Tests of obscenely large exponents
[nasm/avx512.git] / output / outobj.c
blob4c9949cbbbb01131a63d6fd071eab84e157948a1
1 /* outobj.c output routines for the Netwide Assembler to produce
2 * .OBJ object files
4 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
5 * Julian Hall. All rights reserved. The software is
6 * redistributable under the licence given in the file "Licence"
7 * distributed in the NASM archive.
8 */
10 #include "compiler.h"
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include <ctype.h>
16 #include <inttypes.h>
18 #include "nasm.h"
19 #include "nasmlib.h"
20 #include "stdscan.h"
21 #include "outform.h"
23 #ifdef OF_OBJ
26 * outobj.c is divided into two sections. The first section is low level
27 * routines for creating obj records; It has nearly zero NASM specific
28 * code. The second section is high level routines for processing calls and
29 * data structures from the rest of NASM into obj format.
31 * It should be easy (though not zero work) to lift the first section out for
32 * use as an obj file writer for some other assembler or compiler.
36 * These routines are built around the ObjRecord data struture. An ObjRecord
37 * holds an object file record that may be under construction or complete.
39 * A major function of these routines is to support continuation of an obj
40 * record into the next record when the maximum record size is exceeded. The
41 * high level code does not need to worry about where the record breaks occur.
42 * It does need to do some minor extra steps to make the automatic continuation
43 * work. Those steps may be skipped for records where the high level knows no
44 * continuation could be required.
46 * 1) An ObjRecord is allocated and cleared by obj_new, or an existing ObjRecord
47 * is cleared by obj_clear.
49 * 2) The caller should fill in .type.
51 * 3) If the record is continuable and there is processing that must be done at
52 * the start of each record then the caller should fill in .ori with the
53 * address of the record initializer routine.
55 * 4) If the record is continuable and it should be saved (rather than emitted
56 * immediately) as each record is done, the caller should set .up to be a
57 * pointer to a location in which the caller keeps the master pointer to the
58 * ObjRecord. When the record is continued, the obj_bump routine will then
59 * allocate a new ObjRecord structure and update the master pointer.
61 * 5) If the .ori field was used then the caller should fill in the .parm with
62 * any data required by the initializer.
64 * 6) The caller uses the routines: obj_byte, obj_word, obj_rword, obj_dword,
65 * obj_x, obj_index, obj_value and obj_name to fill in the various kinds of
66 * data required for this record.
68 * 7) If the record is continuable, the caller should call obj_commit at each
69 * point where breaking the record is permitted.
71 * 8) To write out the record, the caller should call obj_emit2. If the
72 * caller has called obj_commit for all data written then he can get slightly
73 * faster code by calling obj_emit instead of obj_emit2.
75 * Most of these routines return an ObjRecord pointer. This will be the input
76 * pointer most of the time and will be the new location if the ObjRecord
77 * moved as a result of the call. The caller may ignore the return value in
78 * three cases: It is a "Never Reallocates" routine; or The caller knows
79 * continuation is not possible; or The caller uses the master pointer for the
80 * next operation.
83 #define RECORD_MAX (1024-3) /* maximal size of any record except type+reclen */
84 #define OBJ_PARMS 3 /* maximum .parm used by any .ori routine */
86 #define FIX_08_LOW 0x8000 /* location type for various fixup subrecords */
87 #define FIX_16_OFFSET 0x8400
88 #define FIX_16_SELECTOR 0x8800
89 #define FIX_32_POINTER 0x8C00
90 #define FIX_08_HIGH 0x9000
91 #define FIX_32_OFFSET 0xA400
92 #define FIX_48_POINTER 0xAC00
94 enum RecordID { /* record ID codes */
96 THEADR = 0x80, /* module header */
97 COMENT = 0x88, /* comment record */
99 LINNUM = 0x94, /* line number record */
100 LNAMES = 0x96, /* list of names */
102 SEGDEF = 0x98, /* segment definition */
