NASM 0.98.15
[nasm/avx512.git] / nasm.h
blobc9a8f06929688dcff8b7a911b4ff310b49faf4e3
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #define NASM_MAJOR_VER 0
15 #define NASM_MINOR_VER 98
16 #define NASM_VER "0.98.15"
18 #ifndef NULL
19 #define NULL 0
20 #endif
22 #ifndef FALSE
23 #define FALSE 0 /* comes in handy */
24 #endif
25 #ifndef TRUE
26 #define TRUE 1
27 #endif
29 #define NO_SEG -1L /* null segment value */
30 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
32 #ifndef FILENAME_MAX
33 #define FILENAME_MAX 256
34 #endif
36 #ifndef PREFIX_MAX
37 #define PREFIX_MAX 10
38 #endif
40 #ifndef POSTFIX_MAX
41 #define POSTFIX_MAX 10
42 #endif
47 * Name pollution problems: <time.h> on Digital UNIX pulls in some
48 * strange hardware header file which sees fit to define R_SP. We
49 * undefine it here so as not to break the enum below.
51 #ifdef R_SP
52 #undef R_SP
53 #endif
56 * We must declare the existence of this structure type up here,
57 * since we have to reference it before we define it...
59 struct ofmt;
62 * -------------------------
63 * Error reporting functions
64 * -------------------------
68 * An error reporting function should look like this.
70 typedef void (*efunc) (int severity, char *fmt, ...);
73 * These are the error severity codes which get passed as the first
74 * argument to an efunc.
77 #define ERR_DEBUG 0x00000008 /* put out debugging message */
78 #define ERR_WARNING 0x00000000 /* warn only: no further action */
79 #define ERR_NONFATAL 0x00000001 /* terminate assembly after phase */
80 #define ERR_FATAL 0x00000002 /* instantly fatal: exit with error */
81 #define ERR_PANIC 0x00000003 /* internal error: panic instantly
82 * and dump core for reference */
83 #define ERR_MASK 0x0000000F /* mask off the above codes */
84 #define ERR_NOFILE 0x00000010 /* don't give source file name/line */
85 #define ERR_USAGE 0x00000020 /* print a usage message */
86 #define ERR_PASS1 0x00000040 /* only print this error on pass one */
89 * These codes define specific types of suppressible warning.
92 #define ERR_WARN_MASK 0x0000FF00 /* the mask for this feature */
93 #define ERR_WARN_SHR 8 /* how far to shift right */
95 #define ERR_WARN_MNP 0x00000100 /* macro-num-parameters warning */
96 #define ERR_WARN_MSR 0x00000200 /* macro self-reference */
97 #define ERR_WARN_OL 0x00000300 /* orphan label (no colon, and
98 * alone on line) */
99 #define ERR_WARN_NOV 0x00000400 /* numeric overflow */
100 #define ERR_WARN_MAX 4 /* the highest numbered one */
103 * -----------------------
104 * Other function typedefs
105 * -----------------------
109 * A label-lookup function should look like this.
111 typedef int (*lfunc) (char *label, long *segment, long *offset);
114 * And a label-definition function like this. The boolean parameter
115 * `is_norm' states whether the label is a `normal' label (which
116 * should affect the local-label system), or something odder like
117 * an EQU or a segment-base symbol, which shouldn't.
119 typedef void (*ldfunc) (char *label, long segment, long offset, char *special,
120 int is_norm, int isextrn, struct ofmt *ofmt,
121 efunc error);
124 * List-file generators should look like this:
126 typedef struct {
128 * Called to initialise the listing file generator. Before this
129 * is called, the other routines will silently do nothing when
130 * called. The `char *' parameter is the file name to write the
131 * listing to.
133 void (*init) (char *, efunc);
136 * Called to clear stuff up and close the listing file.
