASCII character values, and zero for end-of-string.
196 enum token_type { /* token types, other than chars */
197 TOKEN_INVALID = -1, /* a placeholder value */
198 TOKEN_EOS = 0, /* end of string */
199 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
200 TOKEN_ID = 256, /* identifier */
201 TOKEN_NUM, /* numeric constant */
202 TOKEN_ERRNUM, /* malformed numeric constant */
203 TOKEN_STR, /* string constant */
204 TOKEN_ERRSTR, /* unterminated string constant */
205 TOKEN_FLOAT, /* floating-point constant */
206 TOKEN_REG, /* register name */
207 TOKEN_INSN, /* instruction name */
208 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
209 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
210 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
211 TOKEN_SHL, TOKEN_SHR, /* << and >> */
212 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
213 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
214 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
215 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
216 TOKEN_FLOATIZE, /* __floatX__ */
217 TOKEN_STRFUNC, /* __utf16__, __utf32__ */
220 enum floatize {
221 FLOAT_8,
222 FLOAT_16,
223 FLOAT_32,
224 FLOAT_64,
225 FLOAT_80M,
226 FLOAT_80E,
227 FLOAT_128L,
228 FLOAT_128H,
231 /* Must match the list in string_transform(), in strfunc.c */
232 enum strfunc {
233 STRFUNC_UTF16,
234 STRFUNC_UTF32,
237 size_t string_transform(char *, size_t, char **, enum strfunc);
240 * The expression evaluator must be passed a scanner function; a
241 * standard scanner is provided as part of nasmlib.c. The
242 * preprocessor will use a different one. Scanners, and the
243 * token-value structures they return, look like this.
245 * The return value from the scanner is always a copy of the
246 * `t_type' field in the structure.
248 struct tokenval {
249 enum token_type t_type;
250 char *t_charptr;
251 int64_t t_integer, t_inttwo;
253 typedef int (*scanner) (void *private_data, struct tokenval * tv);
255 struct location {
256 int64_t offset;
257 int32_t segment;
258 int known;
262 * Expression-evaluator datatype. Expressions, within the
263 * evaluator, are stored as an array of these beasts, terminated by
264 * a record with type==0. Mostly, it's a vector type: each type
265 * denotes some kind of a component, and the value denotes the
266 * multiple of that component present in the expression. The
267 * exception is the WRT type, whose `value' field denotes the
268 * segment to which the expression is relative. These segments will
269 * be segment-base types, i.e. either odd segment values or SEG_ABS
270 * types. So it is still valid to assume that anything with a
271 * `value' field of zero is insignificant.
273 typedef struct {
274 int32_t type; /* a register, or EXPR_xxx */
275 int64_t value; /* must be >= 32 bits */
276 } expr;
279 * Library routines to manipulate expression data types.
281 int is_reloc(expr *);
282 int is_simple(expr *);
283 int is_really_simple(expr *);
284 int is_unknown(expr *);
285 int is_just_unknown(expr *);
286 int64_t reloc_value(expr *);
287 int32_t reloc_seg(expr *);
288 int32_t reloc_wrt(expr *);
291 * The evaluator can also return hints about which of two registers
292 * used in an expression should be the base register. See also the
293 * `operand' structure.
295 struct eval_hints {
296 int64_t base;
297 int type;
301 * The actual expression evaluator function looks like this. When
302 * called, it expects the first token of its expression to already
303 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
304 * it will start by calling the scanner.
306 * If a forward reference happens during evaluation, the evaluator
307 * must set `*fwref' to true if `fwref' is non-NULL.
309 * `critical' is non-zero if the expression may not contain forward
310 * references. The evaluator will report its own error if this
311 * occurs; if `critical' is 1, the error will be "symbol not
312 * defined before use", whereas if `critical' is 2, the error will
313 * be "symbol undefined".
315 * If `critical' has bit 8 set (in addition to its main value: 0x101
316 * and 0x102 correspond to 1 and 2) then an extended expression
317 * syntax is recognised, in which relational operators such as =, <
318 * and >= are accepted, as well as low-precedence logical operators
319 * &&, ^^ and ||.
321 * If `hints' is non-NULL, it gets filled in with some hints as to
322 * the base register in complex effective addresses.
