SHA: SHA test cases
[nasm/avx512.git] / nasm.h
blob5ca2aa58f5e71722bde7d5bcb2b013a2669cccd9
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2013 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directiv.h" /* For enum directive */
49 #include "opflags.h"
50 #include "regs.h"
52 #define NO_SEG -1L /* null segment value */
53 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
55 #ifndef FILENAME_MAX
56 #define FILENAME_MAX 256
57 #endif
59 #ifndef PREFIX_MAX
60 #define PREFIX_MAX 10
61 #endif
63 #ifndef POSTFIX_MAX
64 #define POSTFIX_MAX 10
65 #endif
67 #define IDLEN_MAX 4096
70 * Name pollution problems: <time.h> on Digital UNIX pulls in some
71 * strange hardware header file which sees fit to define R_SP. We
72 * undefine it here so as not to break the enum below.
74 #ifdef R_SP
75 #undef R_SP
76 #endif
79 * We must declare the existence of this structure type up here,
80 * since we have to reference it before we define it...
82 struct ofmt;
85 * Values for the `type' parameter to an output function.
87 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
88 * which will be a relative jump. For this we need to know the
89 * distance in bytes from the start of the relocated record until
90 * the end of the containing instruction. _This_ is what is stored
91 * in the size part of the parameter, in this case.
93 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
94 * and the contents of the "data" parameter is irrelevant.
96 * The "data" parameter for the output function points to a "int32_t",
97 * containing the address in question, unless the type is
98 * OUT_RAWDATA, in which case it points to an "uint8_t"
99 * array.
101 enum out_type {
102 OUT_RAWDATA, /* Plain bytes */
103 OUT_ADDRESS, /* An address (symbol value) */
104 OUT_RESERVE, /* Reserved bytes (RESB et al) */
105 OUT_REL1ADR, /* 1-byte relative address */
106 OUT_REL2ADR, /* 2-byte relative address */
107 OUT_REL4ADR, /* 4-byte relative address */
108 OUT_REL8ADR, /* 8-byte relative address */
112 * A label-lookup function.
114 typedef bool (*lfunc)(char *label, int32_t *segment, int64_t *offset);
117 * And a label-definition function. The boolean parameter
118 * `is_norm' states whether the label is a `normal' label (which
119 * should affect the local-label system), or something odder like
120 * an EQU or a segment-base symbol, which shouldn't.
122 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
123 char *special, bool is_norm, bool isextrn);
125 void define_label(char *label, int32_t segment, int64_t offset,
126 char *special, bool is_norm, bool isextrn);
129 * List-file generators should look like this:
131 typedef struct {
133 * Called to initialize the listing file generator. Before this
134 * is called, the other routines will silently do nothing when
135 * called. The `char *' parameter is the file name to write the
136 * listing to.
138 void (*init)(char *fname, efunc error);
141 * Called to clear stuff up and close the listing file.
143 void (*cleanup)(void);
146 * Called to output binary data. Parameters are: the offset;
147 * the data; the data type. Data types are similar to the
148 * output-format interface, only OUT_ADDRESS will _always_ be
149 * displayed as if it's relocatable, so ensure that any non-
150 * relocatable address has been converted to OUT_RAWDATA by
151 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
152 * dummy call used to give the listing generator an offset to
153 * work with when doing things like uplevel(LIST_TIMES) or
154 * uplevel(LIST_INCBIN).
156 void (*output)(int32_t offset, const void *data, enum out_type type, uint64_t size);
159 * Called to send a text line to the listing generator. The
160 * `int' parameter is LIST_READ or LIST_MACRO depending on
161 * whether the line came directly from an input file or is the
162 * result of a multi-line macro expansion.
164 void (*line)(int type, char *line);
167 * Called to change one of the various levelled mechanisms in
168 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
169 * used to increase the nesting level of include files and
170 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
171 * two binary-output-suppression mechanisms for large-scale
172 * pseudo-instructions.
174 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
175 * it indicates the beginning of the expansion of a `nolist'
176 * macro, so anything under that level won't be expanded unless
177 * it includes another file.
