1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
14 #define NASM_MAJOR_VER 0
15 #define NASM_MINOR_VER 98
16 #define NASM_VER "0.98 pre-release J4"
23 #define FALSE 0 /* comes in handy */
29 #define NO_SEG -1L /* null segment value */
30 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
33 #define FILENAME_MAX 256
37 * Name pollution problems: <time.h> on Digital UNIX pulls in some
38 * strange hardware header file which sees fit to define R_SP. We
39 * undefine it here so as not to break the enum below.
46 * We must declare the existence of this structure type up here,
47 * since we have to reference it before we define it...
52 * -------------------------
53 * Error reporting functions
54 * -------------------------
58 * An error reporting function should look like this.
60 typedef void (*efunc
) (int severity
, char *fmt
, ...);
63 * These are the error severity codes which get passed as the first
64 * argument to an efunc.
67 #define ERR_WARNING 0 /* warn only: no further action */
68 #define ERR_NONFATAL 1 /* terminate assembly after phase */
69 #define ERR_FATAL 2 /* instantly fatal: exit with error */
70 #define ERR_PANIC 3 /* internal error: panic instantly
71 * and dump core for reference */
72 #define ERR_MASK 0x0F /* mask off the above codes */
73 #define ERR_NOFILE 0x10 /* don't give source file name/line */
74 #define ERR_USAGE 0x20 /* print a usage message */
75 #define ERR_PASS1 0x80 /* only print this error on pass one */
78 * These codes define specific types of suppressible warning.
80 #define ERR_WARN_MNP 0x0100 /* macro-num-parameters warning */
81 #define ERR_WARN_OL 0x0200 /* orphan label (no colon, and
83 #define ERR_WARN_NOV 0x0300 /* numeric overflow */
84 #define ERR_WARN_MASK 0xFF00 /* the mask for this feature */
85 #define ERR_WARN_SHR 8 /* how far to shift right */
86 #define ERR_WARN_MAX 3 /* the highest numbered one */
89 * -----------------------
90 * Other function typedefs
91 * -----------------------
95 * A label-lookup function should look like this.
97 typedef int (*lfunc
) (char *label
, long *segment
, long *offset
);
100 * And a label-definition function like this. The boolean parameter
101 * `is_norm' states whether the label is a `normal' label (which
102 * should affect the local-label system), or something odder like
103 * an EQU or a segment-base symbol, which shouldn't.
105 typedef void (*ldfunc
) (char *label
, long segment
, long offset
, char *special
,
106 int is_norm
, int isextrn
, struct ofmt
*ofmt
,
110 * List-file generators should look like this:
114 * Called to initialise the listing file generator. Before this
115 * is called, the other routines will silently do nothing when
116 * called. The `char *' parameter is the file name to write the
119 void (*init
) (char *, efunc
);
122 * Called to clear stuff up and close the listing file.
124 void (*cleanup
) (void);
127 * Called to output binary data. Parameters are: the offset;
128 * the data; the data type. Data types are similar to the
129 * output-format interface, only OUT_ADDRESS will _always_ be
130 * displayed as if it's relocatable, so ensure that any non-
131 * relocatable address has been converted to OUT_RAWDATA by
132 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
133 * dummy call used to give the listing generator an offset to
134 * work with when doing things like uplevel(LIST_TIMES) or
135 * uplevel(LIST_INCBIN).
137 void (*output
) (long, void *, unsigned long);
140 * Called to send a text line to the listing generator. The
141 * `int' parameter is LIST_READ or LIST_MACRO depending on
142 * whether the line came directly from an input file or is the
143 * result of a multi-line macro expansion.
145 void (*line
) (int, char *);
148 * Called to change one of the various levelled mechanisms in
149 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
150 * used to increase the nesting level of include files and
151 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
152 * two binary-output-suppression mechanisms for large-scale
153 * pseudo-instructions.
155 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
156 * it indicates the beginning of the expansion of a `nolist'
157 * macro, so anything under that level won't be expanded unless
158 * it includes another file.
160 void (*uplevel
) (int);
163 * Reverse the effects of uplevel.
165 void (*downlevel
) (int);
169 * The expression evaluator must be passed a scanner function; a
170 * standard scanner is provided as part of nasmlib.c. The
171 * preprocessor will use a different one. Scanners, and the
172 * token-value structures they return, look like this.
174 * The return value from the scanner is always a copy of the
175 * `t_type' field in the structure.