138 void (*cleanup) (void);
141 * Called to output binary data. Parameters are: the offset;
142 * the data; the data type. Data types are similar to the
143 * output-format interface, only OUT_ADDRESS will _always_ be
144 * displayed as if it's relocatable, so ensure that any non-
145 * relocatable address has been converted to OUT_RAWDATA by
146 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
147 * dummy call used to give the listing generator an offset to
148 * work with when doing things like uplevel(LIST_TIMES) or
149 * uplevel(LIST_INCBIN).
151 void (*output) (long, void *, unsigned long);
154 * Called to send a text line to the listing generator. The
155 * `int' parameter is LIST_READ or LIST_MACRO depending on
156 * whether the line came directly from an input file or is the
157 * result of a multi-line macro expansion.
159 void (*line) (int, char *);
162 * Called to change one of the various levelled mechanisms in
163 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
164 * used to increase the nesting level of include files and
165 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
166 * two binary-output-suppression mechanisms for large-scale
167 * pseudo-instructions.
169 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
170 * it indicates the beginning of the expansion of a `nolist'
171 * macro, so anything under that level won't be expanded unless
172 * it includes another file.
174 void (*uplevel) (int);
177 * Reverse the effects of uplevel.
179 void (*downlevel) (int);
180 } ListGen;
183 * The expression evaluator must be passed a scanner function; a
184 * standard scanner is provided as part of nasmlib.c. The
185 * preprocessor will use a different one. Scanners, and the
186 * token-value structures they return, look like this.
188 * The return value from the scanner is always a copy of the
189 * `t_type' field in the structure.
191 struct tokenval {
192 int t_type;
193 long t_integer, t_inttwo;
194 char *t_charptr;
196 typedef int (*scanner) (void *private_data, struct tokenval *tv);
199 * Token types returned by the scanner, in addition to ordinary
200 * ASCII character values, and zero for end-of-string.
202 enum { /* token types, other than chars */
203 TOKEN_INVALID = -1, /* a placeholder value */
204 TOKEN_EOS = 0, /* end of string */
205 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
206 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
207 TOKEN_ERRNUM, /* numeric constant with error in */
208 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
209 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, FAR, NEAR, etc */
210 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
211 TOKEN_SHL, TOKEN_SHR, /* << and >> */
212 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
213 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
214 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
215 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
216 TOKEN_FLOAT /* floating-point constant */
219 typedef struct {
220 long segment;
221 long offset;
222 int known;
223 } loc_t;
226 * Expression-evaluator datatype. Expressions, within the
227 * evaluator, are stored as an array of these beasts, terminated by
228 * a record with type==0. Mostly, it's a vector type: each type
229 * denotes some kind of a component, and the value denotes the
230 * multiple of that component present in the expression. The
231 * exception is the WRT type, whose `value' field denotes the
232 * segment to which the expression is relative. These segments will
233 * be segment-base types, i.e. either odd segment values or SEG_ABS
234 * types. So it is still valid to assume that anything with a
235 * `value' field of zero is insignificant.
237 typedef struct {
238 long type; /* a register, or EXPR_xxx */
239 long value; /* must be >= 32 bits */
240 } expr;
243 * The evaluator can also return hints about which of two registers
244 * used in an expression should be the base register. See also the
245 * `operand' structure.
247 struct eval_hints {
248 int base;
249 int type;
253 * The actual expression evaluator function looks like this. When
254 * called, it expects the first token of its expression to already
255 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
256 * it will start by calling the scanner.
258 * If a forward reference happens during evaluation, the evaluator
259 * must set `*fwref' to TRUE if `fwref' is non-NULL.
261 * `critical' is non-zero if the expression may not contain forward
262 * references. The evaluator will report its own error if this
263 * occurs; if `critical' is 1, the error will be "symbol not
264 * defined before use", whereas if `critical' is 2, the error will
265 * be "symbol undefined".
267 * If `critical' has bit 8 set (in addition to its main value: 0x101
268 * and 0x102 correspond to 1 and 2) then an extended expression
269 * syntax is recognised, in which relational operators such as =, <
270 * and >= are accepted, as well as low-precedence logical operators
271 * &&, ^^ and ||.
273 * If `hints' is non-NULL, it gets filled in with some hints as to
274 * the base register in complex effective addresses.
