1 /* nasmlib.c library routines for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
17 static efunc nasm_malloc_error
;
23 void nasm_set_malloc_error (efunc error
) {
24 nasm_malloc_error
= error
;
26 logfp
= fopen ("malloc.log", "w");
27 setvbuf (logfp
, NULL
, _IOLBF
, BUFSIZ
);
28 fprintf (logfp
, "null pointer is %p\n", NULL
);
33 void *nasm_malloc_log (char *file
, int line
, size_t size
)
35 void *nasm_malloc (size_t size
)
38 void *p
= malloc(size
);
40 nasm_malloc_error (ERR_FATAL
| ERR_NOFILE
, "out of memory");
43 fprintf(logfp
, "%s %d malloc(%ld) returns %p\n",
44 file
, line
, (long)size
, p
);
50 void *nasm_realloc_log (char *file
, int line
, void *q
, size_t size
)
52 void *nasm_realloc (void *q
, size_t size
)
55 void *p
= q
? realloc(q
, size
) : malloc(size
);
57 nasm_malloc_error (ERR_FATAL
| ERR_NOFILE
, "out of memory");
60 fprintf(logfp
, "%s %d realloc(%p,%ld) returns %p\n",
61 file
, line
, q
, (long)size
, p
);
63 fprintf(logfp
, "%s %d malloc(%ld) returns %p\n",
64 file
, line
, (long)size
, p
);
70 void nasm_free_log (char *file
, int line
, void *q
)
72 void nasm_free (void *q
)
78 fprintf(logfp
, "%s %d free(%p)\n",
85 char *nasm_strdup_log (char *file
, int line
, char *s
)
87 char *nasm_strdup (char *s
)
91 int size
= strlen(s
)+1;
95 nasm_malloc_error (ERR_FATAL
| ERR_NOFILE
, "out of memory");
98 fprintf(logfp
, "%s %d strdup(%ld) returns %p\n",
99 file
, line
, (long)size
, p
);
106 char *nasm_strndup_log (char *file
, int line
, char *s
, size_t len
)
108 char *nasm_strndup (char *s
, size_t len
)
116 nasm_malloc_error (ERR_FATAL
| ERR_NOFILE
, "out of memory");
119 fprintf(logfp
, "%s %d strndup(%ld) returns %p\n",
120 file
, line
, (long)size
, p
);
127 int nasm_stricmp (char *s1
, char *s2
) {
128 while (*s1
&& toupper(*s1
) == toupper(*s2
))
132 else if (toupper(*s1
) < toupper(*s2
))
138 int nasm_strnicmp (char *s1
, char *s2
, int n
) {
139 while (n
> 0 && *s1
&& toupper(*s1
) == toupper(*s2
))
141 if ((!*s1
&& !*s2
) || n
==0)
143 else if (toupper(*s1
) < toupper(*s2
))
149 #define lib_isnumchar(c) ( isalnum(c) || (c) == '$')
150 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
152 long readnum (char *str
, int *error
) {
155 unsigned long result
, checklimit
;
160 while (isspace(*r
)) r
++; /* find start of number */
163 while (lib_isnumchar(*q
)) q
++; /* find end of number */
166 * If it begins 0x, 0X or $, or ends in H, it's in hex. if it
167 * ends in Q, it's octal. if it ends in B, it's binary.
168 * Otherwise, it's ordinary decimal.
170 if (*r
=='0' && (r
[1]=='x' || r
[1]=='X'))
174 else if (q
[-1]=='H' || q
[-1]=='h')
176 else if (q
[-1]=='Q' || q
[-1]=='q')
178 else if (q
[-1]=='B' || q
[-1]=='b')
184 * If this number has been found for us by something other than
185 * the ordinary scanners, then it might be malformed by having
186 * nothing between the prefix and the suffix. Check this case
195 * `checklimit' must be 2**32 / radix. We can't do that in
196 * 32-bit arithmetic, which we're (probably) using, so we
197 * cheat: since we know that all radices we use are even, we
198 * can divide 2**31 by radix/2 instead.
