NASM 0.98-j4
[nasm/avx512.git] / nasm.h
blob93c41a77758a618d6ebc119f67b0b4e4d5e570bd
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #define NASM_MAJOR_VER 0
15 #define NASM_MINOR_VER 98
16 #define NASM_VER "0.98 pre-release J4"
18 #ifndef NULL
19 #define NULL 0
20 #endif
22 #ifndef FALSE
23 #define FALSE 0 /* comes in handy */
24 #endif
25 #ifndef TRUE
26 #define TRUE 1
27 #endif
29 #define NO_SEG -1L /* null segment value */
30 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
32 #ifndef FILENAME_MAX
33 #define FILENAME_MAX 256
34 #endif
37 * Name pollution problems: <time.h> on Digital UNIX pulls in some
38 * strange hardware header file which sees fit to define R_SP. We
39 * undefine it here so as not to break the enum below.
41 #ifdef R_SP
42 #undef R_SP
43 #endif
46 * We must declare the existence of this structure type up here,
47 * since we have to reference it before we define it...
49 struct ofmt;
52 * -------------------------
53 * Error reporting functions
54 * -------------------------
58 * An error reporting function should look like this.
60 typedef void (*efunc) (int severity, char *fmt, ...);
63 * These are the error severity codes which get passed as the first
64 * argument to an efunc.
67 #define ERR_WARNING 0 /* warn only: no further action */
68 #define ERR_NONFATAL 1 /* terminate assembly after phase */
69 #define ERR_FATAL 2 /* instantly fatal: exit with error */
70 #define ERR_PANIC 3 /* internal error: panic instantly
71 * and dump core for reference */
72 #define ERR_MASK 0x0F /* mask off the above codes */
73 #define ERR_NOFILE 0x10 /* don't give source file name/line */
74 #define ERR_USAGE 0x20 /* print a usage message */
75 #define ERR_PASS1 0x80 /* only print this error on pass one */
78 * These codes define specific types of suppressible warning.
80 #define ERR_WARN_MNP 0x0100 /* macro-num-parameters warning */
81 #define ERR_WARN_OL 0x0200 /* orphan label (no colon, and
82 * alone on line) */
83 #define ERR_WARN_NOV 0x0300 /* numeric overflow */
84 #define ERR_WARN_MASK 0xFF00 /* the mask for this feature */
85 #define ERR_WARN_SHR 8 /* how far to shift right */
86 #define ERR_WARN_MAX 3 /* the highest numbered one */
89 * -----------------------
90 * Other function typedefs
91 * -----------------------
95 * A label-lookup function should look like this.
97 typedef int (*lfunc) (char *label, long *segment, long *offset);
100 * And a label-definition function like this. The boolean parameter
101 * `is_norm' states whether the label is a `normal' label (which
102 * should affect the local-label system), or something odder like
103 * an EQU or a segment-base symbol, which shouldn't.
105 typedef void (*ldfunc) (char *label, long segment, long offset, char *special,
106 int is_norm, int isextrn, struct ofmt *ofmt,
107 efunc error);
110 * List-file generators should look like this:
112 typedef struct {
114 * Called to initialise the listing file generator. Before this
115 * is called, the other routines will silently do nothing when
116 * called. The `char *' parameter is the file name to write the
117 * listing to.
119 void (*init) (char *, efunc);
122 * Called to clear stuff up and close the listing file.
124 void (*cleanup) (void);
127 * Called to output binary data. Parameters are: the offset;
128 * the data; the data type. Data types are similar to the
129 * output-format interface, only OUT_ADDRESS will _always_ be
130 * displayed as if it's relocatable, so ensure that any non-
131 * relocatable address has been converted to OUT_RAWDATA by
132 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
133 * dummy call used to give the listing generator an offset to
134 * work with when doing things like uplevel(LIST_TIMES) or
135 * uplevel(LIST_INCBIN).
137 void (*output) (long, void *, unsigned long);
140 * Called to send a text line to the listing generator. The
141 * `int' parameter is LIST_READ or LIST_MACRO depending on
142 * whether the line came directly from an input file or is the
143 * result of a multi-line macro expansion.