276 #define CRITICAL 0x100
277 typedef expr *(*evalfunc) (scanner sc, void *scprivate, struct tokenval *tv,
278 int *fwref, int critical, efunc error,
279 struct eval_hints *hints);
282 * Special values for expr->type. ASSUMPTION MADE HERE: the number
283 * of distinct register names (i.e. possible "type" fields for an
284 * expr structure) does not exceed 124 (EXPR_REG_START through
285 * EXPR_REG_END).
287 #define EXPR_REG_START 1
288 #define EXPR_REG_END 124
289 #define EXPR_UNKNOWN 125L /* for forward references */
290 #define EXPR_SIMPLE 126L
291 #define EXPR_WRT 127L
292 #define EXPR_SEGBASE 128L
295 * Preprocessors ought to look like this:
297 typedef struct {
299 * Called at the start of a pass; given a file name, the number
300 * of the pass, an error reporting function, an evaluator
301 * function, and a listing generator to talk to.
303 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
306 * Called to fetch a line of preprocessed source. The line
307 * returned has been malloc'ed, and so should be freed after
308 * use.
310 char *(*getline) (void);
313 * Called at the end of a pass.
315 void (*cleanup) (int);
316 } Preproc;
319 * ----------------------------------------------------------------
320 * Some lexical properties of the NASM source language, included
321 * here because they are shared between the parser and preprocessor
322 * ----------------------------------------------------------------
326 * isidstart matches any character that may start an identifier, and isidchar
327 * matches any character that may appear at places other than the start of an
328 * identifier. E.g. a period may only appear at the start of an identifier
329 * (for local labels), whereas a number may appear anywhere *but* at the
330 * start.
333 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
334 || (c)=='@' )
335 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
336 || (c)=='~' )
338 /* Ditto for numeric constants. */
340 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
341 #define isnumchar(c) ( isalnum(c) )
343 /* This returns the numeric value of a given 'digit'. */
345 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
348 * Data-type flags that get passed to listing-file routines.
350 enum {
351 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
352 LIST_INCBIN, LIST_TIMES
356 * -----------------------------------------------------------
357 * Format of the `insn' structure returned from `parser.c' and
358 * passed into `assemble.c'
359 * -----------------------------------------------------------
363 * Here we define the operand types. These are implemented as bit
364 * masks, since some are subsets of others; e.g. AX in a MOV
365 * instruction is a special operand type, whereas AX in other
366 * contexts is just another 16-bit register. (Also, consider CL in
367 * shift instructions, DX in OUT, etc.)
370 /* size, and other attributes, of the operand */
371 #define BITS8 0x00000001L
372 #define BITS16 0x00000002L
373 #define BITS32 0x00000004L
374 #define BITS64 0x00000008L /* FPU only */
375 #define BITS80 0x00000010L /* FPU only */
376 #define FAR 0x00000020L /* grotty: this means 16:16 or */
377 /* 16:32, like in CALL/JMP */
378 #define NEAR 0x00000040L
379 #define SHORT 0x00000080L /* and this means what it says :) */
381 #define SIZE_MASK 0x000000FFL /* all the size attributes */
382 #define NON_SIZE (~SIZE_MASK)
384 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
385 #define COLON 0x00000200L /* operand is followed by a colon */
