LICENSE: give the current license status.
[nasm/avx512.git] / nasm.h
blob5e0c0172cb959352add46445d61b3c7e5ac2f729
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #include "compiler.h"
16 #include <stdio.h>
17 #include <inttypes.h>
18 #include "nasmlib.h"
19 #include "preproc.h"
20 #include "insnsi.h" /* For enum opcode */
22 #define NO_SEG -1L /* null segment value */
23 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
25 #ifndef FILENAME_MAX
26 #define FILENAME_MAX 256
27 #endif
29 #ifndef PREFIX_MAX
30 #define PREFIX_MAX 10
31 #endif
33 #ifndef POSTFIX_MAX
34 #define POSTFIX_MAX 10
35 #endif
37 #define IDLEN_MAX 4096
40 * Name pollution problems: <time.h> on Digital UNIX pulls in some
41 * strange hardware header file which sees fit to define R_SP. We
42 * undefine it here so as not to break the enum below.
44 #ifdef R_SP
45 #undef R_SP
46 #endif
49 * We must declare the existence of this structure type up here,
50 * since we have to reference it before we define it...
52 struct ofmt;
55 * values for the `type' parameter to an output function.
57 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
58 * which will be a relative jump. For this we need to know the
59 * distance in bytes from the start of the relocated record until
60 * the end of the containing instruction. _This_ is what is stored
61 * in the size part of the parameter, in this case.
63 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
64 * and the contents of the "data" parameter is irrelevant.
66 * The "data" parameter for the output function points to a "int32_t",
67 * containing the address in question, unless the type is
68 * OUT_RAWDATA, in which case it points to an "uint8_t"
69 * array.
71 enum out_type {
72 OUT_RAWDATA, /* Plain bytes */
73 OUT_ADDRESS, /* An address (symbol value) */
74 OUT_RESERVE, /* Reserved bytes (RESB et al) */
75 OUT_REL2ADR, /* 2-byte relative address */
76 OUT_REL4ADR, /* 4-byte relative address */
77 OUT_REL8ADR, /* 8-byte relative address */
81 * -----------------------
82 * Other function typedefs
83 * -----------------------
87 * A label-lookup function should look like this.
89 typedef bool (*lfunc) (char *label, int32_t *segment, int64_t *offset);
92 * And a label-definition function like this. The boolean parameter
93 * `is_norm' states whether the label is a `normal' label (which
94 * should affect the local-label system), or something odder like
95 * an EQU or a segment-base symbol, which shouldn't.
97 typedef void (*ldfunc) (char *label, int32_t segment, int64_t offset,
98 char *special, bool is_norm, bool isextrn,
99 struct ofmt * ofmt, efunc error);
102 * List-file generators should look like this:
104 typedef struct {
106 * Called to initialize the listing file generator. Before this
107 * is called, the other routines will silently do nothing when
108 * called. The `char *' parameter is the file name to write the
109 * listing to.
111 void (*init) (char *, efunc);
114 * Called to clear stuff up and close the listing file.
116 void (*cleanup) (void);
119 * Called to output binary data. Parameters are: the offset;
120 * the data; the data type. Data types are similar to the
121 * output-format interface, only OUT_ADDRESS will _always_ be
122 * displayed as if it's relocatable, so ensure that any non-
123 * relocatable address has been converted to OUT_RAWDATA by
124 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
125 * dummy call used to give the listing generator an offset to
126 * work with when doing things like uplevel(LIST_TIMES) or
127 * uplevel(LIST_INCBIN).
129 void (*output) (int32_t, const void *, enum out_type, uint64_t);
132 * Called to send a text line to the listing generator. The
133 * `int' parameter is LIST_READ or LIST_MACRO depending on
134 * whether the line came directly from an input file or is the
135 * result of a multi-line macro expansion.
137 void (*line) (int, char *);
140 * Called to change one of the various levelled mechanisms in
141 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
142 * used to increase the nesting level of include files and
143 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
144 * two binary-output-suppression mechanisms for large-scale
145 * pseudo-instructions.
147 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
148 * it indicates the beginning of the expansion of a `nolist'
149 * macro, so anything under that level won't be expanded unless
150 * it includes another file.
152 void (*uplevel) (int);
155 * Reverse the effects of uplevel.