324 #define CRITICAL 0x100
325 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
326 struct tokenval * tv, int *fwref, int critical,
327 efunc error, struct eval_hints * hints);
330 * Special values for expr->type. These come after EXPR_REG_END
331 * as defined in regs.h.
334 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
335 #define EXPR_SIMPLE (EXPR_REG_END+2)
336 #define EXPR_WRT (EXPR_REG_END+3)
337 #define EXPR_SEGBASE (EXPR_REG_END+4)
340 * Linked list of strings...
342 typedef struct string_list {
343 struct string_list *next;
344 char str[1];
345 } StrList;
348 * preprocessors ought to look like this:
350 typedef struct preproc_ops {
352 * Called at the start of a pass; given a file name, the number
353 * of the pass, an error reporting function, an evaluator
354 * function, and a listing generator to talk to.
356 void (*reset) (char *, int, efunc, evalfunc, ListGen *, StrList **);
359 * Called to fetch a line of preprocessed source. The line
360 * returned has been malloc'ed, and so should be freed after
361 * use.
363 char *(*getline) (void);
366 * Called at the end of a pass.
368 void (*cleanup) (int);
369 } Preproc;
371 extern Preproc nasmpp;
374 * ----------------------------------------------------------------
375 * Some lexical properties of the NASM source language, included
376 * here because they are shared between the parser and preprocessor
377 * ----------------------------------------------------------------
381 * isidstart matches any character that may start an identifier, and isidchar
382 * matches any character that may appear at places other than the start of an
383 * identifier. E.g. a period may only appear at the start of an identifier
384 * (for local labels), whereas a number may appear anywhere *but* at the
385 * start.
388 #define isidstart(c) ( nasm_isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
389 || (c)=='@' )
390 #define isidchar(c) ( isidstart(c) || nasm_isdigit(c) || \
391 (c)=='$' || (c)=='#' || (c)=='~' )
393 /* Ditto for numeric constants. */
395 #define isnumstart(c) ( nasm_isdigit(c) || (c)=='$' )
396 #define isnumchar(c) ( nasm_isalnum(c) || (c)=='_' )
398 /* This returns the numeric value of a given 'digit'. */
400 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
403 * Data-type flags that get passed to listing-file routines.
405 enum {
406 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
407 LIST_INCBIN, LIST_TIMES
411 * -----------------------------------------------------------
412 * Format of the `insn' structure returned from `parser.c' and
413 * passed into `assemble.c'
414 * -----------------------------------------------------------
418 * Here we define the operand types. These are implemented as bit
419 * masks, since some are subsets of others; e.g. AX in a MOV
420 * instruction is a special operand type, whereas AX in other
421 * contexts is just another 16-bit register. (Also, consider CL in
422 * shift instructions, DX in OUT, etc.)
424 * The basic concept here is that
425 * (class & ~operand) == 0
427 * if and only if "operand" belongs to class type "class".
429 * The bits are assigned as follows:
431 * Bits 0-7, 23, 29: sizes
432 * 0: 8 bits (BYTE)
433 * 1: 16 bits (WORD)
434 * 2: 32 bits (DWORD)
435 * 3: 64 bits (QWORD)
436 * 4: 80 bits (TWORD)
437 * 5: FAR
438 * 6: NEAR
439 * 7: SHORT
440 * 23: 256 bits (YWORD)
441 * 29: 128 bits (OWORD)
443 * Bits 8-11 modifiers
444 * 8: TO
445 * 9: COLON
446 * 10: STRICT
447 * 11: (reserved)
449 * Bits 12-15: type of operand
450 * 12: REGISTER
451 * 13: IMMEDIATE
452 * 14: MEMORY (always has REGMEM attribute as well)
453 * 15: REGMEM (valid EA operand)
455 * Bits 16-19, 28: subclasses
456 * With REG_CDT:
457 * 16: REG_CREG (CRx)
458 * 17: REG_DREG (DRx)
459 * 18: REG_TREG (TRx)
461 * With REG_GPR:
462 * 16: REG_ACCUM (AL, AX, EAX, RAX)
463 * 17: REG_COUNT (CL, CX, ECX, RCX)
464 * 18: REG_DATA (DL, DX, EDX, RDX)
465 * 19: REG_HIGH (AH, CH, DH, BH)
466 * 28: REG_NOTACC (not REG_ACCUM)
468 * With REG_SREG:
469 * 16: REG_CS
470 * 17: REG_DESS (DS, ES, SS)
471 * 18: REG_FSGS
472 * 19: REG_SEG67
474 * With FPUREG:
475 * 16: FPU0
477 * With XMMREG:
478 * 16: XMM0
480 * With YMMREG:
481 * 16: YMM0
483 * With MEMORY:
484 * 16: MEM_OFFS (this is a simple offset)
485 * 17: IP_REL (IP-relative offset)
487 * With IMMEDIATE:
488 * 16: UNITY (1)
489 * 17: BYTENESS16 (-128..127)
490 * 18: BYTENESS32 (-128..127)
491 * 19: BYTENESS64 (-128..127)
493 * Bits 20-22, 24-27: register classes
494 * 20: REG_CDT (CRx, DRx, TRx)
495 * 21: RM_GPR (REG_GPR) (integer register)
496 * 22: REG_SREG
497 * 24: FPUREG
498 * 25: RM_MMX (MMXREG)
499 * 26: RM_XMM (XMMREG)
500 * 27: RM_YMM (YMMREG)
502 * Bit 31 is currently unallocated.