145 void (*line) (int, char *);
148 * Called to change one of the various levelled mechanisms in
149 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
150 * used to increase the nesting level of include files and
151 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
152 * two binary-output-suppression mechanisms for large-scale
153 * pseudo-instructions.
155 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
156 * it indicates the beginning of the expansion of a `nolist'
157 * macro, so anything under that level won't be expanded unless
158 * it includes another file.
160 void (*uplevel) (int);
163 * Reverse the effects of uplevel.
165 void (*downlevel) (int);
166 } ListGen;
169 * The expression evaluator must be passed a scanner function; a
170 * standard scanner is provided as part of nasmlib.c. The
171 * preprocessor will use a different one. Scanners, and the
172 * token-value structures they return, look like this.
174 * The return value from the scanner is always a copy of the
175 * `t_type' field in the structure.
177 struct tokenval {
178 int t_type;
179 long t_integer, t_inttwo;
180 char *t_charptr;
182 typedef int (*scanner) (void *private_data, struct tokenval *tv);
185 * Token types returned by the scanner, in addition to ordinary
186 * ASCII character values, and zero for end-of-string.
188 enum { /* token types, other than chars */
189 TOKEN_INVALID = -1, /* a placeholder value */
190 TOKEN_EOS = 0, /* end of string */
191 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
192 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
193 TOKEN_ERRNUM, /* numeric constant with error in */
194 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
195 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, FAR, NEAR, etc */
196 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
197 TOKEN_SHL, TOKEN_SHR, /* << and >> */
198 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
199 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
200 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
201 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
202 TOKEN_FLOAT /* floating-point constant */
205 typedef struct {
206 long segment;
207 long offset;
208 int known;
209 } loc_t;
212 * Expression-evaluator datatype. Expressions, within the
213 * evaluator, are stored as an array of these beasts, terminated by
214 * a record with type==0. Mostly, it's a vector type: each type
215 * denotes some kind of a component, and the value denotes the
216 * multiple of that component present in the expression. The
217 * exception is the WRT type, whose `value' field denotes the
218 * segment to which the expression is relative. These segments will
219 * be segment-base types, i.e. either odd segment values or SEG_ABS
220 * types. So it is still valid to assume that anything with a
221 * `value' field of zero is insignificant.
223 typedef struct {
224 long type; /* a register, or EXPR_xxx */
225 long value; /* must be >= 32 bits */
226 } expr;
229 * The evaluator can also return hints about which of two registers
230 * used in an expression should be the base register. See also the
231 * `operand' structure.
233 struct eval_hints {
234 int base;
235 int type;
239 * The actual expression evaluator function looks like this. When
240 * called, it expects the first token of its expression to already
241 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
242 * it will start by calling the scanner.
244 * If a forward reference happens during evaluation, the evaluator
245 * must set `*fwref' to TRUE if `fwref' is non-NULL.
247 * `critical' is non-zero if the expression may not contain forward
248 * references. The evaluator will report its own error if this
249 * occurs; if `critical' is 1, the error will be "symbol not
250 * defined before use", whereas if `critical' is 2, the error will
251 * be "symbol undefined".
253 * If `critical' has bit 4 set (in addition to its main value: 0x11
254 * and 0x12 correspond to 1 and 2) then an extended expression
255 * syntax is recognised, in which relational operators such as =, <
256 * and >= are accepted, as well as low-precedence logical operators
257 * &&, ^^ and ||.
259 * If `hints' is non-NULL, it gets filled in with some hints as to
260 * the base register in complex effective addresses.
262 typedef expr *(*evalfunc) (scanner sc, void *scprivate, struct tokenval *tv,
263 int *fwref, int critical, efunc error,
264 struct eval_hints *hints);
267 * Special values for expr->type. ASSUMPTION MADE HERE: the number
268 * of distinct register names (i.e. possible "type" fields for an
269 * expr structure) does not exceed 124 (EXPR_REG_START through
270 * EXPR_REG_END).
272 #define EXPR_REG_START 1
273 #define EXPR_REG_END 124
274 #define EXPR_UNKNOWN 125L /* for forward references */
275 #define EXPR_SIMPLE 126L
276 #define EXPR_WRT 127L
277 #define EXPR_SEGBASE 128L
280 * Preprocessors ought to look like this:
282 typedef struct {
284 * Called at the start of a pass; given a file name, the number
285 * of the pass, an error reporting function, an evaluator
286 * function, and a listing generator to talk to.
