NASM 2.07rc2
[nasm/avx512.git] / nasm.h
blob98823be8b08a4c5bc661374badb7050121f51973
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
49 #define NO_SEG -1L /* null segment value */
50 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
52 #ifndef FILENAME_MAX
53 #define FILENAME_MAX 256
54 #endif
56 #ifndef PREFIX_MAX
57 #define PREFIX_MAX 10
58 #endif
60 #ifndef POSTFIX_MAX
61 #define POSTFIX_MAX 10
62 #endif
64 #define IDLEN_MAX 4096
67 * Name pollution problems: <time.h> on Digital UNIX pulls in some
68 * strange hardware header file which sees fit to define R_SP. We
69 * undefine it here so as not to break the enum below.
71 #ifdef R_SP
72 #undef R_SP
73 #endif
76 * We must declare the existence of this structure type up here,
77 * since we have to reference it before we define it...
79 struct ofmt;
82 * values for the `type' parameter to an output function.
84 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
85 * which will be a relative jump. For this we need to know the
86 * distance in bytes from the start of the relocated record until
87 * the end of the containing instruction. _This_ is what is stored
88 * in the size part of the parameter, in this case.
90 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
91 * and the contents of the "data" parameter is irrelevant.
93 * The "data" parameter for the output function points to a "int32_t",
94 * containing the address in question, unless the type is
95 * OUT_RAWDATA, in which case it points to an "uint8_t"
96 * array.
98 enum out_type {
99 OUT_RAWDATA, /* Plain bytes */
100 OUT_ADDRESS, /* An address (symbol value) */
101 OUT_RESERVE, /* Reserved bytes (RESB et al) */
102 OUT_REL2ADR, /* 2-byte relative address */
103 OUT_REL4ADR, /* 4-byte relative address */
104 OUT_REL8ADR, /* 8-byte relative address */
108 * -----------------------
109 * Other function typedefs
110 * -----------------------
114 * A label-lookup function should look like this.
116 typedef bool (*lfunc) (char *label, int32_t *segment, int64_t *offset);
119 * And a label-definition function like this. The boolean parameter
120 * `is_norm' states whether the label is a `normal' label (which
121 * should affect the local-label system), or something odder like
122 * an EQU or a segment-base symbol, which shouldn't.
124 typedef void (*ldfunc) (char *label, int32_t segment, int64_t offset,
125 char *special, bool is_norm, bool isextrn,
126 struct ofmt * ofmt, efunc error);
129 * List-file generators should look like this:
131 typedef struct {
133 * Called to initialize the listing file generator. Before this
134 * is called, the other routines will silently do nothing when
135 * called. The `char *' parameter is the file name to write the
136 * listing to.
138 void (*init) (char *, efunc);
141 * Called to clear stuff up and close the listing file.
143 void (*cleanup) (void);
146 * Called to output binary data. Parameters are: the offset;
147 * the data; the data type. Data types are similar to the
148 * output-format interface, only OUT_ADDRESS will _always_ be
149 * displayed as if it's relocatable, so ensure that any non-
150 * relocatable address has been converted to OUT_RAWDATA by
151 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
152 * dummy call used to give the listing generator an offset to
153 * work with when doing things like uplevel(LIST_TIMES) or
154 * uplevel(LIST_INCBIN).
156 void (*output) (int32_t, const void *, enum out_type, uint64_t);
159 * Called to send a text line to the listing generator. The
160 * `int' parameter is LIST_READ or LIST_MACRO depending on
161 * whether the line came directly from an input file or is the
162 * result of a multi-line macro expansion.
164 void (*line) (int, char *);
167 * Called to change one of the various levelled mechanisms in
168 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
169 * used to increase the nesting level of include files and
170 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
171 * two binary-output-suppression mechanisms for large-scale
172 * pseudo-instructions.
174 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
175 * it indicates the beginning of the expansion of a `nolist'
176 * macro, so anything under that level won't be expanded unless
177 * it includes another file.
179 void (*uplevel) (int);
182 * Reverse the effects of uplevel.
184 void (*downlevel) (int);
185 } ListGen;
188 * Token types returned by the scanner, in addition to ordinary
189 * ASCII character values, and zero for end-of-string.
