1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * assemble.c code generation for the Netwide Assembler
37 * the actual codes (C syntax, i.e. octal):
38 * \0 - terminates the code. (Unless it's a literal of course.)
39 * \1..\4 - that many literal bytes follow in the code stream
40 * \5 - add 4 to the primary operand number (b, low octdigit)
41 * \6 - add 4 to the secondary operand number (a, middle octdigit)
42 * \7 - add 4 to both the primary and the secondary operand number
43 * \10..\13 - a literal byte follows in the code stream, to be added
44 * to the register value of operand 0..3
45 * \14..\17 - a signed byte immediate operand, from operand 0..3
46 * \20..\23 - a byte immediate operand, from operand 0..3
47 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
48 * \30..\33 - a word immediate operand, from operand 0..3
49 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
50 * assembly mode or the operand-size override on the operand
51 * \40..\43 - a long immediate operand, from operand 0..3
52 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
53 * depending on the address size of the instruction.
54 * \50..\53 - a byte relative operand, from operand 0..3
55 * \54..\57 - a qword immediate operand, from operand 0..3
56 * \60..\63 - a word relative operand, from operand 0..3
57 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
58 * assembly mode or the operand-size override on the operand
59 * \70..\73 - a long relative operand, from operand 0..3
60 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
61 * \1ab - a ModRM, calculated on EA in operand a, with the spare
62 * field the register value of operand b.
63 * \140..\143 - an immediate word or signed byte for operand 0..3
64 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
65 * is a signed byte rather than a word. Opcode byte follows.
66 * \150..\153 - an immediate dword or signed byte for operand 0..3
67 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
68 * is a signed byte rather than a dword. Opcode byte follows.
69 * \160..\163 - this instruction uses DREX rather than REX, with the
70 * OC0 field set to 0, and the dest field taken from
72 * \164..\167 - this instruction uses DREX rather than REX, with the
73 * OC0 field set to 1, and the dest field taken from
75 * \171 - placement of DREX suffix in the absence of an EA
76 * \172\ab - the register number from operand a in bits 7..4, with
77 * the 4-bit immediate from operand b in bits 3..0.
78 * \173\xab - the register number from operand a in bits 7..4, with
79 * the value b in bits 3..0.
80 * \174\a - the register number from operand a in bits 7..4, and
81 * an arbitrary value in bits 3..0 (assembled as zero.)
82 * \2ab - a ModRM, calculated on EA in operand a, with the spare
83 * field equal to digit b.
84 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
85 * is not equal to the truncated and sign-extended 32-bit
86 * operand; used for 32-bit immediates in 64-bit mode.
87 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
88 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
89 * V field taken from operand 0..3.
90 * \270 - this instruction uses VEX/XOP rather than REX, with the
91 * V field set to 1111b.
93 * VEX/XOP prefixes are followed by the sequence:
94 * \tmm\wlp where mm is the M field; and wlp is:
96 * [w0] ww = 0 for W = 0
97 * [w1] ww = 1 for W = 1
98 * [wx] ww = 2 for W don't care (always assembled as 0)
99 * [ww] ww = 3 for W used as REX.W
101 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
103 * \274..\277 - a signed byte immediate operand, from operand 0..3,
104 * which is to be extended to the operand size.
105 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
106 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
107 * \312 - (disassembler only) invalid with non-default address size.
108 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
109 * \314 - (disassembler only) invalid with REX.B
110 * \315 - (disassembler only) invalid with REX.X
111 * \316 - (disassembler only) invalid with REX.R
112 * \317 - (disassembler only) invalid with REX.W
113 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
114 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
115 * \322 - indicates that this instruction is only valid when the
116 * operand size is the default (instruction to disassembler,
117 * generates no code in the assembler)
118 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
119 * \324 - indicates 64-bit operand size requiring REX prefix.
120 * \325 - instruction which always uses spl/bpl/sil/dil
121 * \330 - a literal byte follows in the code stream, to be added
122 * to the condition code value of the instruction.
123 * \331 - instruction not valid with REP prefix. Hint for
124 * disassembler only; for SSE instructions.
125 * \332 - REP prefix (0xF2 byte) used as opcode extension.
126 * \333 - REP prefix (0xF3 byte) used as opcode extension.
127 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
128 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
129 * \336 - force a REP(E) prefix (0xF2) even if not specified.
130 * \337 - force a REPNE prefix (0xF3) even if not specified.
131 * \336-\337 are still listed as prefixes in the disassembler.
132 * \340 - reserve <operand 0> bytes of uninitialized storage.
133 * Operand 0 had better be a segmentless constant.
134 * \341 - this instruction needs a WAIT "prefix"
135 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
136 * (POP is never used for CS) depending on operand 0
137 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
139 * \360 - no SSE prefix (== \364\331)
140 * \361 - 66 SSE prefix (== \366\331)
141 * \362 - F2 SSE prefix (== \364\332)
142 * \363 - F3 SSE prefix (== \364\333)
143 * \364 - operand-size prefix (0x66) not permitted
144 * \365 - address-size prefix (0x67) not permitted
145 * \366 - operand-size prefix (0x66) used as opcode extension
146 * \367 - address-size prefix (0x67) used as opcode extension
147 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
148 * 370 is used for Jcc, 371 is used for JMP.
149 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
150 * used for conditional jump over longer jump
153 #include "compiler.h"
157 #include <inttypes.h>
161 #include "assemble.h"
167 * Matching errors. These should be sorted so that more specific
168 * errors come later in the sequence.
176 * Matching success; the conditional ones first
178 MOK_JUMP
, /* Matching OK but needs jmp_match() */
179 MOK_GOOD
/* Matching unconditionally OK */
183 int sib_present
; /* is a SIB byte necessary? */
184 int bytes
; /* # of bytes of offset needed */
185 int size
; /* lazy - this is sib+bytes+1 */
186 uint8_t modrm
, sib
, rex
, rip
; /* the bytes themselves */
189 static uint32_t cpu
; /* cpu level received from nasm.c */
190 static efunc errfunc
;
191 static struct ofmt
*outfmt
;
192 static ListGen
*list
;
194 static int64_t calcsize(int32_t, int64_t, int, insn
*, const uint8_t *);
195 static void gencode(int32_t segment
, int64_t offset
, int bits
,
196 insn
* ins
, const struct itemplate
*temp
,
198 static enum match_result
find_match(const struct itemplate
**tempp
,
200 int32_t segment
, int64_t offset
, int bits
);
201 static enum match_result
matches(const struct itemplate
*, insn
*, int bits
);
202 static int32_t regflag(const operand
*);
203 static int32_t regval(const operand
*);
204 static int rexflags(int, int32_t, int);
205 static int op_rexflags(const operand
*, int);
206 static ea
*process_ea(operand
*, ea
*, int, int, int, int32_t);
207 static void add_asp(insn
*, int);
209 static int has_prefix(insn
* ins
, enum prefix_pos pos
, enum prefixes prefix
)
211 return ins
->prefixes
[pos
] == prefix
;
214 static void assert_no_prefix(insn
* ins
, enum prefix_pos pos
)
216 if (ins
->prefixes
[pos
])
217 errfunc(ERR_NONFATAL
, "invalid %s prefix",
218 prefix_name(ins
->prefixes
[pos
]));
221 static const char *size_name(int size
)
243 static void warn_overflow(int pass
, int size
)
245 errfunc(ERR_WARNING
| pass
| ERR_WARN_NOV
,
246 "%s data exceeds bounds", size_name(size
));
249 static void warn_overflow_const(int64_t data
, int size
)
251 if (overflow_general(data
, size
))
252 warn_overflow(ERR_PASS1
, size
);
255 static void warn_overflow_opd(const struct operand
*o
, int size
)
257 if (size
< 8 && o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
) {
258 if (overflow_general(o
->offset
, size
))
259 warn_overflow(ERR_PASS2
, size
);
264 * This routine wrappers the real output format's output routine,
265 * in order to pass a copy of the data off to the listing file
266 * generator at the same time.