288 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
291 * Called to fetch a line of preprocessed source. The line
292 * returned has been malloc'ed, and so should be freed after
293 * use.
295 char *(*getline) (void);
298 * Called at the end of a pass.
300 void (*cleanup) (void);
301 } Preproc;
304 * ----------------------------------------------------------------
305 * Some lexical properties of the NASM source language, included
306 * here because they are shared between the parser and preprocessor
307 * ----------------------------------------------------------------
311 * isidstart matches any character that may start an identifier, and isidchar
312 * matches any character that may appear at places other than the start of an
313 * identifier. E.g. a period may only appear at the start of an identifier
314 * (for local labels), whereas a number may appear anywhere *but* at the
315 * start.
318 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
319 || (c)=='@' )
320 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
321 || (c)=='~' )
323 /* Ditto for numeric constants. */
325 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
326 #define isnumchar(c) ( isalnum(c) )
328 /* This returns the numeric value of a given 'digit'. */
330 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
333 * Data-type flags that get passed to listing-file routines.
335 enum {
336 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
337 LIST_INCBIN, LIST_TIMES
341 * -----------------------------------------------------------
342 * Format of the `insn' structure returned from `parser.c' and
343 * passed into `assemble.c'
344 * -----------------------------------------------------------
348 * Here we define the operand types. These are implemented as bit
349 * masks, since some are subsets of others; e.g. AX in a MOV
350 * instruction is a special operand type, whereas AX in other
351 * contexts is just another 16-bit register. (Also, consider CL in
352 * shift instructions, DX in OUT, etc.)
355 /* size, and other attributes, of the operand */
356 #define BITS8 0x00000001L
357 #define BITS16 0x00000002L
358 #define BITS32 0x00000004L
359 #define BITS64 0x00000008L /* FPU only */
360 #define BITS80 0x00000010L /* FPU only */
361 #define FAR 0x00000020L /* grotty: this means 16:16 or */
362 /* 16:32, like in CALL/JMP */
363 #define NEAR 0x00000040L
364 #define SHORT 0x00000080L /* and this means what it says :) */
366 #define SIZE_MASK 0x000000FFL /* all the size attributes */
367 #define NON_SIZE (~SIZE_MASK)
369 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
370 #define COLON 0x00000200L /* operand is followed by a colon */
372 /* type of operand: memory reference, register, etc. */
373 #define MEMORY 0x00204000L
374 #define REGISTER 0x00001000L /* register number in 'basereg' */
375 #define IMMEDIATE 0x00002000L
377 #define REGMEM 0x00200000L /* for r/m, ie EA, operands */
378 #define REGNORM 0x00201000L /* 'normal' reg, qualifies as EA */
379 #define REG8 0x00201001L
380 #define REG16 0x00201002L
381 #define REG32 0x00201004L
382 #define MMXREG 0x00201008L /* MMX registers */
383 #define FPUREG 0x01000000L /* floating point stack registers */
384 #define FPU0 0x01000800L /* FPU stack register zero */
386 /* special register operands: these may be treated differently */
387 #define REG_SMASK 0x00070000L /* a mask for the following */
388 #define REG_ACCUM 0x00211000L /* accumulator: AL, AX or EAX */
389 #define REG_AL 0x00211001L /* REG_ACCUM | BITSxx */
390 #define REG_AX 0x00211002L /* ditto */
391 #define REG_EAX 0x00211004L /* and again */
392 #define REG_COUNT 0x00221000L /* counter: CL, CX or ECX */
393 #define REG_CL 0x00221001L /* REG_COUNT | BITSxx */
394 #define REG_CX 0x00221002L /* ditto */
395 #define REG_ECX 0x00221004L /* another one */
396 #define REG_DX 0x00241002L
397 #define REG_SREG 0x00081002L /* any segment register */
398 #define REG_CS 0x01081002L /* CS */
399 #define REG_DESS 0x02081002L /* DS, ES, SS (non-CS 86 registers) */
400 #define REG_FSGS 0x04081002L /* FS, GS (386 extended registers) */
401 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
402 #define REG_CREG 0x08101004L /* CRn */
403 #define REG_CR4 0x08101404L /* CR4 (Pentium only) */
404 #define REG_DREG 0x10101004L /* DRn */
405 #define REG_TREG 0x20101004L /* TRn */
407 /* special type of EA */
408 #define MEM_OFFS 0x00604000L /* simple [address] offset */
410 /* special type of immediate operand */
411 #define ONENESS 0x00800000L /* so UNITY == IMMEDIATE | ONENESS */
412 #define UNITY 0x00802000L /* for shift/rotate instructions */
415 * Next, the codes returned from the parser, for registers and
416 * instructions.
