1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
14 #define NASM_MAJOR_VER 0
15 #define NASM_MINOR_VER 96
16 #define NASM_VER "0.96"
23 #define FALSE 0 /* comes in handy */
29 #define NO_SEG -1L /* null segment value */
30 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
33 #define FILENAME_MAX 256
37 * Name pollution problems: <time.h> on Digital UNIX pulls in some
38 * strange hardware header file which sees fit to define R_SP. We
39 * undefine it here so as not to break the enum below.
46 * We must declare the existence of this structure type up here,
47 * since we have to reference it before we define it...
52 * -------------------------
53 * Error reporting functions
54 * -------------------------
58 * An error reporting function should look like this.
60 typedef void (*efunc
) (int severity
, char *fmt
, ...);
63 * These are the error severity codes which get passed as the first
64 * argument to an efunc.
67 #define ERR_WARNING 0 /* warn only: no further action */
68 #define ERR_NONFATAL 1 /* terminate assembly after phase */
69 #define ERR_FATAL 2 /* instantly fatal: exit with error */
70 #define ERR_PANIC 3 /* internal error: panic instantly
71 * and dump core for reference */
72 #define ERR_MASK 0x0F /* mask off the above codes */
73 #define ERR_NOFILE 0x10 /* don't give source file name/line */
74 #define ERR_USAGE 0x20 /* print a usage message */
75 #define ERR_OFFBY1 0x40 /* report error as being on the line
76 * we're just _about_ to read, not
77 * the one we've just read */
78 #define ERR_PASS1 0x80 /* only print this error on pass one */
81 * These codes define specific types of suppressible warning.
83 #define ERR_WARN_MNP 0x0100 /* macro-num-parameters warning */
84 #define ERR_WARN_OL 0x0200 /* orphan label (no colon, and
86 #define ERR_WARN_NOV 0x0300 /* numeric overflow */
87 #define ERR_WARN_MASK 0xFF00 /* the mask for this feature */
88 #define ERR_WARN_SHR 8 /* how far to shift right */
89 #define ERR_WARN_MAX 3 /* the highest numbered one */
92 * -----------------------
93 * Other function typedefs
94 * -----------------------
98 * A label-lookup function should look like this.
100 typedef int (*lfunc
) (char *label
, long *segment
, long *offset
);
103 * And a label-definition function like this. The boolean parameter
104 * `is_norm' states whether the label is a `normal' label (which
105 * should affect the local-label system), or something odder like
106 * an EQU or a segment-base symbol, which shouldn't.
108 typedef void (*ldfunc
) (char *label
, long segment
, long offset
, char *special
,
109 int is_norm
, int isextrn
, struct ofmt
*ofmt
,
113 * List-file generators should look like this:
117 * Called to initialise the listing file generator. Before this
118 * is called, the other routines will silently do nothing when
119 * called. The `char *' parameter is the file name to write the
122 void (*init
) (char *, efunc
);
125 * Called to clear stuff up and close the listing file.
127 void (*cleanup
) (void);
130 * Called to output binary data. Parameters are: the offset;
131 * the data; the data type. Data types are similar to the
132 * output-format interface, only OUT_ADDRESS will _always_ be
133 * displayed as if it's relocatable, so ensure that any non-
134 * relocatable address has been converted to OUT_RAWDATA by
135 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
136 * dummy call used to give the listing generator an offset to
137 * work with when doing things like uplevel(LIST_TIMES) or
138 * uplevel(LIST_INCBIN).
140 void (*output
) (long, void *, unsigned long);
143 * Called to send a text line to the listing generator. The
144 * `int' parameter is LIST_READ or LIST_MACRO depending on
145 * whether the line came directly from an input file or is the
146 * result of a multi-line macro expansion.
148 void (*line
) (int, char *);
151 * Called to change one of the various levelled mechanisms in
152 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
153 * used to increase the nesting level of include files and
154 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
155 * two binary-output-suppression mechanisms for large-scale
156 * pseudo-instructions.