103 GRPDEF = 0x9A, /* group definition */
104 EXTDEF = 0x8C, /* external definition */
105 PUBDEF = 0x90, /* public definition */
106 COMDEF = 0xB0, /* common definition */
108 LEDATA = 0xA0, /* logical enumerated data */
109 FIXUPP = 0x9C, /* fixups (relocations) */
110 FIXU32 = 0x9D, /* 32-bit fixups (relocations) */
112 MODEND = 0x8A, /* module end */
113 MODE32 = 0x8B /* module end for 32-bit objects */
116 enum ComentID { /* ID codes for comment records */
118 dEXTENDED = 0xA1, /* tells that we are using translator-specific extensions */
119 dLINKPASS = 0xA2, /* link pass 2 marker */
120 dTYPEDEF = 0xE3, /* define a type */
121 dSYM = 0xE6, /* symbol debug record */
122 dFILNAME = 0xE8, /* file name record */
123 dCOMPDEF = 0xEA /* compiler type info */
126 typedef struct ObjRecord ObjRecord;
127 typedef void ORI(ObjRecord * orp);
129 struct ObjRecord {
130 ORI *ori; /* Initialization routine */
131 int used; /* Current data size */
132 int committed; /* Data size at last boundary */
133 int x_size; /* (see obj_x) */
134 unsigned int type; /* Record type */
135 ObjRecord *child; /* Associated record below this one */
136 ObjRecord **up; /* Master pointer to this ObjRecord */
137 ObjRecord *back; /* Previous part of this record */
138 uint32_t parm[OBJ_PARMS]; /* Parameters for ori routine */
139 uint8_t buf[RECORD_MAX + 3];
142 static void obj_fwrite(ObjRecord * orp);
143 static void ori_ledata(ObjRecord * orp);
144 static void ori_pubdef(ObjRecord * orp);
145 static void ori_null(ObjRecord * orp);
146 static ObjRecord *obj_commit(ObjRecord * orp);
148 static bool obj_uppercase; /* Flag: all names in uppercase */
149 static bool obj_use32; /* Flag: at least one segment is 32-bit */
152 * Clear an ObjRecord structure. (Never reallocates).
153 * To simplify reuse of ObjRecord's, .type, .ori and .parm are not cleared.
155 static ObjRecord *obj_clear(ObjRecord * orp)
157 orp->used = 0;
158 orp->committed = 0;
159 orp->x_size = 0;
160 orp->child = NULL;
161 orp->up = NULL;
162 orp->back = NULL;
163 return (orp);
167 * Emit an ObjRecord structure. (Never reallocates).
168 * The record is written out preceeded (recursively) by its previous part (if
169 * any) and followed (recursively) by its child (if any).
170 * The previous part and the child are freed. The main ObjRecord is cleared,
171 * not freed.
173 static ObjRecord *obj_emit(ObjRecord * orp)
175 if (orp->back) {
176 obj_emit(orp->back);
177 nasm_free(orp->back);
180 if (orp->committed)
181 obj_fwrite(orp);
183 if (orp->child) {
184 obj_emit(orp->child);
185 nasm_free(orp->child);
188 return (obj_clear(orp));
192 * Commit and Emit a record. (Never reallocates).
194 static ObjRecord *obj_emit2(ObjRecord * orp)
196 obj_commit(orp);
197 return (obj_emit(orp));
201 * Allocate and clear a new ObjRecord; Also sets .ori to ori_null
203 static ObjRecord *obj_new(void)
205 ObjRecord *orp;
207 orp = obj_clear(nasm_malloc(sizeof(ObjRecord)));
208 orp->ori = ori_null;
209 return (orp);
213 * Advance to the next record because the existing one is full or its x_size
214 * is incompatible.
215 * Any uncommited data is moved into the next record.
217 static ObjRecord *obj_bump(ObjRecord * orp)
219 ObjRecord *nxt;
220 int used = orp->used;
221 int committed = orp->committed;
223 if (orp->up) {
224 *orp->up = nxt = obj_new();
225 nxt->ori = orp->ori;
226 nxt->type = orp->type;
227 nxt->up = orp->up;
228 nxt->back = orp;
229 memcpy(nxt->parm, orp->parm, sizeof(orp->parm));
230 } else
231 nxt = obj_emit(orp);
233 used -= committed;
234 if (used) {
235 nxt->committed = 1;
236 nxt->ori(nxt);
237 nxt->committed = nxt->used;
238 memcpy(nxt->buf + nxt->committed, orp->buf + committed, used);
239 nxt->used = nxt->committed + used;
242 return (nxt);
246 * Advance to the next record if necessary to allow the next field to fit.
248 static ObjRecord *obj_check(ObjRecord * orp, int size)
250 if (orp->used + size > RECORD_MAX)
251 orp = obj_bump(orp);
253 if (!orp->committed) {
254 orp->committed = 1;
255 orp->ori(orp);
256 orp->committed = orp->used;
259 return (orp);
263 * All data written so far is commited to the current record (won't be moved to
264 * the next record in case of continuation).