179 long t_integer
, t_inttwo
;
182 typedef int (*scanner
) (void *private_data
, struct tokenval
*tv
);
185 * Token types returned by the scanner, in addition to ordinary
186 * ASCII character values, and zero for end-of-string.
188 enum { /* token types, other than chars */
189 TOKEN_INVALID
= -1, /* a placeholder value */
190 TOKEN_EOS
= 0, /* end of string */
191 TOKEN_EQ
= '=', TOKEN_GT
= '>', TOKEN_LT
= '<', /* aliases */
192 TOKEN_ID
= 256, TOKEN_NUM
, TOKEN_REG
, TOKEN_INSN
, /* major token types */
193 TOKEN_ERRNUM
, /* numeric constant with error in */
194 TOKEN_HERE
, TOKEN_BASE
, /* $ and $$ */
195 TOKEN_SPECIAL
, /* BYTE, WORD, DWORD, FAR, NEAR, etc */
196 TOKEN_PREFIX
, /* A32, O16, LOCK, REPNZ, TIMES, etc */
197 TOKEN_SHL
, TOKEN_SHR
, /* << and >> */
198 TOKEN_SDIV
, TOKEN_SMOD
, /* // and %% */
199 TOKEN_GE
, TOKEN_LE
, TOKEN_NE
, /* >=, <= and <> (!= is same as <>) */
200 TOKEN_DBL_AND
, TOKEN_DBL_OR
, TOKEN_DBL_XOR
, /* &&, || and ^^ */
201 TOKEN_SEG
, TOKEN_WRT
, /* SEG and WRT */
202 TOKEN_FLOAT
/* floating-point constant */
212 * Expression-evaluator datatype. Expressions, within the
213 * evaluator, are stored as an array of these beasts, terminated by
214 * a record with type==0. Mostly, it's a vector type: each type
215 * denotes some kind of a component, and the value denotes the
216 * multiple of that component present in the expression. The
217 * exception is the WRT type, whose `value' field denotes the
218 * segment to which the expression is relative. These segments will
219 * be segment-base types, i.e. either odd segment values or SEG_ABS
220 * types. So it is still valid to assume that anything with a
221 * `value' field of zero is insignificant.
224 long type
; /* a register, or EXPR_xxx */
225 long value
; /* must be >= 32 bits */
229 * The evaluator can also return hints about which of two registers
230 * used in an expression should be the base register. See also the
231 * `operand' structure.
239 * The actual expression evaluator function looks like this. When
240 * called, it expects the first token of its expression to already
241 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
242 * it will start by calling the scanner.
244 * If a forward reference happens during evaluation, the evaluator
245 * must set `*fwref' to TRUE if `fwref' is non-NULL.
247 * `critical' is non-zero if the expression may not contain forward
248 * references. The evaluator will report its own error if this
249 * occurs; if `critical' is 1, the error will be "symbol not
250 * defined before use", whereas if `critical' is 2, the error will
251 * be "symbol undefined".
253 * If `critical' has bit 4 set (in addition to its main value: 0x11
254 * and 0x12 correspond to 1 and 2) then an extended expression
255 * syntax is recognised, in which relational operators such as =, <
256 * and >= are accepted, as well as low-precedence logical operators
259 * If `hints' is non-NULL, it gets filled in with some hints as to
260 * the base register in complex effective addresses.
262 typedef expr
*(*evalfunc
) (scanner sc
, void *scprivate
, struct tokenval
*tv
,
263 int *fwref
, int critical
, efunc error
,
264 struct eval_hints
*hints
);
267 * Special values for expr->type. ASSUMPTION MADE HERE: the number
268 * of distinct register names (i.e. possible "type" fields for an
269 * expr structure) does not exceed 124 (EXPR_REG_START through
272 #define EXPR_REG_START 1
273 #define EXPR_REG_END 124
274 #define EXPR_UNKNOWN 125L /* for forward references */
275 #define EXPR_SIMPLE 126L
276 #define EXPR_WRT 127L
277 #define EXPR_SEGBASE 128L
280 * Preprocessors ought to look like this:
284 * Called at the start of a pass; given a file name, the number
285 * of the pass, an error reporting function, an evaluator
286 * function, and a listing generator to talk to.
288 void (*reset
) (char *, int, efunc
, evalfunc
, ListGen
*);
291 * Called to fetch a line of preprocessed source. The line
292 * returned has been malloc'ed, and so should be freed after
295 char *(*getline
) (void);
298 * Called at the end of a pass.