200 checklimit
= 0x80000000UL
/ (radix
>>1);
203 while (*r
&& r
< q
) {
204 if (*r
<'0' || (*r
>'9' && *r
<'A') || numvalue(*r
)>=radix
) {
208 if (result
>= checklimit
)
210 result
= radix
* result
+ numvalue(*r
);
215 nasm_malloc_error (ERR_WARNING
| ERR_PASS1
| ERR_WARN_NOV
,
216 "numeric constant %s does not fit in 32 bits",
222 static long next_seg
;
224 void seg_init(void) {
228 long seg_alloc(void) {
229 return (next_seg
+= 2) - 2;
232 void fwriteshort (int data
, FILE *fp
) {
233 fputc ((int) (data
& 255), fp
);
234 fputc ((int) ((data
>> 8) & 255), fp
);
237 void fwritelong (long data
, FILE *fp
) {
238 fputc ((int) (data
& 255), fp
);
239 fputc ((int) ((data
>> 8) & 255), fp
);
240 fputc ((int) ((data
>> 16) & 255), fp
);
241 fputc ((int) ((data
>> 24) & 255), fp
);
244 void standard_extension (char *inname
, char *outname
, char *extension
,
248 if (*outname
) /* file name already exists, */
249 return; /* so do nothing */
252 while (*q
) *p
++ = *q
++; /* copy, and find end of string */
253 *p
= '\0'; /* terminate it */
254 while (p
> outname
&& *--p
!= '.');/* find final period (or whatever) */
255 if (*p
!= '.') while (*p
) p
++; /* go back to end if none found */
256 if (!strcmp(p
, extension
)) { /* is the extension already there? */
258 error(ERR_WARNING
| ERR_NOFILE
,
259 "file name already ends in `%s': "
260 "output will be in `nasm.out'",
263 error(ERR_WARNING
| ERR_NOFILE
,
264 "file name already has no extension: "
265 "output will be in `nasm.out'");
266 strcpy(outname
, "nasm.out");
268 strcpy(p
, extension
);
271 #define RAA_BLKSIZE 4096 /* this many longs allocated at once */
272 #define RAA_LAYERSIZE 1024 /* this many _pointers_ allocated */
274 typedef struct RAA RAA
;
275 typedef union RAA_UNION RAA_UNION
;
276 typedef struct RAA_LEAF RAA_LEAF
;
277 typedef struct RAA_BRANCH RAA_BRANCH
;
281 * Number of layers below this one to get to the real data. 0
282 * means this structure is a leaf, holding RAA_BLKSIZE real
283 * data items; 1 and above mean it's a branch, holding
284 * RAA_LAYERSIZE pointers to the next level branch or leaf
289 * Number of real data items spanned by one position in the
290 * `data' array at this level. This number is 1, trivially, for
291 * a leaf (level 0): for a level 1 branch it should be
292 * RAA_BLKSIZE, and for a level 2 branch it's
293 * RAA_LAYERSIZE*RAA_BLKSIZE.
298 long data
[RAA_BLKSIZE
];
301 struct RAA
*data
[RAA_LAYERSIZE
];
306 #define LEAFSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_LEAF))
307 #define BRANCHSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_BRANCH))
309 #define LAYERSIZ(r) ( (r)->layers==0 ? RAA_BLKSIZE : RAA_LAYERSIZE )
311 static struct RAA
*real_raa_init (int layers
) {
315 r
= nasm_malloc (LEAFSIZ
);
316 memset (r
->u
.l
.data
, 0, sizeof(r
->u
.l
.data
));
320 r
= nasm_malloc (BRANCHSIZ
);
321 memset (r
->u
.b
.data
, 0, sizeof(r
->u
.b
.data
));
323 r
->stepsize
= RAA_BLKSIZE
;
325 r
->stepsize
*= RAA_LAYERSIZE
;
330 struct RAA
*raa_init (void) {
331 return real_raa_init (0);
334 void raa_free (struct RAA
*r
) {
339 for (p
= r
->u
.b
.data
; p
- r
->u
.b
.data
< RAA_LAYERSIZE
; p
++)
345 long raa_read (struct RAA
*r
, long posn
) {
346 if (posn
> r
->stepsize
* LAYERSIZ(r
))
348 while (r
->layers
> 0) {
350 l
= ldiv (posn
, r
->stepsize
);
351 r
= r
->u
.b
.data
[l
.quot
];
353 if (!r
) /* better check this */
356 return r
->u
.l
.data
[posn
];
359 struct RAA
*raa_write (struct RAA
*r
, long posn
, long value
) {
363 nasm_malloc_error (ERR_PANIC
, "negative position in raa_write");
365 while (r
->stepsize
* LAYERSIZ(r
) < posn
) {
367 * Must go up a layer.