266 static ObjRecord *obj_commit(ObjRecord * orp)
268 orp->committed = orp->used;
269 return (orp);
273 * Write a byte
275 static ObjRecord *obj_byte(ObjRecord * orp, uint8_t val)
277 orp = obj_check(orp, 1);
278 orp->buf[orp->used] = val;
279 orp->used++;
280 return (orp);
284 * Write a word
286 static ObjRecord *obj_word(ObjRecord * orp, unsigned int val)
288 orp = obj_check(orp, 2);
289 orp->buf[orp->used] = val;
290 orp->buf[orp->used + 1] = val >> 8;
291 orp->used += 2;
292 return (orp);
296 * Write a reversed word
298 static ObjRecord *obj_rword(ObjRecord * orp, unsigned int val)
300 orp = obj_check(orp, 2);
301 orp->buf[orp->used] = val >> 8;
302 orp->buf[orp->used + 1] = val;
303 orp->used += 2;
304 return (orp);
308 * Write a dword
310 static ObjRecord *obj_dword(ObjRecord * orp, uint32_t val)
312 orp = obj_check(orp, 4);
313 orp->buf[orp->used] = val;
314 orp->buf[orp->used + 1] = val >> 8;
315 orp->buf[orp->used + 2] = val >> 16;
316 orp->buf[orp->used + 3] = val >> 24;
317 orp->used += 4;
318 return (orp);
322 * All fields of "size x" in one obj record must be the same size (either 16
323 * bits or 32 bits). There is a one bit flag in each record which specifies
324 * which.
325 * This routine is used to force the current record to have the desired
326 * x_size. x_size is normally automatic (using obj_x), so that this
327 * routine should be used outside obj_x, only to provide compatibility with
328 * linkers that have bugs in their processing of the size bit.
331 static ObjRecord *obj_force(ObjRecord * orp, int x)
333 if (orp->x_size == (x ^ 48))
334 orp = obj_bump(orp);
335 orp->x_size = x;
336 return (orp);
340 * This routine writes a field of size x. The caller does not need to worry at
341 * all about whether 16-bits or 32-bits are required.
343 static ObjRecord *obj_x(ObjRecord * orp, uint32_t val)
345 if (orp->type & 1)
346 orp->x_size = 32;
347 if (val > 0xFFFF)
348 orp = obj_force(orp, 32);
349 if (orp->x_size == 32)
350 return (obj_dword(orp, val));
351 orp->x_size = 16;
352 return (obj_word(orp, val));
356 * Writes an index
358 static ObjRecord *obj_index(ObjRecord * orp, unsigned int val)
360 if (val < 128)
361 return (obj_byte(orp, val));
362 return (obj_word(orp, (val >> 8) | (val << 8) | 0x80));
366 * Writes a variable length value
368 static ObjRecord *obj_value(ObjRecord * orp, uint32_t val)
370 if (val <= 128)
371 return (obj_byte(orp, val));
372 if (val <= 0xFFFF) {
373 orp = obj_byte(orp, 129);
374 return (obj_word(orp, val));
376 if (val <= 0xFFFFFF)
377 return (obj_dword(orp, (val << 8) + 132));
378 orp = obj_byte(orp, 136);
379 return (obj_dword(orp, val));
383 * Writes a counted string
385 static ObjRecord *obj_name(ObjRecord * orp, char *name)
387 int len = strlen(name);
388 uint8_t *ptr;
390 orp = obj_check(orp, len + 1);
391 ptr = orp->buf + orp->used;
392 *ptr++ = len;
393 orp->used += len + 1;
394 if (obj_uppercase)
395 while (--len >= 0) {
396 *ptr++ = toupper(*name);
397 name++;
398 } else
399 memcpy(ptr, name, len);
400 return (orp);
404 * Initializer for an LEDATA record.
405 * parm[0] = offset
406 * parm[1] = segment index
407 * During the use of a LEDATA ObjRecord, parm[0] is constantly updated to
408 * represent the offset that would be required if the record were split at the
409 * last commit point.
410 * parm[2] is a copy of parm[0] as it was when the current record was initted.
412 static void ori_ledata(ObjRecord * orp)
414 obj_index(orp, orp->parm[1]);
415 orp->parm[2] = orp->parm[0];
416 obj_x(orp, orp->parm[0]);
420 * Initializer for a PUBDEF record.
421 * parm[0] = group index
422 * parm[1] = segment index
423 * parm[2] = frame (only used when both indexes are zero)
425 static void ori_pubdef(ObjRecord * orp)
427 obj_index(orp, orp->parm[0]);
428 obj_index(orp, orp->parm[1]);
429 if (!(orp->parm[0] | orp->parm[1]))
430 obj_word(orp, orp->parm[2]);
434 * Initializer for a LINNUM record.