387 /* type of operand: memory reference, register, etc. */
388 #define MEMORY 0x00204000L
389 #define REGISTER 0x00001000L /* register number in 'basereg' */
390 #define IMMEDIATE 0x00002000L
392 #define REGMEM 0x00200000L /* for r/m, ie EA, operands */
393 #define REGNORM 0x00201000L /* 'normal' reg, qualifies as EA */
394 #define REG8 0x00201001L
395 #define REG16 0x00201002L
396 #define REG32 0x00201004L
397 #define MMXREG 0x00201008L /* MMX registers */
398 #define XMMREG 0x00201010L /* XMM Katmai reg */
399 #define FPUREG 0x01000000L /* floating point stack registers */
400 #define FPU0 0x01000800L /* FPU stack register zero */
402 /* special register operands: these may be treated differently */
403 #define REG_SMASK 0x00070000L /* a mask for the following */
404 #define REG_ACCUM 0x00211000L /* accumulator: AL, AX or EAX */
405 #define REG_AL 0x00211001L /* REG_ACCUM | BITSxx */
406 #define REG_AX 0x00211002L /* ditto */
407 #define REG_EAX 0x00211004L /* and again */
408 #define REG_COUNT 0x00221000L /* counter: CL, CX or ECX */
409 #define REG_CL 0x00221001L /* REG_COUNT | BITSxx */
410 #define REG_CX 0x00221002L /* ditto */
411 #define REG_ECX 0x00221004L /* another one */
412 #define REG_DX 0x00241002L
413 #define REG_SREG 0x00081002L /* any segment register */
414 #define REG_CS 0x01081002L /* CS */
415 #define REG_DESS 0x02081002L /* DS, ES, SS (non-CS 86 registers) */
416 #define REG_FSGS 0x04081002L /* FS, GS (386 extended registers) */
417 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
418 #define REG_CREG 0x08101004L /* CRn */
419 #define REG_CR4 0x08101404L /* CR4 (Pentium only) */
420 #define REG_DREG 0x10101004L /* DRn */
421 #define REG_TREG 0x20101004L /* TRn */
423 /* special type of EA */
424 #define MEM_OFFS 0x00604000L /* simple [address] offset */
426 /* special type of immediate operand */
427 #define ONENESS 0x00800000L /* so UNITY == IMMEDIATE | ONENESS */
428 #define UNITY 0x00802000L /* for shift/rotate instructions */
429 #define BYTENESS 0x40000000L /* so SBYTE == IMMEDIATE | BYTENESS */
430 #define SBYTE 0x40002000L /* for op r16/32,immediate instrs. */
431 #define BIGNESS 0x80000000L /* so SBIG == IMMEDIATE | BIGNESS */
432 #define SBIG 0x80002000L /* for eax immediate instrs. */
435 * Next, the codes returned from the parser, for registers and
436 * instructions.
439 enum { /* register names */
440 R_AH = EXPR_REG_START, R_AL, R_AX, R_BH, R_BL, R_BP, R_BX, R_CH,
441 R_CL, R_CR0, R_CR2, R_CR3, R_CR4, R_CS, R_CX, R_DH, R_DI, R_DL,
442 R_DR0, R_DR1, R_DR2, R_DR3, R_DR6, R_DR7, R_DS, R_DX, R_EAX,
443 R_EBP, R_EBX, R_ECX, R_EDI, R_EDX, R_ES, R_ESI, R_ESP, R_FS,
444 R_GS, R_MM0, R_MM1, R_MM2, R_MM3, R_MM4, R_MM5, R_MM6, R_MM7,
445 R_SI, R_SP, R_SS, R_ST0, R_ST1, R_ST2, R_ST3, R_ST4, R_ST5,
446 R_ST6, R_ST7, R_TR3, R_TR4, R_TR5, R_TR6, R_TR7,
447 R_XMM0, R_XMM1, R_XMM2, R_XMM3, R_XMM4, R_XMM5, R_XMM6, R_XMM7, REG_ENUM_LIMIT
450 /* Instruction names automatically generated from insns.dat */
451 #include "insnsi.h"
453 /* max length of any instruction, register name etc. */
454 #if MAX_INSLEN > 9
455 #define MAX_KEYWORD MAX_INSLEN
456 #else
457 #define MAX_KEYWORD 9
458 #endif
460 enum { /* condition code names */
461 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
462 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
463 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z
467 * Note that because segment registers may be used as instruction
468 * prefixes, we must ensure the enumerations for prefixes and
469 * register names do not overlap.