268 static void out(int64_t offset
, int32_t segto
, const void *data
,
269 enum out_type type
, uint64_t size
,
270 int32_t segment
, int32_t wrt
)
272 static int32_t lineno
= 0; /* static!!! */
273 static char *lnfname
= NULL
;
276 if (type
== OUT_ADDRESS
&& segment
== NO_SEG
&& wrt
== NO_SEG
) {
278 * This is a non-relocated address, and we're going to
279 * convert it into RAWDATA format.
284 errfunc(ERR_PANIC
, "OUT_ADDRESS with size > 8");
288 WRITEADDR(q
, *(int64_t *)data
, size
);
293 list
->output(offset
, data
, type
, size
);
296 * this call to src_get determines when we call the
297 * debug-format-specific "linenum" function
298 * it updates lineno and lnfname to the current values
299 * returning 0 if "same as last time", -2 if lnfname
300 * changed, and the amount by which lineno changed,
301 * if it did. thus, these variables must be static
304 if (src_get(&lineno
, &lnfname
)) {
305 outfmt
->current_dfmt
->linenum(lnfname
, lineno
, segto
);
308 outfmt
->output(segto
, data
, type
, size
, segment
, wrt
);
311 static bool jmp_match(int32_t segment
, int64_t offset
, int bits
,
312 insn
* ins
, const uint8_t *code
)
317 if ((c
!= 0370 && c
!= 0371) || (ins
->oprs
[0].type
& STRICT
))
321 if (optimizing
< 0 && c
== 0371)
324 isize
= calcsize(segment
, offset
, bits
, ins
, code
);
326 if (ins
->oprs
[0].opflags
& OPFLAG_UNKNOWN
)
327 /* Be optimistic in pass 1 */
330 if (ins
->oprs
[0].segment
!= segment
)
333 isize
= ins
->oprs
[0].offset
- offset
- isize
; /* isize is delta */
334 return (isize
>= -128 && isize
<= 127); /* is it byte size? */
337 int64_t assemble(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
338 insn
* instruction
, struct ofmt
*output
, efunc error
,
341 const struct itemplate
*temp
;
346 int64_t start
= offset
;
347 int64_t wsize
= 0; /* size for DB etc. */
349 errfunc
= error
; /* to pass to other functions */
351 outfmt
= output
; /* likewise */
352 list
= listgen
; /* and again */
354 switch (instruction
->opcode
) {
384 int32_t t
= instruction
->times
;
387 "instruction->times < 0 (%ld) in assemble()", t
);
389 while (t
--) { /* repeat TIMES times */
390 list_for_each(e
, instruction
->eops
) {
391 if (e
->type
== EOT_DB_NUMBER
) {
393 if (e
->segment
!= NO_SEG
)
394 errfunc(ERR_NONFATAL
,
395 "one-byte relocation attempted");
397 uint8_t out_byte
= e
->offset
;
398 out(offset
, segment
, &out_byte
,
399 OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
401 } else if (wsize
> 8) {
402 errfunc(ERR_NONFATAL
,
403 "integer supplied to a DT, DO or DY"
406 out(offset
, segment
, &e
->offset
,
407 OUT_ADDRESS
, wsize
, e
->segment
, e
->wrt
);
409 } else if (e
->type
== EOT_DB_STRING
||
410 e
->type
== EOT_DB_STRING_FREE
) {
413 out(offset
, segment
, e
->stringval
,
414 OUT_RAWDATA
, e
->stringlen
, NO_SEG
, NO_SEG
);
415 align
= e
->stringlen
% wsize
;
418 align
= wsize
- align
;
419 out(offset
, segment
, zero_buffer
,
420 OUT_RAWDATA
, align
, NO_SEG
, NO_SEG
);
422 offset
+= e
->stringlen
+ align
;
425 if (t
> 0 && t
== instruction
->times
- 1) {
427 * Dummy call to list->output to give the offset to the
430 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
431 list
->uplevel(LIST_TIMES
);
434 if (instruction
->times
> 1)
435 list
->downlevel(LIST_TIMES
);
436 return offset
- start
;
439 if (instruction
->opcode
== I_INCBIN
) {
440 const char *fname
= instruction
->eops
->stringval
;
443 fp
= fopen(fname
, "rb");
445 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
447 } else if (fseek(fp
, 0L, SEEK_END
) < 0) {
448 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
451 static char buf
[4096];
452 size_t t
= instruction
->times
;
457 if (instruction
->eops
->next
) {
458 base
= instruction
->eops
->next
->offset
;
460 if (instruction
->eops
->next
->next
&&
461 len
> (size_t)instruction
->eops
->next
->next
->offset
)
462 len
= (size_t)instruction
->eops
->next
->next
->offset
;
465 * Dummy call to list->output to give the offset to the
468 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
469 list
->uplevel(LIST_INCBIN
);
473 fseek(fp
, base
, SEEK_SET
);
477 m
= fread(buf
, 1, l
> sizeof(buf
) ? sizeof(buf
) : l
, fp
);
480 * This shouldn't happen unless the file
481 * actually changes while we are reading
485 "`incbin': unexpected EOF while"
486 " reading file `%s'", fname
);
487 t
= 0; /* Try to exit cleanly */
490 out(offset
, segment
, buf
, OUT_RAWDATA
, m
,
495 list
->downlevel(LIST_INCBIN
);
496 if (instruction
->times
> 1) {
498 * Dummy call to list->output to give the offset to the
501 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
502 list
->uplevel(LIST_TIMES
);
503 list
->downlevel(LIST_TIMES
);
506 return instruction
->times
* len
;
508 return 0; /* if we're here, there's an error */
511 /* Check to see if we need an address-size prefix */
512 add_asp(instruction
, bits
);
514 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
518 int64_t insn_size
= calcsize(segment
, offset
, bits
,
519 instruction
, temp
->code
);
520 itimes
= instruction
->times
;
521 if (insn_size
< 0) /* shouldn't be, on pass two */
522 error(ERR_PANIC
, "errors made it through from pass one");
525 for (j
= 0; j
< MAXPREFIX
; j
++) {
527 switch (instruction
->prefixes
[j
]) {
545 error(ERR_WARNING
| ERR_PASS2
,
546 "cs segment base generated, but will be ignored in 64-bit mode");
552 error(ERR_WARNING
| ERR_PASS2
,
553 "ds segment base generated, but will be ignored in 64-bit mode");
559 error(ERR_WARNING
| ERR_PASS2
,
560 "es segment base generated, but will be ignored in 64-bit mode");
572 error(ERR_WARNING
| ERR_PASS2
,
573 "ss segment base generated, but will be ignored in 64-bit mode");
580 "segr6 and segr7 cannot be used as prefixes");
585 "16-bit addressing is not supported "
587 } else if (bits