158 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
159 * it indicates the beginning of the expansion of a `nolist'
160 * macro, so anything under that level won't be expanded unless
161 * it includes another file.
163 void (*uplevel
) (int);
166 * Reverse the effects of uplevel.
168 void (*downlevel
) (int);
172 * The expression evaluator must be passed a scanner function; a
173 * standard scanner is provided as part of nasmlib.c. The
174 * preprocessor will use a different one. Scanners, and the
175 * token-value structures they return, look like this.
177 * The return value from the scanner is always a copy of the
178 * `t_type' field in the structure.
182 long t_integer
, t_inttwo
;
185 typedef int (*scanner
) (void *private_data
, struct tokenval
*tv
);
188 * Token types returned by the scanner, in addition to ordinary
189 * ASCII character values, and zero for end-of-string.
191 enum { /* token types, other than chars */
192 TOKEN_INVALID
= -1, /* a placeholder value */
193 TOKEN_EOS
= 0, /* end of string */
194 TOKEN_EQ
= '=', TOKEN_GT
= '>', TOKEN_LT
= '<', /* aliases */
195 TOKEN_ID
= 256, TOKEN_NUM
, TOKEN_REG
, TOKEN_INSN
, /* major token types */
196 TOKEN_ERRNUM
, /* numeric constant with error in */
197 TOKEN_HERE
, TOKEN_BASE
, /* $ and $$ */
198 TOKEN_SPECIAL
, /* BYTE, WORD, DWORD, FAR, NEAR, etc */
199 TOKEN_PREFIX
, /* A32, O16, LOCK, REPNZ, TIMES, etc */
200 TOKEN_SHL
, TOKEN_SHR
, /* << and >> */
201 TOKEN_SDIV
, TOKEN_SMOD
, /* // and %% */
202 TOKEN_GE
, TOKEN_LE
, TOKEN_NE
, /* >=, <= and <> (!= is same as <>) */
203 TOKEN_DBL_AND
, TOKEN_DBL_OR
, TOKEN_DBL_XOR
, /* &&, || and ^^ */
204 TOKEN_SEG
, TOKEN_WRT
, /* SEG and WRT */
205 TOKEN_FLOAT
/* floating-point constant */
209 * Expression-evaluator datatype. Expressions, within the
210 * evaluator, are stored as an array of these beasts, terminated by
211 * a record with type==0. Mostly, it's a vector type: each type
212 * denotes some kind of a component, and the value denotes the
213 * multiple of that component present in the expression. The
214 * exception is the WRT type, whose `value' field denotes the
215 * segment to which the expression is relative. These segments will
216 * be segment-base types, i.e. either odd segment values or SEG_ABS
217 * types. So it is still valid to assume that anything with a
218 * `value' field of zero is insignificant.
221 long type
; /* a register, or EXPR_xxx */
222 long value
; /* must be >= 32 bits */
226 * The evaluator can also return hints about which of two registers
227 * used in an expression should be the base register. See also the
228 * `operand' structure.
236 * The actual expression evaluator function looks like this. When
237 * called, it expects the first token of its expression to already
238 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
239 * it will start by calling the scanner.
241 * If a forward reference happens during evaluation, the evaluator
242 * must set `*fwref' to TRUE if `fwref' is non-NULL.
244 * `critical' is non-zero if the expression may not contain forward
245 * references. The evaluator will report its own error if this
246 * occurs; if `critical' is 1, the error will be "symbol not
247 * defined before use", whereas if `critical' is 2, the error will
248 * be "symbol undefined".
250 * If `critical' has bit 4 set (in addition to its main value: 0x11
251 * and 0x12 correspond to 1 and 2) then an extended expression
252 * syntax is recognised, in which relational operators such as =, <
253 * and >= are accepted, as well as low-precedence logical operators
256 * If `hints' is non-NULL, it gets filled in with some hints as to
257 * the base register in complex effective addresses.