191 enum token_type { /* token types, other than chars */
192 TOKEN_INVALID = -1, /* a placeholder value */
193 TOKEN_EOS = 0, /* end of string */
194 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
195 TOKEN_ID = 256, /* identifier */
196 TOKEN_NUM, /* numeric constant */
197 TOKEN_ERRNUM, /* malformed numeric constant */
198 TOKEN_STR, /* string constant */
199 TOKEN_ERRSTR, /* unterminated string constant */
200 TOKEN_FLOAT, /* floating-point constant */
201 TOKEN_REG, /* register name */
202 TOKEN_INSN, /* instruction name */
203 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
204 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
205 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
206 TOKEN_SHL, TOKEN_SHR, /* << and >> */
207 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
208 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
209 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
210 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
211 TOKEN_FLOATIZE, /* __floatX__ */
212 TOKEN_STRFUNC, /* __utf16__, __utf32__ */
215 enum floatize {
216 FLOAT_8,
217 FLOAT_16,
218 FLOAT_32,
219 FLOAT_64,
220 FLOAT_80M,
221 FLOAT_80E,
222 FLOAT_128L,
223 FLOAT_128H,
226 /* Must match the list in string_transform(), in strfunc.c */
227 enum strfunc {
228 STRFUNC_UTF16,
229 STRFUNC_UTF32,
232 size_t string_transform(char *, size_t, char **, enum strfunc);
235 * The expression evaluator must be passed a scanner function; a
236 * standard scanner is provided as part of nasmlib.c. The
237 * preprocessor will use a different one. Scanners, and the
238 * token-value structures they return, look like this.
240 * The return value from the scanner is always a copy of the
241 * `t_type' field in the structure.
243 struct tokenval {
244 enum token_type t_type;
245 char *t_charptr;
246 int64_t t_integer, t_inttwo;
248 typedef int (*scanner) (void *private_data, struct tokenval * tv);
250 struct location {
251 int64_t offset;
252 int32_t segment;
253 int known;
257 * Expression-evaluator datatype. Expressions, within the
258 * evaluator, are stored as an array of these beasts, terminated by
259 * a record with type==0. Mostly, it's a vector type: each type
260 * denotes some kind of a component, and the value denotes the
261 * multiple of that component present in the expression. The
262 * exception is the WRT type, whose `value' field denotes the
263 * segment to which the expression is relative. These segments will
264 * be segment-base types, i.e. either odd segment values or SEG_ABS
265 * types. So it is still valid to assume that anything with a
266 * `value' field of zero is insignificant.
268 typedef struct {
269 int32_t type; /* a register, or EXPR_xxx */
270 int64_t value; /* must be >= 32 bits */
271 } expr;
274 * Library routines to manipulate expression data types.
276 int is_reloc(expr *);
277 int is_simple(expr *);
278 int is_really_simple(expr *);
279 int is_unknown(expr *);
280 int is_just_unknown(expr *);
281 int64_t reloc_value(expr *);
282 int32_t reloc_seg(expr *);
283 int32_t reloc_wrt(expr *);
286 * The evaluator can also return hints about which of two registers
287 * used in an expression should be the base register. See also the
288 * `operand' structure.
290 struct eval_hints {
291 int64_t base;
292 int type;
296 * The actual expression evaluator function looks like this. When
297 * called, it expects the first token of its expression to already
298 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
299 * it will start by calling the scanner.
301 * If a forward reference happens during evaluation, the evaluator
302 * must set `*fwref' to true if `fwref' is non-NULL.
304 * `critical' is non-zero if the expression may not contain forward
305 * references. The evaluator will report its own error if this
306 * occurs; if `critical' is 1, the error will be "symbol not
307 * defined before use", whereas if `critical' is 2, the error will
308 * be "symbol undefined".
310 * If `critical' has bit 8 set (in addition to its main value: 0x101
311 * and 0x102 correspond to 1 and 2) then an extended expression
312 * syntax is recognised, in which relational operators such as =, <
313 * and >= are accepted, as well as low-precedence logical operators
314 * &&, ^^ and ||.
316 * If `hints' is non-NULL, it gets filled in with some hints as to
317 * the base register in complex effective addresses.
319 #define CRITICAL 0x100
320 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
321 struct tokenval * tv, int *fwref, int critical,
322 efunc error, struct eval_hints * hints);
325 * Special values for expr->type. These come after EXPR_REG_END
326 * as defined in regs.h.