157 void (*downlevel) (int);
158 } ListGen;
161 * Token types returned by the scanner, in addition to ordinary
162 * ASCII character values, and zero for end-of-string.
164 enum token_type { /* token types, other than chars */
165 TOKEN_INVALID = -1, /* a placeholder value */
166 TOKEN_EOS = 0, /* end of string */
167 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
168 TOKEN_ID = 256, /* identifier */
169 TOKEN_NUM, /* numeric constant */
170 TOKEN_ERRNUM, /* malformed numeric constant */
171 TOKEN_STR, /* string constant */
172 TOKEN_ERRSTR, /* unterminated string constant */
173 TOKEN_FLOAT, /* floating-point constant */
174 TOKEN_REG, /* register name */
175 TOKEN_INSN, /* instruction name */
176 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
177 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
178 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
179 TOKEN_SHL, TOKEN_SHR, /* << and >> */
180 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
181 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
182 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
183 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
184 TOKEN_FLOATIZE, /* __floatX__ */
185 TOKEN_STRFUNC, /* __utf16__, __utf32__ */
188 enum floatize {
189 FLOAT_8,
190 FLOAT_16,
191 FLOAT_32,
192 FLOAT_64,
193 FLOAT_80M,
194 FLOAT_80E,
195 FLOAT_128L,
196 FLOAT_128H,
199 /* Must match the list in string_transform(), in strfunc.c */
200 enum strfunc {
201 STRFUNC_UTF16,
202 STRFUNC_UTF32,
205 size_t string_transform(char *, size_t, char **, enum strfunc);
208 * The expression evaluator must be passed a scanner function; a
209 * standard scanner is provided as part of nasmlib.c. The
210 * preprocessor will use a different one. Scanners, and the
211 * token-value structures they return, look like this.
213 * The return value from the scanner is always a copy of the
214 * `t_type' field in the structure.
216 struct tokenval {
217 enum token_type t_type;
218 char *t_charptr;
219 int64_t t_integer, t_inttwo;
221 typedef int (*scanner) (void *private_data, struct tokenval * tv);
223 struct location {
224 int64_t offset;
225 int32_t segment;
226 int known;
230 * Expression-evaluator datatype. Expressions, within the
231 * evaluator, are stored as an array of these beasts, terminated by
232 * a record with type==0. Mostly, it's a vector type: each type
233 * denotes some kind of a component, and the value denotes the
234 * multiple of that component present in the expression. The
235 * exception is the WRT type, whose `value' field denotes the
236 * segment to which the expression is relative. These segments will
237 * be segment-base types, i.e. either odd segment values or SEG_ABS
238 * types. So it is still valid to assume that anything with a
239 * `value' field of zero is insignificant.
241 typedef struct {
242 int32_t type; /* a register, or EXPR_xxx */
243 int64_t value; /* must be >= 32 bits */
244 } expr;
247 * Library routines to manipulate expression data types.
249 int is_reloc(expr *);
250 int is_simple(expr *);
251 int is_really_simple(expr *);
252 int is_unknown(expr *);
253 int is_just_unknown(expr *);
254 int64_t reloc_value(expr *);
255 int32_t reloc_seg(expr *);
256 int32_t reloc_wrt(expr *);
259 * The evaluator can also return hints about which of two registers
260 * used in an expression should be the base register. See also the
261 * `operand' structure.
263 struct eval_hints {
264 int64_t base;
265 int type;
269 * The actual expression evaluator function looks like this. When
270 * called, it expects the first token of its expression to already
271 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
272 * it will start by calling the scanner.
274 * If a forward reference happens during evaluation, the evaluator
275 * must set `*fwref' to true if `fwref' is non-NULL.
277 * `critical' is non-zero if the expression may not contain forward
278 * references. The evaluator will report its own error if this
279 * occurs; if `critical' is 1, the error will be "symbol not
280 * defined before use", whereas if `critical' is 2, the error will
281 * be "symbol undefined".
283 * If `critical' has bit 8 set (in addition to its main value: 0x101
284 * and 0x102 correspond to 1 and 2) then an extended expression
285 * syntax is recognised, in which relational operators such as =, <
286 * and >= are accepted, as well as low-precedence logical operators
287 * &&, ^^ and ||.
289 * If `hints' is non-NULL, it gets filled in with some hints as to
290 * the base register in complex effective addresses.