371 s
= nasm_malloc (BRANCHSIZ
);
372 memset (s
->u
.b
.data
, 0, sizeof(r
->u
.b
.data
));
373 s
->layers
= r
->layers
+ 1;
374 s
->stepsize
= RAA_LAYERSIZE
* r
->stepsize
;
381 while (r
->layers
> 0) {
384 l
= ldiv (posn
, r
->stepsize
);
385 s
= &r
->u
.b
.data
[l
.quot
];
387 *s
= real_raa_init (r
->layers
- 1);
392 r
->u
.l
.data
[posn
] = value
;
397 #define SAA_MAXLEN 8192
401 * members `end' and `elem_len' are only valid in first link in
402 * list; `rptr' and `rpos' are used for reading
404 struct SAA
*next
, *end
, *rptr
;
405 long elem_len
, length
, posn
, start
, rpos
;
409 struct SAA
*saa_init (long elem_len
) {
412 if (elem_len
> SAA_MAXLEN
)
413 nasm_malloc_error (ERR_PANIC
| ERR_NOFILE
, "SAA with huge elements");
415 s
= nasm_malloc (sizeof(struct SAA
));
416 s
->posn
= s
->start
= 0L;
417 s
->elem_len
= elem_len
;
418 s
->length
= SAA_MAXLEN
- (SAA_MAXLEN
% elem_len
);
419 s
->data
= nasm_malloc (s
->length
);
426 void saa_free (struct SAA
*s
) {
437 void *saa_wstruct (struct SAA
*s
) {
440 if (s
->end
->length
- s
->end
->posn
< s
->elem_len
) {
441 s
->end
->next
= nasm_malloc (sizeof(struct SAA
));
442 s
->end
->next
->start
= s
->end
->start
+ s
->end
->posn
;
443 s
->end
= s
->end
->next
;
444 s
->end
->length
= s
->length
;
447 s
->end
->data
= nasm_malloc (s
->length
);
450 p
= s
->end
->data
+ s
->end
->posn
;
451 s
->end
->posn
+= s
->elem_len
;
455 void saa_wbytes (struct SAA
*s
, void *data
, long len
) {
459 long l
= s
->end
->length
- s
->end
->posn
;
464 memcpy (s
->end
->data
+ s
->end
->posn
, d
, l
);
467 memset (s
->end
->data
+ s
->end
->posn
, 0, l
);
472 s
->end
->next
= nasm_malloc (sizeof(struct SAA
));
473 s
->end
->next
->start
= s
->end
->start
+ s
->end
->posn
;
474 s
->end
= s
->end
->next
;
475 s
->end
->length
= s
->length
;
478 s
->end
->data
= nasm_malloc (s
->length
);
483 void saa_rewind (struct SAA
*s
) {
488 void *saa_rstruct (struct SAA
*s
) {
494 if (s
->rptr
->posn
- s
->rpos
< s
->elem_len
) {
495 s
->rptr
= s
->rptr
->next
;
497 return NULL
; /* end of array */
501 p
= s
->rptr
->data
+ s
->rpos
;
502 s
->rpos
+= s
->elem_len
;
506 void *saa_rbytes (struct SAA
*s
, long *len
) {
512 p
= s
->rptr
->data
+ s
->rpos
;
513 *len
= s
->rptr
->posn
- s
->rpos
;
514 s
->rptr
= s
->rptr
->next
;
519 void saa_rnbytes (struct SAA
*s
, void *data
, long len
) {
528 l
= s
->rptr
->posn
- s
->rpos
;
532 memcpy (d
, s
->rptr
->data
+ s
->rpos
, l
);
538 s
->rptr
= s
->rptr
->next
;
544 void saa_fread (struct SAA
*s
, long posn
, void *data
, long len
) {
549 if (!s
->rptr
|| posn
> s
->rptr
->start
+ s
->rpos
)
551 while (posn
>= s
->rptr
->start
+ s
->rptr
->posn
) {
552 s
->rptr
= s
->rptr
->next
;
554 return; /* what else can we do?! */
558 pos
= posn
- s
->rptr
->start
;
560 long l
= s
->rptr
->posn
- pos
;
563 memcpy (cdata
, s
->rptr
->data
+pos
, l
);
573 void saa_fwrite (struct SAA
*s
, long posn
, void *data
, long len
) {
578 if (!s
->rptr
|| posn
> s
->rptr
->start
+ s
->rpos
)
580 while (posn
>= s
->rptr
->start
+ s
->rptr
->posn
) {
581 s
->rptr
= s
->rptr
->next
;
583 return; /* what else can we do?! */
587 pos
= posn
- s
->rptr
->start
;
589 long l
= s
->rptr
->posn
- pos
;
592 memcpy (s
->rptr
->data
+pos
, cdata
, l
);
602 void saa_fpwrite (struct SAA
*s
, FILE *fp
) {
607 while ( (data
= saa_rbytes (s
, &len
)) )
608 fwrite (data
, 1, len
, fp
);
612 * Register, instruction, condition-code and prefix keywords used
616 static char *special_names
[] = {
617 "byte", "dword", "far", "long", "near", "nosplit", "qword",
618 "short", "to", "tword", "word"
620 static char *prefix_names
[] = {
621 "a16", "a32", "lock", "o16", "o32", "rep", "repe", "repne",
622 "repnz", "repz", "times"
627 * Standard scanner routine used by parser.c and some output
628 * formats. It keeps a succession of temporary-storage strings in
629 * stdscan_tempstorage, which can be cleared using stdscan_reset.