419 enum { /* register names */
420 R_AH = EXPR_REG_START, R_AL, R_AX, R_BH, R_BL, R_BP, R_BX, R_CH,
421 R_CL, R_CR0, R_CR2, R_CR3, R_CR4, R_CS, R_CX, R_DH, R_DI, R_DL,
422 R_DR0, R_DR1, R_DR2, R_DR3, R_DR6, R_DR7, R_DS, R_DX, R_EAX,
423 R_EBP, R_EBX, R_ECX, R_EDI, R_EDX, R_ES, R_ESI, R_ESP, R_FS,
424 R_GS, R_MM0, R_MM1, R_MM2, R_MM3, R_MM4, R_MM5, R_MM6, R_MM7,
425 R_SI, R_SP, R_SS, R_ST0, R_ST1, R_ST2, R_ST3, R_ST4, R_ST5,
426 R_ST6, R_ST7, R_TR3, R_TR4, R_TR5, R_TR6, R_TR7, REG_ENUM_LIMIT
429 enum { /* instruction names */
430 I_AAA, I_AAD, I_AAM, I_AAS, I_ADC, I_ADD, I_AND, I_ARPL,
431 I_BOUND, I_BSF, I_BSR, I_BSWAP, I_BT, I_BTC, I_BTR, I_BTS,
432 I_CALL, I_CBW, I_CDQ, I_CLC, I_CLD, I_CLI, I_CLTS, I_CMC, I_CMP,
433 I_CMPSB, I_CMPSD, I_CMPSW, I_CMPXCHG, I_CMPXCHG486, I_CMPXCHG8B,
434 I_CPUID, I_CWD, I_CWDE, I_DAA, I_DAS, I_DB, I_DD, I_DEC, I_DIV,
435 I_DQ, I_DT, I_DW, I_EMMS, I_ENTER, I_EQU, I_F2XM1, I_FABS,
436 I_FADD, I_FADDP, I_FBLD, I_FBSTP, I_FCHS, I_FCLEX, I_FCMOVB,
437 I_FCMOVBE, I_FCMOVE, I_FCMOVNB, I_FCMOVNBE, I_FCMOVNE,
438 I_FCMOVNU, I_FCMOVU, I_FCOM, I_FCOMI, I_FCOMIP, I_FCOMP,
439 I_FCOMPP, I_FCOS, I_FDECSTP, I_FDISI, I_FDIV, I_FDIVP, I_FDIVR,
440 I_FDIVRP,
441 I_FEMMS,
442 I_FENI, I_FFREE, I_FIADD, I_FICOM, I_FICOMP, I_FIDIV,
443 I_FIDIVR, I_FILD, I_FIMUL, I_FINCSTP, I_FINIT, I_FIST, I_FISTP,
444 I_FISUB, I_FISUBR, I_FLD, I_FLD1, I_FLDCW, I_FLDENV, I_FLDL2E,
445 I_FLDL2T, I_FLDLG2, I_FLDLN2, I_FLDPI, I_FLDZ, I_FMUL, I_FMULP,
446 I_FNCLEX, I_FNDISI, I_FNENI, I_FNINIT, I_FNOP, I_FNSAVE,
447 I_FNSTCW, I_FNSTENV, I_FNSTSW, I_FPATAN, I_FPREM, I_FPREM1,
448 I_FPTAN, I_FRNDINT, I_FRSTOR, I_FSAVE, I_FSCALE, I_FSETPM,
449 I_FSIN, I_FSINCOS, I_FSQRT, I_FST, I_FSTCW, I_FSTENV, I_FSTP,
450 I_FSTSW, I_FSUB, I_FSUBP, I_FSUBR, I_FSUBRP, I_FTST, I_FUCOM,
451 I_FUCOMI, I_FUCOMIP, I_FUCOMP, I_FUCOMPP, I_FXAM, I_FXCH,
452 I_FXTRACT, I_FYL2X, I_FYL2XP1, I_HLT, I_IBTS, I_ICEBP, I_IDIV,
453 I_IMUL, I_IN, I_INC, I_INCBIN, I_INSB, I_INSD, I_INSW, I_INT,
454 I_INT01, I_INT1, I_INT3, I_INTO, I_INVD, I_INVLPG, I_IRET,
455 I_IRETD, I_IRETW, I_JCXZ, I_JECXZ, I_JMP, I_LAHF, I_LAR, I_LDS,
456 I_LEA, I_LEAVE, I_LES, I_LFS, I_LGDT, I_LGS, I_LIDT, I_LLDT,