329 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
330 #define EXPR_SIMPLE (EXPR_REG_END+2)
331 #define EXPR_WRT (EXPR_REG_END+3)
332 #define EXPR_SEGBASE (EXPR_REG_END+4)
335 * Linked list of strings...
337 typedef struct string_list {
338 struct string_list *next;
339 char str[1];
340 } StrList;
343 * preprocessors ought to look like this:
345 typedef struct preproc_ops {
347 * Called at the start of a pass; given a file name, the number
348 * of the pass, an error reporting function, an evaluator
349 * function, and a listing generator to talk to.
351 void (*reset) (char *, int, efunc, evalfunc, ListGen *, StrList **);
354 * Called to fetch a line of preprocessed source. The line
355 * returned has been malloc'ed, and so should be freed after
356 * use.
358 char *(*getline) (void);
361 * Called at the end of a pass.
363 void (*cleanup) (int);
364 } Preproc;
366 extern Preproc nasmpp;
369 * ----------------------------------------------------------------
370 * Some lexical properties of the NASM source language, included
371 * here because they are shared between the parser and preprocessor
372 * ----------------------------------------------------------------
376 * isidstart matches any character that may start an identifier, and isidchar
377 * matches any character that may appear at places other than the start of an
378 * identifier. E.g. a period may only appear at the start of an identifier
379 * (for local labels), whereas a number may appear anywhere *but* at the
380 * start.
383 #define isidstart(c) ( nasm_isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
384 || (c)=='@' )
385 #define isidchar(c) ( isidstart(c) || nasm_isdigit(c) || \
386 (c)=='$' || (c)=='#' || (c)=='~' )
388 /* Ditto for numeric constants. */
390 #define isnumstart(c) ( nasm_isdigit(c) || (c)=='$' )
391 #define isnumchar(c) ( nasm_isalnum(c) || (c)=='_' )
393 /* This returns the numeric value of a given 'digit'. */
395 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
398 * Data-type flags that get passed to listing-file routines.
400 enum {
401 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
402 LIST_INCBIN, LIST_TIMES
406 * -----------------------------------------------------------
407 * Format of the `insn' structure returned from `parser.c' and
408 * passed into `assemble.c'
409 * -----------------------------------------------------------
413 * Here we define the operand types. These are implemented as bit
414 * masks, since some are subsets of others; e.g. AX in a MOV
415 * instruction is a special operand type, whereas AX in other
416 * contexts is just another 16-bit register. (Also, consider CL in
417 * shift instructions, DX in OUT, etc.)
419 * The basic concept here is that
420 * (class & ~operand) == 0
422 * if and only if "operand" belongs to class type "class".
424 * The bits are assigned as follows:
426 * Bits 0-7, 23, 29: sizes
427 * 0: 8 bits (BYTE)
428 * 1: 16 bits (WORD)
429 * 2: 32 bits (DWORD)
430 * 3: 64 bits (QWORD)
431 * 4: 80 bits (TWORD)
432 * 5: FAR
433 * 6: NEAR
434 * 7: SHORT
435 * 23: 256 bits (YWORD)
436 * 29: 128 bits (OWORD)
438 * Bits 8-11 modifiers
439 * 8: TO
440 * 9: COLON
441 * 10: STRICT
442 * 11: (reserved)
444 * Bits 12-15: type of operand
445 * 12: REGISTER
446 * 13: IMMEDIATE
447 * 14: MEMORY (always has REGMEM attribute as well)
448 * 15: REGMEM (valid EA operand)
450 * Bits 16-19, 28: subclasses
451 * With REG_CDT:
452 * 16: REG_CREG (CRx)
453 * 17: REG_DREG (DRx)
454 * 18: REG_TREG (TRx)
456 * With REG_GPR:
457 * 16: REG_ACCUM (AL, AX, EAX, RAX)
458 * 17: REG_COUNT (CL, CX, ECX, RCX)
459 * 18: REG_DATA (DL, DX, EDX, RDX)
460 * 19: REG_HIGH (AH, CH, DH, BH)
461 * 28: REG_NOTACC (not REG_ACCUM)
463 * With REG_SREG:
464 * 16: REG_CS
465 * 17: REG_DESS (DS, ES, SS)
466 * 18: REG_FSGS
467 * 19: REG_SEG67
469 * With FPUREG:
470 * 16: FPU0
472 * With XMMREG:
473 * 16: XMM0
475 * With YMMREG:
476 * 16: YMM0
478 * With MEMORY:
479 * 16: MEM_OFFS (this is a simple offset)
480 * 17: IP_REL (IP-relative offset)
482 * With IMMEDIATE:
483 * 16: UNITY (1)
484 * 17: BYTENESS16 (-128..127)
485 * 18: BYTENESS32 (-128..127)
486 * 19: BYTENESS64 (-128..127)
488 * Bits 20-22, 24-27: register classes
489 * 20: REG_CDT (CRx, DRx, TRx)
490 * 21: RM_GPR (REG_GPR) (integer register)
491 * 22: REG_SREG
492 * 24: FPUREG
493 * 25: RM_MMX (MMXREG)
494 * 26: RM_XMM (XMMREG)
495 * 27: RM_YMM (YMMREG)
497 * Bit 31 is currently unallocated.