631 static char **stdscan_tempstorage
= NULL
;
632 static int stdscan_tempsize
= 0, stdscan_templen
= 0;
633 #define STDSCAN_TEMP_DELTA 256
635 static void stdscan_pop(void) {
636 nasm_free (stdscan_tempstorage
[--stdscan_templen
]);
639 void stdscan_reset(void) {
640 while (stdscan_templen
> 0)
644 static char *stdscan_copy(char *p
, int len
) {
647 text
= nasm_malloc(len
+1);
648 strncpy (text
, p
, len
);
651 if (stdscan_templen
>= stdscan_tempsize
) {
652 stdscan_tempsize
+= STDSCAN_TEMP_DELTA
;
653 stdscan_tempstorage
= nasm_realloc(stdscan_tempstorage
,
654 stdscan_tempsize
*sizeof(char *));
656 stdscan_tempstorage
[stdscan_templen
++] = text
;
661 char *stdscan_bufptr
= NULL
;
662 int stdscan (void *private_data
, struct tokenval
*tv
) {
663 char ourcopy
[256], *r
, *s
;
665 while (isspace(*stdscan_bufptr
)) stdscan_bufptr
++;
666 if (!*stdscan_bufptr
)
667 return tv
->t_type
= 0;
669 /* we have a token; either an id, a number or a char */
670 if (isidstart(*stdscan_bufptr
) ||
671 (*stdscan_bufptr
== '$' && isidstart(stdscan_bufptr
[1]))) {
672 /* now we've got an identifier */
676 if (*stdscan_bufptr
== '$') {
681 r
= stdscan_bufptr
++;
682 while (isidchar(*stdscan_bufptr
)) stdscan_bufptr
++;
683 tv
->t_charptr
= stdscan_copy(r
, stdscan_bufptr
- r
);
685 for (s
=tv
->t_charptr
, r
=ourcopy
; *s
; s
++)
689 return tv
->t_type
= TOKEN_ID
;/* bypass all other checks */
690 /* right, so we have an identifier sitting in temp storage. now,
691 * is it actually a register or instruction name, or what? */
692 if ((tv
->t_integer
=bsi(ourcopy
, reg_names
,
693 elements(reg_names
)))>=0) {
694 tv
->t_integer
+= EXPR_REG_START
;
695 return tv
->t_type
= TOKEN_REG
;
696 } else if ((tv
->t_integer
=bsi(ourcopy
, insn_names
,
697 elements(insn_names
)))>=0) {
698 return tv
->t_type
= TOKEN_INSN
;
700 for (i
=0; i
<elements(icn
); i
++)
701 if (!strncmp(ourcopy
, icn
[i
], strlen(icn
[i
]))) {
702 char *p
= ourcopy
+ strlen(icn
[i
]);
703 tv
->t_integer
= ico
[i
];
704 if ((tv
->t_inttwo
=bsi(p
, conditions
,
705 elements(conditions
)))>=0)
706 return tv
->t_type
= TOKEN_INSN
;
708 if ((tv
->t_integer
=bsi(ourcopy
, prefix_names
,
709 elements(prefix_names
)))>=0) {
710 tv
->t_integer
+= PREFIX_ENUM_START
;
711 return tv
->t_type
= TOKEN_PREFIX
;
713 if ((tv
->t_integer
=bsi(ourcopy
, special_names
,
714 elements(special_names
)))>=0)
715 return tv
->t_type
= TOKEN_SPECIAL
;
716 if (!strcmp(ourcopy
, "seg"))
717 return tv
->t_type
= TOKEN_SEG
;
718 if (!strcmp(ourcopy
, "wrt"))
719 return tv
->t_type
= TOKEN_WRT
;
720 return tv
->t_type
= TOKEN_ID
;
721 } else if (*stdscan_bufptr
== '$' && !isnumchar(stdscan_bufptr
[1])) {
723 * It's a $ sign with no following hex number; this must
724 * mean it's a Here token ($), evaluating to the current
725 * assembly location, or a Base token ($$), evaluating to
726 * the base of the current segment.