292 #define CRITICAL 0x100
293 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
294 struct tokenval * tv, int *fwref, int critical,
295 efunc error, struct eval_hints * hints);
298 * Special values for expr->type. These come after EXPR_REG_END
299 * as defined in regs.h.
302 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
303 #define EXPR_SIMPLE (EXPR_REG_END+2)
304 #define EXPR_WRT (EXPR_REG_END+3)
305 #define EXPR_SEGBASE (EXPR_REG_END+4)
308 * Linked list of strings...
310 typedef struct string_list {
311 struct string_list *next;
312 char str[1];
313 } StrList;
316 * preprocessors ought to look like this:
318 typedef struct preproc_ops {
320 * Called at the start of a pass; given a file name, the number
321 * of the pass, an error reporting function, an evaluator
322 * function, and a listing generator to talk to.
324 void (*reset) (char *, int, efunc, evalfunc, ListGen *, StrList **);
327 * Called to fetch a line of preprocessed source. The line
328 * returned has been malloc'ed, and so should be freed after
329 * use.
331 char *(*getline) (void);
334 * Called at the end of a pass.
336 void (*cleanup) (int);
337 } Preproc;
339 extern Preproc nasmpp;
342 * ----------------------------------------------------------------
343 * Some lexical properties of the NASM source language, included
344 * here because they are shared between the parser and preprocessor
345 * ----------------------------------------------------------------
349 * isidstart matches any character that may start an identifier, and isidchar
350 * matches any character that may appear at places other than the start of an
351 * identifier. E.g. a period may only appear at the start of an identifier
352 * (for local labels), whereas a number may appear anywhere *but* at the
353 * start.
356 #define isidstart(c) ( nasm_isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
357 || (c)=='@' )
358 #define isidchar(c) ( isidstart(c) || nasm_isdigit(c) || \
359 (c)=='$' || (c)=='#' || (c)=='~' )
361 /* Ditto for numeric constants. */
363 #define isnumstart(c) ( nasm_isdigit(c) || (c)=='$' )
364 #define isnumchar(c) ( nasm_isalnum(c) || (c)=='_' )
366 /* This returns the numeric value of a given 'digit'. */
368 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
371 * Data-type flags that get passed to listing-file routines.
373 enum {
374 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
375 LIST_INCBIN, LIST_TIMES
379 * -----------------------------------------------------------
380 * Format of the `insn' structure returned from `parser.c' and
381 * passed into `assemble.c'
382 * -----------------------------------------------------------
386 * Here we define the operand types. These are implemented as bit
387 * masks, since some are subsets of others; e.g. AX in a MOV
388 * instruction is a special operand type, whereas AX in other
389 * contexts is just another 16-bit register. (Also, consider CL in
390 * shift instructions, DX in OUT, etc.)
392 * The basic concept here is that
393 * (class & ~operand) == 0
395 * if and only if "operand" belongs to class type "class".
397 * The bits are assigned as follows:
399 * Bits 0-7, 23, 29: sizes
400 * 0: 8 bits (BYTE)
401 * 1: 16 bits (WORD)
402 * 2: 32 bits (DWORD)
403 * 3: 64 bits (QWORD)
404 * 4: 80 bits (TWORD)
405 * 5: FAR
406 * 6: NEAR
407 * 7: SHORT
408 * 23: 256 bits (YWORD)
409 * 29: 128 bits (OWORD)
411 * Bits 8-11 modifiers
412 * 8: TO
413 * 9: COLON
414 * 10: STRICT
415 * 11: (reserved)
417 * Bits 12-15: type of operand
418 * 12: REGISTER
419 * 13: IMMEDIATE
420 * 14: MEMORY (always has REGMEM attribute as well)
421 * 15: REGMEM (valid EA operand)
423 * Bits 16-19, 28: subclasses
424 * With REG_CDT:
425 * 16: REG_CREG (CRx)
426 * 17: REG_DREG (DRx)
427 * 18: REG_TREG (TRx)
429 * With REG_GPR:
430 * 16: REG_ACCUM (AL, AX, EAX, RAX)
431 * 17: REG_COUNT (CL, CX, ECX, RCX)
432 * 18: REG_DATA (DL, DX, EDX, RDX)
433 * 19: REG_HIGH (AH, CH, DH, BH)
434 * 28: REG_NOTACC (not REG_ACCUM)
436 * With REG_SREG:
437 * 16: REG_CS
438 * 17: REG_DESS (DS, ES, SS)
439 * 18: REG_FSGS
440 * 19: REG_SEG67
442 * With FPUREG:
443 * 16: FPU0
445 * With XMMREG:
446 * 16: XMM0
448 * With YMMREG:
449 * 16: YMM0
451 * With MEMORY:
452 * 16: MEM_OFFS (this is a simple offset)
453 * 17: IP_REL (IP-relative offset)
455 * With IMMEDIATE:
456 * 16: UNITY (1)
457 * 17: BYTENESS16 (-128..127)
458 * 18: BYTENESS32 (-128..127)
459 * 19: BYTENESS64 (-128..127)
461 * Bits 20-22, 24-27: register classes
462 * 20: REG_CDT (CRx, DRx, TRx)
463 * 21: RM_GPR (REG_GPR) (integer register)
464 * 22: REG_SREG
465 * 24: FPUREG
466 * 25: RM_MMX (MMXREG)
467 * 26: RM_XMM (XMMREG)
468 * 27: RM_YMM (YMMREG)
470 * Bit 31 is currently unallocated.