259 typedef expr
*(*evalfunc
) (scanner sc
, void *scprivate
, struct tokenval
*tv
,
260 int *fwref
, int critical
, efunc error
,
261 struct eval_hints
*hints
);
264 * There's also an auxiliary routine through which the evaluator
265 * needs to hear about the value of $ and the label (if any)
266 * defined on the current line.
268 typedef void (*evalinfofunc
) (char *labelname
, long segment
, long offset
);
271 * Special values for expr->type. ASSUMPTION MADE HERE: the number
272 * of distinct register names (i.e. possible "type" fields for an
273 * expr structure) does not exceed 124 (EXPR_REG_START through
276 #define EXPR_REG_START 1
277 #define EXPR_REG_END 124
278 #define EXPR_UNKNOWN 125L /* for forward references */
279 #define EXPR_SIMPLE 126L
280 #define EXPR_WRT 127L
281 #define EXPR_SEGBASE 128L
284 * Preprocessors ought to look like this:
288 * Called at the start of a pass; given a file name, the number
289 * of the pass, an error reporting function, an evaluator
290 * function, and a listing generator to talk to.
292 void (*reset
) (char *, int, efunc
, evalfunc
, ListGen
*);
295 * Called to fetch a line of preprocessed source. The line
296 * returned has been malloc'ed, and so should be freed after
299 char *(*getline
) (void);
302 * Called at the end of a pass.
304 void (*cleanup
) (void);
308 * ----------------------------------------------------------------
309 * Some lexical properties of the NASM source language, included
310 * here because they are shared between the parser and preprocessor
311 * ----------------------------------------------------------------
314 /* isidstart matches any character that may start an identifier, and isidchar
315 * matches any character that may appear at places other than the start of an
316 * identifier. E.g. a period may only appear at the start of an identifier
317 * (for local labels), whereas a number may appear anywhere *but* at the
320 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
322 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
325 /* Ditto for numeric constants. */
327 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
328 #define isnumchar(c) ( isalnum(c) )
330 /* This returns the numeric value of a given 'digit'. */
332 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
335 * Data-type flags that get passed to listing-file routines.
338 LIST_READ
, LIST_MACRO
, LIST_MACRO_NOLIST
, LIST_INCLUDE
,
339 LIST_INCBIN
, LIST_TIMES
343 * -----------------------------------------------------------