471 enum { /* instruction prefixes */
472 PREFIX_ENUM_START = REG_ENUM_LIMIT,
473 P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32, P_REP, P_REPE,
474 P_REPNE, P_REPNZ, P_REPZ, P_TIMES
477 enum { /* extended operand types */
478 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
481 enum { /* special EA flags */
482 EAF_BYTEOFFS = 1, /* force offset part to byte size */
483 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
484 EAF_TIMESTWO = 4 /* really do EAX*2 not EAX+EAX */
487 enum { /* values for `hinttype' */
488 EAH_NOHINT = 0, /* no hint at all - our discretion */
489 EAH_MAKEBASE = 1, /* try to make given reg the base */
490 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
493 typedef struct { /* operand to an instruction */
494 long type; /* type of operand */
495 int addr_size; /* 0 means default; 16; 32 */
496 int basereg, indexreg, scale; /* registers and scale involved */
497 int hintbase, hinttype; /* hint as to real base register */
498 long segment; /* immediate segment, if needed */
499 long offset; /* any immediate number */
500 long wrt; /* segment base it's relative to */
501 int eaflags; /* special EA flags */
502 int opflags; /* see OPFLAG_* defines below */
503 } operand;
505 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
506 #define OPFLAG_EXTERN 2 /* operand is an external reference */
508 typedef struct extop { /* extended operand */
509 struct extop *next; /* linked list */
510 long type; /* defined above */
511 char *stringval; /* if it's a string, then here it is */
512 int stringlen; /* ... and here's how long it is */
513 long segment; /* if it's a number/address, then... */
514 long offset; /* ... it's given here ... */
515 long wrt; /* ... and here */
516 } extop;
518 #define MAXPREFIX 4
520 typedef struct { /* an instruction itself */
521 char *label; /* the label defined, or NULL */
522 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
523 int nprefix; /* number of entries in above */
524 int opcode; /* the opcode - not just the string */
525 int condition; /* the condition code, if Jcc/SETcc */
526 int operands; /* how many operands? 0-3
527 * (more if db et al) */
528 operand oprs[3]; /* the operands, defined as above */
529 extop *eops; /* extended operands */
530 int eops_float; /* true if DD and floating */
531 long times; /* repeat count (TIMES prefix) */
532 int forw_ref; /* is there a forward reference? */
533 } insn;
535 enum geninfo { GI_SWITCH };
537 * ------------------------------------------------------------
538 * The data structure defining an output format driver, and the
539 * interfaces to the functions therein.
540 * ------------------------------------------------------------
543 struct ofmt {
545 * This is a short (one-liner) description of the type of
546 * output generated by the driver.
548 char *fullname;
551 * This is a single keyword used to select the driver.
553 char *shortname;
556 * this is reserved for out module specific help.
557 * It is set to NULL in all the out modules but is not implemented
558 * in the main program
560 char *helpstring;
563 * this is a pointer to the first element of the debug information
565 struct dfmt **debug_formats;
568 * and a pointer to the element that is being used
569 * note: this is set to the default at compile time and changed if the
570 * -F option is selected. If developing a set of new debug formats for
571 * an output format, be sure to set this to whatever default you want
574 struct dfmt *current_dfmt;
577 * This, if non-NULL, is a NULL-terminated list of `char *'s
578 * pointing to extra standard macros supplied by the object
579 * format (e.g. a sensible initial default value of __SECT__,
580 * and user-level equivalents for any format-specific
581 * directives).
583 char **stdmac;
586 * This procedure is called at the start of an output session.
587 * It tells the output format what file it will be writing to,
588 * what routine to report errors through, and how to interface
589 * to the label manager and expression evaluator if necessary.
590 * It also gives it a chance to do other initialisation.
592 void (*init) (FILE *fp, efunc error, ldfunc ldef, evalfunc eval);
595 * This procedure is called to pass generic information to the
596 * object file. The first parameter gives the information type
597 * (currently only command line switches)
598 * and the second parameter gives the value. This function returns
599 * 1 if recognized, 0 if unrecognized
601 int (*setinfo)(enum geninfo type, char **string);
604 * This procedure is called by assemble() to write actual
605 * generated code or data to the object file. Typically it
606 * doesn't have to actually _write_ it, just store it for
607 * later.
609 * The `type' argument specifies the type of output data, and
610 * usually the size as well: its contents are described below.