300 void (*cleanup
) (void);
304 * ----------------------------------------------------------------
305 * Some lexical properties of the NASM source language, included
306 * here because they are shared between the parser and preprocessor
307 * ----------------------------------------------------------------
311 * isidstart matches any character that may start an identifier, and isidchar
312 * matches any character that may appear at places other than the start of an
313 * identifier. E.g. a period may only appear at the start of an identifier
314 * (for local labels), whereas a number may appear anywhere *but* at the
318 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
320 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
323 /* Ditto for numeric constants. */
325 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
326 #define isnumchar(c) ( isalnum(c) )
328 /* This returns the numeric value of a given 'digit'. */
330 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
333 * Data-type flags that get passed to listing-file routines.
336 LIST_READ
, LIST_MACRO
, LIST_MACRO_NOLIST
, LIST_INCLUDE
,
337 LIST_INCBIN
, LIST_TIMES
341 * -----------------------------------------------------------
342 * Format of the `insn' structure returned from `parser.c' and
343 * passed into `assemble.c'
344 * -----------------------------------------------------------
348 * Here we define the operand types. These are implemented as bit
349 * masks, since some are subsets of others; e.g. AX in a MOV
350 * instruction is a special operand type, whereas AX in other
351 * contexts is just another 16-bit register. (Also, consider CL in
352 * shift instructions, DX in OUT, etc.)
355 /* size, and other attributes, of the operand */
356 #define BITS8 0x00000001L
357 #define BITS16 0x00000002L
358 #define BITS32 0x00000004L
359 #define BITS64 0x00000008L /* FPU only */
360 #define BITS80 0x00000010L /* FPU only */
361 #define FAR 0x00000020L /* grotty: this means 16:16 or */
362 /* 16:32, like in CALL/JMP */
363 #define NEAR 0x00000040L
364 #define SHORT 0x00000080L /* and this means what it says :) */
366 #define SIZE_MASK 0x000000FFL /* all the size attributes */
367 #define NON_SIZE (~SIZE_MASK)
369 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
370 #define COLON 0x00000200L /* operand is followed by a colon */
372 /* type of operand: memory reference, register, etc. */
373 #define MEMORY 0x00204000L
374 #define REGISTER 0x00001000L /* register number in 'basereg' */
375 #define IMMEDIATE 0x00002000L
377 #define REGMEM 0x00200000L /* for r/m, ie EA, operands */
378 #define REGNORM 0x00201000L /* 'normal' reg, qualifies as EA */
379 #define REG8 0x00201001L
380 #define REG16 0x00201002L
381 #define REG32 0x00201004L
382 #define MMXREG 0x00201008L /* MMX registers */
383 #define FPUREG 0x01000000L /* floating point stack registers */
384 #define FPU0 0x01000800L /* FPU stack register zero */
386 /* special register operands: these may be treated differently */
387 #define REG_SMASK 0x00070000L /* a mask for the following */