179 void (*uplevel)(int type);
182 * Reverse the effects of uplevel.
184 void (*downlevel)(int type);
187 * Called on a warning or error, with the error message.
189 void (*error)(int severity, const char *pfx, const char *msg);
190 } ListGen;
193 * Token types returned by the scanner, in addition to ordinary
194 * ASCII character values, and zero for end-of-string.
196 enum token_type { /* token types, other than chars */
197 TOKEN_INVALID = -1, /* a placeholder value */
198 TOKEN_EOS = 0, /* end of string */
199 TOKEN_EQ = '=',
200 TOKEN_GT = '>',
201 TOKEN_LT = '<', /* aliases */
202 TOKEN_ID = 256, /* identifier */
203 TOKEN_NUM, /* numeric constant */
204 TOKEN_ERRNUM, /* malformed numeric constant */
205 TOKEN_STR, /* string constant */
206 TOKEN_ERRSTR, /* unterminated string constant */
207 TOKEN_FLOAT, /* floating-point constant */
208 TOKEN_REG, /* register name */
209 TOKEN_INSN, /* instruction name */
210 TOKEN_HERE, /* $ */
211 TOKEN_BASE, /* $$ */
212 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
213 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
214 TOKEN_SHL, /* << */
215 TOKEN_SHR, /* >> */
216 TOKEN_SDIV, /* // */
217 TOKEN_SMOD, /* %% */
218 TOKEN_GE, /* >= */
219 TOKEN_LE, /* <= */
220 TOKEN_NE, /* <> (!= is same as <>) */
221 TOKEN_DBL_AND, /* && */
222 TOKEN_DBL_OR, /* || */
223 TOKEN_DBL_XOR, /* ^^ */
224 TOKEN_SEG, /* SEG */
225 TOKEN_WRT, /* WRT */
226 TOKEN_FLOATIZE, /* __floatX__ */
227 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
228 TOKEN_IFUNC, /* __ilog2*__ */
229 TOKEN_DECORATOR, /* decorators such as {...} */
230 TOKEN_OPMASK, /* translated token for opmask registers */
233 enum floatize {
234 FLOAT_8,
235 FLOAT_16,
236 FLOAT_32,
237 FLOAT_64,
238 FLOAT_80M,
239 FLOAT_80E,
240 FLOAT_128L,
241 FLOAT_128H,
244 /* Must match the list in string_transform(), in strfunc.c */
245 enum strfunc {
246 STRFUNC_UTF16,
247 STRFUNC_UTF16LE,
248 STRFUNC_UTF16BE,
249 STRFUNC_UTF32,
250 STRFUNC_UTF32LE,
251 STRFUNC_UTF32BE,
254 enum ifunc {
255 IFUNC_ILOG2E,
256 IFUNC_ILOG2W,
257 IFUNC_ILOG2F,
258 IFUNC_ILOG2C,
261 size_t string_transform(char *, size_t, char **, enum strfunc);
264 * The expression evaluator must be passed a scanner function; a
265 * standard scanner is provided as part of nasmlib.c. The
266 * preprocessor will use a different one. Scanners, and the
267 * token-value structures they return, look like this.
269 * The return value from the scanner is always a copy of the
270 * `t_type' field in the structure.
272 struct tokenval {
273 char *t_charptr;
274 int64_t t_integer;
275 int64_t t_inttwo;
276 enum token_type t_type;
277 int8_t t_flag;
279 typedef int (*scanner)(void *private_data, struct tokenval *tv);
281 struct location {
282 int64_t offset;
283 int32_t segment;
284 int known;
288 * Expression-evaluator datatype. Expressions, within the
289 * evaluator, are stored as an array of these beasts, terminated by
290 * a record with type==0. Mostly, it's a vector type: each type
291 * denotes some kind of a component, and the value denotes the
292 * multiple of that component present in the expression. The
293 * exception is the WRT type, whose `value' field denotes the
294 * segment to which the expression is relative. These segments will
295 * be segment-base types, i.e. either odd segment values or SEG_ABS
296 * types. So it is still valid to assume that anything with a
297 * `value' field of zero is insignificant.