!= 16)
597 "64-bit addressing is only supported "
621 error(ERR_PANIC
, "invalid instruction prefix");
624 out(offset
, segment
, &c
, OUT_RAWDATA
, 1,
629 insn_end
= offset
+ insn_size
;
630 gencode(segment
, offset
, bits
, instruction
,
633 if (itimes
> 0 && itimes
== instruction
->times
- 1) {
635 * Dummy call to list->output to give the offset to the
638 list
->output(offset
, NULL
, OUT_RAWDATA
, 0);
639 list
->uplevel(LIST_TIMES
);
642 if (instruction
->times
> 1)
643 list
->downlevel(LIST_TIMES
);
644 return offset
- start
;
648 case MERR_OPSIZEMISSING
:
649 error(ERR_NONFATAL
, "operation size not specified");
651 case MERR_OPSIZEMISMATCH
:
652 error(ERR_NONFATAL
, "mismatch in operand sizes");
655 error(ERR_NONFATAL
, "no instruction for this cpu level");
658 error(ERR_NONFATAL
, "instruction not supported in %d-bit mode",
663 "invalid combination of opcode and operands");
670 int64_t insn_size(int32_t segment
, int64_t offset
, int bits
, uint32_t cp
,
671 insn
* instruction
, efunc error
)
673 const struct itemplate
*temp
;
676 errfunc
= error
; /* to pass to other functions */
679 if (instruction
->opcode
== I_none
)
682 if (instruction
->opcode
== I_DB
|| instruction
->opcode
== I_DW
||
683 instruction
->opcode
== I_DD
|| instruction
->opcode
== I_DQ
||
684 instruction
->opcode
== I_DT
|| instruction
->opcode
== I_DO
||
685 instruction
->opcode
== I_DY
) {
687 int32_t isize
, osize
, wsize
= 0; /* placate gcc */
690 switch (instruction
->opcode
) {
716 list_for_each(e
, instruction
->eops
) {
720 if (e
->type
== EOT_DB_NUMBER
) {
722 warn_overflow_const(e
->offset
, wsize
);
723 } else if (e
->type
== EOT_DB_STRING
||
724 e
->type
== EOT_DB_STRING_FREE
)
725 osize
= e
->stringlen
;
727 align
= (-osize
) % wsize
;
730 isize
+= osize
+ align
;
732 return isize
* instruction
->times
;
735 if (instruction
->opcode
== I_INCBIN
) {
736 const char *fname
= instruction
->eops
->stringval
;
740 fp
= fopen(fname
, "rb");
742 error(ERR_NONFATAL
, "`incbin': unable to open file `%s'",
744 else if (fseek(fp
, 0L, SEEK_END
) < 0)
745 error(ERR_NONFATAL
, "`incbin': unable to seek on file `%s'",
750 if (instruction
->eops
->next
) {
751 len
-= instruction
->eops
->next
->offset
;
752 if (instruction
->eops
->next
->next
&&
753 len
> (size_t)instruction
->eops
->next
->next
->offset
) {
754 len
= (size_t)instruction
->eops
->next
->next
->offset
;
757 return instruction
->times
* len
;
759 return 0; /* if we're here, there's an error */
762 /* Check to see if we need an address-size prefix */
763 add_asp(instruction
, bits
);
765 m
= find_match(&temp
, instruction
, segment
, offset
, bits
);
767 /* we've matched an instruction. */
769 const uint8_t *codes
= temp
->code
;
772 isize
= calcsize(segment
, offset
, bits
, instruction
, codes
);
775 for (j
= 0; j
< MAXPREFIX
; j
++) {
776 switch (instruction
->prefixes
[j
]) {
802 return isize
* instruction
->times
;
804 return -1; /* didn't match any instruction */
808 static bool possible_sbyte(operand
*o
)
810 return o
->wrt
== NO_SEG
&& o
->segment
== NO_SEG
&&
811 !(o
->opflags
& OPFLAG_UNKNOWN
) &&
812 optimizing
>= 0 && !(o
->type
& STRICT
);
815 /* check that opn[op] is a signed byte of size 16 or 32 */
816 static bool is_sbyte16(operand
*o
)
820 if (!possible_sbyte(o
))
824 return v
>= -128 && v
<= 127;
827 static bool is_sbyte32(operand
*o
)
831 if (!possible_sbyte(o
))
835 return v
>= -128 && v
<= 127;
838 /* Common construct */
839 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
841 static int64_t calcsize(int32_t segment
, int64_t offset
, int bits
,
842 insn
* ins
, const uint8_t *codes
)
851 ins
->rex
= 0; /* Ensure REX is reset */
853 if (ins
->prefixes
[PPS_OSIZE
] == P_O64
)
856 (void)segment
; /* Don't warn that this parameter is unused */
857 (void)offset
; /* Don't warn that this parameter is unused */
861 op1
= (c
& 3) + ((opex
& 1) << 2);
862 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
863 opx
= &ins
->oprs
[op1
];
864 opex
= 0; /* For the next iteration */
871 codes
+= c
, length
+= c
;
882 op_rexflags(opx
, REX_B
|REX_H
|REX_P
|REX_W
);
897 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
898 length
+= (opx
->type
& BITS16
) ? 2 : 4;
900 length
+= (bits
== 16) ? 2 : 4;
908 length
+= ins
->addr_size
>> 3;
916 length
+= 8; /* MOV reg64/imm */
924 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
925 length
+= (opx
->type
& BITS16
) ? 2 : 4;
927 length
+= (bits
== 16) ? 2 : 4;
939 length
+= is_sbyte16(opx
) ? 1 : 2;
948 length
+= is_sbyte32(opx
) ? 1 : 4;
959 ins
->drexdst
= regval(opx
);
964 ins
->rex
|= REX_D
|REX_OC
;
965 ins
->drexdst
= regval(opx
);
979 length
+= is_sbyte32(opx
) ? 1 : 4;
988 ins
->drexdst
= regval(opx
);
989 ins
->vex_cm
= *codes
++;
990 ins
->vex_wlp
= *codes
++;
996 ins
->vex_cm
= *codes
++;
997 ins
->vex_wlp
= *codes
++;
1010 length
+= (bits
!= 16) && !has_prefix(ins
, PPS_ASIZE
, P_A16
);
1014 length
+= (bits
!= 32) && !has_prefix(ins
, PPS_ASIZE
, P_A32
);
1021 if (bits
!= 64 || has_prefix(ins
, PPS_ASIZE
, P_A16
) ||
1022 has_prefix(ins
, PPS_ASIZE
, P_A32
))
1030 length
+= (bits
!= 16);
1034 length
+= (bits
== 16);
1072 if (!ins
->prefixes
[PPS_LREP
])
1073 ins
->prefixes
[PPS_LREP
] = P_REP
;
1077 if (!ins
->prefixes
[PPS_LREP
])
1078 ins
->prefixes
[PPS_LREP
] = P_REPNE
;
1082 if (ins
->oprs
[0].segment
!= NO_SEG
)
1083 errfunc(ERR_NONFATAL
, "attempt to reserve non-constant"
1084 " quantity of BSS space");
1086 length
+= ins
->oprs
[0].offset
;
1090 if (!ins
->prefixes
[PPS_WAIT
])
1091 ins
->prefixes
[PPS_WAIT
] = P_WAIT
;
1141 struct operand
*opy
= &ins
->oprs
[op2
];
1143 ea_data
.rex
= 0; /* Ensure ea.REX is initially 0 */
1146 /* pick rfield from operand b (opx) */
1147 rflags
= regflag(opx
);
1148 rfield
= nasm_regvals
[opx
->basereg
];