388 #define REG_ACCUM 0x00211000L /* accumulator: AL, AX or EAX */
389 #define REG_AL 0x00211001L /* REG_ACCUM | BITSxx */
390 #define REG_AX 0x00211002L /* ditto */
391 #define REG_EAX 0x00211004L /* and again */
392 #define REG_COUNT 0x00221000L /* counter: CL, CX or ECX */
393 #define REG_CL 0x00221001L /* REG_COUNT | BITSxx */
394 #define REG_CX 0x00221002L /* ditto */
395 #define REG_ECX 0x00221004L /* another one */
396 #define REG_DX 0x00241002L
397 #define REG_SREG 0x00081002L /* any segment register */
398 #define REG_CS 0x01081002L /* CS */
399 #define REG_DESS 0x02081002L /* DS, ES, SS (non-CS 86 registers) */
400 #define REG_FSGS 0x04081002L /* FS, GS (386 extended registers) */
401 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
402 #define REG_CREG 0x08101004L /* CRn */
403 #define REG_CR4 0x08101404L /* CR4 (Pentium only) */
404 #define REG_DREG 0x10101004L /* DRn */
405 #define REG_TREG 0x20101004L /* TRn */
407 /* special type of EA */
408 #define MEM_OFFS 0x00604000L /* simple [address] offset */
410 /* special type of immediate operand */
411 #define ONENESS 0x00800000L /* so UNITY == IMMEDIATE | ONENESS */
412 #define UNITY 0x00802000L /* for shift/rotate instructions */
415 * Next, the codes returned from the parser, for registers and
419 enum { /* register names */
420 R_AH
= EXPR_REG_START
, R_AL
, R_AX
, R_BH
, R_BL
, R_BP
, R_BX
, R_CH
,
421 R_CL
, R_CR0
, R_CR2
, R_CR3
, R_CR4
, R_CS
, R_CX
, R_DH
, R_DI
, R_DL
,
422 R_DR0
, R_DR1
, R_DR2
, R_DR3
, R_DR6
, R_DR7
, R_DS
, R_DX
, R_EAX
,
423 R_EBP
, R_EBX
, R_ECX
, R_EDI
, R_EDX
, R_ES
, R_ESI
, R_ESP
, R_FS
,
424 R_GS
, R_MM0
, R_MM1
, R_MM2
, R_MM3
, R_MM4
, R_MM5
, R_MM6
, R_MM7
,
425 R_SI
, R_SP
, R_SS
, R_ST0
, R_ST1
, R_ST2
, R_ST3
, R_ST4
, R_ST5
,
426 R_ST6
, R_ST7
, R_TR3
, R_TR4
, R_TR5
, R_TR6
, R_TR7
, REG_ENUM_LIMIT
429 enum { /* instruction names */
430 I_AAA
, I_AAD
, I_AAM
, I_AAS
, I_ADC
, I_ADD
, I_AND
, I_ARPL
,
431 I_BOUND
, I_BSF
, I_BSR
, I_BSWAP
, I_BT
, I_BTC
, I_BTR
, I_BTS
,
432 I_CALL
, I_CBW
, I_CDQ
, I_CLC
, I_CLD
, I_CLI
, I_CLTS
, I_CMC
, I_CMP
,
433 I_CMPSB
, I_CMPSD
, I_CMPSW
, I_CMPXCHG
, I_CMPXCHG486
, I_CMPXCHG8B
,
434 I_CPUID
, I_CWD
, I_CWDE
, I_DAA
, I_DAS
, I_DB
, I_DD
, I_DEC
, I_DIV
,
435 I_DQ
, I_DT
, I_DW
, I_EMMS
, I_ENTER
, I_EQU
, I_F2XM1
, I_FABS
,
436 I_FADD
, I_FADDP
, I_FBLD
, I_FBSTP
, I_FCHS
, I_FCLEX
, I_FCMOVB
,
437 I_FCMOVBE
, I_FCMOVE
, I_FCMOVNB
, I_FCMOVNBE
, I_FCMOVNE
,
438 I_FCMOVNU
, I_FCMOVU
, I_FCOM
, I_FCOMI
, I_FCOMIP
, I_FCOMP
,
439 I_FCOMPP
, I_FCOS
, I_FDECSTP
, I_FDISI
, I_FDIV
, I_FDIVP
, I_FDIVR
,
442 I_FENI
, I_FFREE
, I_FIADD
, I_FICOM
, I_FICOMP
, I_FIDIV
,
443 I_FIDIVR
, I_FILD
, I_FIMUL
, I_FINCSTP
, I_FINIT
, I_FIST
, I_FISTP
,
444 I_FISUB
, I_FISUBR
, I_FLD
, I_FLD1
, I_FLDCW
, I_FLDENV
, I_FLDL2E
,
445 I_FLDL2T
, I_FLDLG2
, I_FLDLN2
, I_FLDPI
, I_FLDZ
, I_FMUL
, I_FMULP
,
446 I_FNCLEX
, I_FNDISI
, I_FNENI
, I_FNINIT
, I_FNOP
, I_FNSAVE
,
447 I_FNSTCW
, I_FNSTENV
, I_FNSTSW
, I_FPATAN
, I_FPREM
, I_FPREM1
,
448 I_FPTAN