472 * 30: SAME_AS
473 * Special flag only used in instruction patterns; means this operand
474 * has to be identical to another operand. Currently only supported
475 * for registers.
478 typedef uint32_t opflags_t;
480 /* Size, and other attributes, of the operand */
481 #define BITS8 0x00000001U
482 #define BITS16 0x00000002U
483 #define BITS32 0x00000004U
484 #define BITS64 0x00000008U /* x64 and FPU only */
485 #define BITS80 0x00000010U /* FPU only */
486 #define BITS128 0x20000000U
487 #define BITS256 0x00800000U
488 #define FAR 0x00000020U /* grotty: this means 16:16 or */
489 /* 16:32, like in CALL/JMP */
490 #define NEAR 0x00000040U
491 #define SHORT 0x00000080U /* and this means what it says :) */
493 #define SIZE_MASK 0x208000FFU /* all the size attributes */
495 /* Modifiers */
496 #define MODIFIER_MASK 0x00000f00U
497 #define TO 0x00000100U /* reverse effect in FADD, FSUB &c */
498 #define COLON 0x00000200U /* operand is followed by a colon */
499 #define STRICT 0x00000400U /* do not optimize this operand */
501 /* Type of operand: memory reference, register, etc. */
502 #define OPTYPE_MASK 0x0000f000U
503 #define REGISTER 0x00001000U /* register number in 'basereg' */
504 #define IMMEDIATE 0x00002000U
505 #define MEMORY 0x0000c000U
506 #define REGMEM 0x00008000U /* for r/m, ie EA, operands */
508 /* Register classes */
509 #define REG_EA 0x00009000U /* 'normal' reg, qualifies as EA */
510 #define RM_GPR 0x00208000U /* integer operand */
511 #define REG_GPR 0x00209000U /* integer register */
512 #define REG8 0x00209001U /* 8-bit GPR */
513 #define REG16 0x00209002U /* 16-bit GPR */
514 #define REG32 0x00209004U /* 32-bit GPR */
515 #define REG64 0x00209008U /* 64-bit GPR */
516 #define FPUREG 0x01001000U /* floating point stack registers */
517 #define FPU0 0x01011000U /* FPU stack register zero */
518 #define RM_MMX 0x02008000U /* MMX operand */
519 #define MMXREG 0x02009000U /* MMX register */
520 #define RM_XMM 0x04008000U /* XMM (SSE) operand */
521 #define XMMREG 0x04009000U /* XMM (SSE) register */
522 #define XMM0 0x04019000U /* XMM register zero */
523 #define RM_YMM 0x08008000U /* YMM (AVX) operand */
524 #define YMMREG 0x08009000U /* YMM (AVX) register */
525 #define YMM0 0x08019000U /* YMM register zero */
526 #define REG_CDT 0x00101004U /* CRn, DRn and TRn */
527 #define REG_CREG 0x00111004U /* CRn */
528 #define REG_DREG 0x00121004U /* DRn */
529 #define REG_TREG 0x00141004U /* TRn */
530 #define REG_SREG 0x00401002U /* any segment register */
531 #define REG_CS 0x00411002U /* CS */
532 #define REG_DESS 0x00421002U /* DS, ES, SS */
533 #define REG_FSGS 0x00441002U /* FS, GS */
534 #define REG_SEG67 0x00481002U /* Unimplemented segment registers */
536 #define REG_RIP 0x00801008U /* RIP relative addressing */
537 #define REG_EIP 0x00801004U /* EIP relative addressing */
539 /* Special GPRs */
540 #define REG_SMASK 0x100f0000U /* a mask for the following */