504 * 30: SAME_AS
505 * Special flag only used in instruction patterns; means this operand
506 * has to be identical to another operand. Currently only supported
507 * for registers.
510 typedef uint32_t opflags_t;
512 /* Size, and other attributes, of the operand */
513 #define BITS8 0x00000001U
514 #define BITS16 0x00000002U
515 #define BITS32 0x00000004U
516 #define BITS64 0x00000008U /* x64 and FPU only */
517 #define BITS80 0x00000010U /* FPU only */
518 #define BITS128 0x20000000U
519 #define BITS256 0x00800000U
520 #define FAR 0x00000020U /* grotty: this means 16:16 or */
521 /* 16:32, like in CALL/JMP */
522 #define NEAR 0x00000040U
523 #define SHORT 0x00000080U /* and this means what it says :) */
525 #define SIZE_MASK 0x208000FFU /* all the size attributes */
527 /* Modifiers */
528 #define MODIFIER_MASK 0x00000f00U
529 #define TO 0x00000100U /* reverse effect in FADD, FSUB &c */
530 #define COLON 0x00000200U /* operand is followed by a colon */
531 #define STRICT 0x00000400U /* do not optimize this operand */
533 /* Type of operand: memory reference, register, etc. */
534 #define OPTYPE_MASK 0x0000f000U
535 #define REGISTER 0x00001000U /* register number in 'basereg' */
536 #define IMMEDIATE 0x00002000U
537 #define MEMORY 0x0000c000U
538 #define REGMEM 0x00008000U /* for r/m, ie EA, operands */
540 /* Register classes */
541 #define REG_EA 0x00009000U /* 'normal' reg, qualifies as EA */
542 #define RM_GPR 0x00208000U /* integer operand */
543 #define REG_GPR 0x00209000U /* integer register */
544 #define REG8 0x00209001U /* 8-bit GPR */
545 #define REG16 0x00209002U /* 16-bit GPR */
546 #define REG32 0x00209004U /* 32-bit GPR */
547 #define REG64 0x00209008U /* 64-bit GPR */
548 #define FPUREG 0x01001000U /* floating point stack registers */
549 #define FPU0 0x01011000U /* FPU stack register zero */
550 #define RM_MMX 0x02008000U /* MMX operand */
551 #define MMXREG 0x02009000U /* MMX register */
552 #define RM_XMM 0x04008000U /* XMM (SSE) operand */
553 #define XMMREG 0x04009000U /* XMM (SSE) register */
554 #define XMM0 0x04019000U /* XMM register zero */
555 #define RM_YMM 0x08008000U /* YMM (AVX) operand */
556 #define YMMREG 0x08009000U /* YMM (AVX) register */
557 #define YMM0 0x08019000U /* YMM register zero */
558 #define REG_CDT 0x00101004U /* CRn, DRn and TRn */
559 #define REG_CREG 0x00111004U /* CRn */
560 #define REG_DREG 0x00121004U /* DRn */
561 #define REG_TREG 0x00141004U /* TRn */
562 #define REG_SREG 0x00401002U /* any segment register */
563 #define REG_CS 0x00411002U /* CS */
564 #define REG_DESS 0x00421002U /* DS, ES, SS */
565 #define REG_FSGS 0x00441002U /* FS, GS */
566 #define REG_SEG67 0x00481002U /* Unimplemented segment registers */
568 #define REG_RIP 0x00801008U /* RIP relative addressing */
569 #define REG_EIP 0x00801004U /* EIP relative addressing */
571 /* Special GPRs */
572 #define REG_SMASK 0x100f0000U /* a mask for the following */