, I_FRNDINT
, I_FRSTOR
, I_FSAVE
, I_FSCALE
, I_FSETPM
,
449 I_FSIN
, I_FSINCOS
, I_FSQRT
, I_FST
, I_FSTCW
, I_FSTENV
, I_FSTP
,
450 I_FSTSW
, I_FSUB
, I_FSUBP
, I_FSUBR
, I_FSUBRP
, I_FTST
, I_FUCOM
,
451 I_FUCOMI
, I_FUCOMIP
, I_FUCOMP
, I_FUCOMPP
, I_FXAM
, I_FXCH
,
452 I_FXTRACT
, I_FYL2X
, I_FYL2XP1
, I_HLT
, I_IBTS
, I_ICEBP
, I_IDIV
,
453 I_IMUL
, I_IN
, I_INC
, I_INCBIN
, I_INSB
, I_INSD
, I_INSW
, I_INT
,
454 I_INT01
, I_INT1
, I_INT3
, I_INTO
, I_INVD
, I_INVLPG
, I_IRET
,
455 I_IRETD
, I_IRETW
, I_JCXZ
, I_JECXZ
, I_JMP
, I_LAHF
, I_LAR
, I_LDS
,
456 I_LEA
, I_LEAVE
, I_LES
, I_LFS
, I_LGDT
, I_LGS
, I_LIDT
, I_LLDT
,
457 I_LMSW
, I_LOADALL
, I_LOADALL286
, I_LODSB
, I_LODSD
, I_LODSW
,
458 I_LOOP
, I_LOOPE
, I_LOOPNE
, I_LOOPNZ
, I_LOOPZ
, I_LSL
, I_LSS
,
459 I_LTR
, I_MOV
, I_MOVD
, I_MOVQ
, I_MOVSB
, I_MOVSD
, I_MOVSW
,
460 I_MOVSX
, I_MOVZX
, I_MUL
, I_NEG
, I_NOP
, I_NOT
, I_OR
, I_OUT
,
461 I_OUTSB
, I_OUTSD
, I_OUTSW
, I_PACKSSDW
, I_PACKSSWB
, I_PACKUSWB
,
462 I_PADDB
, I_PADDD
, I_PADDSB
, I_PADDSIW
, I_PADDSW
, I_PADDUSB
,
463 I_PADDUSW
, I_PADDW
, I_PAND
, I_PANDN
, I_PAVEB
,
464 I_PAVGUSB
, I_PCMPEQB
,
465 I_PCMPEQD
, I_PCMPEQW
, I_PCMPGTB
, I_PCMPGTD
, I_PCMPGTW
,
467 I_PF2ID
, I_PFACC
, I_PFADD
, I_PFCMPEQ
, I_PFCMPGE
, I_PFCMPGT
,
468 I_PFMAX
, I_PFMIN
, I_PFMUL
, I_PFRCP
, I_PFRCPIT1
, I_PFRCPIT2
,
469 I_PFRSQIT1
, I_PFRSQRT
, I_PFSUB
, I_PFSUBR
, I_PI2FD
,
470 I_PMACHRIW
, I_PMADDWD
, I_PMAGW
, I_PMULHRIW
, I_PMULHRWA
,
471 I_PMULHRWC
, I_PMULHW
, I_PMULLW
, I_PMVGEZB
, I_PMVLZB
, I_PMVNZB
,
472 I_PMVZB
, I_POP
, I_POPA
, I_POPAD
, I_POPAW
, I_POPF
, I_POPFD
,
473 I_POPFW
, I_POR
, I_PREFETCH
, I_PREFETCHW
,
474 I_PSLLD
, I_PSLLQ
, I_PSLLW
, I_PSRAD
, I_PSRAW
,
475 I_PSRLD
, I_PSRLQ
, I_PSRLW
, I_PSUBB
, I_PSUBD
, I_PSUBSB
,
476 I_PSUBSIW
, I_PSUBSW
, I_PSUBUSB
, I_PSUBUSW
, I_PSUBW
, I_PUNPCKHBW
,
477 I_PUNPCKHDQ
, I_PUNPCKHWD
, I_PUNPCKLBW
, I_PUNPCKLDQ
, I_PUNPCKLWD
,
478 I_PUSH
, I_PUSHA
, I_PUSHAD
, I_PUSHAW
, I_PUSHF
, I_PUSHFD
,
479 I_PUSHFW
, I_PXOR
, I_RCL
, I_RCR
, I_RDMSR
, I_RDPMC
, I_RDTSC
,
480 I_RESB
, I_RESD
, I_RESQ
, I_REST
, I_RESW
, I_RET
, I_RETF
, I_RETN
,
481 I_ROL
, I_ROR
, I_RSM
, I_SAHF
, I_SAL
, I_SALC
, I_SAR
, I_SBB
,
482 I_SCASB
, I_SCASD
, I_SCASW
, I_SGDT
, I_SHL
, I_SHLD
, I_SHR
, I_SHRD
,
483 I_SIDT
, I_SLDT
, I_SMI
, I_SMSW
, I_STC
, I_STD
, I_STI
, I_STOSB
,
484 I_STOSD
, I_STOSW
, I_STR
, I_SUB
, I_TEST
, I_UMOV
, I_VERR
, I_VERW
,
485 I_WAIT
, I_WBINVD
, I_WRMSR
, I_XADD
, I_XBTS
, I_XCHG
, I_XLATB
,
486 I_XOR
, I_CMOVcc
, I_Jcc
, I_SETcc
489 #define MAX_KEYWORD 9 /* max length of any instruction, register name etc. */
491 enum { /* condition code names */
492 C_A
, C_AE
, C_B
, C_BE
, C_C
, C_E
, C_G
, C_GE
, C_L
, C_LE
, C_NA
, C_NAE
,
493 C_NB
, C_NBE
, C_NC
, C_NE
, C_NG
, C_NGE
, C_NL
, C_NLE
, C_NO
, C_NP
,
494 C_NS
, C_NZ
, C_O
, C_P
, C_PE
, C_PO
, C_S
, C_Z
498 * Note that because segment registers may be used as instruction
499 * prefixes, we must ensure the enumerations for prefixes and
500 * register names do not overlap.