541 #define REG_ACCUM 0x00219000U /* accumulator: AL, AX, EAX, RAX */
542 #define REG_AL 0x00219001U
543 #define REG_AX 0x00219002U
544 #define REG_EAX 0x00219004U
545 #define REG_RAX 0x00219008U
546 #define REG_COUNT 0x10229000U /* counter: CL, CX, ECX, RCX */
547 #define REG_CL 0x10229001U
548 #define REG_CX 0x10229002U
549 #define REG_ECX 0x10229004U
550 #define REG_RCX 0x10229008U
551 #define REG_DL 0x10249001U /* data: DL, DX, EDX, RDX */
552 #define REG_DX 0x10249002U
553 #define REG_EDX 0x10249004U
554 #define REG_RDX 0x10249008U
555 #define REG_HIGH 0x10289001U /* high regs: AH, CH, DH, BH */
556 #define REG_NOTACC 0x10000000U /* non-accumulator register */
557 #define REG8NA 0x10209001U /* 8-bit non-acc GPR */
558 #define REG16NA 0x10209002U /* 16-bit non-acc GPR */
559 #define REG32NA 0x10209004U /* 32-bit non-acc GPR */
560 #define REG64NA 0x10209008U /* 64-bit non-acc GPR */
562 /* special types of EAs */
563 #define MEM_OFFS 0x0001c000U /* simple [address] offset - absolute! */
564 #define IP_REL 0x0002c000U /* IP-relative offset */
566 /* memory which matches any type of r/m operand */
567 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM|RM_YMM)
569 /* special type of immediate operand */
570 #define UNITY 0x00012000U /* for shift/rotate instructions */
571 #define SBYTE16 0x00022000U /* for op r16,immediate instrs. */
572 #define SBYTE32 0x00042000U /* for op r32,immediate instrs. */
573 #define SBYTE64 0x00082000U /* for op r64,immediate instrs. */
574 #define BYTENESS 0x000e0000U /* for testing for byteness */
576 /* special flags */
577 #define SAME_AS 0x40000000U
579 /* Register names automatically generated from regs.dat */
580 #include "regs.h"
582 enum ccode { /* condition code names */
583 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
584 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
585 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
586 C_none = -1
590 * REX flags
592 #define REX_REAL 0x4f /* Actual REX prefix bits */
593 #define REX_B 0x01 /* ModRM r/m extension */
594 #define REX_X 0x02 /* SIB index extension */
595 #define REX_R 0x04 /* ModRM reg extension */
596 #define REX_W 0x08 /* 64-bit operand size */
597 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
598 #define REX_P 0x40 /* REX prefix present/required */
599 #define REX_H 0x80 /* High register present, REX forbidden */
600 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
601 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
602 #define REX_V 0x0400 /* Instruction uses VEX/XOP instead of REX */
603 #define REX_NH 0x0800 /* Instruction which doesn't use high regs */
606 * REX_V "classes" (prefixes which behave like VEX)
608 enum vex_class {
609 RV_VEX = 0, /* C4/C5 */
610 RV_XOP = 1 /* 8F */
614 * Note that because segment registers may be used as instruction
615 * prefixes, we must ensure the enumerations for prefixes and
616 * register names do not overlap.