1153 if (!process_ea(opy
, &ea_data
, bits
,
1154 ins
->addr_size
, rfield
, rflags
)) {
1155 errfunc(ERR_NONFATAL
, "invalid effective address");
1158 ins
->rex
|= ea_data
.rex
;
1159 length
+= ea_data
.size
;
1165 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1166 ": instruction code \\%o (0x%02X) given", c
, c
);
1171 ins
->rex
&= rex_mask
;
1173 if (ins
->rex
& REX_NH
) {
1174 if (ins
->rex
& REX_H
) {
1175 errfunc(ERR_NONFATAL
, "instruction cannot use high registers");
1178 ins
->rex
&= ~REX_P
; /* Don't force REX prefix due to high reg */
1181 if (ins
->rex
& REX_V
) {
1182 int bad32
= REX_R
|REX_W
|REX_X
|REX_B
;
1184 if (ins
->rex
& REX_H
) {
1185 errfunc(ERR_NONFATAL
, "cannot use high register in vex instruction");
1188 switch (ins
->vex_wlp
& 030) {
1202 if (bits
!= 64 && ((ins
->rex
& bad32
) || ins
->drexdst
> 7)) {
1203 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1206 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_R
|REX_B
)))
1210 } else if (ins
->rex
& REX_D
) {
1211 if (ins
->rex
& REX_H
) {
1212 errfunc(ERR_NONFATAL
, "cannot use high register in drex instruction");
1215 if (bits
!= 64 && ((ins
->rex
& (REX_R
|REX_W
|REX_X
|REX_B
)) ||
1216 ins
->drexdst
> 7)) {
1217 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1221 } else if (ins
->rex
& REX_REAL
) {
1222 if (ins
->rex
& REX_H
) {
1223 errfunc(ERR_NONFATAL
, "cannot use high register in rex instruction");
1225 } else if (bits
== 64) {
1227 } else if ((ins
->rex
& REX_L
) &&
1228 !(ins
->rex
& (REX_P
|REX_W
|REX_X
|REX_B
)) &&
1231 assert_no_prefix(ins
, PPS_LREP
);
1234 errfunc(ERR_NONFATAL
, "invalid operands in non-64-bit mode");
1242 #define EMIT_REX() \
1243 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1244 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1245 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1250 static void gencode(int32_t segment
, int64_t offset
, int bits
,
1251 insn
* ins
, const struct itemplate
*temp
,
1254 static char condval
[] = { /* conditional opcodes */
1255 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1256 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1257 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1264 struct operand
*opx
;
1265 const uint8_t *codes
= temp
->code
;
1270 op1
= (c
& 3) + ((opex
& 1) << 2);
1271 op2
= ((c
>> 3) & 3) + ((opex
& 2) << 1);
1272 opx
= &ins
->oprs
[op1
];
1273 opex
= 0; /* For the next iteration */
1281 out(offset
, segment
, codes
, OUT_RAWDATA
, c
, NO_SEG
, NO_SEG
);
1294 bytes
[0] = *codes
++ + (regval(opx
) & 7);
1295 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1300 /* The test for BITS8 and SBYTE here is intended to avoid
1301 warning on optimizer actions due to SBYTE, while still
1302 warn on explicit BYTE directives. Also warn, obviously,
1303 if the optimizer isn't enabled. */
1304 if (((opx
->type
& BITS8
) ||
1305 !(opx
->type
& temp
->opd
[op1
] & BYTENESS
)) &&
1306 (opx
->offset
< -128 || opx
->offset
> 127)) {
1307 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1308 "signed byte value exceeds bounds");
1310 if (opx
->segment
!= NO_SEG
) {
1312 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1313 opx
->segment
, opx
->wrt
);
1315 bytes
[0] = opx
->offset
;
1316 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1323 if (opx
->offset
< -256 || opx
->offset
> 255) {
1324 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1325 "byte value exceeds bounds");
1327 if (opx
->segment
!= NO_SEG
) {
1329 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1330 opx
->segment
, opx
->wrt
);
1332 bytes
[0] = opx
->offset
;
1333 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1340 if (opx
->offset
< 0 || opx
->offset
> 255)
1341 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1342 "unsigned byte value exceeds bounds");
1343 if (opx
->segment
!= NO_SEG
) {
1345 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1346 opx
->segment
, opx
->wrt
);
1348 bytes
[0] = opx
->offset
;
1349 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1356 warn_overflow_opd(opx
, 2);
1358 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1359 opx
->segment
, opx
->wrt
);
1364 if (opx
->type
& (BITS16
| BITS32
))
1365 size
= (opx
->type
& BITS16
) ? 2 : 4;
1367 size
= (bits
== 16) ? 2 : 4;
1368 warn_overflow_opd(opx
, size
);
1370 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1371 opx
->segment
, opx
->wrt
);
1376 warn_overflow_opd(opx
, 4);
1378 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1379 opx
->segment
, opx
->wrt
);
1385 size
= ins
->addr_size
>> 3;
1386 warn_overflow_opd(opx
, size
);
1387 out(offset
, segment
, &data
, OUT_ADDRESS
, size
,
1388 opx
->segment
, opx
->wrt
);
1393 if (opx
->segment
!= segment
)
1394 errfunc(ERR_NONFATAL
,
1395 "short relative jump outside segment");
1396 data
= opx
->offset
- insn_end
;
1397 if (data
> 127 || data
< -128)
1398 errfunc(ERR_NONFATAL
, "short jump is out of range");
1400 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1405 data
= (int64_t)opx
->offset
;
1406 out(offset
, segment
, &data
, OUT_ADDRESS
, 8,
1407 opx
->segment
, opx
->wrt
);
1412 if (opx
->segment
!= segment
) {
1414 out(offset
, segment
, &data
,
1415 OUT_REL2ADR
, insn_end
- offset
,
1416 opx
->segment
, opx
->wrt
);
1418 data
= opx
->offset
- insn_end
;
1419 out(offset
, segment
, &data
,
1420 OUT_ADDRESS
, 2, NO_SEG
, NO_SEG
);
1426 if (opx
->type
& (BITS16
| BITS32
| BITS64
))
1427 size
= (opx
->type
& BITS16
) ? 2 : 4;
1429 size
= (bits
== 16) ? 2 : 4;
1430 if (opx
->segment
!= segment
) {
1432 out(offset
, segment
, &data
,
1433 size
== 2 ? OUT_REL2ADR
: OUT_REL4ADR
,
1434 insn_end
- offset
, opx
->segment
, opx
->wrt
);
1436 data
= opx
->offset
- insn_end
;
1437 out(offset
, segment
, &data
,
1438 OUT_ADDRESS