502 enum { /* instruction prefixes */
503 PREFIX_ENUM_START
= REG_ENUM_LIMIT
,
504 P_A16
= PREFIX_ENUM_START
, P_A32
, P_LOCK
, P_O16
, P_O32
, P_REP
, P_REPE
,
505 P_REPNE
, P_REPNZ
, P_REPZ
, P_TIMES
508 enum { /* extended operand types */
509 EOT_NOTHING
, EOT_DB_STRING
, EOT_DB_NUMBER
512 enum { /* special EA flags */
513 EAF_BYTEOFFS
= 1, /* force offset part to byte size */
514 EAF_WORDOFFS
= 2, /* force offset part to [d]word size */
515 EAF_TIMESTWO
= 4 /* really do EAX*2 not EAX+EAX */
518 enum { /* values for `hinttype' */
519 EAH_NOHINT
= 0, /* no hint at all - our discretion */
520 EAH_MAKEBASE
= 1, /* try to make given reg the base */
521 EAH_NOTBASE
= 2 /* try _not_ to make reg the base */
524 typedef struct { /* operand to an instruction */
525 long type
; /* type of operand */
526 int addr_size
; /* 0 means default; 16; 32 */
527 int basereg
, indexreg
, scale
; /* registers and scale involved */
528 int hintbase
, hinttype
; /* hint as to real base register */
529 long segment
; /* immediate segment, if needed */
530 long offset
; /* any immediate number */
531 long wrt
; /* segment base it's relative to */
532 int eaflags
; /* special EA flags */
533 int opflags
; /* see OPFLAG_* defines below */
536 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
537 #define OPFLAG_EXTERN 2 /* operand is an external reference */
539 typedef struct extop
{ /* extended operand */
540 struct extop
*next
; /* linked list */
541 long type
; /* defined above */
542 char *stringval
; /* if it's a string, then here it is */
543 int stringlen
; /* ... and here's how long it is */
544 long segment
; /* if it's a number/address, then... */
545 long offset
; /* ... it's given here ... */
546 long wrt
; /* ... and here */
551 typedef struct { /* an instruction itself */
552 char *label
; /* the label defined, or NULL */
553 int prefixes
[MAXPREFIX
]; /* instruction prefixes, if any */
554 int nprefix
; /* number of entries in above */
555 int opcode
; /* the opcode - not just the string */
556 int condition
; /* the condition code, if Jcc/SETcc */
557 int operands
; /* how many operands? 0-3
558 * (more if db et al) */
559 operand oprs
[3]; /* the operands, defined as above */
560 extop
*eops
; /* extended operands */
561 int eops_float
; /* true if DD and floating */
562 long times
; /* repeat count (TIMES prefix) */
563 int forw_ref
; /* is there a forward reference? */
566 enum geninfo
{ GI_SWITCH
};
568 * ------------------------------------------------------------
569 * The data structure defining an output format driver, and the
570 * interfaces to the functions therein.
571 * ------------------------------------------------------------
576 * This is a short (one-liner) description of the type of
577 * output generated by the driver.
582 * This is a single keyword used to select the driver.
587 * this is reserved for out module specific help.