499 * 30: SAME_AS
500 * Special flag only used in instruction patterns; means this operand
501 * has to be identical to another operand. Currently only supported
502 * for registers.
505 typedef uint32_t opflags_t;
507 /* Size, and other attributes, of the operand */
508 #define BITS8 0x00000001U
509 #define BITS16 0x00000002U
510 #define BITS32 0x00000004U
511 #define BITS64 0x00000008U /* x64 and FPU only */
512 #define BITS80 0x00000010U /* FPU only */
513 #define BITS128 0x20000000U
514 #define BITS256 0x00800000U
515 #define FAR 0x00000020U /* grotty: this means 16:16 or */
516 /* 16:32, like in CALL/JMP */
517 #define NEAR 0x00000040U
518 #define SHORT 0x00000080U /* and this means what it says :) */
520 #define SIZE_MASK 0x208000FFU /* all the size attributes */
522 /* Modifiers */
523 #define MODIFIER_MASK 0x00000f00U
524 #define TO 0x00000100U /* reverse effect in FADD, FSUB &c */
525 #define COLON 0x00000200U /* operand is followed by a colon */
526 #define STRICT 0x00000400U /* do not optimize this operand */
528 /* Type of operand: memory reference, register, etc. */
529 #define OPTYPE_MASK 0x0000f000U
530 #define REGISTER 0x00001000U /* register number in 'basereg' */
531 #define IMMEDIATE 0x00002000U
532 #define MEMORY 0x0000c000U
533 #define REGMEM 0x00008000U /* for r/m, ie EA, operands */
535 /* Register classes */
536 #define REG_EA 0x00009000U /* 'normal' reg, qualifies as EA */
537 #define RM_GPR 0x00208000U /* integer operand */
538 #define REG_GPR 0x00209000U /* integer register */
539 #define REG8 0x00209001U /* 8-bit GPR */
540 #define REG16 0x00209002U /* 16-bit GPR */
541 #define REG32 0x00209004U /* 32-bit GPR */
542 #define REG64 0x00209008U /* 64-bit GPR */
543 #define FPUREG 0x01001000U /* floating point stack registers */
544 #define FPU0 0x01011000U /* FPU stack register zero */
545 #define RM_MMX 0x02008000U /* MMX operand */
546 #define MMXREG 0x02009000U /* MMX register */
547 #define RM_XMM 0x04008000U /* XMM (SSE) operand */
548 #define XMMREG 0x04009000U /* XMM (SSE) register */
549 #define XMM0 0x04019000U /* XMM register zero */
550 #define RM_YMM 0x08008000U /* YMM (AVX) operand */
551 #define YMMREG 0x08009000U /* YMM (AVX) register */
552 #define YMM0 0x08019000U /* YMM register zero */
553 #define REG_CDT 0x00101004U /* CRn, DRn and TRn */
554 #define REG_CREG 0x00111004U /* CRn */
555 #define REG_DREG 0x00121004U /* DRn */
556 #define REG_TREG 0x00141004U /* TRn */
557 #define REG_SREG 0x00401002U /* any segment register */
558 #define REG_CS 0x00411002U /* CS */
559 #define REG_DESS 0x00421002U /* DS, ES, SS */
560 #define REG_FSGS 0x00441002U /* FS, GS */
561 #define REG_SEG67 0x00481002U /* Unimplemented segment registers */
563 #define REG_RIP 0x00801008U /* RIP relative addressing */
564 #define REG_EIP 0x00801004U /* EIP relative addressing */
566 /* Special GPRs */
567 #define REG_SMASK 0x100f0000U /* a mask for the following */