618 enum prefixes { /* instruction prefixes */
619 P_none = 0,
620 PREFIX_ENUM_START = REG_ENUM_LIMIT,
621 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
622 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
623 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
624 P_WAIT,
625 PREFIX_ENUM_LIMIT
628 enum extop_type { /* extended operand types */
629 EOT_NOTHING,
630 EOT_DB_STRING, /* Byte string */
631 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
632 EOT_DB_NUMBER, /* Integer */
635 enum ea_flags { /* special EA flags */
636 EAF_BYTEOFFS = 1, /* force offset part to byte size */
637 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
638 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
639 EAF_REL = 8, /* IP-relative addressing */
640 EAF_ABS = 16, /* non-IP-relative addressing */
641 EAF_FSGS = 32 /* fs/gs segment override present */
644 enum eval_hint { /* values for `hinttype' */
645 EAH_NOHINT = 0, /* no hint at all - our discretion */
646 EAH_MAKEBASE = 1, /* try to make given reg the base */
647 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
650 typedef struct operand { /* operand to an instruction */
651 int32_t type; /* type of operand */
652 int disp_size; /* 0 means default; 16; 32; 64 */
653 enum reg_enum basereg, indexreg; /* address registers */
654 int scale; /* index scale */
655 int hintbase;
656 enum eval_hint hinttype; /* hint as to real base register */
657 int32_t segment; /* immediate segment, if needed */
658 int64_t offset; /* any immediate number */
659 int32_t wrt; /* segment base it's relative to */
660 int eaflags; /* special EA flags */
661 int opflags; /* see OPFLAG_* defines below */
662 } operand;
664 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
665 #define OPFLAG_EXTERN 2 /* operand is an external reference */
666 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference */
667 /* (always a forward reference also) */
669 typedef struct extop { /* extended operand */
670 struct extop *next; /* linked list */
671 char *stringval; /* if it's a string, then here it is */
672 size_t stringlen; /* ... and here's how long it is */
673 int64_t offset; /* ... it's given here ... */
674 int32_t segment; /* if it's a number/address, then... */
675 int32_t wrt; /* ... and here */
676 enum extop_type type; /* defined above */
677 } extop;
679 /* Prefix positions: each type of prefix goes in a specific slot.
680 This affects the final ordering of the assembled output, which
681 shouldn't matter to the processor, but if you have stylistic
682 preferences, you can change this. REX prefixes are handled
683 differently for the time being.
685 Note that LOCK and REP are in the same slot. This is
686 an x86 architectural constraint. */
687 enum prefix_pos {
688 PPS_WAIT, /* WAIT (technically not a prefix!) */
689 PPS_LREP, /* Lock or REP prefix */
690 PPS_SEG, /* Segment override prefix */
691 PPS_OSIZE, /* Operand size prefix */
692 PPS_ASIZE, /* Address size prefix */
693 MAXPREFIX /* Total number of prefix slots */
696 /* If you need to change this, also change it in insns.pl */
697 #define MAX_OPERANDS 5
699 typedef struct insn { /* an instruction itself */
700 char *label; /* the label defined, or NULL */
701 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
702 enum opcode opcode; /* the opcode - not just the string */
703 enum ccode condition; /* the condition code, if Jcc/SETcc */
704 int operands; /* how many operands? 0-3
705 * (more if db et al) */
706 int addr_size; /* address size */
707 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
708 extop *eops; /* extended operands */
709 int eops_float; /* true if DD and floating */
710 int32_t times; /* repeat count (TIMES prefix) */
711 bool forw_ref; /* is there a forward reference? */
712 int rex; /* Special REX Prefix */
713 int drexdst; /* Destination register for DREX/VEX suffix */
714 int vex_cm; /* Class and M field for VEX prefix */
715 int vex_wlp; /* W, P and L information for VEX prefix */
716 } insn;
718 enum geninfo { GI_SWITCH };
720 * ------------------------------------------------------------
721 * The data structure defining an output format driver, and the
722 * interfaces to the functions therein.
723 * ------------------------------------------------------------
726 struct ofmt {
728 * This is a short (one-liner) description of the type of
729 * output generated by the driver.
731 const char *fullname;
734 * This is a single keyword used to select the driver.
736 const char *shortname;
740 * this is reserved for out module specific help.
741 * It is set to NULL in all the out modules and is not implemented
742 * in the main program
744 const char *helpstring;
747 * this is a pointer to the first element of the debug information
749 struct dfmt **debug_formats;
752 * and a pointer to the element that is being used
753 * note: this is set to the default at compile time and changed if the
754 * -F option is selected. If developing a set of new debug formats for
755 * an output format, be sure to set this to whatever default you want
758 struct dfmt *current_dfmt;
761 * This, if non-NULL, is a NULL-terminated list of `char *'s
762 * pointing to extra standard macros supplied by the object
763 * format (e.g. a sensible initial default value of __SECT__,
764 * and user-level equivalents for any format-specific
765 * directives).