299 typedef struct {
300 int32_t type; /* a register, or EXPR_xxx */
301 int64_t value; /* must be >= 32 bits */
302 } expr;
305 * Library routines to manipulate expression data types.
307 int is_reloc(expr *vect);
308 int is_simple(expr *vect);
309 int is_really_simple(expr *vect);
310 int is_unknown(expr *vect);
311 int is_just_unknown(expr *vect);
312 int64_t reloc_value(expr *vect);
313 int32_t reloc_seg(expr *vect);
314 int32_t reloc_wrt(expr *vect);
317 * The evaluator can also return hints about which of two registers
318 * used in an expression should be the base register. See also the
319 * `operand' structure.
321 struct eval_hints {
322 int64_t base;
323 int type;
327 * The actual expression evaluator function looks like this. When
328 * called, it expects the first token of its expression to already
329 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
330 * it will start by calling the scanner.
332 * If a forward reference happens during evaluation, the evaluator
333 * must set `*fwref' to true if `fwref' is non-NULL.
335 * `critical' is non-zero if the expression may not contain forward
336 * references. The evaluator will report its own error if this
337 * occurs; if `critical' is 1, the error will be "symbol not
338 * defined before use", whereas if `critical' is 2, the error will
339 * be "symbol undefined".
341 * If `critical' has bit 8 set (in addition to its main value: 0x101
342 * and 0x102 correspond to 1 and 2) then an extended expression
343 * syntax is recognised, in which relational operators such as =, <
344 * and >= are accepted, as well as low-precedence logical operators
345 * &&, ^^ and ||.
347 * If `hints' is non-NULL, it gets filled in with some hints as to
348 * the base register in complex effective addresses.
350 #define CRITICAL 0x100
351 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
352 struct tokenval *tv, int *fwref, int critical,
353 efunc error, struct eval_hints *hints);
356 * Special values for expr->type.
357 * These come after EXPR_REG_END as defined in regs.h.
358 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
359 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
361 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
362 #define EXPR_SIMPLE (EXPR_REG_END+2)
363 #define EXPR_WRT (EXPR_REG_END+3)
364 #define EXPR_RDSAE (EXPR_REG_END+4)
365 #define EXPR_SEGBASE (EXPR_REG_END+5)
368 * Linked list of strings
370 typedef struct string_list {
371 struct string_list *next;
372 char str[1];
373 } StrList;
376 * preprocessors ought to look like this:
378 struct preproc_ops {
380 * Called at the start of a pass; given a file name, the number
381 * of the pass, an error reporting function, an evaluator
382 * function, and a listing generator to talk to.
384 void (*reset)(char *file, int pass, ListGen *listgen, StrList **deplist);
387 * Called to fetch a line of preprocessed source. The line
388 * returned has been malloc'ed, and so should be freed after
389 * use.
391 char *(*getline)(void);
393 /* Called at the end of a pass */
394 void (*cleanup)(int pass);
396 /* Additional macros specific to output format */
397 void (*extra_stdmac)(macros_t *macros);
399 /* Early definitions and undefinitions for macros */
400 void (*pre_define)(char *definition);
401 void (*pre_undefine)(char *definition);
403 /* Include file from command line */
404 void (*pre_include)(char *fname);
406 /* Include path from command line */
407 void (*include_path)(char *path);
410 extern struct preproc_ops nasmpp;
411 extern struct preproc_ops preproc_nop;
414 * Some lexical properties of the NASM source language, included
415 * here because they are shared between the parser and preprocessor.
419 * isidstart matches any character that may start an identifier, and isidchar
420 * matches any character that may appear at places other than the start of an
421 * identifier. E.g. a period may only appear at the start of an identifier
422 * (for local labels), whereas a number may appear anywhere *but* at the
423 * start.
