NASM 0.96
[nasm/avx512.git] / float.c
blob1f66ca61fdc0a394ee5c15f4389e8cab73045250
1 /* float.c floating-point constant support for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version 13/ix/96 by Simon Tatham
9 */
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
15 #include "nasm.h"
17 #define TRUE 1
18 #define FALSE 0
20 #define MANT_WORDS 6 /* 64 bits + 32 for accuracy == 96 */
21 #define MANT_DIGITS 28 /* 29 digits don't fit in 96 bits */
24 * guaranteed top bit of from is set
25 * => we only have to worry about _one_ bit shift to the left
28 static int multiply(unsigned short *to, unsigned short *from) {
29 unsigned long temp[MANT_WORDS*2];
30 int i, j;
32 for (i=0; i<MANT_WORDS*2; i++)
33 temp[i] = 0;
35 for (i=0; i<MANT_WORDS; i++)
36 for (j=0; j<MANT_WORDS; j++) {
37 unsigned long n;
38 n = (unsigned long)to[i] * (unsigned long)from[j];
39 temp[i+j] += n >> 16;
40 temp[i+j+1] += n & 0xFFFF;
43 for (i=MANT_WORDS*2; --i ;) {
44 temp[i-1] += temp[i] >> 16;
45 temp[i] &= 0xFFFF;
47 if (temp[0] & 0x8000) {
48 for (i=0; i<MANT_WORDS; i++)
49 to[i] = temp[i] & 0xFFFF;
50 return 0;
51 } else {
52 for (i=0; i<MANT_WORDS; i++)
53 to[i] = (temp[i] << 1) + !!(temp[i+1] & 0x8000);
54 return -1;
58 static void flconvert(char *string, unsigned short *mant, long *exponent,
59 efunc error) {
60 char digits[MANT_DIGITS], *p, *q, *r;
61 unsigned short mult[MANT_WORDS], *m, bit;
62 long tenpwr, twopwr;
63 int extratwos, started, seendot;
65 p = digits;
66 tenpwr = 0;
67 started = seendot = FALSE;
68 while (*string && *string != 'E' && *string != 'e') {
69 if (*string == '.') {
70 if (!seendot)
71 seendot = TRUE;
72 else {
73 error (ERR_NONFATAL,
74 "too many periods in floating-point constant");
75 return;
77 } else if (*string >= '0' && *string <= '9') {
78 if (*string == '0' && !started) {
79 if (seendot)
80 tenpwr--;
81 } else {
82 started = TRUE;
83 if (p < digits+sizeof(digits))
84 *p++ = *string - '0';
85 if (!seendot)
86 tenpwr++;
88 } else {
89 error (ERR_NONFATAL,
90 "floating-point constant: `%c' is invalid character",
91 *string);
92 return;
94 string++;
96 if (*string) {
97 string++; /* eat the E */
98 tenpwr += atoi(string);
102 * At this point, the memory interval [digits,p) contains a
103 * series of decimal digits zzzzzzz such that our number X
104 * satisfies
106 * X = 0.zzzzzzz * 10^tenpwr
109 bit = 0x8000;
110 for (m=mant; m<mant+MANT_WORDS; m++)
111 *m = 0;
112 m = mant;
113 q = digits;
114 started = FALSE;
115 twopwr = 0;
116 while (m < mant+MANT_WORDS) {
117 unsigned short carry = 0;
118 while (p > q && !p[-1])
119 p--;
120 if (p <= q)
121 break;
122 for (r = p; r-- > q ;) {
123 int i;
125 i = 2 * *r + carry;
126 if (i >= 10)
127 carry = 1, i -= 10;
128 else
129 carry = 0;
130 *r = i;
132 if (carry)
133 *m |= bit, started = TRUE;
134 if (started) {
135 if (bit == 1)
136 bit = 0x8000, m++;
137 else
138 bit >>= 1;
139 } else
140 twopwr--;
142 twopwr += tenpwr;
145 * At this point the `mant' array contains the first six
146 * fractional places of a base-2^16 real number, which when
147 * multiplied by 2^twopwr and 5^tenpwr gives X. So now we
148 * really do multiply by 5^tenpwr.
151 if (tenpwr < 0) {
152 for (m=mult; m<mult+MANT_WORDS; m++)
153 *m = 0xCCCC;
154 extratwos = -2;
155 tenpwr = -tenpwr;
156 } else if (tenpwr > 0) {
157 mult[0] = 0xA000;
158 for (m=mult+1; m<mult+MANT_WORDS; m++)
159 *m = 0;
160 extratwos = 3;
161 } else
162 extratwos = 0;
163 while (tenpwr) {
164 if (tenpwr & 1)
165 twopwr += extratwos + multiply (mant, mult);
166 extratwos = extratwos * 2 + multiply (mult, mult);
167 tenpwr >>= 1;
171 * Conversion is done. The elements of `mant' contain the first
172 * fractional places of a base-2^16 real number in [0.5,1)
173 * which we can multiply by 2^twopwr to get X. Or, of course,
174 * it contains zero.
176 *exponent = twopwr;
180 * Shift a mantissa to the right by i (i < 16) bits.
182 static void shr(unsigned short *mant, int i) {
183 unsigned short n = 0, m;
184 int j;
186 for (j=0; j<MANT_WORDS; j++) {
187 m = (mant[j] << (16-i)) & 0xFFFF;
188 mant[j] = (mant[j] >> i) | n;
189 n = m;
194 * Round a mantissa off after i words.