767 macros_t *stdmac;
770 * This procedure is called at the start of an output session.
771 * It tells the output format what file it will be writing to,
772 * what routine to report errors through, and how to interface
773 * to the label manager and expression evaluator if necessary.
774 * It also gives it a chance to do other initialisation.
776 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
779 * This procedure is called to pass generic information to the
780 * object file. The first parameter gives the information type
781 * (currently only command line switches)
782 * and the second parameter gives the value. This function returns
783 * 1 if recognized, 0 if unrecognized
785 int (*setinfo) (enum geninfo type, char **string);
788 * This procedure is called by assemble() to write actual
789 * generated code or data to the object file. Typically it
790 * doesn't have to actually _write_ it, just store it for
791 * later.
793 * The `type' argument specifies the type of output data, and
794 * usually the size as well: its contents are described below.
796 void (*output) (int32_t segto, const void *data,
797 enum out_type type, uint64_t size,
798 int32_t segment, int32_t wrt);
801 * This procedure is called once for every symbol defined in
802 * the module being assembled. It gives the name and value of
803 * the symbol, in NASM's terms, and indicates whether it has
804 * been declared to be global. Note that the parameter "name",
805 * when passed, will point to a piece of static storage
806 * allocated inside the label manager - it's safe to keep using
807 * that pointer, because the label manager doesn't clean up
808 * until after the output driver has.
810 * Values of `is_global' are: 0 means the symbol is local; 1
811 * means the symbol is global; 2 means the symbol is common (in
812 * which case `offset' holds the _size_ of the variable).
813 * Anything else is available for the output driver to use
814 * internally.
816 * This routine explicitly _is_ allowed to call the label
817 * manager to define further symbols, if it wants to, even
818 * though it's been called _from_ the label manager. That much
819 * re-entrancy is guaranteed in the label manager. However, the
820 * label manager will in turn call this routine, so it should
821 * be prepared to be re-entrant itself.
823 * The `special' parameter contains special information passed
824 * through from the command that defined the label: it may have
825 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
826 * be obvious to the output format from the other parameters.
828 void (*symdef) (char *name, int32_t segment, int64_t offset,
829 int is_global, char *special);
832 * This procedure is called when the source code requests a
833 * segment change. It should return the corresponding segment
834 * _number_ for the name, or NO_SEG if the name is not a valid
835 * segment name.
837 * It may also be called with NULL, in which case it is to
838 * return the _default_ section number for starting assembly in.
840 * It is allowed to modify the string it is given a pointer to.
842 * It is also allowed to specify a default instruction size for
843 * the segment, by setting `*bits' to 16 or 32. Or, if it
844 * doesn't wish to define a default, it can leave `bits' alone.
846 int32_t (*section) (char *name, int pass, int *bits);
849 * This procedure is called to modify the segment base values
850 * returned from the SEG operator. It is given a segment base
851 * value (i.e. a segment value with the low bit set), and is
852 * required to produce in return a segment value which may be
853 * different. It can map segment bases to absolute numbers by
854 * means of returning SEG_ABS types.
856 * It should return NO_SEG if the segment base cannot be
857 * determined; the evaluator (which calls this routine) is
858 * responsible for throwing an error condition if that occurs
859 * in pass two or in a critical expression.
861 int32_t (*segbase) (int32_t segment);
864 * This procedure is called to allow the output driver to
865 * process its own specific directives. When called, it has the
866 * directive word in `directive' and the parameter string in
867 * `value'. It is called in both assembly passes, and `pass'
868 * will be either 1 or 2.
870 * This procedure should return zero if it does not _recognise_
871 * the directive, so that the main program can report an error.
872 * If it recognises the directive but then has its own errors,
873 * it should report them itself and then return non-zero. It
874 * should also return non-zero if it correctly processes the
875 * directive.
877 int (*directive) (char *directive, char *value, int pass);
880 * This procedure is called before anything else - even before
881 * the "init" routine - and is passed the name of the input
882 * file from which this output file is being generated. It
883 * should return its preferred name for the output file in
884 * `outname', if outname[0] is not '\0', and do nothing to
885 * `outname' otherwise. Since it is called before the driver is
886 * properly initialized, it has to be passed its error handler
887 * separately.