426 #define isidstart(c) (nasm_isalpha(c) || \
427 (c) == '_' || \
428 (c) == '.' || \
429 (c) == '?' || \
430 (c) == '@')
432 #define isidchar(c) (isidstart(c) || \
433 nasm_isdigit(c) || \
434 (c) == '$' || \
435 (c) == '#' || \
436 (c) == '~')
438 /* Ditto for numeric constants. */
440 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
441 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
444 * Data-type flags that get passed to listing-file routines.
446 enum {
447 LIST_READ,
448 LIST_MACRO,
449 LIST_MACRO_NOLIST,
450 LIST_INCLUDE,
451 LIST_INCBIN,
452 LIST_TIMES
456 * -----------------------------------------------------------
457 * Format of the `insn' structure returned from `parser.c' and
458 * passed into `assemble.c'
459 * -----------------------------------------------------------
462 /* Verify value to be a valid register */
463 static inline bool is_register(int reg)
465 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
468 enum ccode { /* condition code names */
469 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
470 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
471 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
472 C_none = -1
476 * token flags
478 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
479 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
480 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
481 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
483 static inline uint8_t get_cond_opcode(enum ccode c)
485 static const uint8_t ccode_opcodes[] = {
486 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
487 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
488 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
491 return ccode_opcodes[(int)c];
495 * REX flags
497 #define REX_REAL 0x4f /* Actual REX prefix bits */
498 #define REX_B 0x01 /* ModRM r/m extension */
499 #define REX_X 0x02 /* SIB index extension */
500 #define REX_R 0x04 /* ModRM reg extension */
501 #define REX_W 0x08 /* 64-bit operand size */
502 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
503 #define REX_P 0x40 /* REX prefix present/required */
504 #define REX_H 0x80 /* High register present, REX forbidden */
505 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
506 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
507 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
510 * EVEX bit field
512 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
513 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
514 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
515 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
516 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
517 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
518 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
519 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
522 * REX_V "classes" (prefixes which behave like VEX)
524 enum vex_class {
525 RV_VEX = 0, /* C4/C5 */
526 RV_XOP = 1 /* 8F */
530 * Note that because segment registers may be used as instruction
531 * prefixes, we must ensure the enumerations for prefixes and
532 * register names do not overlap.
534 enum prefixes { /* instruction prefixes */
535 P_none = 0,
536 PREFIX_ENUM_START = REG_ENUM_LIMIT,
537 P_A16 = PREFIX_ENUM_START,
538 P_A32,
539 P_A64,
540 P_ASP,
541 P_LOCK,
542 P_O16,
543 P_O32,
544 P_O64,
545 P_OSP,
546 P_REP,
547 P_REPE,
548 P_REPNE,
549 P_REPNZ,
550 P_REPZ,
551 P_TIMES,
552 P_WAIT,
553 P_XACQUIRE,
554 P_XRELEASE,
555 P_BND,
556 PREFIX_ENUM_LIMIT
559 enum extop_type { /* extended operand types */
560 EOT_NOTHING,
561 EOT_DB_STRING, /* Byte string */
562 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
563 EOT_DB_NUMBER, /* Integer */
566 enum ea_flags { /* special EA flags */
567 EAF_BYTEOFFS = 1, /* force offset part to byte size */
568 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
569 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
570 EAF_REL = 8, /* IP-relative addressing */
571 EAF_ABS = 16, /* non-IP-relative addressing */
572 EAF_FSGS = 32 /* fs/gs segment override present */
575 enum eval_hint { /* values for `hinttype' */
576 EAH_NOHINT = 0, /* no hint at all - our discretion */
577 EAH_MAKEBASE = 1, /* try to make given reg the base */
578 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
581 typedef struct operand { /* operand to an instruction */
582 opflags_t type; /* type of operand */
583 int disp_size; /* 0 means default; 16; 32; 64 */
584 enum reg_enum basereg;
585 enum reg_enum indexreg; /* address registers */
586 int scale; /* index scale */
587 int hintbase;
588 enum eval_hint hinttype; /* hint as to real base register */
589 int32_t segment; /* immediate segment, if needed */
590 int64_t offset; /* any immediate number */
591 int32_t wrt; /* segment base it's relative to */
592 int eaflags; /* special EA flags */
593 int opflags; /* see OPFLAG_* defines below */
594 decoflags_t decoflags; /* decorator flags such as {...} */
595 } operand;
597 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
598 #define OPFLAG_EXTERN 2 /* operand is an external reference */
599 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
600 * (always a forward reference also)
603 typedef struct extop { /* extended operand */
604 struct extop *next; /* linked list */
605 char *stringval; /* if it's a string, then here it is */
606 size_t stringlen; /* ... and here's how long it is */
607 int64_t offset; /* ... it's given here ... */
608 int32_t segment; /* if it's a number/address, then... */
609 int32_t wrt; /* ... and here */
610 enum extop_type type; /* defined above */
611 } extop;
613 enum ea_type {
614 EA_INVALID, /* Not a valid EA at all */
615 EA_SCALAR, /* Scalar EA */
616 EA_XMMVSIB, /* XMM vector EA */
617 EA_YMMVSIB, /* YMM vector EA */
618 EA_ZMMVSIB, /* ZMM vector EA */
622 * Prefix positions: each type of prefix goes in a specific slot.