573 #define REG_ACCUM 0x00219000U /* accumulator: AL, AX, EAX, RAX */
574 #define REG_AL 0x00219001U
575 #define REG_AX 0x00219002U
576 #define REG_EAX 0x00219004U
577 #define REG_RAX 0x00219008U
578 #define REG_COUNT 0x10229000U /* counter: CL, CX, ECX, RCX */
579 #define REG_CL 0x10229001U
580 #define REG_CX 0x10229002U
581 #define REG_ECX 0x10229004U
582 #define REG_RCX 0x10229008U
583 #define REG_DL 0x10249001U /* data: DL, DX, EDX, RDX */
584 #define REG_DX 0x10249002U
585 #define REG_EDX 0x10249004U
586 #define REG_RDX 0x10249008U
587 #define REG_HIGH 0x10289001U /* high regs: AH, CH, DH, BH */
588 #define REG_NOTACC 0x10000000U /* non-accumulator register */
589 #define REG8NA 0x10209001U /* 8-bit non-acc GPR */
590 #define REG16NA 0x10209002U /* 16-bit non-acc GPR */
591 #define REG32NA 0x10209004U /* 32-bit non-acc GPR */
592 #define REG64NA 0x10209008U /* 64-bit non-acc GPR */
594 /* special types of EAs */
595 #define MEM_OFFS 0x0001c000U /* simple [address] offset - absolute! */
596 #define IP_REL 0x0002c000U /* IP-relative offset */
598 /* memory which matches any type of r/m operand */
599 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM|RM_YMM)
601 /* special type of immediate operand */
602 #define UNITY 0x00012000U /* for shift/rotate instructions */
603 #define SBYTE16 0x00022000U /* for op r16,immediate instrs. */
604 #define SBYTE32 0x00042000U /* for op r32,immediate instrs. */
605 #define SBYTE64 0x00082000U /* for op r64,immediate instrs. */
606 #define BYTENESS 0x000e0000U /* for testing for byteness */
608 /* special flags */
609 #define SAME_AS 0x40000000U
611 /* Register names automatically generated from regs.dat */
612 #include "regs.h"
614 enum ccode { /* condition code names */
615 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
616 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
617 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
618 C_none = -1
622 * REX flags
624 #define REX_REAL 0x4f /* Actual REX prefix bits */
625 #define REX_B 0x01 /* ModRM r/m extension */
626 #define REX_X 0x02 /* SIB index extension */
627 #define REX_R 0x04 /* ModRM reg extension */
628 #define REX_W 0x08 /* 64-bit operand size */
629 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
630 #define REX_P 0x40 /* REX prefix present/required */
631 #define REX_H 0x80 /* High register present, REX forbidden */
632 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
633 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
634 #define REX_V 0x0400 /* Instruction uses VEX/XOP instead of REX */
635 #define REX_NH 0x0800 /* Instruction which doesn't use high regs */
638 * REX_V "classes" (prefixes which behave like VEX)
640 enum vex_class {
641 RV_VEX = 0, /* C4/C5 */
642 RV_XOP = 1 /* 8F */
646 * Note that because segment registers may be used as instruction
647 * prefixes, we must ensure the enumerations for prefixes and
648 * register names do not overlap.