588 * It is set to NULL in all the out modules but is not implemented
589 * in the main program
594 * this is a pointer to the first element of the debug information
596 struct dfmt
**debug_formats
;
599 * and a pointer to the element that is being used
600 * note: this is set to the default at compile time and changed if the
601 * -F option is selected. If developing a set of new debug formats for
602 * an output format, be sure to set this to whatever default you want
605 struct dfmt
*current_dfmt
;
608 * This, if non-NULL, is a NULL-terminated list of `char *'s
609 * pointing to extra standard macros supplied by the object
610 * format (e.g. a sensible initial default value of __SECT__,
611 * and user-level equivalents for any format-specific
617 * This procedure is called at the start of an output session.
618 * It tells the output format what file it will be writing to,
619 * what routine to report errors through, and how to interface
620 * to the label manager and expression evaluator if necessary.
621 * It also gives it a chance to do other initialisation.
623 void (*init
) (FILE *fp
, efunc error
, ldfunc ldef
, evalfunc eval
);
626 * This procedure is called to pass generic information to the
627 * object file. The first parameter gives the information type
628 * (currently only command line switches)
629 * and the second parameter gives the value. This function returns
630 * 1 if recognized, 0 if unrecognized
632 int (*setinfo
)(enum geninfo type
, char **string
);
635 * This procedure is called by assemble() to write actual
636 * generated code or data to the object file. Typically it
637 * doesn't have to actually _write_ it, just store it for
640 * The `type' argument specifies the type of output data, and
641 * usually the size as well: its contents are described below.
643 void (*output
) (long segto
, void *data
, unsigned long type
,
644 long segment
, long wrt
);
647 * This procedure is called once for every symbol defined in
648 * the module being assembled. It gives the name and value of
649 * the symbol, in NASM's terms, and indicates whether it has
650 * been declared to be global. Note that the parameter "name",
651 * when passed, will point to a piece of static storage
652 * allocated inside the label manager - it's safe to keep using
653 * that pointer, because the label manager doesn't clean up
654 * until after the output driver has.
656 * Values of `is_global' are: 0 means the symbol is local; 1
657 * means the symbol is global; 2 means the symbol is common (in
658 * which case `offset' holds the _size_ of the variable).
659 * Anything else is available for the output driver to use
662 * This routine explicitly _is_ allowed to call the label
663 * manager to define further symbols, if it wants to, even
664 * though it's been called _from_ the label manager. That much
665 * re-entrancy is guaranteed in the label manager. However, the
666 * label manager will in turn call this routine, so it should
667 * be prepared to be re-entrant itself.
669 * The `special' parameter contains special information passed
670 * through from the command that defined the label: it may have
671 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
672 * be obvious to the output format from the other parameters.
674 void (*symdef
) (char *name
, long segment
, long offset
, int is_global
,
678 * This procedure is called when the source code requests a
679 * segment change. It should return the corresponding segment
680 * _number_ for the name, or NO_SEG if the name is not a valid
683 * It may also be called with NULL, in which case it is to
684 * return the _default_ section number for starting assembly in.
686 * It is allowed to modify the string it is given a pointer to.
688 * It is also allowed to specify a default instruction size for
689 * the segment, by setting `*bits' to 16 or 32. Or, if it
690 * doesn't wish to define a default, it can leave `bits' alone.
692 long (*section
) (char *name
, int pass
, int *bits
);
695 * This procedure is called to modify the segment base values
696 * returned from the SEG operator. It is given a segment base
697 * value (i.e. a segment value with the low bit set), and is
698 * required to produce in return a segment value which may be
699 * different. It can map segment bases to absolute numbers by
700 * means of returning SEG_ABS types.
702 * It should return NO_SEG if the segment base cannot be
703 * determined; the evaluator (which calls this routine) is
704 * responsible for throwing an error condition if that occurs
705 * in pass two or in a critical expression.
707 long (*segbase
) (long segment
);
710 * This procedure is called to allow the output driver to
711 * process its own specific directives. When called, it has the
712 * directive word in `directive' and the parameter string in
713 * `value'. It is called in both assembly passes, and `pass'
714 * will be either 1 or 2.
716 * This procedure should return zero if it does not _recognise_
717 * the directive, so that the main program can report an error.