729 if (*stdscan_bufptr
== '$') {
731 return tv
->t_type
= TOKEN_BASE
;
733 return tv
->t_type
= TOKEN_HERE
;
734 } else if (isnumstart(*stdscan_bufptr
)) { /* now we've got a number */
737 r
= stdscan_bufptr
++;
738 while (isnumchar(*stdscan_bufptr
))
741 if (*stdscan_bufptr
== '.') {
743 * a floating point constant
746 while (isnumchar(*stdscan_bufptr
)) {
749 tv
->t_charptr
= stdscan_copy(r
, stdscan_bufptr
- r
);
750 return tv
->t_type
= TOKEN_FLOAT
;
752 r
= stdscan_copy(r
, stdscan_bufptr
- r
);
753 tv
->t_integer
= readnum(r
, &rn_error
);
756 return tv
->t_type
= TOKEN_ERRNUM
;/* some malformation occurred */
757 tv
->t_charptr
= NULL
;
758 return tv
->t_type
= TOKEN_NUM
;
759 } else if (*stdscan_bufptr
== '\'' ||
760 *stdscan_bufptr
== '"') {/* a char constant */
761 char quote
= *stdscan_bufptr
++, *r
;
762 r
= tv
->t_charptr
= stdscan_bufptr
;
763 while (*stdscan_bufptr
&& *stdscan_bufptr
!= quote
) stdscan_bufptr
++;
764 tv
->t_inttwo
= stdscan_bufptr
- r
; /* store full version */
765 if (!*stdscan_bufptr
)
766 return tv
->t_type
= TOKEN_ERRNUM
; /* unmatched quotes */
768 r
= stdscan_bufptr
++; /* skip over final quote */
769 while (quote
!= *--r
) {
770 tv
->t_integer
= (tv
->t_integer
<<8) + (unsigned char) *r
;
772 return tv
->t_type
= TOKEN_NUM
;
773 } else if (*stdscan_bufptr
== ';') { /* a comment has happened - stay */
774 return tv
->t_type
= 0;
775 } else if (stdscan_bufptr
[0] == '>' && stdscan_bufptr
[1] == '>') {
777 return tv
->t_type
= TOKEN_SHR
;
778 } else if (stdscan_bufptr
[0] == '<' && stdscan_bufptr
[1] == '<') {
780 return tv
->t_type
= TOKEN_SHL
;
781 } else if (stdscan_bufptr
[0] == '/' && stdscan_bufptr
[1] == '/') {
783 return tv
->t_type
= TOKEN_SDIV
;
784 } else if (stdscan_bufptr
[0] == '%' && stdscan_bufptr
[1] == '%') {
786 return tv
->t_type
= TOKEN_SMOD
;
787 } else if (stdscan_bufptr
[0] == '=' && stdscan_bufptr
[1] == '=') {
789 return tv
->t_type
= TOKEN_EQ
;
790 } else if (stdscan_bufptr
[0] == '<' && stdscan_bufptr
[1] == '>') {
792 return tv
->t_type
= TOKEN_NE
;
793 } else if (stdscan_bufptr
[0] == '!' && stdscan_bufptr
[1] == '=') {
795 return tv
->t_type
= TOKEN_NE
;
796 } else if (stdscan_bufptr
[0] == '<' && stdscan_bufptr
[1] == '=') {
798 return tv
->t_type
= TOKEN_LE
;
799 } else if (stdscan_bufptr
[0] == '>' && stdscan_bufptr
[1] == '=') {
801 return tv
->t_type
= TOKEN_GE
;
802 } else if (stdscan_bufptr
[0] == '&' && stdscan_bufptr
[1] == '&') {
804 return tv
->t_type
= TOKEN_DBL_AND
;
805 } else if (stdscan_bufptr
[0] == '^' && stdscan_bufptr
[1] == '^') {
807 return tv
->t_type
= TOKEN_DBL_XOR
;
808 } else if (stdscan_bufptr
[0] == '|' && stdscan_bufptr
[1] == '|') {
810 return tv
->t_type
= TOKEN_DBL_OR
;
811 } else /* just an ordinary char */
812 return tv
->t_type
= (unsigned char) (*stdscan_bufptr
++);
816 * Return TRUE if the argument is a simple scalar. (Or a far-
817 * absolute, which counts.)