344 * Format of the `insn' structure returned from `parser.c' and
345 * passed into `assemble.c'
346 * -----------------------------------------------------------
350 * Here we define the operand types. These are implemented as bit
351 * masks, since some are subsets of others; e.g. AX in a MOV
352 * instruction is a special operand type, whereas AX in other
353 * contexts is just another 16-bit register. (Also, consider CL in
354 * shift instructions, DX in OUT, etc.)
357 /* size, and other attributes, of the operand */
358 #define BITS8 0x00000001L
359 #define BITS16 0x00000002L
360 #define BITS32 0x00000004L
361 #define BITS64 0x00000008L /* FPU only */
362 #define BITS80 0x00000010L /* FPU only */
363 #define FAR 0x00000020L /* grotty: this means 16:16 or */
364 /* 16:32, like in CALL/JMP */
365 #define NEAR 0x00000040L
366 #define SHORT 0x00000080L /* and this means what it says :) */
368 #define SIZE_MASK 0x000000FFL /* all the size attributes */
369 #define NON_SIZE (~SIZE_MASK)
371 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
372 #define COLON 0x00000200L /* operand is followed by a colon */
374 /* type of operand: memory reference, register, etc. */
375 #define MEMORY 0x00204000L
376 #define REGISTER 0x00001000L /* register number in 'basereg' */
377 #define IMMEDIATE 0x00002000L
379 #define REGMEM 0x00200000L /* for r/m, ie EA, operands */
380 #define REGNORM 0x00201000L /* 'normal' reg, qualifies as EA */
381 #define REG8 0x00201001L
382 #define REG16 0x00201002L
383 #define REG32 0x00201004L
384 #define MMXREG 0x00201008L /* MMX registers */
385 #define FPUREG 0x01000000L /* floating point stack registers */
386 #define FPU0 0x01000800L /* FPU stack register zero */
388 /* special register operands: these may be treated differently */
389 #define REG_SMASK 0x00070000L /* a mask for the following */
390 #define REG_ACCUM 0x00211000L /* accumulator: AL, AX or EAX */
391 #define REG_AL 0x00211001L /* REG_ACCUM | BITSxx */
392 #define REG_AX 0x00211002L /* ditto */
393 #define REG_EAX 0x00211004L /* and again */
394 #define REG_COUNT 0x00221000L /* counter: CL, CX or ECX */
395 #define REG_CL 0x00221001L /* REG_COUNT | BITSxx */
396 #define REG_CX 0x00221002L /* ditto */
397 #define REG_ECX 0x00221004L /* another one */
398 #define REG_DX 0x00241002L
399 #define REG_SREG 0x00081002L /* any segment register */
400 #define REG_CS 0x01081002L /* CS */
401 #define REG_DESS 0x02081002L /* DS, ES, SS (non-CS 86 registers) */
402 #define REG_FSGS 0x04081002L /* FS, GS (386 extended registers) */