568 #define REG_ACCUM 0x00219000U /* accumulator: AL, AX, EAX, RAX */
569 #define REG_AL 0x00219001U
570 #define REG_AX 0x00219002U
571 #define REG_EAX 0x00219004U
572 #define REG_RAX 0x00219008U
573 #define REG_COUNT 0x10229000U /* counter: CL, CX, ECX, RCX */
574 #define REG_CL 0x10229001U
575 #define REG_CX 0x10229002U
576 #define REG_ECX 0x10229004U
577 #define REG_RCX 0x10229008U
578 #define REG_DL 0x10249001U /* data: DL, DX, EDX, RDX */
579 #define REG_DX 0x10249002U
580 #define REG_EDX 0x10249004U
581 #define REG_RDX 0x10249008U
582 #define REG_HIGH 0x10289001U /* high regs: AH, CH, DH, BH */
583 #define REG_NOTACC 0x10000000U /* non-accumulator register */
584 #define REG8NA 0x10209001U /* 8-bit non-acc GPR */
585 #define REG16NA 0x10209002U /* 16-bit non-acc GPR */
586 #define REG32NA 0x10209004U /* 32-bit non-acc GPR */
587 #define REG64NA 0x10209008U /* 64-bit non-acc GPR */
589 /* special types of EAs */
590 #define MEM_OFFS 0x0001c000U /* simple [address] offset - absolute! */
591 #define IP_REL 0x0002c000U /* IP-relative offset */
593 /* memory which matches any type of r/m operand */
594 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM|RM_YMM)
596 /* special type of immediate operand */
597 #define UNITY 0x00012000U /* for shift/rotate instructions */
598 #define SBYTE16 0x00022000U /* for op r16,immediate instrs. */
599 #define SBYTE32 0x00042000U /* for op r32,immediate instrs. */
600 #define SBYTE64 0x00082000U /* for op r64,immediate instrs. */
601 #define BYTENESS 0x000e0000U /* for testing for byteness */
603 /* special flags */
604 #define SAME_AS 0x40000000U
606 /* Register names automatically generated from regs.dat */
607 #include "regs.h"
609 enum ccode { /* condition code names */
610 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
611 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
612 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
613 C_none = -1
617 * REX flags
619 #define REX_REAL 0x4f /* Actual REX prefix bits */
620 #define REX_B 0x01 /* ModRM r/m extension */
621 #define REX_X 0x02 /* SIB index extension */
622 #define REX_R 0x04 /* ModRM reg extension */
623 #define REX_W 0x08 /* 64-bit operand size */
624 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
625 #define REX_P 0x40 /* REX prefix present/required */
626 #define REX_H 0x80 /* High register present, REX forbidden */
627 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
628 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
629 #define REX_V 0x0400 /* Instruction uses VEX/XOP instead of REX */
630 #define REX_NH 0x0800 /* Instruction which doesn't use high regs */
633 * REX_V "classes" (prefixes which behave like VEX)
635 enum vex_class {
636 RV_VEX = 0, /* C4/C5 */
637 RV_XOP = 1 /* 8F */
641 * Note that because segment registers may be used as instruction
642 * prefixes, we must ensure the enumerations for prefixes and
643 * register names do not overlap.