, size
, NO_SEG
, NO_SEG
);
1444 if (opx
->segment
!= segment
) {
1446 out(offset
, segment
, &data
,
1447 OUT_REL4ADR
, insn_end
- offset
,
1448 opx
->segment
, opx
->wrt
);
1450 data
= opx
->offset
- insn_end
;
1451 out(offset
, segment
, &data
,
1452 OUT_ADDRESS
, 4, NO_SEG
, NO_SEG
);
1458 if (opx
->segment
== NO_SEG
)
1459 errfunc(ERR_NONFATAL
, "value referenced by FAR is not"
1462 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1463 outfmt
->segbase(1 + opx
->segment
),
1470 warn_overflow_opd(opx
, 2);
1471 if (is_sbyte16(opx
)) {
1473 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1477 out(offset
, segment
, &data
, OUT_ADDRESS
, 2,
1478 opx
->segment
, opx
->wrt
);
1485 bytes
[0] = *codes
++;
1486 if (is_sbyte16(opx
))
1487 bytes
[0] |= 2; /* s-bit */
1488 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1494 warn_overflow_opd(opx
, 4);
1495 if (is_sbyte32(opx
)) {
1497 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1501 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1502 opx
->segment
, opx
->wrt
);
1509 bytes
[0] = *codes
++;
1510 if (is_sbyte32(opx
))
1511 bytes
[0] |= 2; /* s-bit */
1512 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1522 (ins
->drexdst
<< 4) |
1523 (ins
->rex
& REX_OC
? 0x08 : 0) |
1524 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1526 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1532 opx
= &ins
->oprs
[c
>> 3];
1533 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1534 opx
= &ins
->oprs
[c
& 7];
1535 if (opx
->segment
!= NO_SEG
|| opx
->wrt
!= NO_SEG
) {
1536 errfunc(ERR_NONFATAL
,
1537 "non-absolute expression not permitted as argument %d",
1540 if (opx
->offset
& ~15) {
1541 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1542 "four-bit argument exceeds bounds");
1544 bytes
[0] |= opx
->offset
& 15;
1546 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1552 opx
= &ins
->oprs
[c
>> 4];
1553 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1555 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1561 opx
= &ins
->oprs
[c
];
1562 bytes
[0] = nasm_regvals
[opx
->basereg
] << 4;
1563 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1569 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1570 (int32_t)data
!= (int64_t)data
) {
1571 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1572 "signed dword immediate exceeds bounds");
1574 if (is_sbyte32(opx
)) {
1576 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1580 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1581 opx
->segment
, opx
->wrt
);
1588 if (opx
->wrt
== NO_SEG
&& opx
->segment
== NO_SEG
&&
1589 (int32_t)data
!= (int64_t)data
) {
1590 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1591 "signed dword immediate exceeds bounds");
1593 out(offset
, segment
, &data
, OUT_ADDRESS
, 4,
1594 opx
->segment
, opx
->wrt
);
1601 if (ins
->vex_cm
!= 1 || (ins
->rex
& (REX_W
|REX_X
|REX_B
))) {
1602 bytes
[0] = (ins
->vex_cm
>> 6) ? 0x8f : 0xc4;
1603 bytes
[1] = (ins
->vex_cm
& 31) | ((~ins
->rex
& 7) << 5);
1604 bytes
[2] = ((ins
->rex
& REX_W
) << (7-3)) |
1605 ((~ins
->drexdst
& 15)<< 3) | (ins
->vex_wlp
& 07);
1606 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 3, NO_SEG
, NO_SEG
);
1610 bytes
[1] = ((~ins
->rex
& REX_R
) << (7-2)) |
1611 ((~ins
->drexdst
& 15) << 3) | (ins
->vex_wlp
& 07);
1612 out(offset
, segment
, &bytes
, OUT_RAWDATA
, 2, NO_SEG
, NO_SEG
);
1622 if (ins
->rex
& REX_W
)
1624 else if (ins
->prefixes
[PPS_OSIZE
] == P_O16
)
1626 else if (ins
->prefixes
[PPS_OSIZE
] == P_O32
)
1631 um
= (uint64_t)2 << (s
-1);
1634 if (uv
> 127 && uv
< (uint64_t)-128 &&
1635 (uv
< um
-128 || uv
> um
-1)) {
1636 errfunc(ERR_WARNING
| ERR_PASS2
| ERR_WARN_NOV
,
1637 "signed byte value exceeds bounds");
1639 if (opx
->segment
!= NO_SEG
) {
1641 out(offset
, segment
, &data
, OUT_ADDRESS
, 1,
1642 opx
->segment
, opx
->wrt
);
1645 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
,
1656 if (bits
== 32 && !has_prefix(ins
, PPS_ASIZE
, P_A16
)) {
1658 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1665 if (bits
!= 32 && !has_prefix(ins
, PPS_ASIZE
, P_A32
)) {
1667 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1686 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1695 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1713 *bytes
= *codes
++ ^ condval
[ins
->condition
];
1714 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1723 *bytes
= c
- 0332 + 0xF2;
1724 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1729 if (ins
->rex
& REX_R
) {
1731 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1734 ins
->rex
&= ~(REX_L
|REX_R
);
1745 if (ins
->oprs
[0].segment
!= NO_SEG
)
1746 errfunc(ERR_PANIC
, "non-constant BSS size in pass two");
1748 int64_t size
= ins
->oprs
[0].offset
;
1750 out(offset
, segment
, NULL
,
1751 OUT_RESERVE
, size
, NO_SEG
, NO_SEG
);
1762 switch (ins
->oprs
[0].basereg
) {
1777 "bizarre 8086 segment register received");
1779 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1786 switch (ins
->oprs
[0].basereg
) {
1795 "bizarre 386 segment register received");
1797 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1806 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1812 bytes
[0] = c
- 0362 + 0xf2;
1813 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1823 *bytes
= c
- 0366 + 0x66;
1824 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1834 *bytes
= bits
== 16 ? 3 : 5;
1835 out(offset
, segment
, bytes
, OUT_RAWDATA
, 1, NO_SEG
, NO_SEG
);
1858 struct operand
*opy
= &ins
->oprs
[op2
];
1861 /* pick rfield from operand b (opx) */
1862 rflags
= regflag(opx
);
1863 rfield
= nasm_regvals
[opx
->basereg
];
1865 /* rfield is constant */
1870 if (!process_ea(opy
, &ea_data
, bits
, ins
->addr_size
,
1872 errfunc(ERR_NONFATAL