612 void (*output) (long segto, void *data, unsigned long type,
613 long segment, long wrt);
616 * This procedure is called once for every symbol defined in
617 * the module being assembled. It gives the name and value of
618 * the symbol, in NASM's terms, and indicates whether it has
619 * been declared to be global. Note that the parameter "name",
620 * when passed, will point to a piece of static storage
621 * allocated inside the label manager - it's safe to keep using
622 * that pointer, because the label manager doesn't clean up
623 * until after the output driver has.
625 * Values of `is_global' are: 0 means the symbol is local; 1
626 * means the symbol is global; 2 means the symbol is common (in
627 * which case `offset' holds the _size_ of the variable).
628 * Anything else is available for the output driver to use
629 * internally.
631 * This routine explicitly _is_ allowed to call the label
632 * manager to define further symbols, if it wants to, even
633 * though it's been called _from_ the label manager. That much
634 * re-entrancy is guaranteed in the label manager. However, the
635 * label manager will in turn call this routine, so it should
636 * be prepared to be re-entrant itself.
638 * The `special' parameter contains special information passed
639 * through from the command that defined the label: it may have
640 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
641 * be obvious to the output format from the other parameters.
643 void (*symdef) (char *name, long segment, long offset, int is_global,
644 char *special);
647 * This procedure is called when the source code requests a
648 * segment change. It should return the corresponding segment
649 * _number_ for the name, or NO_SEG if the name is not a valid
650 * segment name.
652 * It may also be called with NULL, in which case it is to
653 * return the _default_ section number for starting assembly in.
655 * It is allowed to modify the string it is given a pointer to.
657 * It is also allowed to specify a default instruction size for
658 * the segment, by setting `*bits' to 16 or 32. Or, if it
659 * doesn't wish to define a default, it can leave `bits' alone.
661 long (*section) (char *name, int pass, int *bits);
664 * This procedure is called to modify the segment base values
665 * returned from the SEG operator. It is given a segment base
666 * value (i.e. a segment value with the low bit set), and is
667 * required to produce in return a segment value which may be
668 * different. It can map segment bases to absolute numbers by
669 * means of returning SEG_ABS types.
671 * It should return NO_SEG if the segment base cannot be
672 * determined; the evaluator (which calls this routine) is
673 * responsible for throwing an error condition if that occurs
674 * in pass two or in a critical expression.
676 long (*segbase) (long segment);
679 * This procedure is called to allow the output driver to
680 * process its own specific directives. When called, it has the
681 * directive word in `directive' and the parameter string in
682 * `value'. It is called in both assembly passes, and `pass'
683 * will be either 1 or 2.
685 * This procedure should return zero if it does not _recognise_
686 * the directive, so that the main program can report an error.
687 * If it recognises the directive but then has its own errors,
688 * it should report them itself and then return non-zero. It
689 * should also return non-zero if it correctly processes the
690 * directive.
692 int (*directive) (char *directive, char *value, int pass);
695 * This procedure is called before anything else - even before
696 * the "init" routine - and is passed the name of the input
697 * file from which this output file is being generated. It
698 * should return its preferred name for the output file in
699 * `outname', if outname[0] is not '\0', and do nothing to
700 * `outname' otherwise. Since it is called before the driver is
701 * properly initialised, it has to be passed its error handler
702 * separately.
704 * This procedure may also take its own copy of the input file
705 * name for use in writing the output file: it is _guaranteed_
706 * that it will be called before the "init" routine.
708 * The parameter `outname' points to an area of storage
709 * guaranteed to be at least FILENAME_MAX in size.
711 void (*filename) (char *inname, char *outname, efunc error);
714 * This procedure is called after assembly finishes, to allow
715 * the output driver to clean itself up and free its memory.
716 * Typically, it will also be the point at which the object
717 * file actually gets _written_.
719 * One thing the cleanup routine should always do is to close
720 * the output file pointer.
722 void (*cleanup) (int debuginfo);
726 * values for the `type' parameter to an output function. Each one
727 * must have the actual number of _bytes_ added to it.