623 * This affects the final ordering of the assembled output, which
624 * shouldn't matter to the processor, but if you have stylistic
625 * preferences, you can change this. REX prefixes are handled
626 * differently for the time being.
628 * LOCK and REP used to be one slot; this is no longer the case since
629 * the introduction of HLE.
631 enum prefix_pos {
632 PPS_WAIT, /* WAIT (technically not a prefix!) */
633 PPS_REP, /* REP/HLE prefix */
634 PPS_LOCK, /* LOCK prefix */
635 PPS_SEG, /* Segment override prefix */
636 PPS_OSIZE, /* Operand size prefix */
637 PPS_ASIZE, /* Address size prefix */
638 MAXPREFIX /* Total number of prefix slots */
642 * Tuple types that are used when determining Disp8*N eligibility
643 * The order must match with a hash %tuple_codes in insns.pl
645 enum ttypes {
646 FV = 001,
647 HV = 002,
648 FVM = 003,
649 T1S8 = 004,
650 T1S16 = 005,
651 T1S = 006,
652 T1F32 = 007,
653 T1F64 = 010,
654 T2 = 011,
655 T4 = 012,
656 T8 = 013,
657 HVM = 014,
658 QVM = 015,
659 OVM = 016,
660 M128 = 017,
661 DUP = 020,
664 /* EVEX.L'L : Vector length on vector insns */
665 enum vectlens {
666 VL128 = 0,
667 VL256 = 1,
668 VL512 = 2,
669 VLMAX = 3,
672 /* If you need to change this, also change it in insns.pl */
673 #define MAX_OPERANDS 5
675 typedef struct insn { /* an instruction itself */
676 char *label; /* the label defined, or NULL */
677 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
678 enum opcode opcode; /* the opcode - not just the string */
679 enum ccode condition; /* the condition code, if Jcc/SETcc */
680 int operands; /* how many operands? 0-3 (more if db et al) */
681 int addr_size; /* address size */
682 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
683 extop *eops; /* extended operands */
684 int eops_float; /* true if DD and floating */
685 int32_t times; /* repeat count (TIMES prefix) */
686 bool forw_ref; /* is there a forward reference? */
687 int rex; /* Special REX Prefix */
688 int vexreg; /* Register encoded in VEX prefix */
689 int vex_cm; /* Class and M field for VEX prefix */
690 int vex_wlp; /* W, P and L information for VEX prefix */
691 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
692 /* EVEX.P2: [z,L'L,b,V',aaa] */
693 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
694 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
695 int8_t evex_brerop; /* BR/ER/SAE operand position */
696 } insn;
698 enum geninfo { GI_SWITCH };
700 /* Instruction flags type: IF_* flags are defined in insns.h */
701 typedef uint64_t iflags_t;
704 * The data structure defining an output format driver, and the
705 * interfaces to the functions therein.
707 struct ofmt {
709 * This is a short (one-liner) description of the type of
710 * output generated by the driver.