645 enum prefixes { /* instruction prefixes */
646 P_none = 0,
647 PREFIX_ENUM_START = REG_ENUM_LIMIT,
648 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
649 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
650 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
651 P_WAIT,
652 PREFIX_ENUM_LIMIT
655 enum extop_type { /* extended operand types */
656 EOT_NOTHING,
657 EOT_DB_STRING, /* Byte string */
658 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
659 EOT_DB_NUMBER, /* Integer */
662 enum ea_flags { /* special EA flags */
663 EAF_BYTEOFFS = 1, /* force offset part to byte size */
664 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
665 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
666 EAF_REL = 8, /* IP-relative addressing */
667 EAF_ABS = 16, /* non-IP-relative addressing */
668 EAF_FSGS = 32 /* fs/gs segment override present */
671 enum eval_hint { /* values for `hinttype' */
672 EAH_NOHINT = 0, /* no hint at all - our discretion */
673 EAH_MAKEBASE = 1, /* try to make given reg the base */
674 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
677 typedef struct operand { /* operand to an instruction */
678 int32_t type; /* type of operand */
679 int disp_size; /* 0 means default; 16; 32; 64 */
680 enum reg_enum basereg, indexreg; /* address registers */
681 int scale; /* index scale */
682 int hintbase;
683 enum eval_hint hinttype; /* hint as to real base register */
684 int32_t segment; /* immediate segment, if needed */
685 int64_t offset; /* any immediate number */
686 int32_t wrt; /* segment base it's relative to */
687 int eaflags; /* special EA flags */
688 int opflags; /* see OPFLAG_* defines below */
689 } operand;
691 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
692 #define OPFLAG_EXTERN 2 /* operand is an external reference */
693 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference */
694 /* (always a forward reference also) */
696 typedef struct extop { /* extended operand */
697 struct extop *next; /* linked list */
698 char *stringval; /* if it's a string, then here it is */
699 size_t stringlen; /* ... and here's how long it is */
700 int64_t offset; /* ... it's given here ... */
701 int32_t segment; /* if it's a number/address, then... */
702 int32_t wrt; /* ... and here */
703 enum extop_type type; /* defined above */
704 } extop;
706 /* Prefix positions: each type of prefix goes in a specific slot.
707 This affects the final ordering of the assembled output, which
708 shouldn't matter to the processor, but if you have stylistic
709 preferences, you can change this. REX prefixes are handled
710 differently for the time being.
712 Note that LOCK and REP are in the same slot. This is
713 an x86 architectural constraint. */
714 enum prefix_pos {
715 PPS_WAIT, /* WAIT (technically not a prefix!) */
716 PPS_LREP, /* Lock or REP prefix */
717 PPS_SEG, /* Segment override prefix */
718 PPS_OSIZE, /* Operand size prefix */
719 PPS_ASIZE, /* Address size prefix */
720 MAXPREFIX /* Total number of prefix slots */
723 /* If you need to change this, also change it in insns.pl */
724 #define MAX_OPERANDS 5
726 typedef struct insn { /* an instruction itself */
727 char *label; /* the label defined, or NULL */
728 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
729 enum opcode opcode; /* the opcode - not just the string */
730 enum ccode condition; /* the condition code, if Jcc/SETcc */
731 int operands; /* how many operands? 0-3
732 * (more if db et al) */
733 int addr_size; /* address size */
734 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
735 extop *eops; /* extended operands */
736 int eops_float; /* true if DD and floating */
737 int32_t times; /* repeat count (TIMES prefix) */
738 bool forw_ref; /* is there a forward reference? */
739 int rex; /* Special REX Prefix */
740 int drexdst; /* Destination register for DREX/VEX suffix */
741 int vex_cm; /* Class and M field for VEX prefix */
742 int vex_wlp; /* W, P and L information for VEX prefix */
743 } insn;
745 enum geninfo { GI_SWITCH };
747 * ------------------------------------------------------------
748 * The data structure defining an output format driver, and the
749 * interfaces to the functions therein.
750 * ------------------------------------------------------------
753 struct ofmt {
755 * This is a short (one-liner) description of the type of
756 * output generated by the driver.
758 const char *fullname;
761 * This is a single keyword used to select the driver.
763 const char *shortname;
766 * Output format flags.
768 #define OFMT_TEXT 1 /* Text file format */
769 unsigned int flags;
772 * this is a pointer to the first element of the debug information
774 struct dfmt **debug_formats;
777 * and a pointer to the element that is being used
778 * note: this is set to the default at compile time and changed if the
779 * -F option is selected. If developing a set of new debug formats for
780 * an output format, be sure to set this to whatever default you want
783 struct dfmt *current_dfmt;
786 * This, if non-NULL, is a NULL-terminated list of `char *'s
787 * pointing to extra standard macros supplied by the object
788 * format (e.g. a sensible initial default value of __SECT__,
789 * and user-level equivalents for any format-specific
790 * directives).
792 macros_t *stdmac;
795 * This procedure is called at the start of an output session.