650 enum prefixes { /* instruction prefixes */
651 P_none = 0,
652 PREFIX_ENUM_START = REG_ENUM_LIMIT,
653 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
654 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
655 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
656 P_WAIT,
657 PREFIX_ENUM_LIMIT
660 enum extop_type { /* extended operand types */
661 EOT_NOTHING,
662 EOT_DB_STRING, /* Byte string */
663 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
664 EOT_DB_NUMBER, /* Integer */
667 enum ea_flags { /* special EA flags */
668 EAF_BYTEOFFS = 1, /* force offset part to byte size */
669 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
670 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
671 EAF_REL = 8, /* IP-relative addressing */
672 EAF_ABS = 16, /* non-IP-relative addressing */
673 EAF_FSGS = 32 /* fs/gs segment override present */
676 enum eval_hint { /* values for `hinttype' */
677 EAH_NOHINT = 0, /* no hint at all - our discretion */
678 EAH_MAKEBASE = 1, /* try to make given reg the base */
679 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
682 typedef struct operand { /* operand to an instruction */
683 int32_t type; /* type of operand */
684 int disp_size; /* 0 means default; 16; 32; 64 */
685 enum reg_enum basereg, indexreg; /* address registers */
686 int scale; /* index scale */
687 int hintbase;
688 enum eval_hint hinttype; /* hint as to real base register */
689 int32_t segment; /* immediate segment, if needed */
690 int64_t offset; /* any immediate number */
691 int32_t wrt; /* segment base it's relative to */
692 int eaflags; /* special EA flags */
693 int opflags; /* see OPFLAG_* defines below */
694 } operand;
696 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
697 #define OPFLAG_EXTERN 2 /* operand is an external reference */
698 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference */
699 /* (always a forward reference also) */
701 typedef struct extop { /* extended operand */
702 struct extop *next; /* linked list */
703 char *stringval; /* if it's a string, then here it is */
704 size_t stringlen; /* ... and here's how long it is */
705 int64_t offset; /* ... it's given here ... */
706 int32_t segment; /* if it's a number/address, then... */
707 int32_t wrt; /* ... and here */
708 enum extop_type type; /* defined above */
709 } extop;
711 /* Prefix positions: each type of prefix goes in a specific slot.
712 This affects the final ordering of the assembled output, which
713 shouldn't matter to the processor, but if you have stylistic
714 preferences, you can change this. REX prefixes are handled
715 differently for the time being.
717 Note that LOCK and REP are in the same slot. This is
718 an x86 architectural constraint. */
719 enum prefix_pos {
720 PPS_WAIT, /* WAIT (technically not a prefix!) */
721 PPS_LREP, /* Lock or REP prefix */
722 PPS_SEG, /* Segment override prefix */
723 PPS_OSIZE, /* Operand size prefix */
724 PPS_ASIZE, /* Address size prefix */
725 MAXPREFIX /* Total number of prefix slots */
728 /* If you need to change this, also change it in insns.pl */
729 #define MAX_OPERANDS 5
731 typedef struct insn { /* an instruction itself */
732 char *label; /* the label defined, or NULL */
733 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
734 enum opcode opcode; /* the opcode - not just the string */
735 enum ccode condition; /* the condition code, if Jcc/SETcc */
736 int operands; /* how many operands? 0-3
737 * (more if db et al) */
738 int addr_size; /* address size */
739 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
740 extop *eops; /* extended operands */
741 int eops_float; /* true if DD and floating */
742 int32_t times; /* repeat count (TIMES prefix) */
743 bool forw_ref; /* is there a forward reference? */
744 int rex; /* Special REX Prefix */
745 int drexdst; /* Destination register for DREX/VEX suffix */
746 int vex_cm; /* Class and M field for VEX prefix */
747 int vex_wlp; /* W, P and L information for VEX prefix */
748 } insn;
750 enum geninfo { GI_SWITCH };
752 * ------------------------------------------------------------
753 * The data structure defining an output format driver, and the
754 * interfaces to the functions therein.
755 * ------------------------------------------------------------
758 struct ofmt {
760 * This is a short (one-liner) description of the type of
761 * output generated by the driver.
763 const char *fullname;
766 * This is a single keyword used to select the driver.
768 const char *shortname;
771 * Output format flags.
773 #define OFMT_TEXT 1 /* Text file format */
774 unsigned int flags;
777 * this is a pointer to the first element of the debug information
779 struct dfmt **debug_formats;
782 * and a pointer to the element that is being used
783 * note: this is set to the default at compile time and changed if the
784 * -F option is selected. If developing a set of new debug formats for
785 * an output format, be sure to set this to whatever default you want
788 struct dfmt *current_dfmt;
791 * This, if non-NULL, is a NULL-terminated list of `char *'s
792 * pointing to extra standard macros supplied by the object
793 * format (e.g. a sensible initial default value of __SECT__,
794 * and user-level equivalents for any format-specific
795 * directives).