457 I_LMSW, I_LOADALL, I_LOADALL286, I_LODSB, I_LODSD, I_LODSW,
458 I_LOOP, I_LOOPE, I_LOOPNE, I_LOOPNZ, I_LOOPZ, I_LSL, I_LSS,
459 I_LTR, I_MOV, I_MOVD, I_MOVQ, I_MOVSB, I_MOVSD, I_MOVSW,
460 I_MOVSX, I_MOVZX, I_MUL, I_NEG, I_NOP, I_NOT, I_OR, I_OUT,
461 I_OUTSB, I_OUTSD, I_OUTSW, I_PACKSSDW, I_PACKSSWB, I_PACKUSWB,
462 I_PADDB, I_PADDD, I_PADDSB, I_PADDSIW, I_PADDSW, I_PADDUSB,
463 I_PADDUSW, I_PADDW, I_PAND, I_PANDN, I_PAVEB,
464 I_PAVGUSB, I_PCMPEQB,
465 I_PCMPEQD, I_PCMPEQW, I_PCMPGTB, I_PCMPGTD, I_PCMPGTW,
466 I_PDISTIB,
467 I_PF2ID, I_PFACC, I_PFADD, I_PFCMPEQ, I_PFCMPGE, I_PFCMPGT,
468 I_PFMAX, I_PFMIN, I_PFMUL, I_PFRCP, I_PFRCPIT1, I_PFRCPIT2,
469 I_PFRSQIT1, I_PFRSQRT, I_PFSUB, I_PFSUBR, I_PI2FD,
470 I_PMACHRIW, I_PMADDWD, I_PMAGW, I_PMULHRIW, I_PMULHRWA,
471 I_PMULHRWC, I_PMULHW, I_PMULLW, I_PMVGEZB, I_PMVLZB, I_PMVNZB,
472 I_PMVZB, I_POP, I_POPA, I_POPAD, I_POPAW, I_POPF, I_POPFD,
473 I_POPFW, I_POR, I_PREFETCH, I_PREFETCHW,
474 I_PSLLD, I_PSLLQ, I_PSLLW, I_PSRAD, I_PSRAW,
475 I_PSRLD, I_PSRLQ, I_PSRLW, I_PSUBB, I_PSUBD, I_PSUBSB,
476 I_PSUBSIW, I_PSUBSW, I_PSUBUSB, I_PSUBUSW, I_PSUBW, I_PUNPCKHBW,
477 I_PUNPCKHDQ, I_PUNPCKHWD, I_PUNPCKLBW, I_PUNPCKLDQ, I_PUNPCKLWD,
478 I_PUSH, I_PUSHA, I_PUSHAD, I_PUSHAW, I_PUSHF, I_PUSHFD,
479 I_PUSHFW, I_PXOR, I_RCL, I_RCR, I_RDMSR, I_RDPMC, I_RDTSC,
480 I_RESB, I_RESD, I_RESQ, I_REST, I_RESW, I_RET, I_RETF, I_RETN,
481 I_ROL, I_ROR, I_RSM, I_SAHF, I_SAL, I_SALC, I_SAR, I_SBB,
482 I_SCASB, I_SCASD, I_SCASW, I_SGDT, I_SHL, I_SHLD, I_SHR, I_SHRD,
483 I_SIDT, I_SLDT, I_SMI, I_SMSW, I_STC, I_STD, I_STI, I_STOSB,
484 I_STOSD, I_STOSW, I_STR, I_SUB, I_TEST, I_UMOV, I_VERR, I_VERW,
485 I_WAIT, I_WBINVD, I_WRMSR, I_XADD, I_XBTS, I_XCHG, I_XLATB,
486 I_XOR, I_CMOVcc, I_Jcc, I_SETcc
489 #define MAX_KEYWORD 9 /* max length of any instruction, register name etc. */
491 enum { /* condition code names */
492 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
493 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
494 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z
498 * Note that because segment registers may be used as instruction
499 * prefixes, we must ensure the enumerations for prefixes and
500 * register names do not overlap.