, "invalid effective address");
1877 *p
++ = ea_data
.modrm
;
1878 if (ea_data
.sib_present
)
1881 /* DREX suffixes come between the SIB and the displacement */
1882 if (ins
->rex
& REX_D
) {
1883 *p
++ = (ins
->drexdst
<< 4) |
1884 (ins
->rex
& REX_OC
? 0x08 : 0) |
1885 (ins
->rex
& (REX_R
|REX_X
|REX_B
));
1890 out(offset
, segment
, bytes
, OUT_RAWDATA
, s
, NO_SEG
, NO_SEG
);
1893 * Make sure the address gets the right offset in case
1894 * the line breaks in the .lst file (BR 1197827)
1899 switch (ea_data
.bytes
) {
1907 warn_overflow_opd(opy
, ea_data
.bytes
);
1910 if (opy
->segment
== segment
) {
1912 out(offset
, segment
, &data
, OUT_ADDRESS
,
1913 ea_data
.bytes
, NO_SEG
, NO_SEG
);
1915 out(offset
, segment
, &data
, OUT_REL4ADR
,
1916 insn_end
- offset
, opy
->segment
, opy
->wrt
);
1920 out(offset
, segment
, &data
, OUT_ADDRESS
,
1921 ea_data
.bytes
, opy
->segment
, opy
->wrt
);
1927 "Invalid amount of bytes (%d) for offset?!",
1936 errfunc(ERR_PANIC
, "internal instruction table corrupt"
1937 ": instruction code \\%o (0x%02X) given", c
, c
);
1943 static int32_t regflag(const operand
* o
)
1945 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1946 errfunc(ERR_PANIC
, "invalid operand passed to regflag()");
1948 return nasm_reg_flags
[o
->basereg
];
1951 static int32_t regval(const operand
* o
)
1953 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1954 errfunc(ERR_PANIC
, "invalid operand passed to regval()");
1956 return nasm_regvals
[o
->basereg
];
1959 static int op_rexflags(const operand
* o
, int mask
)
1964 if (o
->basereg
< EXPR_REG_START
|| o
->basereg
>= REG_ENUM_LIMIT
) {
1965 errfunc(ERR_PANIC
, "invalid operand passed to op_rexflags()");
1968 flags
= nasm_reg_flags
[o
->basereg
];
1969 val
= nasm_regvals
[o
->basereg
];
1971 return rexflags(val
, flags
, mask
);
1974 static int rexflags(int val
, int32_t flags
, int mask
)
1979 rex
|= REX_B
|REX_X
|REX_R
;
1982 if (!(REG_HIGH
& ~flags
)) /* AH, CH, DH, BH */
1984 else if (!(REG8
& ~flags
) && val
>= 4) /* SPL, BPL, SIL, DIL */
1990 static enum match_result
find_match(const struct itemplate
**tempp
,
1992 int32_t segment
, int64_t offset
, int bits
)
1994 const struct itemplate
*temp
;
1995 enum match_result m
, merr
;
1996 int32_t xsizeflags
[MAX_OPERANDS
];
1997 bool opsizemissing
= false;
2000 for (i
= 0; i
< instruction
->operands
; i
++)
2001 xsizeflags
[i
] = instruction
->oprs
[i
].type
& SIZE_MASK
;
2003 merr
= MERR_INVALOP
;
2005 for (temp
= nasm_instructions
[instruction
->opcode
];
2006 temp
->opcode
!= I_none
; temp
++) {
2007 m
= matches(temp
, instruction
, bits
);
2008 if (m
== MOK_JUMP
) {
2009 if (jmp_match(segment
, offset
, bits
, instruction
, temp
->code
))
2013 } else if (m
== MERR_OPSIZEMISSING
&&
2014 (temp
->flags
& IF_SMASK
) != IF_SX
) {
2016 * Missing operand size and a candidate for fuzzy matching...
2018 for (i
= 0; i
< temp
->operands
; i
++) {
2019 if ((temp
->opd
[i
] & SAME_AS
) == 0)
2020 xsizeflags
[i
] |= temp
->opd
[i
] & SIZE_MASK
;
2022 opsizemissing
= true;
2026 if (merr
== MOK_GOOD
)
2030 /* No match, but see if we can get a fuzzy operand size match... */
2034 for (i
= 0; i
< instruction
->operands
; i
++) {
2036 * We ignore extrinsic operand sizes on registers, so we should
2037 * never try to fuzzy-match on them. This also resolves the case
2038 * when we have e.g. "xmmrm128" in two different positions.
2040 if (is_class(REGISTER
, instruction
->oprs
[i
].type
))
2043 /* This tests if xsizeflags[i] has more than one bit set */
2044 if ((xsizeflags
[i
] & (xsizeflags
[i
]-1)))
2045 goto done
; /* No luck */
2047 instruction
->oprs
[i
].type
|= xsizeflags
[i
]; /* Set the size */
2050 /* Try matching again... */
2051 for (temp
= nasm_instructions
[instruction
->opcode
];
2052 temp
->opcode
!= I_none
; temp
++) {
2053 m
= matches(temp
, instruction
, bits
);
2054 if (m
== MOK_JUMP
) {
2055 if (jmp_match(segment
, offset
, bits
, instruction
, temp
->code
))
2062 if (merr
== MOK_GOOD
)
2071 static enum match_result
matches(const struct itemplate
*itemp
,
2072 insn
*instruction
, int bits
)
2074 int i
, size
[MAX_OPERANDS
], asize
, oprs
;
2075 bool opsizemissing
= false;
2080 if (itemp
->opcode
!= instruction
->opcode
)
2081 return MERR_INVALOP
;
2084 * Count the operands
2086 if (itemp
->operands
!= instruction
->operands
)
2087 return MERR_INVALOP
;
2090 * Check that no spurious colons or TOs are present
2092 for (i
= 0; i
< itemp
->operands
; i
++)
2093 if (instruction
->oprs
[i
].type
& ~itemp
->opd
[i
] & (COLON
| TO
))
2094 return MERR_INVALOP
;
2097 * Process size flags
2099 switch (itemp
->flags
& IF_SMASK
) {
2139 if (itemp
->flags
& IF_ARMASK
) {
2140 /* S- flags only apply to a specific operand */
2141 i
= ((itemp
->flags
& IF_ARMASK
) >> IF_ARSHFT
) - 1;
2142 memset(size
, 0, sizeof size
);
2145 /* S- flags apply to all operands */
2146 for (i
= 0; i
< MAX_OPERANDS
; i
++)
2151 * Check that the operand flags all match up
2153 for (i
= 0; i
< itemp
->operands
; i
++) {
2154 opflags_t type
= instruction
->oprs
[i
].type
;
2155 if (!(type
& SIZE_MASK
))
2158 if (itemp
->opd
[i
] & SAME_AS
) {
2159 int j
= itemp
->opd
[i
] & ~SAME_AS
;
2160 if (type
!= instruction
->oprs
[j
].type
||
2161 instruction
->oprs
[i
].basereg
!= instruction
->oprs
[j
].basereg
)
2162 return MERR_INVALOP
;
2163 } else if (itemp
->opd
[i
] & ~type
||
2164 ((itemp
->opd
[i
] & SIZE_MASK
) &&
2165 ((itemp
->opd
[i
] ^ type
) & SIZE_MASK
))) {
2166 if ((itemp
->opd
[i
] & ~type
& ~SIZE_MASK
) || (type
& SIZE_MASK
)) {
2167 return MERR_INVALOP
;
2168 } else if (!is_class(REGISTER
, type
)) {
2170 * Note: we don't honor extrinsic operand sizes for registers,
2171 * so "missing operand size" for a register should be
2172 * considered a wildcard match rather than an error.