796 * It tells the output format what file it will be writing to,
797 * what routine to report errors through, and how to interface
798 * to the label manager and expression evaluator if necessary.
799 * It also gives it a chance to do other initialisation.
801 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
804 * This procedure is called to pass generic information to the
805 * object file. The first parameter gives the information type
806 * (currently only command line switches)
807 * and the second parameter gives the value. This function returns
808 * 1 if recognized, 0 if unrecognized
810 int (*setinfo) (enum geninfo type, char **string);
813 * This procedure is called by assemble() to write actual
814 * generated code or data to the object file. Typically it
815 * doesn't have to actually _write_ it, just store it for
816 * later.
818 * The `type' argument specifies the type of output data, and
819 * usually the size as well: its contents are described below.
821 void (*output) (int32_t segto, const void *data,
822 enum out_type type, uint64_t size,
823 int32_t segment, int32_t wrt);
826 * This procedure is called once for every symbol defined in
827 * the module being assembled. It gives the name and value of
828 * the symbol, in NASM's terms, and indicates whether it has
829 * been declared to be global. Note that the parameter "name",
830 * when passed, will point to a piece of static storage
831 * allocated inside the label manager - it's safe to keep using
832 * that pointer, because the label manager doesn't clean up
833 * until after the output driver has.
835 * Values of `is_global' are: 0 means the symbol is local; 1
836 * means the symbol is global; 2 means the symbol is common (in
837 * which case `offset' holds the _size_ of the variable).
838 * Anything else is available for the output driver to use
839 * internally.
841 * This routine explicitly _is_ allowed to call the label
842 * manager to define further symbols, if it wants to, even
843 * though it's been called _from_ the label manager. That much
844 * re-entrancy is guaranteed in the label manager. However, the
845 * label manager will in turn call this routine, so it should
846 * be prepared to be re-entrant itself.
848 * The `special' parameter contains special information passed
849 * through from the command that defined the label: it may have
850 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
851 * be obvious to the output format from the other parameters.
853 void (*symdef) (char *name, int32_t segment, int64_t offset,
854 int is_global, char *special);
857 * This procedure is called when the source code requests a
858 * segment change. It should return the corresponding segment
859 * _number_ for the name, or NO_SEG if the name is not a valid
860 * segment name.
862 * It may also be called with NULL, in which case it is to
863 * return the _default_ section number for starting assembly in.
865 * It is allowed to modify the string it is given a pointer to.
867 * It is also allowed to specify a default instruction size for
868 * the segment, by setting `*bits' to 16 or 32. Or, if it
869 * doesn't wish to define a default, it can leave `bits' alone.
871 int32_t (*section) (char *name, int pass, int *bits);
874 * This procedure is called to modify the segment base values
875 * returned from the SEG operator. It is given a segment base
876 * value (i.e. a segment value with the low bit set), and is
877 * required to produce in return a segment value which may be
878 * different. It can map segment bases to absolute numbers by
879 * means of returning SEG_ABS types.
881 * It should return NO_SEG if the segment base cannot be
882 * determined; the evaluator (which calls this routine) is
883 * responsible for throwing an error condition if that occurs
884 * in pass two or in a critical expression.
886 int32_t (*segbase) (int32_t segment);
889 * This procedure is called to allow the output driver to
890 * process its own specific directives. When called, it has the
891 * directive word in `directive' and the parameter string in
892 * `value'. It is called in both assembly passes, and `pass'
893 * will be either 1 or 2.
895 * This procedure should return zero if it does not _recognise_
896 * the directive, so that the main program can report an error.
897 * If it recognises the directive but then has its own errors,
898 * it should report them itself and then return non-zero. It
899 * should also return non-zero if it correctly processes the
900 * directive.
902 int (*directive) (char *directive, char *value, int pass);
905 * This procedure is called before anything else - even before
906 * the "init" routine - and is passed the name of the input
907 * file from which this output file is being generated. It
908 * should return its preferred name for the output file in
909 * `outname', if outname[0] is not '\0', and do nothing to
910 * `outname' otherwise. Since it is called before the driver is
911 * properly initialized, it has to be passed its error handler
912 * separately.
914 * This procedure may also take its own copy of the input file
915 * name for use in writing the output file: it is _guaranteed_
916 * that it will be called before the "init" routine.