403 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
404 #define REG_CREG 0x08101004L /* CRn */
405 #define REG_CR4 0x08101404L /* CR4 (Pentium only) */
406 #define REG_DREG 0x10101004L /* DRn */
407 #define REG_TREG 0x20101004L /* TRn */
409 /* special type of EA */
410 #define MEM_OFFS 0x00604000L /* simple [address] offset */
412 /* special type of immediate operand */
413 #define ONENESS 0x00800000L /* so UNITY == IMMEDIATE | ONENESS */
414 #define UNITY 0x00802000L /* for shift/rotate instructions */
417 * Next, the codes returned from the parser, for registers and
421 enum { /* register names */
422 R_AH
= EXPR_REG_START
, R_AL
, R_AX
, R_BH
, R_BL
, R_BP
, R_BX
, R_CH
,
423 R_CL
, R_CR0
, R_CR2
, R_CR3
, R_CR4
, R_CS
, R_CX
, R_DH
, R_DI
, R_DL
,
424 R_DR0
, R_DR1
, R_DR2
, R_DR3
, R_DR6
, R_DR7
, R_DS
, R_DX
, R_EAX
,
425 R_EBP
, R_EBX
, R_ECX
, R_EDI
, R_EDX
, R_ES
, R_ESI
, R_ESP
, R_FS
,
426 R_GS
, R_MM0
, R_MM1
, R_MM2
, R_MM3
, R_MM4
, R_MM5
, R_MM6
, R_MM7
,
427 R_SI
, R_SP
, R_SS
, R_ST0
, R_ST1
, R_ST2
, R_ST3
, R_ST4
, R_ST5
,
428 R_ST6
, R_ST7
, R_TR3
, R_TR4
, R_TR5
, R_TR6
, R_TR7
, REG_ENUM_LIMIT
431 enum { /* instruction names */
432 I_AAA
, I_AAD
, I_AAM
, I_AAS
, I_ADC
, I_ADD
, I_AND
, I_ARPL
,
433 I_BOUND
, I_BSF
, I_BSR
, I_BSWAP
, I_BT
, I_BTC
, I_BTR
, I_BTS
,
434 I_CALL
, I_CBW
, I_CDQ
, I_CLC
, I_CLD
, I_CLI
, I_CLTS
, I_CMC
, I_CMP
,
435 I_CMPSB
, I_CMPSD
, I_CMPSW
, I_CMPXCHG
, I_CMPXCHG486
, I_CMPXCHG8B
,
436 I_CPUID
, I_CWD
, I_CWDE
, I_DAA
, I_DAS
, I_DB
, I_DD
, I_DEC
, I_DIV
,
437 I_DQ
, I_DT
, I_DW
, I_EMMS
, I_ENTER
, I_EQU
, I_F2XM1
, I_FABS
,
438 I_FADD
, I_FADDP
, I_FBLD
, I_FBSTP
, I_FCHS
, I_FCLEX
, I_FCMOVB
,
439 I_FCMOVBE
, I_FCMOVE
, I_FCMOVNB
, I_FCMOVNBE
, I_FCMOVNE
,
440 I_FCMOVNU
, I_FCMOVU
, I_FCOM
, I_FCOMI
, I_FCOMIP
, I_FCOMP
,
441 I_FCOMPP
, I_FCOS
, I_FDECSTP
, I_FDISI
, I_FDIV
, I_FDIVP
, I_FDIVR
,
442 I_FDIVRP
, I_FENI
, I_FFREE
, I_FIADD
, I_FICOM
, I_FICOMP
, I_FIDIV
,
443 I_FIDIVR
, I_FILD
, I_FIMUL
, I_FINCSTP
, I_FINIT
, I_FIST
, I_FISTP
,
444 I_FISUB
, I_FISUBR
, I_FLD
, I_FLD1
, I_FLDCW
, I_FLDENV
, I_FLDL2E
,
445 I_FLDL2T
, I_FLDLG2
, I_FLDLN2
, I_FLDPI
, I_FLDZ
, I_FMUL
, I_FMULP
,
446 I_FNCLEX
, I_FNDISI
, I_FNENI
, I_FNINIT
, I_FNOP
, I_FNSAVE
,
447 I_FNSTCW
, I_FNSTENV
, I_FNSTSW
, I_FPATAN
, I_FPREM
, I_FPREM1
,
448 I_FPTAN
, I_FRNDINT
, I_FRSTOR
, I_FSAVE
, I_FSCALE
, I_FSETPM
,
449 I_FSIN
, I_FSINCOS
, I_FSQRT
, I_FST
, I_FSTCW
, I_FSTENV
, I_FSTP
,
450 I_FSTSW
, I_FSUB
, I_FSUBP
, I_FSUBR
, I_FSUBRP
, I_FTST