712 const char *fullname;
715 * This is a single keyword used to select the driver.
717 const char *shortname;
720 * Output format flags.
722 #define OFMT_TEXT 1 /* Text file format */
723 unsigned int flags;
726 * this is a pointer to the first element of the debug information
728 struct dfmt **debug_formats;
731 * and a pointer to the element that is being used
732 * note: this is set to the default at compile time and changed if the
733 * -F option is selected. If developing a set of new debug formats for
734 * an output format, be sure to set this to whatever default you want
737 const struct dfmt *current_dfmt;
740 * This, if non-NULL, is a NULL-terminated list of `char *'s
741 * pointing to extra standard macros supplied by the object
742 * format (e.g. a sensible initial default value of __SECT__,
743 * and user-level equivalents for any format-specific
744 * directives).
746 macros_t *stdmac;
749 * This procedure is called at the start of an output session to set
750 * up internal parameters.
752 void (*init)(void);
755 * This procedure is called to pass generic information to the
756 * object file. The first parameter gives the information type
757 * (currently only command line switches)
758 * and the second parameter gives the value. This function returns
759 * 1 if recognized, 0 if unrecognized
761 int (*setinfo)(enum geninfo type, char **string);
764 * This procedure is called by assemble() to write actual
765 * generated code or data to the object file. Typically it
766 * doesn't have to actually _write_ it, just store it for
767 * later.
769 * The `type' argument specifies the type of output data, and
770 * usually the size as well: its contents are described below.
772 void (*output)(int32_t segto, const void *data,
773 enum out_type type, uint64_t size,
774 int32_t segment, int32_t wrt);
777 * This procedure is called once for every symbol defined in
778 * the module being assembled. It gives the name and value of
779 * the symbol, in NASM's terms, and indicates whether it has
780 * been declared to be global. Note that the parameter "name",
781 * when passed, will point to a piece of static storage
782 * allocated inside the label manager - it's safe to keep using
783 * that pointer, because the label manager doesn't clean up
784 * until after the output driver has.
786 * Values of `is_global' are: 0 means the symbol is local; 1
787 * means the symbol is global; 2 means the symbol is common (in
788 * which case `offset' holds the _size_ of the variable).
789 * Anything else is available for the output driver to use
790 * internally.
792 * This routine explicitly _is_ allowed to call the label
793 * manager to define further symbols, if it wants to, even
794 * though it's been called _from_ the label manager. That much
795 * re-entrancy is guaranteed in the label manager. However, the
796 * label manager will in turn call this routine, so it should
797 * be prepared to be re-entrant itself.
799 * The `special' parameter contains special information passed
800 * through from the command that defined the label: it may have
801 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
802 * be obvious to the output format from the other parameters.
804 void (*symdef)(char *name, int32_t segment, int64_t offset,
805 int is_global, char *special);
808 * This procedure is called when the source code requests a
809 * segment change. It should return the corresponding segment
810 * _number_ for the name, or NO_SEG if the name is not a valid
811 * segment name.
813 * It may also be called with NULL, in which case it is to
814 * return the _default_ section number for starting assembly in.
816 * It is allowed to modify the string it is given a pointer to.
818 * It is also allowed to specify a default instruction size for
819 * the segment, by setting `*bits' to 16 or 32. Or, if it
820 * doesn't wish to define a default, it can leave `bits' alone.
822 int32_t (*section)(char *name, int pass, int *bits);
825 * This procedure is called to modify section alignment,
826 * note there is a trick, the alignment can only increase
828 void (*sectalign)(int32_t seg, unsigned int value);
831 * This procedure is called to modify the segment base values
832 * returned from the SEG operator. It is given a segment base
833 * value (i.e. a segment value with the low bit set), and is
834 * required to produce in return a segment value which may be
835 * different. It can map segment bases to absolute numbers by
836 * means of returning SEG_ABS types.
838 * It should return NO_SEG if the segment base cannot be
839 * determined; the evaluator (which calls this routine) is
840 * responsible for throwing an error condition if that occurs
841 * in pass two or in a critical expression.