196 static int round(unsigned short *mant, int i) {
197 if (mant[i] & 0x8000) {
198 do {
199 ++mant[--i];
200 mant[i] &= 0xFFFF;
201 } while (i > 0 && !mant[i]);
202 return !i && !mant[i];
204 return 0;
207 #define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) )
209 static int to_double(char *str, long sign, unsigned char *result,
210 efunc error) {
211 unsigned short mant[MANT_WORDS];
212 long exponent;
214 sign = (sign < 0 ? 0x8000L : 0L);
216 flconvert (str, mant, &exponent, error);
217 if (mant[0] & 0x8000) {
219 * Non-zero.
221 exponent--;
222 if (exponent >= -1022 && exponent <= 1024) {
224 * Normalised.
226 exponent += 1023;
227 shr(mant, 11);
228 round(mant, 4);
229 if (mant[0] & 0x20) /* did we scale up by one? */
230 shr(mant, 1), exponent++;
231 mant[0] &= 0xF; /* remove leading one */
232 put(result+6,(exponent << 4) | mant[0] | sign);
233 put(result+4,mant[1]);
234 put(result+2,mant[2]);
235 put(result+0,mant[3]);
236 } else if (exponent < -1022 && exponent >= -1074) {
238 * Denormal.
240 int shift = -(exponent+1011);
241 int sh = shift % 16, wds = shift / 16;
242 shr(mant, sh);
243 if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
244 shr(mant, 1);
245 if (sh==0)
246 mant[0] |= 0x8000;
247 exponent++;
249 put(result+6,(wds == 0 ? mant[0] : 0) | sign);
250 put(result+4,(wds <= 1 ? mant[1-wds] : 0));
251 put(result+2,(wds <= 2 ? mant[2-wds] : 0));
252 put(result+0,(wds <= 3 ? mant[3-wds] : 0));
253 } else {
254 if (exponent > 0) {
255 error(ERR_NONFATAL, "overflow in floating-point constant");
256 return 0;
257 } else
258 memset (result, 0, 8);
260 } else {
262 * Zero.
264 memset (result, 0, 8);
266 return 1; /* success */
269 static int to_float(char *str, long sign, unsigned char *result,
270 efunc error) {
271 unsigned short mant[MANT_WORDS];
272 long exponent;
274 sign = (sign < 0 ? 0x8000L : 0L);
276 flconvert (str, mant, &exponent, error);
277 if (mant[0] & 0x8000) {
279 * Non-zero.
281 exponent--;
282 if (exponent >= -126 && exponent <= 128) {
284 * Normalised.
286 exponent += 127;
287 shr(mant, 8);
288 round(mant, 2);
289 if (mant[0] & 0x100) /* did we scale up by one? */
290 shr(mant, 1), exponent++;
291 mant[0] &= 0x7F; /* remove leading one */
292 put(result+2,(exponent << 7) | mant[0] | sign);
293 put(result+0,mant[1]);
294 } else if (exponent < -126 && exponent >= -149) {
296 * Denormal.
298 int shift = -(exponent+118);
299 int sh = shift % 16, wds = shift / 16;
300 shr(mant, sh);
301 if (round(mant, 2-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
302 shr(mant, 1);
303 if (sh==0)
304 mant[0] |= 0x8000;
305 exponent++;
307 put(result+2,(wds == 0 ? mant[0] : 0) | sign);
308 put(result+0,(wds <= 1 ? mant[1-wds] : 0));
309 } else {
310 if (exponent > 0) {
311 error(ERR_NONFATAL, "overflow in floating-point constant");
312 return 0;
313 } else
314 memset (result, 0, 4);
316 } else {
317 memset (result, 0, 4);
319 return 1;
322 static int to_ldoub(char *str, long sign, unsigned char *result,
323 efunc error) {
324 unsigned short mant[MANT_WORDS];
325 long exponent;
327 sign = (sign < 0 ? 0x8000L : 0L);
329 flconvert (str, mant, &exponent, error);
330 if (mant[0] & 0x8000) {
332 * Non-zero.
334 exponent--;
335 if (exponent >= -16383 && exponent <= 16384) {
337 * Normalised.
339 exponent += 16383;
340 if (round(mant, 4)) /* did we scale up by one? */
341 shr(mant, 1), mant[0] |= 0x8000, exponent++;
342 put(result+8,exponent | sign);
343 put(result+6,mant[0]);
344 put(result+4,mant[1]);
345 put(result+2,mant[2]);
346 put(result+0,mant[3]);
347 } else if (exponent < -16383 && exponent >= -16446) {
349 * Denormal.
351 int shift = -(exponent+16383);
352 int sh = shift % 16, wds = shift / 16;
353 shr(mant, sh);
354 if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
355 shr(mant, 1);
356 if (sh==0)
357 mant[0] |= 0x8000;
358 exponent++;
360 put(result+8,sign);
361 put(result+6,(wds == 0 ? mant[0] : 0));
362 put(result+4,(wds <= 1 ? mant[1-wds] : 0));
363 put(result+2,(wds <= 2 ? mant[2-wds] : 0));
364 put(result+0,(wds <= 3 ? mant[3-wds] : 0));
365 } else {
366 if (exponent > 0) {
367 error(ERR_NONFATAL, "overflow in floating-point constant");
368 return 0;
369 } else
370 memset (result, 0, 10);
372 } else {
374 * Zero.
376 memset (result, 0, 10);
378 return 1;
381 int float_const (char *number, long sign, unsigned char *result, int bytes,
382 efunc error) {
383 if (bytes == 4)
384 return to_float (number, sign, result, error);
385 else if (bytes == 8)
386 return to_double (number, sign, result, error);
387 else if (bytes == 10)
388 return to_ldoub (number, sign, result, error);
389 else {
390 error(ERR_PANIC, "strange value %d passed to float_const", bytes);
391 return 0;