, I_FUCOM
,
451 I_FUCOMI
, I_FUCOMIP
, I_FUCOMP
, I_FUCOMPP
, I_FXAM
, I_FXCH
,
452 I_FXTRACT
, I_FYL2X
, I_FYL2XP1
, I_HLT
, I_IBTS
, I_ICEBP
, I_IDIV
,
453 I_IMUL
, I_IN
, I_INC
, I_INCBIN
, I_INSB
, I_INSD
, I_INSW
, I_INT
,
454 I_INT1
, I_INT01
, I_INT3
, I_INTO
, I_INVD
, I_INVLPG
, I_IRET
,
455 I_IRETD
, I_IRETW
, I_JCXZ
, I_JECXZ
, I_JMP
, I_LAHF
, I_LAR
, I_LDS
,
456 I_LEA
, I_LEAVE
, I_LES
, I_LFS
, I_LGDT
, I_LGS
, I_LIDT
, I_LLDT
,
457 I_LMSW
, I_LOADALL
, I_LOADALL286
, I_LODSB
, I_LODSD
, I_LODSW
,
458 I_LOOP
, I_LOOPE
, I_LOOPNE
, I_LOOPNZ
, I_LOOPZ
, I_LSL
, I_LSS
,
459 I_LTR
, I_MOV
, I_MOVD
, I_MOVQ
, I_MOVSB
, I_MOVSD
, I_MOVSW
,
460 I_MOVSX
, I_MOVZX
, I_MUL
, I_NEG
, I_NOP
, I_NOT
, I_OR
, I_OUT
,
461 I_OUTSB
, I_OUTSD
, I_OUTSW
, I_PACKSSDW
, I_PACKSSWB
, I_PACKUSWB
,
462 I_PADDB
, I_PADDD
, I_PADDSB
, I_PADDSIW
, I_PADDSW
, I_PADDUSB
,
463 I_PADDUSW
, I_PADDW
, I_PAND
, I_PANDN
, I_PAVEB
, I_PCMPEQB
,
464 I_PCMPEQD
, I_PCMPEQW
, I_PCMPGTB
, I_PCMPGTD
, I_PCMPGTW
,
465 I_PDISTIB
, I_PMACHRIW
, I_PMADDWD
, I_PMAGW
, I_PMULHRW
,
466 I_PMULHRIW
, I_PMULHW
, I_PMULLW
, I_PMVGEZB
, I_PMVLZB
, I_PMVNZB
,
467 I_PMVZB
, I_POP
, I_POPA
, I_POPAD
, I_POPAW
, I_POPF
, I_POPFD
,
468 I_POPFW
, I_POR
, I_PSLLD
, I_PSLLQ
, I_PSLLW
, I_PSRAD
, I_PSRAW
,
469 I_PSRLD
, I_PSRLQ
, I_PSRLW
, I_PSUBB
, I_PSUBD
, I_PSUBSB
,
470 I_PSUBSIW
, I_PSUBSW
, I_PSUBUSB
, I_PSUBUSW
, I_PSUBW
, I_PUNPCKHBW
,
471 I_PUNPCKHDQ
, I_PUNPCKHWD
, I_PUNPCKLBW
, I_PUNPCKLDQ
, I_PUNPCKLWD
,
472 I_PUSH
, I_PUSHA
, I_PUSHAD
, I_PUSHAW
, I_PUSHF
, I_PUSHFD
,
473 I_PUSHFW
, I_PXOR
, I_RCL
, I_RCR
, I_RDMSR
, I_RDPMC
, I_RDTSC
,
474 I_RESB
, I_RESD
, I_RESQ
, I_REST
, I_RESW
, I_RET
, I_RETF
, I_RETN
,
475 I_ROL
, I_ROR
, I_RSM
, I_SAHF
, I_SAL
, I_SALC
, I_SAR
, I_SBB
,
476 I_SCASB
, I_SCASD
, I_SCASW
, I_SGDT
, I_SHL
, I_SHLD
, I_SHR
, I_SHRD
,
477 I_SIDT
, I_SLDT
, I_SMI
, I_SMSW
, I_STC
, I_STD
, I_STI
, I_STOSB
,
478 I_STOSD
, I_STOSW
, I_STR
, I_SUB
, I_TEST
, I_UMOV
, I_VERR
, I_VERW
,
479 I_WAIT
, I_WBINVD
, I_WRMSR
, I_XADD
, I_XBTS
, I_XCHG
, I_XLATB
,
480 I_XOR
, I_CMOVcc
, I_Jcc
, I_SETcc
483 enum { /* condition code names */
484 C_A
, C_AE
, C_B
, C_BE
, C_C
, C_E
, C_G
, C_GE
, C_L
, C_LE
, C_NA
, C_NAE
,
485 C_NB
, C_NBE
, C_NC
, C_NE
, C_NG
, C_NGE
, C_NL
, C_NLE
, C_NO
, C_NP
,
486 C_NS
, C_NZ
, C_O
, C_P
, C_PE
, C_PO
, C_S
, C_Z
490 * Note that because segment registers may be used as instruction
491 * prefixes, we must ensure the enumerations for prefixes and
492 * register names do not overlap.