729 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
730 * which will be a relative jump. For this we need to know the
731 * distance in bytes from the start of the relocated record until
732 * the end of the containing instruction. _This_ is what is stored
733 * in the size part of the parameter, in this case.
735 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
736 * and the contents of the "data" parameter is irrelevant.
738 * The "data" parameter for the output function points to a "long",
739 * containing the address in question, unless the type is
740 * OUT_RAWDATA, in which case it points to an "unsigned char"
741 * array.
743 #define OUT_RAWDATA 0x00000000UL
744 #define OUT_ADDRESS 0x10000000UL
745 #define OUT_REL2ADR 0x20000000UL
746 #define OUT_REL4ADR 0x30000000UL
747 #define OUT_RESERVE 0x40000000UL
748 #define OUT_TYPMASK 0xF0000000UL
749 #define OUT_SIZMASK 0x0FFFFFFFUL
752 * ------------------------------------------------------------
753 * The data structure defining a debug format driver, and the
754 * interfaces to the functions therein.
755 * ------------------------------------------------------------
758 struct dfmt {
761 * This is a short (one-liner) description of the type of
762 * output generated by the driver.
764 char *fullname;
767 * This is a single keyword used to select the driver.
769 char *shortname;
773 * init - called initially to set up local pointer to object format,
774 * void pointer to implementation defined data, file pointer (which
775 * probably won't be used, but who knows?), and error function.
777 void (*init) (struct ofmt * of, void * id, FILE * fp, efunc error);
780 * linenum - called any time there is output with a change of
781 * line number or file.
783 void (*linenum) (const char * filename, long linenumber, long segto);
786 * debug_deflabel - called whenever a label is defined. Parameters
787 * are the same as to 'symdef()' in the output format. This function
788 * would be called before the output format version.
791 void (*debug_deflabel) (char * name, long segment, long offset,
792 int is_global, char * special);
794 * debug_directive - called whenever a DEBUG directive other than 'LINE'
795 * is encountered. 'directive' contains the first parameter to the
796 * DEBUG directive, and params contains the rest. For example,
797 * 'DEBUG VAR _somevar:int' would translate to a call to this
798 * function with 'directive' equal to "VAR" and 'params' equal to
799 * "_somevar:int".
801 void (*debug_directive) (const char * directive, const char * params);
804 * typevalue - called whenever the assembler wishes to register a type
805 * for the last defined label. This routine MUST detect if a type was
806 * already registered and not re-register it.
808 void (*debug_typevalue) (long type);
811 * debug_output - called whenever output is required
812 * 'type' is the type of info required, and this is format-specific
814 void (*debug_output) (int type, void *param);
817 * cleanup - called after processing of file is complete
819 void (*cleanup) (void);
823 * The type definition macros
824 * for debugging
826 * low 3 bits: reserved
827 * next 5 bits: type
828 * next 24 bits: number of elements for arrays (0 for labels)
831 #define TY_UNKNOWN 0x00
832 #define TY_LABEL 0x08
833 #define TY_BYTE 0x10
834 #define TY_WORD 0x18
835 #define TY_DWORD 0x20
836 #define TY_FLOAT 0x28
837 #define TY_QWORD 0x30
838 #define TY_TBYTE 0x38
839 #define TY_COMMON 0xE0
840 #define TY_SEG 0xE8
841 #define TY_EXTERN 0xF0
842 #define TY_EQU 0xF8
844 #define TYM_TYPE(x) ((x) & 0xF8)
845 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
847 #define TYS_ELEMENTS(x) ((x) << 8)
849 * -----
850 * Other
851 * -----
855 * This is a useful #define which I keep meaning to use more often:
856 * the number of elements of a statically defined array.
859 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
861 extern int tasm_compatible_mode;
864 * This declaration passes the "pass" number to all other modules
865 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
866 * where 0 = optimizing pass
867 * 1 = pass 1
868 * 2 = pass 2
871 extern int pass0; /* this is globally known */
872 extern int optimizing;
874 #endif