502 enum { /* instruction prefixes */
503 PREFIX_ENUM_START = REG_ENUM_LIMIT,
504 P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32, P_REP, P_REPE,
505 P_REPNE, P_REPNZ, P_REPZ, P_TIMES
508 enum { /* extended operand types */
509 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
512 enum { /* special EA flags */
513 EAF_BYTEOFFS = 1, /* force offset part to byte size */
514 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
515 EAF_TIMESTWO = 4 /* really do EAX*2 not EAX+EAX */
518 enum { /* values for `hinttype' */
519 EAH_NOHINT = 0, /* no hint at all - our discretion */
520 EAH_MAKEBASE = 1, /* try to make given reg the base */
521 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
524 typedef struct { /* operand to an instruction */
525 long type; /* type of operand */
526 int addr_size; /* 0 means default; 16; 32 */
527 int basereg, indexreg, scale; /* registers and scale involved */
528 int hintbase, hinttype; /* hint as to real base register */
529 long segment; /* immediate segment, if needed */
530 long offset; /* any immediate number */
531 long wrt; /* segment base it's relative to */
532 int eaflags; /* special EA flags */
533 int opflags; /* see OPFLAG_* defines below */
534 } operand;
536 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
537 #define OPFLAG_EXTERN 2 /* operand is an external reference */
539 typedef struct extop { /* extended operand */
540 struct extop *next; /* linked list */
541 long type; /* defined above */
542 char *stringval; /* if it's a string, then here it is */
543 int stringlen; /* ... and here's how long it is */
544 long segment; /* if it's a number/address, then... */
545 long offset; /* ... it's given here ... */
546 long wrt; /* ... and here */
547 } extop;
549 #define MAXPREFIX 4
551 typedef struct { /* an instruction itself */
552 char *label; /* the label defined, or NULL */
553 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
554 int nprefix; /* number of entries in above */
555 int opcode; /* the opcode - not just the string */
556 int condition; /* the condition code, if Jcc/SETcc */
557 int operands; /* how many operands? 0-3
558 * (more if db et al) */
559 operand oprs[3]; /* the operands, defined as above */
560 extop *eops; /* extended operands */
561 int eops_float; /* true if DD and floating */
562 long times; /* repeat count (TIMES prefix) */
563 int forw_ref; /* is there a forward reference? */
564 } insn;
566 enum geninfo { GI_SWITCH };
568 * ------------------------------------------------------------
569 * The data structure defining an output format driver, and the
570 * interfaces to the functions therein.
571 * ------------------------------------------------------------
574 struct ofmt {
576 * This is a short (one-liner) description of the type of
577 * output generated by the driver.
579 char *fullname;
582 * This is a single keyword used to select the driver.
584 char *shortname;
587 * this is reserved for out module specific help.
588 * It is set to NULL in all the out modules but is not implemented
589 * in the main program
591 char *helpstring;
594 * this is a pointer to the first element of the debug information
596 struct dfmt **debug_formats;
599 * and a pointer to the element that is being used
600 * note: this is set to the default at compile time and changed if the
601 * -F option is selected. If developing a set of new debug formats for
602 * an output format, be sure to set this to whatever default you want
605 struct dfmt *current_dfmt;
608 * This, if non-NULL, is a NULL-terminated list of `char *'s
609 * pointing to extra standard macros supplied by the object
610 * format (e.g. a sensible initial default value of __SECT__,
611 * and user-level equivalents for any format-specific
612 * directives).
614 char **stdmac;
617 * This procedure is called at the start of an output session.
618 * It tells the output format what file it will be writing to,
619 * what routine to report errors through, and how to interface
620 * to the label manager and expression evaluator if necessary.