494 enum { /* instruction prefixes */
495 PREFIX_ENUM_START
= REG_ENUM_LIMIT
,
496 P_A16
= PREFIX_ENUM_START
, P_A32
, P_LOCK
, P_O16
, P_O32
, P_REP
, P_REPE
,
497 P_REPNE
, P_REPNZ
, P_REPZ
, P_TIMES
500 enum { /* extended operand types */
501 EOT_NOTHING
, EOT_DB_STRING
, EOT_DB_NUMBER
504 enum { /* special EA flags */
505 EAF_BYTEOFFS
= 1, /* force offset part to byte size */
506 EAF_WORDOFFS
= 2, /* force offset part to [d]word size */
507 EAF_TIMESTWO
= 4 /* really do EAX*2 not EAX+EAX */
510 enum { /* values for `hinttype' */
511 EAH_NOHINT
= 0, /* no hint at all - our discretion */
512 EAH_MAKEBASE
= 1, /* try to make given reg the base */
513 EAH_NOTBASE
= 2 /* try _not_ to make reg the base */
516 typedef struct { /* operand to an instruction */
517 long type
; /* type of operand */
518 int addr_size
; /* 0 means default; 16; 32 */
519 int basereg
, indexreg
, scale
; /* registers and scale involved */
520 int hintbase
, hinttype
; /* hint as to real base register */
521 long segment
; /* immediate segment, if needed */
522 long offset
; /* any immediate number */
523 long wrt
; /* segment base it's relative to */
524 int eaflags
; /* special EA flags */
527 typedef struct extop
{ /* extended operand */
528 struct extop
*next
; /* linked list */
529 long type
; /* defined above */
530 char *stringval
; /* if it's a string, then here it is */
531 int stringlen
; /* ... and here's how long it is */
532 long segment
; /* if it's a number/address, then... */
533 long offset
; /* ... it's given here ... */
534 long wrt
; /* ... and here */
539 typedef struct { /* an instruction itself */
540 char *label
; /* the label defined, or NULL */
541 int prefixes
[MAXPREFIX
]; /* instruction prefixes, if any */
542 int nprefix
; /* number of entries in above */
543 int opcode
; /* the opcode - not just the string */
544 int condition
; /* the condition code, if Jcc/SETcc */
545 int operands
; /* how many operands? 0-3 */
546 operand oprs
[3]; /* the operands, defined as above */
547 extop
*eops
; /* extended operands */
548 long times
; /* repeat count (TIMES prefix) */
549 int forw_ref
; /* is there a forward reference? */
553 * ------------------------------------------------------------
554 * The data structure defining an output format driver, and the
555 * interfaces to the functions therein.
556 * ------------------------------------------------------------
561 * This is a short (one-liner) description of the type of
562 * output generated by the driver.
567 * This is a single keyword used to select the driver.
572 * This, if non-NULL, is a NULL-terminated list of `char *'s
573 * pointing to extra standard macros supplied by the object
574 * format (e.g. a sensible initial default value of __SECT__,
575 * and user-level equivalents for any format-specific
581 * This procedure is called at the start of an output session.
582 * It tells the output format what file it will be writing to,
583 * what routine to report errors through, and how to interface
584 * to the label manager and expression evaluator if necessary.
585 * It also gives it a chance to do other initialisation.
587 void (*init
) (FILE *fp
, efunc error
, ldfunc ldef
, evalfunc eval
);
590 * This procedure is called by assemble() to write actual
591 * generated code or data to the object file. Typically it
592 * doesn't have to actually _write_ it, just store it for
595 * The `type' argument specifies the type of output data, and
596 * usually the size as well: its contents are described below.
598 void (*output
) (long segto
, void *data
, unsigned long type
,
599 long segment
, long wrt
);
602 * This procedure is called once for every symbol defined in
603 * the module being assembled. It gives the name and value of
604 * the symbol, in NASM's terms, and indicates whether it has
605 * been declared to be global. Note that the parameter "name",
606 * when passed, will point to a piece of static storage
607 * allocated inside the label manager - it's safe to keep using
608 * that pointer, because the label manager doesn't clean up
609 * until after the output driver has.
611 * Values of `is_global' are: 0 means the symbol is local; 1
612 * means the symbol is global; 2 means the symbol is common (in
613 * which case `offset' holds the _size_ of the variable).
614 * Anything else is available for the output driver to use
617 * This routine explicitly _is_ allowed to call the label
618 * manager to define further symbols, if it wants to, even
619 * though it's been called _from_ the label manager. That much
620 * re-entrancy is guaranteed in the label manager. However, the
621 * label manager will in turn call this routine, so it should
622 * be prepared to be re-entrant itself.