435 * parm[0] = group index
436 * parm[1] = segment index
438 static void ori_linnum(ObjRecord * orp)
440 obj_index(orp, orp->parm[0]);
441 obj_index(orp, orp->parm[1]);
445 * Initializer for a local vars record.
447 static void ori_local(ObjRecord * orp)
449 obj_byte(orp, 0x40);
450 obj_byte(orp, dSYM);
454 * Null initializer for records that continue without any header info
456 static void ori_null(ObjRecord * orp)
458 (void)orp; /* Do nothing */
462 * This concludes the low level section of outobj.c
465 static char obj_infile[FILENAME_MAX];
467 static efunc error;
468 static evalfunc evaluate;
469 static ldfunc deflabel;
470 static FILE *ofp;
471 static int32_t first_seg;
472 static bool any_segs;
473 static int passtwo;
474 static int arrindex;
476 #define GROUP_MAX 256 /* we won't _realistically_ have more
477 * than this many segs in a group */
478 #define EXT_BLKSIZ 256 /* block size for externals list */
480 struct Segment; /* need to know these structs exist */
481 struct Group;
483 struct LineNumber {
484 struct LineNumber *next;
485 struct Segment *segment;
486 int32_t offset;
487 int32_t lineno;
490 static struct FileName {
491 struct FileName *next;
492 char *name;
493 struct LineNumber *lnhead, **lntail;
494 int index;
495 } *fnhead, **fntail;
497 static struct Array {
498 struct Array *next;
499 unsigned size;
500 int basetype;
501 } *arrhead, **arrtail;
503 #define ARRAYBOT 31 /* magic number for first array index */
505 static struct Public {
506 struct Public *next;
507 char *name;
508 int32_t offset;
509 int32_t segment; /* only if it's far-absolute */
510 int type; /* only for local debug syms */
511 } *fpubhead, **fpubtail, *last_defined;
513 static struct External {
514 struct External *next;
515 char *name;
516 int32_t commonsize;
517 int32_t commonelem; /* element size if FAR, else zero */
518 int index; /* OBJ-file external index */
519 enum {
520 DEFWRT_NONE, /* no unusual default-WRT */
521 DEFWRT_STRING, /* a string we don't yet understand */
522 DEFWRT_SEGMENT, /* a segment */
523 DEFWRT_GROUP /* a group */
524 } defwrt_type;
525 union {
526 char *string;
527 struct Segment *seg;
528 struct Group *grp;
529 } defwrt_ptr;
530 struct External *next_dws; /* next with DEFWRT_STRING */
531 } *exthead, **exttail, *dws;
533 static int externals;
535 static struct ExtBack {
536 struct ExtBack *next;
537 struct External *exts[EXT_BLKSIZ];
538 } *ebhead, **ebtail;
540 static struct Segment {
541 struct Segment *next;
542 int32_t index; /* the NASM segment id */
543 int32_t obj_index; /* the OBJ-file segment index */
544 struct Group *grp; /* the group it beint32_ts to */
545 uint32_t currentpos;
546 int32_t align; /* can be SEG_ABS + absolute addr */
547 enum {
548 CMB_PRIVATE = 0,
549 CMB_PUBLIC = 2,
550 CMB_STACK = 5,
551 CMB_COMMON = 6
552 } combine;
553 bool use32; /* is this segment 32-bit? */
554 struct Public *pubhead, **pubtail, *lochead, **loctail;
555 char *name;
556 char *segclass, *overlay; /* `class' is a C++ keyword :-) */
557 ObjRecord *orp;
558 } *seghead, **segtail, *obj_seg_needs_update;
560 static struct Group {
561 struct Group *next;
562 char *name;
563 int32_t index; /* NASM segment id */
564 int32_t obj_index; /* OBJ-file group index */
565 int32_t nentries; /* number of elements... */
566 int32_t nindices; /* ...and number of index elts... */
567 union {
568 int32_t index;
569 char *name;
570 } segs[GROUP_MAX]; /* ...in this */
571 } *grphead, **grptail, *obj_grp_needs_update;
573 static struct ImpDef {
574 struct ImpDef *next;
575 char *extname;
576 char *libname;
577 unsigned int impindex;
578 char *impname;
579 } *imphead, **imptail;
581 static struct ExpDef {
582 struct ExpDef *next;
583 char *intname;