718 * If it recognises the directive but then has its own errors,
719 * it should report them itself and then return non-zero. It
720 * should also return non-zero if it correctly processes the
723 int (*directive
) (char *directive
, char *value
, int pass
);
726 * This procedure is called before anything else - even before
727 * the "init" routine - and is passed the name of the input
728 * file from which this output file is being generated. It
729 * should return its preferred name for the output file in
730 * `outname', if outname[0] is not '\0', and do nothing to
731 * `outname' otherwise. Since it is called before the driver is
732 * properly initialised, it has to be passed its error handler
735 * This procedure may also take its own copy of the input file
736 * name for use in writing the output file: it is _guaranteed_
737 * that it will be called before the "init" routine.
739 * The parameter `outname' points to an area of storage
740 * guaranteed to be at least FILENAME_MAX in size.
742 void (*filename
) (char *inname
, char *outname
, efunc error
);
745 * This procedure is called after assembly finishes, to allow
746 * the output driver to clean itself up and free its memory.
747 * Typically, it will also be the point at which the object
748 * file actually gets _written_.
750 * One thing the cleanup routine should always do is to close
751 * the output file pointer.
753 void (*cleanup
) (int debuginfo
);
757 * values for the `type' parameter to an output function. Each one
758 * must have the actual number of _bytes_ added to it.
760 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
761 * which will be a relative jump. For this we need to know the
762 * distance in bytes from the start of the relocated record until
763 * the end of the containing instruction. _This_ is what is stored
764 * in the size part of the parameter, in this case.
766 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
767 * and the contents of the "data" parameter is irrelevant.
769 * The "data" parameter for the output function points to a "long",
770 * containing the address in question, unless the type is
771 * OUT_RAWDATA, in which case it points to an "unsigned char"
774 #define OUT_RAWDATA 0x00000000UL
775 #define OUT_ADDRESS 0x10000000UL
776 #define OUT_REL2ADR 0x20000000UL
777 #define OUT_REL4ADR 0x30000000UL
778 #define OUT_RESERVE 0x40000000UL
779 #define OUT_TYPMASK 0xF0000000UL
780 #define OUT_SIZMASK 0x0FFFFFFFUL
783 * ------------------------------------------------------------
784 * The data structure defining a debug format driver, and the
785 * interfaces to the functions therein.
786 * ------------------------------------------------------------
792 * This is a short (one-liner) description of the type of
793 * output generated by the driver.
798 * This is a single keyword used to select the driver.
804 * init - called initially to set up local pointer to object format,
805 * void pointer to implementation defined data, file pointer (which
806 * probably won't be used, but who knows?), and error function.
808 void (*init
) (struct ofmt
* of
, void * id
, FILE * fp
, efunc error
);
811 * linenum - called any time there is output with a change of
812 * line number or file.
814 void (*linenum
) (const char * filename
, long linenumber
, long segto
);
817 * debug_deflabel - called whenever a label is defined. Parameters
818 * are the same as to 'symdef()' in the output format. This function
819 * would be called before the output format version.
822 void (*debug_deflabel
) (char * name
, long segment
, long offset
,
823 int is_global
, char * special
);
825 * debug_directive - called whenever a DEBUG directive other than 'LINE'
826 * is encountered. 'directive' contains the first parameter to the
827 * DEBUG directive, and params contains the rest. For example,
828 * 'DEBUG VAR _somevar:int' would translate to a call to this
829 * function with 'directive' equal to "VAR" and 'params' equal to
832 void (*debug_directive
) (const char * directive
, const char * params
);
835 * typevalue - called whenever the assembler wishes to register a type
836 * for the last defined label. This routine MUST detect if a type was
837 * already registered and not re-register it.
839 void (*debug_typevalue
) (long type
);
842 * debug_output - called whenever output is required
843 * 'type' is the type of info required, and this is format-specific
845 void (*debug_output
) (int type
, void *param
);
848 * cleanup - called after processing of file is complete
850 void (*cleanup
) (void);
854 * The type definition macros
857 * low 3 bits: reserved
859 * next 24 bits: number of elements for arrays (0 for labels)
862 #define TY_UNKNOWN 0x00
863 #define TY_LABEL 0x08
866 #define TY_DWORD 0x20
867 #define TY_FLOAT 0x28
868 #define TY_QWORD 0x30
869 #define TY_TBYTE 0x38
870 #define TY_COMMON 0xE0
872 #define TY_EXTERN 0xF0
875 #define TYM_TYPE(x) ((x) & 0xF8)
876 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
878 #define TYS_ELEMENTS(x) ((x) << 8)
886 * This is a useful #define which I keep meaning to use more often:
887 * the number of elements of a statically defined array.
890 #define elements(x) ( sizeof(x) / sizeof(*(x)) )