624 * The `special' parameter contains special information passed
625 * through from the command that defined the label: it may have
626 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
627 * be obvious to the output format from the other parameters.
629 void (*symdef
) (char *name
, long segment
, long offset
, int is_global
,
633 * This procedure is called when the source code requests a
634 * segment change. It should return the corresponding segment
635 * _number_ for the name, or NO_SEG if the name is not a valid
638 * It may also be called with NULL, in which case it is to
639 * return the _default_ section number for starting assembly in.
641 * It is allowed to modify the string it is given a pointer to.
643 * It is also allowed to specify a default instruction size for
644 * the segment, by setting `*bits' to 16 or 32. Or, if it
645 * doesn't wish to define a default, it can leave `bits' alone.
647 long (*section
) (char *name
, int pass
, int *bits
);
650 * This procedure is called to modify the segment base values
651 * returned from the SEG operator. It is given a segment base
652 * value (i.e. a segment value with the low bit set), and is
653 * required to produce in return a segment value which may be
654 * different. It can map segment bases to absolute numbers by
655 * means of returning SEG_ABS types.
657 * It should return NO_SEG if the segment base cannot be
658 * determined; the evaluator (which calls this routine) is
659 * responsible for throwing an error condition if that occurs
660 * in pass two or in a critical expression.
662 long (*segbase
) (long segment
);
665 * This procedure is called to allow the output driver to
666 * process its own specific directives. When called, it has the
667 * directive word in `directive' and the parameter string in
668 * `value'. It is called in both assembly passes, and `pass'
669 * will be either 1 or 2.
671 * This procedure should return zero if it does not _recognise_
672 * the directive, so that the main program can report an error.
673 * If it recognises the directive but then has its own errors,
674 * it should report them itself and then return non-zero. It
675 * should also return non-zero if it correctly processes the
678 int (*directive
) (char *directive
, char *value
, int pass
);
681 * This procedure is called before anything else - even before
682 * the "init" routine - and is passed the name of the input
683 * file from which this output file is being generated. It
684 * should return its preferred name for the output file in
685 * `outname', if outname[0] is not '\0', and do nothing to
686 * `outname' otherwise. Since it is called before the driver is
687 * properly initialised, it has to be passed its error handler
690 * This procedure may also take its own copy of the input file
691 * name for use in writing the output file: it is _guaranteed_
692 * that it will be called before the "init" routine.
694 * The parameter `outname' points to an area of storage
695 * guaranteed to be at least FILENAME_MAX in size.
697 void (*filename
) (char *inname
, char *outname
, efunc error
);
700 * This procedure is called after assembly finishes, to allow
701 * the output driver to clean itself up and free its memory.
702 * Typically, it will also be the point at which the object
703 * file actually gets _written_.
705 * One thing the cleanup routine should always do is to close
706 * the output file pointer.
708 void (*cleanup
) (void);
712 * values for the `type' parameter to an output function. Each one
713 * must have the actual number of _bytes_ added to it.
715 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
716 * which will be a relative jump. For this we need to know the
717 * distance in bytes from the start of the relocated record until
718 * the end of the containing instruction. _This_ is what is stored
719 * in the size part of the parameter, in this case.
721 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
722 * and the contents of the "data" parameter is irrelevant.
724 * The "data" parameter for the output function points to a "long",
725 * containing the address in question, unless the type is
726 * OUT_RAWDATA, in which case it points to an "unsigned char"
729 #define OUT_RAWDATA 0x00000000UL
730 #define OUT_ADDRESS 0x10000000UL
731 #define OUT_REL2ADR 0x20000000UL
732 #define OUT_REL4ADR 0x30000000UL
733 #define OUT_RESERVE 0x40000000UL
734 #define OUT_TYPMASK 0xF0000000UL
735 #define OUT_SIZMASK 0x0FFFFFFFUL
744 * This is a useful #define which I keep meaning to use more often:
745 * the number of elements of a statically defined array.
748 #define elements(x) ( sizeof(x) / sizeof(*(x)) )