584 char *extname;
585 unsigned int ordinal;
586 int flags;
587 } *exphead, **exptail;
589 #define EXPDEF_FLAG_ORDINAL 0x80
590 #define EXPDEF_FLAG_RESIDENT 0x40
591 #define EXPDEF_FLAG_NODATA 0x20
592 #define EXPDEF_MASK_PARMCNT 0x1F
594 static int32_t obj_entry_seg, obj_entry_ofs;
596 struct ofmt of_obj;
598 /* The current segment */
599 static struct Segment *current_seg;
601 static int32_t obj_segment(char *, int, int *);
602 static void obj_write_file(int debuginfo);
603 static int obj_directive(char *, char *, int);
605 static void obj_init(FILE * fp, efunc errfunc, ldfunc ldef, evalfunc eval)
607 ofp = fp;
608 error = errfunc;
609 evaluate = eval;
610 deflabel = ldef;
611 first_seg = seg_alloc();
612 any_segs = false;
613 fpubhead = NULL;
614 fpubtail = &fpubhead;
615 exthead = NULL;
616 exttail = &exthead;
617 imphead = NULL;
618 imptail = &imphead;
619 exphead = NULL;
620 exptail = &exphead;
621 dws = NULL;
622 externals = 0;
623 ebhead = NULL;
624 ebtail = &ebhead;
625 seghead = obj_seg_needs_update = NULL;
626 segtail = &seghead;
627 grphead = obj_grp_needs_update = NULL;
628 grptail = &grphead;
629 obj_entry_seg = NO_SEG;
630 obj_uppercase = false;
631 obj_use32 = false;
632 passtwo = 0;
633 current_seg = NULL;
635 of_obj.current_dfmt->init(&of_obj, NULL, fp, errfunc);
638 static int obj_set_info(enum geninfo type, char **val)
640 (void)type;
641 (void)val;
643 return 0;
645 static void obj_cleanup(int debuginfo)
647 obj_write_file(debuginfo);
648 of_obj.current_dfmt->cleanup();
649 fclose(ofp);
650 while (seghead) {
651 struct Segment *segtmp = seghead;
652 seghead = seghead->next;
653 while (segtmp->pubhead) {
654 struct Public *pubtmp = segtmp->pubhead;
655 segtmp->pubhead = pubtmp->next;
656 nasm_free(pubtmp->name);
657 nasm_free(pubtmp);
659 nasm_free(segtmp->segclass);
660 nasm_free(segtmp->overlay);
661 nasm_free(segtmp);
663 while (fpubhead) {
664 struct Public *pubtmp = fpubhead;
665 fpubhead = fpubhead->next;
666 nasm_free(pubtmp->name);
667 nasm_free(pubtmp);
669 while (exthead) {
670 struct External *exttmp = exthead;
671 exthead = exthead->next;
672 nasm_free(exttmp);
674 while (imphead) {
675 struct ImpDef *imptmp = imphead;
676 imphead = imphead->next;
677 nasm_free(imptmp->extname);
678 nasm_free(imptmp->libname);
679 nasm_free(imptmp->impname); /* nasm_free won't mind if it's NULL */
680 nasm_free(imptmp);
682 while (exphead) {
683 struct ExpDef *exptmp = exphead;
684 exphead = exphead->next;
685 nasm_free(exptmp->extname);
686 nasm_free(exptmp->intname);
687 nasm_free(exptmp);
689 while (ebhead) {
690 struct ExtBack *ebtmp = ebhead;
691 ebhead = ebhead->next;
692 nasm_free(ebtmp);
694 while (grphead) {
695 struct Group *grptmp = grphead;
696 grphead = grphead->next;
697 nasm_free(grptmp);
701 static void obj_ext_set_defwrt(struct External *ext, char *id)
703 struct Segment *seg;
704 struct Group *grp;
706 for (seg = seghead; seg; seg = seg->next)
707 if (!strcmp(seg->name, id)) {
708 ext->defwrt_type = DEFWRT_SEGMENT;
709 ext->defwrt_ptr.seg = seg;
710 nasm_free(id);
711 return;
714 for (grp = grphead; grp; grp = grp->next)
715 if (!strcmp(grp->name, id)) {
716 ext->defwrt_type = DEFWRT_GROUP;
717 ext->defwrt_ptr.grp = grp;
718 nasm_free(id);
719 return;
722 ext->defwrt_type = DEFWRT_STRING;
723 ext->defwrt_ptr.string = id;
724 ext->next_dws = dws;
725 dws = ext;
728 static void obj_deflabel(char *name, int32_t segment,
729 int32_t offset, int is_global, char *special)
732 * We have three cases:
734 * (i) `segment' is a segment-base. If so, set the name field
735 * for the segment or group structure it refers to, and then
736 * return.
738 * (ii) `segment' is one of our segments, or a SEG_ABS segment.