621 * It also gives it a chance to do other initialisation.
623 void (*init) (FILE *fp, efunc error, ldfunc ldef, evalfunc eval);
626 * This procedure is called to pass generic information to the
627 * object file. The first parameter gives the information type
628 * (currently only command line switches)
629 * and the second parameter gives the value. This function returns
630 * 1 if recognized, 0 if unrecognized
632 int (*setinfo)(enum geninfo type, char **string);
635 * This procedure is called by assemble() to write actual
636 * generated code or data to the object file. Typically it
637 * doesn't have to actually _write_ it, just store it for
638 * later.
640 * The `type' argument specifies the type of output data, and
641 * usually the size as well: its contents are described below.
643 void (*output) (long segto, void *data, unsigned long type,
644 long segment, long wrt);
647 * This procedure is called once for every symbol defined in
648 * the module being assembled. It gives the name and value of
649 * the symbol, in NASM's terms, and indicates whether it has
650 * been declared to be global. Note that the parameter "name",
651 * when passed, will point to a piece of static storage
652 * allocated inside the label manager - it's safe to keep using
653 * that pointer, because the label manager doesn't clean up
654 * until after the output driver has.
656 * Values of `is_global' are: 0 means the symbol is local; 1
657 * means the symbol is global; 2 means the symbol is common (in
658 * which case `offset' holds the _size_ of the variable).
659 * Anything else is available for the output driver to use
660 * internally.
662 * This routine explicitly _is_ allowed to call the label
663 * manager to define further symbols, if it wants to, even
664 * though it's been called _from_ the label manager. That much
665 * re-entrancy is guaranteed in the label manager. However, the
666 * label manager will in turn call this routine, so it should
667 * be prepared to be re-entrant itself.
669 * The `special' parameter contains special information passed
670 * through from the command that defined the label: it may have
671 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
672 * be obvious to the output format from the other parameters.
674 void (*symdef) (char *name, long segment, long offset, int is_global,
675 char *special);
678 * This procedure is called when the source code requests a
679 * segment change. It should return the corresponding segment
680 * _number_ for the name, or NO_SEG if the name is not a valid
681 * segment name.
683 * It may also be called with NULL, in which case it is to
684 * return the _default_ section number for starting assembly in.
686 * It is allowed to modify the string it is given a pointer to.
688 * It is also allowed to specify a default instruction size for
689 * the segment, by setting `*bits' to 16 or 32. Or, if it
690 * doesn't wish to define a default, it can leave `bits' alone.
692 long (*section) (char *name, int pass, int *bits);
695 * This procedure is called to modify the segment base values
696 * returned from the SEG operator. It is given a segment base
697 * value (i.e. a segment value with the low bit set), and is
698 * required to produce in return a segment value which may be
699 * different. It can map segment bases to absolute numbers by
700 * means of returning SEG_ABS types.
702 * It should return NO_SEG if the segment base cannot be
703 * determined; the evaluator (which calls this routine) is
704 * responsible for throwing an error condition if that occurs
705 * in pass two or in a critical expression.
707 long (*segbase) (long segment);
710 * This procedure is called to allow the output driver to
711 * process its own specific directives. When called, it has the
712 * directive word in `directive' and the parameter string in
713 * `value'. It is called in both assembly passes, and `pass'
714 * will be either 1 or 2.
716 * This procedure should return zero if it does not _recognise_
717 * the directive, so that the main program can report an error.
718 * If it recognises the directive but then has its own errors,
719 * it should report them itself and then return non-zero. It
720 * should also return non-zero if it correctly processes the
721 * directive.
723 int (*directive) (char *directive, char *value, int pass);
726 * This procedure is called before anything else - even before
727 * the "init" routine - and is passed the name of the input
728 * file from which this output file is being generated. It
729 * should return its preferred name for the output file in
730 * `outname', if outname[0] is not '\0', and do nothing to
731 * `outname' otherwise. Since it is called before the driver is
732 * properly initialised, it has to be passed its error handler
733 * separately.
735 * This procedure may also take its own copy of the input file
736 * name for use in writing the output file: it is _guaranteed_
737 * that it will be called before the "init" routine.
739 * The parameter `outname' points to an area of storage
740 * guaranteed to be at least FILENAME_MAX in size.