889 * This procedure may also take its own copy of the input file
890 * name for use in writing the output file: it is _guaranteed_
891 * that it will be called before the "init" routine.
893 * The parameter `outname' points to an area of storage
894 * guaranteed to be at least FILENAME_MAX in size.
896 void (*filename) (char *inname, char *outname, efunc error);
899 * This procedure is called after assembly finishes, to allow
900 * the output driver to clean itself up and free its memory.
901 * Typically, it will also be the point at which the object
902 * file actually gets _written_.
904 * One thing the cleanup routine should always do is to close
905 * the output file pointer.
907 void (*cleanup) (int debuginfo);
912 * ------------------------------------------------------------
913 * The data structure defining a debug format driver, and the
914 * interfaces to the functions therein.
915 * ------------------------------------------------------------
918 struct dfmt {
921 * This is a short (one-liner) description of the type of
922 * output generated by the driver.
924 const char *fullname;
927 * This is a single keyword used to select the driver.
929 const char *shortname;
932 * init - called initially to set up local pointer to object format,
933 * void pointer to implementation defined data, file pointer (which
934 * probably won't be used, but who knows?), and error function.
936 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
939 * linenum - called any time there is output with a change of
940 * line number or file.
942 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
945 * debug_deflabel - called whenever a label is defined. Parameters
946 * are the same as to 'symdef()' in the output format. This function
947 * would be called before the output format version.
950 void (*debug_deflabel) (char *name, int32_t segment, int64_t offset,
951 int is_global, char *special);
953 * debug_directive - called whenever a DEBUG directive other than 'LINE'
954 * is encountered. 'directive' contains the first parameter to the
955 * DEBUG directive, and params contains the rest. For example,
956 * 'DEBUG VAR _somevar:int' would translate to a call to this
957 * function with 'directive' equal to "VAR" and 'params' equal to
958 * "_somevar:int".
960 void (*debug_directive) (const char *directive, const char *params);
963 * typevalue - called whenever the assembler wishes to register a type
964 * for the last defined label. This routine MUST detect if a type was
965 * already registered and not re-register it.
967 void (*debug_typevalue) (int32_t type);
970 * debug_output - called whenever output is required
971 * 'type' is the type of info required, and this is format-specific
973 void (*debug_output) (int type, void *param);
976 * cleanup - called after processing of file is complete
978 void (*cleanup) (void);
982 * The type definition macros
983 * for debugging
985 * low 3 bits: reserved
986 * next 5 bits: type
987 * next 24 bits: number of elements for arrays (0 for labels)
990 #define TY_UNKNOWN 0x00
991 #define TY_LABEL 0x08
992 #define TY_BYTE 0x10
993 #define TY_WORD 0x18
994 #define TY_DWORD 0x20
995 #define TY_FLOAT 0x28
996 #define TY_QWORD 0x30
997 #define TY_TBYTE 0x38
998 #define TY_OWORD 0x40
999 #define TY_YWORD 0x48
1000 #define TY_COMMON 0xE0
1001 #define TY_SEG 0xE8
1002 #define TY_EXTERN 0xF0
1003 #define TY_EQU 0xF8
1005 #define TYM_TYPE(x) ((x) & 0xF8)
1006 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1008 #define TYS_ELEMENTS(x) ((x) << 8)
1011 * -----
1012 * Special tokens
1013 * -----
1016 enum special_tokens {
1017 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1018 S_ABS = SPECIAL_ENUM_START,
1019 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
1020 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD, S_YWORD,
1021 SPECIAL_ENUM_LIMIT
1025 * -----
1026 * Global modes
1027 * -----
1031 * This declaration passes the "pass" number to all other modules
1032 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1033 * where 0 = optimizing pass
1034 * 1 = pass 1
1035 * 2 = pass 2
1038 extern int pass0;
1039 extern int passn; /* Actual pass number */
1041 extern bool tasm_compatible_mode;
1042 extern int optimizing;
1043 extern int globalbits; /* 16, 32 or 64-bit mode */
1044 extern int globalrel; /* default to relative addressing? */
1045 extern int maxbits; /* max bits supported by output */
1048 * NASM version strings, defined in ver.c
1050 extern const char nasm_version[];
1051 extern const char nasm_date[];
1052 extern const char nasm_compile_options[];
1053 extern const char nasm_comment[];
1054 extern const char nasm_signature[];
1056 #endif