739 * Save the label position for later output of a PUBDEF record.
740 * (Or a MODPUB, if we work out how.)
742 * (iii) `segment' is not one of our segments. Save the label
743 * position for later output of an EXTDEF, and also store a
744 * back-reference so that we can map later references to this
745 * segment number to the external index.
747 struct External *ext;
748 struct ExtBack *eb;
749 struct Segment *seg;
750 int i;
751 bool used_special = false; /* have we used the special text? */
753 #if defined(DEBUG) && DEBUG>2
754 fprintf(stderr,
755 " obj_deflabel: %s, seg=%ld, off=%ld, is_global=%d, %s\n",
756 name, segment, offset, is_global, special);
757 #endif
760 * If it's a special-retry from pass two, discard it.
762 if (is_global == 3)
763 return;
766 * First check for the double-period, signifying something
767 * unusual.
769 if (name[0] == '.' && name[1] == '.' && name[2] != '@') {
770 if (!strcmp(name, "..start")) {
771 obj_entry_seg = segment;
772 obj_entry_ofs = offset;
773 return;
775 error(ERR_NONFATAL, "unrecognised special symbol `%s'", name);
779 * Case (i):
781 if (obj_seg_needs_update) {
782 obj_seg_needs_update->name = name;
783 return;
784 } else if (obj_grp_needs_update) {
785 obj_grp_needs_update->name = name;
786 return;
788 if (segment < SEG_ABS && segment != NO_SEG && segment % 2)
789 return;
791 if (segment >= SEG_ABS || segment == NO_SEG) {
793 * SEG_ABS subcase of (ii).
795 if (is_global) {
796 struct Public *pub;
798 pub = *fpubtail = nasm_malloc(sizeof(*pub));
799 fpubtail = &pub->next;
800 pub->next = NULL;
801 pub->name = nasm_strdup(name);
802 pub->offset = offset;
803 pub->segment = (segment == NO_SEG ? 0 : segment & ~SEG_ABS);
805 if (special)
806 error(ERR_NONFATAL, "OBJ supports no special symbol features"
807 " for this symbol type");
808 return;
812 * If `any_segs' is still false, we might need to define a
813 * default segment, if they're trying to declare a label in
814 * `first_seg'.
816 if (!any_segs && segment == first_seg) {
817 int tempint; /* ignored */
818 if (segment != obj_segment("__NASMDEFSEG", 2, &tempint))
819 error(ERR_PANIC, "strange segment conditions in OBJ driver");
822 for (seg = seghead; seg && is_global; seg = seg->next)
823 if (seg->index == segment) {
824 struct Public *loc = nasm_malloc(sizeof(*loc));
826 * Case (ii). Maybe MODPUB someday?
828 *seg->pubtail = loc;
829 seg->pubtail = &loc->next;
830 loc->next = NULL;
831 loc->name = nasm_strdup(name);
832 loc->offset = offset;
834 if (special)
835 error(ERR_NONFATAL,
836 "OBJ supports no special symbol features"
837 " for this symbol type");
838 return;
842 * Case (iii).
844 if (is_global) {
845 ext = *exttail = nasm_malloc(sizeof(*ext));
846 ext->next = NULL;
847 exttail = &ext->next;
848 ext->name = name;
849 /* Place by default all externs into the current segment */
850 ext->defwrt_type = DEFWRT_NONE;
852 /* 28-Apr-2002 - John Coffman
853 The following code was introduced on 12-Aug-2000, and breaks fixups
854 on code passed thru the MSC 5.1 linker (3.66) and MSC 6.00A linker
855 (5.10). It was introduced after FIXUP32 was added, and may be needed
856 for 32-bit segments. The following will get 16-bit segments working
857 again, and maybe someone can correct the 'if' condition which is
858 actually needed.
860 #if 0
861 if (current_seg) {
862 #else
863 if (current_seg && current_seg->use32) {
864 if (current_seg->grp) {
865 ext->defwrt_type = DEFWRT_GROUP;
866 ext->defwrt_ptr.grp = current_seg->grp;
867 } else {
868 ext->defwrt_type = DEFWRT_SEGMENT;
869 ext->defwrt_ptr.seg = current_seg;
872 #endif
874 if (is_global == 2) {
875 ext->commonsize = offset;
876 ext->commonelem = 1; /* default FAR */
877 } else
878 ext->commonsize = 0;
879 } else
880 return;
883 * Now process the special text, if any, to find default-WRT
884 * specifications and common-variable element-size and near/far
885 * specifications.
887 while (special && *special) {
888 used_special = true;
891 * We might have a default-WRT specification.