742 void (*filename) (char *inname, char *outname, efunc error);
745 * This procedure is called after assembly finishes, to allow
746 * the output driver to clean itself up and free its memory.
747 * Typically, it will also be the point at which the object
748 * file actually gets _written_.
750 * One thing the cleanup routine should always do is to close
751 * the output file pointer.
753 void (*cleanup) (int debuginfo);
757 * values for the `type' parameter to an output function. Each one
758 * must have the actual number of _bytes_ added to it.
760 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
761 * which will be a relative jump. For this we need to know the
762 * distance in bytes from the start of the relocated record until
763 * the end of the containing instruction. _This_ is what is stored
764 * in the size part of the parameter, in this case.
766 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
767 * and the contents of the "data" parameter is irrelevant.
769 * The "data" parameter for the output function points to a "long",
770 * containing the address in question, unless the type is
771 * OUT_RAWDATA, in which case it points to an "unsigned char"
772 * array.
774 #define OUT_RAWDATA 0x00000000UL
775 #define OUT_ADDRESS 0x10000000UL
776 #define OUT_REL2ADR 0x20000000UL
777 #define OUT_REL4ADR 0x30000000UL
778 #define OUT_RESERVE 0x40000000UL
779 #define OUT_TYPMASK 0xF0000000UL
780 #define OUT_SIZMASK 0x0FFFFFFFUL
783 * ------------------------------------------------------------
784 * The data structure defining a debug format driver, and the
785 * interfaces to the functions therein.
786 * ------------------------------------------------------------
789 struct dfmt {
792 * This is a short (one-liner) description of the type of
793 * output generated by the driver.
795 char *fullname;
798 * This is a single keyword used to select the driver.
800 char *shortname;
804 * init - called initially to set up local pointer to object format,
805 * void pointer to implementation defined data, file pointer (which
806 * probably won't be used, but who knows?), and error function.
808 void (*init) (struct ofmt * of, void * id, FILE * fp, efunc error);
811 * linenum - called any time there is output with a change of
812 * line number or file.
814 void (*linenum) (const char * filename, long linenumber, long segto);
817 * debug_deflabel - called whenever a label is defined. Parameters
818 * are the same as to 'symdef()' in the output format. This function
819 * would be called before the output format version.
822 void (*debug_deflabel) (char * name, long segment, long offset,
823 int is_global, char * special);
825 * debug_directive - called whenever a DEBUG directive other than 'LINE'
826 * is encountered. 'directive' contains the first parameter to the
827 * DEBUG directive, and params contains the rest. For example,
828 * 'DEBUG VAR _somevar:int' would translate to a call to this
829 * function with 'directive' equal to "VAR" and 'params' equal to
830 * "_somevar:int".
832 void (*debug_directive) (const char * directive, const char * params);
835 * typevalue - called whenever the assembler wishes to register a type
836 * for the last defined label. This routine MUST detect if a type was
837 * already registered and not re-register it.
839 void (*debug_typevalue) (long type);
842 * debug_output - called whenever output is required
843 * 'type' is the type of info required, and this is format-specific
845 void (*debug_output) (int type, void *param);
848 * cleanup - called after processing of file is complete
850 void (*cleanup) (void);
854 * The type definition macros
855 * for debugging
857 * low 3 bits: reserved
858 * next 5 bits: type
859 * next 24 bits: number of elements for arrays (0 for labels)
862 #define TY_UNKNOWN 0x00
863 #define TY_LABEL 0x08
864 #define TY_BYTE 0x10
865 #define TY_WORD 0x18
866 #define TY_DWORD 0x20
867 #define TY_FLOAT 0x28
868 #define TY_QWORD 0x30
869 #define TY_TBYTE 0x38
870 #define TY_COMMON 0xE0
871 #define TY_SEG 0xE8
872 #define TY_EXTERN 0xF0
873 #define TY_EQU 0xF8
875 #define TYM_TYPE(x) ((x) & 0xF8)
876 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
878 #define TYS_ELEMENTS(x) ((x) << 8)
880 * -----
881 * Other
882 * -----
886 * This is a useful #define which I keep meaning to use more often:
887 * the number of elements of a statically defined array.
890 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
892 #endif