797 macros_t *stdmac;
800 * This procedure is called at the start of an output session.
801 * It tells the output format what file it will be writing to,
802 * what routine to report errors through, and how to interface
803 * to the label manager and expression evaluator if necessary.
804 * It also gives it a chance to do other initialisation.
806 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
809 * This procedure is called to pass generic information to the
810 * object file. The first parameter gives the information type
811 * (currently only command line switches)
812 * and the second parameter gives the value. This function returns
813 * 1 if recognized, 0 if unrecognized
815 int (*setinfo) (enum geninfo type, char **string);
818 * This procedure is called by assemble() to write actual
819 * generated code or data to the object file. Typically it
820 * doesn't have to actually _write_ it, just store it for
821 * later.
823 * The `type' argument specifies the type of output data, and
824 * usually the size as well: its contents are described below.
826 void (*output) (int32_t segto, const void *data,
827 enum out_type type, uint64_t size,
828 int32_t segment, int32_t wrt);
831 * This procedure is called once for every symbol defined in
832 * the module being assembled. It gives the name and value of
833 * the symbol, in NASM's terms, and indicates whether it has
834 * been declared to be global. Note that the parameter "name",
835 * when passed, will point to a piece of static storage
836 * allocated inside the label manager - it's safe to keep using
837 * that pointer, because the label manager doesn't clean up
838 * until after the output driver has.
840 * Values of `is_global' are: 0 means the symbol is local; 1
841 * means the symbol is global; 2 means the symbol is common (in
842 * which case `offset' holds the _size_ of the variable).
843 * Anything else is available for the output driver to use
844 * internally.
846 * This routine explicitly _is_ allowed to call the label
847 * manager to define further symbols, if it wants to, even
848 * though it's been called _from_ the label manager. That much
849 * re-entrancy is guaranteed in the label manager. However, the
850 * label manager will in turn call this routine, so it should
851 * be prepared to be re-entrant itself.
853 * The `special' parameter contains special information passed
854 * through from the command that defined the label: it may have
855 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
856 * be obvious to the output format from the other parameters.
858 void (*symdef) (char *name, int32_t segment, int64_t offset,
859 int is_global, char *special);
862 * This procedure is called when the source code requests a
863 * segment change. It should return the corresponding segment
864 * _number_ for the name, or NO_SEG if the name is not a valid
865 * segment name.
867 * It may also be called with NULL, in which case it is to
868 * return the _default_ section number for starting assembly in.
870 * It is allowed to modify the string it is given a pointer to.
872 * It is also allowed to specify a default instruction size for
873 * the segment, by setting `*bits' to 16 or 32. Or, if it
874 * doesn't wish to define a default, it can leave `bits' alone.
876 int32_t (*section) (char *name, int pass, int *bits);
879 * This procedure is called to modify the segment base values
880 * returned from the SEG operator. It is given a segment base
881 * value (i.e. a segment value with the low bit set), and is
882 * required to produce in return a segment value which may be
883 * different. It can map segment bases to absolute numbers by
884 * means of returning SEG_ABS types.
886 * It should return NO_SEG if the segment base cannot be
887 * determined; the evaluator (which calls this routine) is
888 * responsible for throwing an error condition if that occurs
889 * in pass two or in a critical expression.
891 int32_t (*segbase) (int32_t segment);
894 * This procedure is called to allow the output driver to
895 * process its own specific directives. When called, it has the
896 * directive word in `directive' and the parameter string in
897 * `value'. It is called in both assembly passes, and `pass'
898 * will be either 1 or 2.
900 * This procedure should return zero if it does not _recognise_
901 * the directive, so that the main program can report an error.
902 * If it recognises the directive but then has its own errors,
903 * it should report them itself and then return non-zero. It
904 * should also return non-zero if it correctly processes the
905 * directive.
907 int (*directive) (char *directive, char *value, int pass);
910 * This procedure is called before anything else - even before
911 * the "init" routine - and is passed the name of the input
912 * file from which this output file is being generated. It
913 * should return its preferred name for the output file in
914 * `outname', if outname[0] is not '\0', and do nothing to
915 * `outname' otherwise. Since it is called before the driver is
916 * properly initialized, it has to be passed its error handler
917 * separately.
919 * This procedure may also take its own copy of the input file
920 * name for use in writing the output file: it is _guaranteed_
921 * that it will be called before the "init" routine.