2174 opsizemissing
= true;
2180 return MERR_OPSIZEMISSING
;
2183 * Check operand sizes
2185 if (itemp
->flags
& (IF_SM
| IF_SM2
)) {
2186 oprs
= (itemp
->flags
& IF_SM2
? 2 : itemp
->operands
);
2188 for (i
= 0; i
< oprs
; i
++) {
2189 if ((asize
= itemp
->opd
[i
] & SIZE_MASK
) != 0) {
2191 for (j
= 0; j
< oprs
; j
++)
2197 oprs
= itemp
->operands
;
2200 for (i
= 0; i
< itemp
->operands
; i
++) {
2201 if (!(itemp
->opd
[i
] & SIZE_MASK
) &&
2202 (instruction
->oprs
[i
].type
& SIZE_MASK
& ~size
[i
]))
2203 return MERR_OPSIZEMISMATCH
;
2207 * Check template is okay at the set cpu level
2209 if (((itemp
->flags
& IF_PLEVEL
) > cpu
))
2213 * Verify the appropriate long mode flag.
2215 if ((itemp
->flags
& (bits
== 64 ? IF_NOLONG
: IF_LONG
)))
2216 return MERR_BADMODE
;
2219 * Check if special handling needed for Jumps
2221 if ((itemp
->code
[0] & 0374) == 0370)
2227 static ea
*process_ea(operand
* input
, ea
* output
, int bits
,
2228 int addrbits
, int rfield
, int32_t rflags
)
2230 bool forw_ref
= !!(input
->opflags
& OPFLAG_UNKNOWN
);
2232 output
->rip
= false;
2234 /* REX flags for the rfield operand */
2235 output
->rex
|= rexflags(rfield
, rflags
, REX_R
|REX_P
|REX_W
|REX_H
);
2237 if (is_class(REGISTER
, input
->type
)) { /* register direct */
2241 if (input
->basereg
< EXPR_REG_START
/* Verify as Register */
2242 || input
->basereg
>= REG_ENUM_LIMIT
)
2245 i
= nasm_regvals
[input
->basereg
];
2248 return NULL
; /* Invalid EA register */
2250 output
->rex
|= op_rexflags(input
, REX_B
|REX_P
|REX_W
|REX_H
);
2252 output
->sib_present
= false; /* no SIB necessary */
2253 output
->bytes
= 0; /* no offset necessary either */
2254 output
->modrm
= 0xC0 | ((rfield
& 7) << 3) | (i
& 7);
2255 } else { /* it's a memory reference */
2256 if (input
->basereg
== -1
2257 && (input
->indexreg
== -1 || input
->scale
== 0)) {
2258 /* it's a pure offset */
2259 if (bits
== 64 && (~input
->type
& IP_REL
)) {
2260 int scale
, index
, base
;
2261 output
->sib_present
= true;
2265 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2267 output
->modrm
= 4 | ((rfield
& 7) << 3);
2268 output
->rip
= false;
2270 output
->sib_present
= false;
2271 output
->bytes
= (addrbits
!= 16 ? 4 : 2);
2272 output
->modrm
= (addrbits
!= 16 ? 5 : 6) | ((rfield
& 7) << 3);
2273 output
->rip
= bits
== 64;
2275 } else { /* it's an indirection */
2276 int i
= input
->indexreg
, b
= input
->basereg
, s
= input
->scale
;
2277 int32_t o
= input
->offset
, seg
= input
->segment
;
2278 int hb
= input
->hintbase
, ht
= input
->hinttype
;
2281 int32_t ix
, bx
; /* register flags */
2284 i
= -1; /* make this easy, at least */
2286 if (i
>= EXPR_REG_START
&& i
< REG_ENUM_LIMIT
) {
2287 it
= nasm_regvals
[i
];
2288 ix
= nasm_reg_flags
[i
];
2294 if (b
>= EXPR_REG_START
&& b
< REG_ENUM_LIMIT
) {
2295 bt
= nasm_regvals
[b
];
2296 bx
= nasm_reg_flags
[b
];
2302 /* check for a 32/64-bit memory reference... */
2303 if ((ix
|bx
) & (BITS32
|BITS64
)) {
2304 /* it must be a 32/64-bit memory reference. Firstly we have
2305 * to check that all registers involved are type E/Rxx. */
2306 int32_t sok
= BITS32
|BITS64
;
2309 if (!(REG64
& ~ix
) || !(REG32
& ~ix
))
2317 return NULL
; /* Invalid register */
2318 if (~sok
& bx
& SIZE_MASK
)
2319 return NULL
; /* Invalid size */
2323 /* While we're here, ensure the user didn't specify
2325 if (input
->disp_size
== 16 || input
->disp_size
== 64)
2328 if (addrbits
== 16 ||
2329 (addrbits
== 32 && !(sok
& BITS32
)) ||
2330 (addrbits
== 64 && !(sok
& BITS64
)))
2333 /* now reorganize base/index */
2334 if (s
== 1 && bt
!= it
&& bt
!= -1 && it
!= -1 &&
2335 ((hb
== b
&& ht
== EAH_NOTBASE
)
2336 || (hb
== i
&& ht
== EAH_MAKEBASE
))) {
2337 /* swap if hints say so */
2338 t
= bt
, bt
= it
, it
= t
;
2339 t
= bx
, bx
= ix
, ix
= t
;
2341 if (bt
== it
) /* convert EAX+2*EAX to 3*EAX */
2342 bt
= -1, bx
= 0, s
++;
2343 if (bt
== -1 && s
== 1 && !(hb
== it
&& ht
== EAH_NOTBASE
)) {
2344 /* make single reg base, unless hint */
2345 bt
= it
, bx
= ix
, it
= -1, ix
= 0;
2347 if (((s
== 2 && it
!= REG_NUM_ESP
2348 && !(input
->eaflags
& EAF_TIMESTWO
)) || s
== 3
2349 || s
== 5 || s
== 9) && bt
== -1)
2350 bt
= it
, bx
= ix
, s
--; /* convert 3*EAX to EAX+2*EAX */
2351 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
2352 && (input
->eaflags
& EAF_TIMESTWO
))
2353 it
= bt
, ix
= bx
, bt
= -1, bx
= 0, s
= 1;
2354 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2355 if (s
== 1 && it
== REG_NUM_ESP
) {
2356 /* swap ESP into base if scale is 1 */
2357 t
= it
, it
= bt
, bt
= t
;
2358 t
= ix
, ix
= bx
, bx
= t
;
2360 if (it
== REG_NUM_ESP