918 * The parameter `outname' points to an area of storage
919 * guaranteed to be at least FILENAME_MAX in size.
921 void (*filename) (char *inname, char *outname, efunc error);
924 * This procedure is called after assembly finishes, to allow
925 * the output driver to clean itself up and free its memory.
926 * Typically, it will also be the point at which the object
927 * file actually gets _written_.
929 * One thing the cleanup routine should always do is to close
930 * the output file pointer.
932 void (*cleanup) (int debuginfo);
937 * ------------------------------------------------------------
938 * The data structure defining a debug format driver, and the
939 * interfaces to the functions therein.
940 * ------------------------------------------------------------
943 struct dfmt {
946 * This is a short (one-liner) description of the type of
947 * output generated by the driver.
949 const char *fullname;
952 * This is a single keyword used to select the driver.
954 const char *shortname;
957 * init - called initially to set up local pointer to object format,
958 * void pointer to implementation defined data, file pointer (which
959 * probably won't be used, but who knows?), and error function.
961 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
964 * linenum - called any time there is output with a change of
965 * line number or file.
967 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
970 * debug_deflabel - called whenever a label is defined. Parameters
971 * are the same as to 'symdef()' in the output format. This function
972 * would be called before the output format version.
975 void (*debug_deflabel) (char *name, int32_t segment, int64_t offset,
976 int is_global, char *special);
978 * debug_directive - called whenever a DEBUG directive other than 'LINE'
979 * is encountered. 'directive' contains the first parameter to the
980 * DEBUG directive, and params contains the rest. For example,
981 * 'DEBUG VAR _somevar:int' would translate to a call to this
982 * function with 'directive' equal to "VAR" and 'params' equal to
983 * "_somevar:int".
985 void (*debug_directive) (const char *directive, const char *params);
988 * typevalue - called whenever the assembler wishes to register a type
989 * for the last defined label. This routine MUST detect if a type was
990 * already registered and not re-register it.
992 void (*debug_typevalue) (int32_t type);
995 * debug_output - called whenever output is required
996 * 'type' is the type of info required, and this is format-specific
998 void (*debug_output) (int type, void *param);
1001 * cleanup - called after processing of file is complete
1003 void (*cleanup) (void);
1007 * The type definition macros
1008 * for debugging
1010 * low 3 bits: reserved
1011 * next 5 bits: type
1012 * next 24 bits: number of elements for arrays (0 for labels)
1015 #define TY_UNKNOWN 0x00
1016 #define TY_LABEL 0x08
1017 #define TY_BYTE 0x10
1018 #define TY_WORD 0x18
1019 #define TY_DWORD 0x20
1020 #define TY_FLOAT 0x28
1021 #define TY_QWORD 0x30
1022 #define TY_TBYTE 0x38
1023 #define TY_OWORD 0x40
1024 #define TY_YWORD 0x48
1025 #define TY_COMMON 0xE0
1026 #define TY_SEG 0xE8
1027 #define TY_EXTERN 0xF0
1028 #define TY_EQU 0xF8
1030 #define TYM_TYPE(x) ((x) & 0xF8)
1031 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1033 #define TYS_ELEMENTS(x) ((x) << 8)
1036 * -----
1037 * Special tokens
1038 * -----
1041 enum special_tokens {
1042 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1043 S_ABS = SPECIAL_ENUM_START,
1044 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
1045 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD, S_YWORD,
1046 SPECIAL_ENUM_LIMIT
1050 * -----
1051 * Global modes
1052 * -----
1056 * This declaration passes the "pass" number to all other modules
1057 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1058 * where 0 = optimizing pass
1059 * 1 = pass 1
1060 * 2 = pass 2
1063 extern int pass0;
1064 extern int passn; /* Actual pass number */
1066 extern bool tasm_compatible_mode;
1067 extern int optimizing;
1068 extern int globalbits; /* 16, 32 or 64-bit mode */
1069 extern int globalrel; /* default to relative addressing? */
1070 extern int maxbits; /* max bits supported by output */
1073 * NASM version strings, defined in ver.c
1075 extern const char nasm_version[];
1076 extern const char nasm_date[];
1077 extern const char nasm_compile_options[];
1078 extern const char nasm_comment[];
1079 extern const char nasm_signature[];
1081 #endif