923 * The parameter `outname' points to an area of storage
924 * guaranteed to be at least FILENAME_MAX in size.
926 void (*filename) (char *inname, char *outname, efunc error);
929 * This procedure is called after assembly finishes, to allow
930 * the output driver to clean itself up and free its memory.
931 * Typically, it will also be the point at which the object
932 * file actually gets _written_.
934 * One thing the cleanup routine should always do is to close
935 * the output file pointer.
937 void (*cleanup) (int debuginfo);
942 * ------------------------------------------------------------
943 * The data structure defining a debug format driver, and the
944 * interfaces to the functions therein.
945 * ------------------------------------------------------------
948 struct dfmt {
950 * This is a short (one-liner) description of the type of
951 * output generated by the driver.
953 const char *fullname;
956 * This is a single keyword used to select the driver.
958 const char *shortname;
961 * init - called initially to set up local pointer to object format,
962 * void pointer to implementation defined data, file pointer (which
963 * probably won't be used, but who knows?), and error function.
965 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
968 * linenum - called any time there is output with a change of
969 * line number or file.
971 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
974 * debug_deflabel - called whenever a label is defined. Parameters
975 * are the same as to 'symdef()' in the output format. This function
976 * would be called before the output format version.
979 void (*debug_deflabel) (char *name, int32_t segment, int64_t offset,
980 int is_global, char *special);
982 * debug_directive - called whenever a DEBUG directive other than 'LINE'
983 * is encountered. 'directive' contains the first parameter to the
984 * DEBUG directive, and params contains the rest. For example,
985 * 'DEBUG VAR _somevar:int' would translate to a call to this
986 * function with 'directive' equal to "VAR" and 'params' equal to
987 * "_somevar:int".
989 void (*debug_directive) (const char *directive, const char *params);
992 * typevalue - called whenever the assembler wishes to register a type
993 * for the last defined label. This routine MUST detect if a type was
994 * already registered and not re-register it.
996 void (*debug_typevalue) (int32_t type);
999 * debug_output - called whenever output is required
1000 * 'type' is the type of info required, and this is format-specific
1002 void (*debug_output) (int type, void *param);
1005 * cleanup - called after processing of file is complete
1007 void (*cleanup) (void);
1011 * The type definition macros
1012 * for debugging
1014 * low 3 bits: reserved
1015 * next 5 bits: type
1016 * next 24 bits: number of elements for arrays (0 for labels)
1019 #define TY_UNKNOWN 0x00
1020 #define TY_LABEL 0x08
1021 #define TY_BYTE 0x10
1022 #define TY_WORD 0x18
1023 #define TY_DWORD 0x20
1024 #define TY_FLOAT 0x28
1025 #define TY_QWORD 0x30
1026 #define TY_TBYTE 0x38
1027 #define TY_OWORD 0x40
1028 #define TY_YWORD 0x48
1029 #define TY_COMMON 0xE0
1030 #define TY_SEG 0xE8
1031 #define TY_EXTERN 0xF0
1032 #define TY_EQU 0xF8
1034 #define TYM_TYPE(x) ((x) & 0xF8)
1035 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1037 #define TYS_ELEMENTS(x) ((x) << 8)
1040 * -----
1041 * Special tokens
1042 * -----
1045 enum special_tokens {
1046 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1047 S_ABS = SPECIAL_ENUM_START,
1048 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
1049 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD, S_YWORD,
1050 SPECIAL_ENUM_LIMIT
1054 * -----
1055 * Global modes
1056 * -----
1060 * This declaration passes the "pass" number to all other modules
1061 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1062 * where 0 = optimizing pass
1063 * 1 = pass 1
1064 * 2 = pass 2
1067 extern int pass0;
1068 extern int passn; /* Actual pass number */
1070 extern bool tasm_compatible_mode;
1071 extern int optimizing;
1072 extern int globalbits; /* 16, 32 or 64-bit mode */
1073 extern int globalrel; /* default to relative addressing? */
1074 extern int maxbits; /* max bits supported by output */
1077 * NASM version strings, defined in ver.c
1079 extern const char nasm_version[];
1080 extern const char nasm_date[];
1081 extern const char nasm_compile_options[];
1082 extern const char nasm_comment[];
1083 extern const char nasm_signature[];
1085 #endif