843 int32_t (*segbase)(int32_t segment);
846 * This procedure is called to allow the output driver to
847 * process its own specific directives. When called, it has the
848 * directive word in `directive' and the parameter string in
849 * `value'. It is called in both assembly passes, and `pass'
850 * will be either 1 or 2.
852 * This procedure should return zero if it does not _recognise_
853 * the directive, so that the main program can report an error.
854 * If it recognises the directive but then has its own errors,
855 * it should report them itself and then return non-zero. It
856 * should also return non-zero if it correctly processes the
857 * directive.
859 int (*directive)(enum directives directive, char *value, int pass);
862 * This procedure is called before anything else - even before
863 * the "init" routine - and is passed the name of the input
864 * file from which this output file is being generated. It
865 * should return its preferred name for the output file in
866 * `outname', if outname[0] is not '\0', and do nothing to
867 * `outname' otherwise. Since it is called before the driver is
868 * properly initialized, it has to be passed its error handler
869 * separately.
871 * This procedure may also take its own copy of the input file
872 * name for use in writing the output file: it is _guaranteed_
873 * that it will be called before the "init" routine.
875 * The parameter `outname' points to an area of storage
876 * guaranteed to be at least FILENAME_MAX in size.
878 void (*filename)(char *inname, char *outname);
881 * This procedure is called after assembly finishes, to allow
882 * the output driver to clean itself up and free its memory.
883 * Typically, it will also be the point at which the object
884 * file actually gets _written_.
886 * One thing the cleanup routine should always do is to close
887 * the output file pointer.
889 void (*cleanup)(int debuginfo);
893 * Output format driver alias
895 struct ofmt_alias {
896 const char *shortname;
897 const char *fullname;
898 struct ofmt *ofmt;
901 extern struct ofmt *ofmt;
902 extern FILE *ofile;
905 * ------------------------------------------------------------
906 * The data structure defining a debug format driver, and the
907 * interfaces to the functions therein.
908 * ------------------------------------------------------------
911 struct dfmt {
913 * This is a short (one-liner) description of the type of
914 * output generated by the driver.
916 const char *fullname;
919 * This is a single keyword used to select the driver.
921 const char *shortname;
924 * init - called initially to set up local pointer to object format.
926 void (*init)(void);
929 * linenum - called any time there is output with a change of
930 * line number or file.
932 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
935 * debug_deflabel - called whenever a label is defined. Parameters
936 * are the same as to 'symdef()' in the output format. This function
937 * would be called before the output format version.
940 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
941 int is_global, char *special);
943 * debug_directive - called whenever a DEBUG directive other than 'LINE'
944 * is encountered. 'directive' contains the first parameter to the
945 * DEBUG directive, and params contains the rest. For example,
946 * 'DEBUG VAR _somevar:int' would translate to a call to this
947 * function with 'directive' equal to "VAR" and 'params' equal to
948 * "_somevar:int".
950 void (*debug_directive)(const char *directive, const char *params);
953 * typevalue - called whenever the assembler wishes to register a type
954 * for the last defined label. This routine MUST detect if a type was
955 * already registered and not re-register it.