893 if (!nasm_strnicmp(special, "wrt", 3)) {
894 char *p;
895 int len;
896 special += 3;
897 special += strspn(special, " \t");
898 p = nasm_strndup(special, len = strcspn(special, ":"));
899 obj_ext_set_defwrt(ext, p);
900 special += len;
901 if (*special && *special != ':')
902 error(ERR_NONFATAL, "`:' expected in special symbol"
903 " text for `%s'", ext->name);
904 else if (*special == ':')
905 special++;
909 * The NEAR or FAR keywords specify nearness or
910 * farness. FAR gives default element size 1.
912 if (!nasm_strnicmp(special, "far", 3)) {
913 if (ext->commonsize)
914 ext->commonelem = 1;
915 else
916 error(ERR_NONFATAL,
917 "`%s': `far' keyword may only be applied"
918 " to common variables\n", ext->name);
919 special += 3;
920 special += strspn(special, " \t");
921 } else if (!nasm_strnicmp(special, "near", 4)) {
922 if (ext->commonsize)
923 ext->commonelem = 0;
924 else
925 error(ERR_NONFATAL,
926 "`%s': `far' keyword may only be applied"
927 " to common variables\n", ext->name);
928 special += 4;
929 special += strspn(special, " \t");
933 * If it's a common, and anything else remains on the line
934 * before a further colon, evaluate it as an expression and
935 * use that as the element size. Forward references aren't
936 * allowed.
938 if (*special == ':')
939 special++;
940 else if (*special) {
941 if (ext->commonsize) {
942 expr *e;
943 struct tokenval tokval;
945 stdscan_reset();
946 stdscan_bufptr = special;
947 tokval.t_type = TOKEN_INVALID;
948 e = evaluate(stdscan, NULL, &tokval, NULL, 1, error, NULL);
949 if (e) {
950 if (!is_simple(e))
951 error(ERR_NONFATAL, "cannot use relocatable"
952 " expression as common-variable element size");
953 else
954 ext->commonelem = reloc_value(e);
956 special = stdscan_bufptr;
957 } else {
958 error(ERR_NONFATAL,
959 "`%s': element-size specifications only"
960 " apply to common variables", ext->name);
961 while (*special && *special != ':')
962 special++;
963 if (*special == ':')
964 special++;
969 i = segment / 2;
970 eb = ebhead;
971 if (!eb) {
972 eb = *ebtail = nasm_malloc(sizeof(*eb));
973 eb->next = NULL;
974 ebtail = &eb->next;
976 while (i >= EXT_BLKSIZ) {
977 if (eb && eb->next)
978 eb = eb->next;
979 else {
980 eb = *ebtail = nasm_malloc(sizeof(*eb));
981 eb->next = NULL;
982 ebtail = &eb->next;
984 i -= EXT_BLKSIZ;
986 eb->exts[i] = ext;
987 ext->index = ++externals;
989 if (special && !used_special)
990 error(ERR_NONFATAL, "OBJ supports no special symbol features"
991 " for this symbol type");
994 /* forward declaration */
995 static void obj_write_fixup(ObjRecord * orp, int bytes,
996 int segrel, int32_t seg, int32_t wrt,
997 struct Segment *segto);
999 static void obj_out(int32_t segto, const void *data, uint32_t type,
1000 int32_t segment, int32_t wrt)
1002 uint32_t size, realtype;
1003 const uint8_t *ucdata;
1004 int32_t ldata;
1005 struct Segment *seg;
1006 ObjRecord *orp;
1009 * handle absolute-assembly (structure definitions)
1011 if (segto == NO_SEG) {
1012 if ((type & OUT_TYPMASK) != OUT_RESERVE)
1013 error(ERR_NONFATAL, "attempt to assemble code in [ABSOLUTE]"
1014 " space");
1015 return;
1019 * If `any_segs' is still false, we must define a default
1020 * segment.
1022 if (!any_segs) {
1023 int tempint; /* ignored */
1024 if (segto != obj_segment("__NASMDEFSEG", 2, &tempint))
1025 error(ERR_PANIC, "strange segment conditions in OBJ driver");
1029 * Find the segment we are targetting.