819 int is_simple (expr
*vect
) {
820 while (vect
->type
&& !vect
->value
)
824 if (vect
->type
!= EXPR_SIMPLE
)
828 } while (vect
->type
&& !vect
->value
);
829 if (vect
->type
&& vect
->type
< EXPR_SEGBASE
+SEG_ABS
) return 0;
834 * Return TRUE if the argument is a simple scalar, _NOT_ a far-
837 int is_really_simple (expr
*vect
) {
838 while (vect
->type
&& !vect
->value
)
842 if (vect
->type
!= EXPR_SIMPLE
)
846 } while (vect
->type
&& !vect
->value
);
847 if (vect
->type
) return 0;
852 * Return TRUE if the argument is relocatable (i.e. a simple
853 * scalar, plus at most one segment-base, plus possibly a WRT).
855 int is_reloc (expr
*vect
) {
856 while (vect
->type
&& !vect
->value
) /* skip initial value-0 terms */
858 if (!vect
->type
) /* trivially return TRUE if nothing */
859 return 1; /* is present apart from value-0s */
860 if (vect
->type
< EXPR_SIMPLE
) /* FALSE if a register is present */
862 if (vect
->type
== EXPR_SIMPLE
) { /* skip over a pure number term... */
865 } while (vect
->type
&& !vect
->value
);
866 if (!vect
->type
) /* ...returning TRUE if that's all */
869 if (vect
->type
== EXPR_WRT
) { /* skip over a WRT term... */
872 } while (vect
->type
&& !vect
->value
);
873 if (!vect
->type
) /* ...returning TRUE if that's all */
876 if (vect
->value
!= 0 && vect
->value
!= 1)
877 return 0; /* segment base multiplier non-unity */
878 do { /* skip over _one_ seg-base term... */
880 } while (vect
->type
&& !vect
->value
);
881 if (!vect
->type
) /* ...returning TRUE if that's all */
883 return 0; /* And return FALSE if there's more */
887 * Return TRUE if the argument contains an `unknown' part.
889 int is_unknown(expr
*vect
) {
890 while (vect
->type
&& vect
->type
< EXPR_UNKNOWN
)
892 return (vect
->type
== EXPR_UNKNOWN
);
896 * Return TRUE if the argument contains nothing but an `unknown'
899 int is_just_unknown(expr
*vect
) {
900 while (vect
->type
&& !vect
->value
)
902 return (vect
->type
== EXPR_UNKNOWN
);
906 * Return the scalar part of a relocatable vector. (Including
907 * simple scalar vectors - those qualify as relocatable.)
909 long reloc_value (expr
*vect
) {
910 while (vect
->type
&& !vect
->value
)
912 if (!vect
->type
) return 0;
913 if (vect
->type
== EXPR_SIMPLE
)
920 * Return the segment number of a relocatable vector, or NO_SEG for
923 long reloc_seg (expr
*vect
) {
924 while (vect
->type
&& (vect
->type
== EXPR_WRT
|| !vect
->value
))
926 if (vect
->type
== EXPR_SIMPLE
) {
929 } while (vect
->type
&& (vect
->type
== EXPR_WRT
|| !vect
->value
));
934 return vect
->type
- EXPR_SEGBASE
;
938 * Return the WRT segment number of a relocatable vector, or NO_SEG
939 * if no WRT part is present.
941 long reloc_wrt (expr
*vect
) {
942 while (vect
->type
&& vect
->type
< EXPR_WRT
)
944 if (vect
->type
== EXPR_WRT
) {
953 int bsi (char *string
, char **array
, int size
) {
954 int i
= -1, j
= size
; /* always, i < index < j */
957 int l
= strcmp(string
, array
[k
]);
958 if (l
<0) /* it's in the first half */
960 else if (l
>0) /* it's in the second half */
962 else /* we've got it :) */
965 return -1; /* we haven't got it :( */