2361 || (s
!= 1 && s
!= 2 && s
!= 4 && s
!= 8 && it
!= -1))
2362 return NULL
; /* wrong, for various reasons */
2364 output
->rex
|= rexflags(it
, ix
, REX_X
);
2365 output
->rex
|= rexflags(bt
, bx
, REX_B
);
2367 if (it
== -1 && (bt
& 7) != REG_NUM_ESP
) {
2376 if (rm
!= REG_NUM_EBP
&& o
== 0 &&
2377 seg
== NO_SEG
&& !forw_ref
&&
2379 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2381 else if (input
->eaflags
& EAF_BYTEOFFS
||
2382 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2384 && !(input
->eaflags
& EAF_WORDOFFS
)))
2390 output
->sib_present
= false;
2391 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2392 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2395 int mod
, scale
, index
, base
;
2415 default: /* then what the smeg is it? */
2416 return NULL
; /* panic */
2424 if (base
!= REG_NUM_EBP
&& o
== 0 &&
2425 seg
== NO_SEG
&& !forw_ref
&&
2427 (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2429 else if (input
->eaflags
& EAF_BYTEOFFS
||
2430 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2432 && !(input
->eaflags
& EAF_WORDOFFS
)))
2438 output
->sib_present
= true;
2439 output
->bytes
= (bt
== -1 || mod
== 2 ? 4 : mod
);
2440 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | 4;
2441 output
->sib
= (scale
<< 6) | (index
<< 3) | base
;
2443 } else { /* it's 16-bit */
2446 /* check for 64-bit long mode */
2450 /* check all registers are BX, BP, SI or DI */
2451 if ((b
!= -1 && b
!= R_BP
&& b
!= R_BX
&& b
!= R_SI
2452 && b
!= R_DI
) || (i
!= -1 && i
!= R_BP
&& i
!= R_BX
2453 && i
!= R_SI
&& i
!= R_DI
))
2456 /* ensure the user didn't specify DWORD/QWORD */
2457 if (input
->disp_size
== 32 || input
->disp_size
== 64)
2460 if (s
!= 1 && i
!= -1)
2461 return NULL
; /* no can do, in 16-bit EA */
2462 if (b
== -1 && i
!= -1) {
2467 if ((b
== R_SI
|| b
== R_DI
) && i
!= -1) {
2472 /* have BX/BP as base, SI/DI index */
2474 return NULL
; /* shouldn't ever happen, in theory */
2475 if (i
!= -1 && b
!= -1 &&
2476 (i
== R_BP
|| i
== R_BX
|| b
== R_SI
|| b
== R_DI
))
2477 return NULL
; /* invalid combinations */
2478 if (b
== -1) /* pure offset: handled above */
2479 return NULL
; /* so if it gets to here, panic! */
2483 switch (i
* 256 + b
) {
2484 case R_SI
* 256 + R_BX
:
2487 case R_DI
* 256 + R_BX
:
2490 case R_SI
* 256 + R_BP
:
2493 case R_DI
* 256 + R_BP
:
2511 if (rm
== -1) /* can't happen, in theory */
2512 return NULL
; /* so panic if it does */
2514 if (o
== 0 && seg
== NO_SEG
&& !forw_ref
&& rm
!= 6 &&
2515 !(input
->eaflags
& (EAF_BYTEOFFS
| EAF_WORDOFFS
)))
2517 else if (input
->eaflags
& EAF_BYTEOFFS
||
2518 (o
>= -128 && o
<= 127 && seg
== NO_SEG
2520 && !(input
->eaflags
& EAF_WORDOFFS
)))
2525 output
->sib_present
= false; /* no SIB - it's 16-bit */
2526 output
->bytes
= mod
; /* bytes of offset needed */
2527 output
->modrm
= (mod
<< 6) | ((rfield
& 7) << 3) | rm
;
2532 output
->size
= 1 + output
->sib_present
+ output
->bytes
;
2536 static void add_asp(insn
*ins
, int addrbits
)
2541 valid
= (addrbits
== 64) ? 64|32 : 32|16;
2543 switch (ins
->prefixes
[PPS_ASIZE
]) {
2554 valid
&= (addrbits
== 32) ? 16 : 32;
2560 for (j
= 0; j
< ins
->operands
; j
++) {
2561 if (!(MEMORY
& ~ins
->oprs
[j
].type
)) {
2564 /* Verify as Register */
2565 if (ins
->oprs
[j
].indexreg
< EXPR_REG_START
2566 || ins
->oprs
[j
].indexreg
>= REG_ENUM_LIMIT
)
2569 i
= nasm_reg_flags
[ins
->oprs
[j
].indexreg
];
2571 /* Verify as Register */
2572 if (ins
->oprs
[j
].basereg
< EXPR_REG_START
2573 || ins
->oprs
[j
].basereg
>= REG_ENUM_LIMIT
)
2576 b
= nasm_reg_flags
[ins
->oprs
[j
].basereg
];
2578 if (ins
->oprs
[j
].scale
== 0)
2582 int ds
= ins
->oprs
[j
].disp_size
;
2583 if ((addrbits
!= 64 && ds
> 8) ||
2584 (addrbits
== 64 && ds
== 16))
2604 if (valid
& addrbits
) {
2605 ins
->addr_size
= addrbits
;
2606 } else if (valid
& ((addrbits
== 32) ? 16 : 32)) {
2607 /* Add an address size prefix */
2608 enum prefixes pref
= (addrbits
== 32) ? P_A16
: P_A32
;
2609 ins
->prefixes
[PPS_ASIZE
] = pref
;
2610 ins
->addr_size
= (addrbits
== 32) ? 16 : 32;
2613 errfunc(ERR_NONFATAL
, "impossible combination of address sizes");
2614 ins
->addr_size
= addrbits
; /* Error recovery */
2617 defdisp
= ins
->addr_size
== 16 ? 16 : 32;
2619 for (j
= 0; j
< ins
->operands
; j
++) {
2620 if (!(MEM_OFFS
& ~ins
->oprs
[j
].type
) &&
2621 (ins
->oprs
[j
].disp_size
? ins
->oprs
[j
].disp_size
: defdisp
)
2622 != ins
->addr_size
) {
2623 /* mem_offs sizes must match the address size; if not,
2624 strip the MEM_OFFS bit and match only EA instructions */
2625 ins
->oprs
[j
].type
&= ~(MEM_OFFS
& ~MEMORY
);