957 void (*debug_typevalue)(int32_t type);
960 * debug_output - called whenever output is required
961 * 'type' is the type of info required, and this is format-specific
963 void (*debug_output)(int type, void *param);
966 * cleanup - called after processing of file is complete
968 void (*cleanup)(void);
971 extern const struct dfmt *dfmt;
974 * The type definition macros
975 * for debugging
977 * low 3 bits: reserved
978 * next 5 bits: type
979 * next 24 bits: number of elements for arrays (0 for labels)
982 #define TY_UNKNOWN 0x00
983 #define TY_LABEL 0x08
984 #define TY_BYTE 0x10
985 #define TY_WORD 0x18
986 #define TY_DWORD 0x20
987 #define TY_FLOAT 0x28
988 #define TY_QWORD 0x30
989 #define TY_TBYTE 0x38
990 #define TY_OWORD 0x40
991 #define TY_YWORD 0x48
992 #define TY_COMMON 0xE0
993 #define TY_SEG 0xE8
994 #define TY_EXTERN 0xF0
995 #define TY_EQU 0xF8
997 #define TYM_TYPE(x) ((x) & 0xF8)
998 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1000 #define TYS_ELEMENTS(x) ((x) << 8)
1002 enum special_tokens {
1003 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1004 S_ABS = SPECIAL_ENUM_START,
1005 S_BYTE,
1006 S_DWORD,
1007 S_FAR,
1008 S_LONG,
1009 S_NEAR,
1010 S_NOSPLIT,
1011 S_OWORD,
1012 S_QWORD,
1013 S_REL,
1014 S_SHORT,
1015 S_STRICT,
1016 S_TO,
1017 S_TWORD,
1018 S_WORD,
1019 S_YWORD,
1020 S_ZWORD,
1021 SPECIAL_ENUM_LIMIT
1024 enum decorator_tokens {
1025 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
1026 BRC_1TO8 = DECORATOR_ENUM_START,
1027 BRC_1TO16,
1028 BRC_RN,
1029 BRC_RD,
1030 BRC_RU,
1031 BRC_RZ,
1032 BRC_SAE,
1033 BRC_Z,
1034 DECORATOR_ENUM_LIMIT
1038 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1039 * 3 2 1
1040 * 10987654321098765432109876543210
1042 * | word boundary
1043 * ............................1111 opmask
1044 * ...........................1.... zeroing / merging
1045 * ..........................1..... broadcast
1046 * .........................1...... static rounding
1047 * ........................1....... SAE
1048 * ......................11........ broadcast element size
1050 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1053 * Opmask register number
1054 * identical to EVEX.aaa
1056 * Bits: 0 - 3
1058 #define OPMASK_SHIFT (0)
1059 #define OPMASK_BITS (4)
1060 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1061 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1062 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1065 * zeroing / merging control available
1066 * matching to EVEX.z
1068 * Bits: 4
1070 #define Z_SHIFT (4)
1071 #define Z_BITS (1)
1072 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1073 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1076 * broadcast - Whether this operand can be broadcasted
1078 * Bits: 5
1080 #define BRDCAST_SHIFT (5)
1081 #define BRDCAST_BITS (1)
1082 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1083 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1086 * Whether this instruction can have a static rounding mode.
1087 * It goes with the last simd operand because the static rounding mode
1088 * decorator is located between the last simd operand and imm8 (if any).
1090 * Bits: 6
1092 #define STATICRND_SHIFT (6)
1093 #define STATICRND_BITS (1)
1094 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1095 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1098 * SAE(Suppress all exception) available
1100 * Bits: 7
1102 #define SAE_SHIFT (7)
1103 #define SAE_BITS (1)
1104 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1105 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1108 * Broadcasting element size.
1110 * Bits: 8 - 9
1112 #define BRSIZE_SHIFT (8)
1113 #define BRSIZE_BITS (2)
1114 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1115 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1117 #define BR_BITS32 GEN_BRSIZE(0)
1118 #define BR_BITS64 GEN_BRSIZE(1)
1120 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1121 #define Z Z_MASK
1122 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1123 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1124 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1125 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1128 * Global modes
1132 * This declaration passes the "pass" number to all other modules
1133 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1134 * where 0 = optimizing pass
1135 * 1 = pass 1
1136 * 2 = pass 2
1139 extern int pass0;
1140 extern int passn; /* Actual pass number */
1142 extern bool tasm_compatible_mode;
1143 extern int optimizing;
1144 extern int globalbits; /* 16, 32 or 64-bit mode */
1145 extern int globalrel; /* default to relative addressing? */
1146 extern int maxbits; /* max bits supported by output */
1149 * NASM version strings, defined in ver.c
1151 extern const char nasm_version[];
1152 extern const char nasm_date[];
1153 extern const char nasm_compile_options[];
1154 extern const char nasm_comment[];
1155 extern const char nasm_signature[];
1157 #endif