1031 for (seg = seghead; seg; seg = seg->next)
1032 if (seg->index == segto)
1033 break;
1034 if (!seg)
1035 error(ERR_PANIC, "code directed to nonexistent segment?");
1037 orp = seg->orp;
1038 orp->parm[0] = seg->currentpos;
1040 size = type & OUT_SIZMASK;
1041 realtype = type & OUT_TYPMASK;
1042 if (realtype == OUT_RAWDATA) {
1043 ucdata = data;
1044 while (size > 0) {
1045 unsigned int len;
1046 orp = obj_check(seg->orp, 1);
1047 len = RECORD_MAX - orp->used;
1048 if (len > size)
1049 len = size;
1050 memcpy(orp->buf + orp->used, ucdata, len);
1051 orp->committed = orp->used += len;
1052 orp->parm[0] = seg->currentpos += len;
1053 ucdata += len;
1054 size -= len;
1056 } else if (realtype == OUT_ADDRESS || realtype == OUT_REL2ADR ||
1057 realtype == OUT_REL4ADR) {
1058 int rsize;
1060 if (segment == NO_SEG && realtype != OUT_ADDRESS)
1061 error(ERR_NONFATAL, "relative call to absolute address not"
1062 " supported by OBJ format");
1063 if (segment >= SEG_ABS)
1064 error(ERR_NONFATAL, "far-absolute relocations not supported"
1065 " by OBJ format");
1066 ldata = *(int32_t *)data;
1067 if (realtype == OUT_REL2ADR) {
1068 ldata += (size - 2);
1069 size = 2;
1071 if (realtype == OUT_REL4ADR) {
1072 ldata += (size - 4);
1073 size = 4;
1075 if (size == 2)
1076 orp = obj_word(orp, ldata);
1077 else
1078 orp = obj_dword(orp, ldata);
1079 rsize = size;
1080 if (segment < SEG_ABS && (segment != NO_SEG && segment % 2) &&
1081 size == 4) {
1083 * This is a 4-byte segment-base relocation such as
1084 * `MOV EAX,SEG foo'. OBJ format can't actually handle
1085 * these, but if the constant term has the 16 low bits
1086 * zero, we can just apply a 2-byte segment-base
1087 * relocation to the low word instead.
1089 rsize = 2;
1090 if (ldata & 0xFFFF)
1091 error(ERR_NONFATAL, "OBJ format cannot handle complex"
1092 " dword-size segment base references");
1094 if (segment != NO_SEG)
1095 obj_write_fixup(orp, rsize,
1096 (realtype == OUT_ADDRESS ? 0x4000 : 0),
1097 segment, wrt, seg);
1098 seg->currentpos += size;
1099 } else if (realtype == OUT_RESERVE) {
1100 if (orp->committed)
1101 orp = obj_bump(orp);
1102 seg->currentpos += size;
1104 obj_commit(orp);
1107 static void obj_write_fixup(ObjRecord * orp, int bytes,
1108 int segrel, int32_t seg, int32_t wrt,
1109 struct Segment *segto)
1111 unsigned locat;
1112 int method;
1113 int base;
1114 int32_t tidx, fidx;
1115 struct Segment *s = NULL;
1116 struct Group *g = NULL;
1117 struct External *e = NULL;
1118 ObjRecord *forp;
1120 if (bytes == 1) {
1121 error(ERR_NONFATAL, "`obj' output driver does not support"
1122 " one-byte relocations");
1123 return;
1126 forp = orp->child;
1127 if (forp == NULL) {
1128 orp->child = forp = obj_new();
1129 forp->up = &(orp->child);
1130 /* We should choose between FIXUPP and FIXU32 record type */
1131 /* If we're targeting a 32-bit segment, use a FIXU32 record */
1132 if (segto->use32)
1133 forp->type = FIXU32;
1134 else
1135 forp->type = FIXUPP;
1138 if (seg % 2) {
1139 base = true;
1140 locat = FIX_16_SELECTOR;
1141 seg--;
1142 if (bytes != 2)
1143 error(ERR_PANIC, "OBJ: 4-byte segment base fixup got"
1144 " through sanity check");
1145 } else {
1146 base = false;
1147 locat = (bytes == 2) ? FIX_16_OFFSET : FIX_32_OFFSET;
1148 if (!segrel)
1150 * There is a bug in tlink that makes it process self relative
1151 * fixups incorrectly if the x_size doesn't match the location
1152 * size.
1154 forp = obj_force(forp, bytes << 3);
1157 forp = obj_rword(forp, locat | segrel | (orp->parm[0] - orp->parm[2]));
1159 tidx = fidx = -1, method = 0; /* placate optimisers */
1162 * See if we can find the segment ID in our segment list. If
1163 * so, we have a T4 (LSEG) target.
1165 for (s = seghead; s; s = s->next)
1166 if (s->index == seg)
1167 break;
1168 if (s)
1169 method = 4, tidx = s->obj_index;
1170 else {
1171 for (g = grphead; g; g = g->next)
1172 if (g->index == seg)
1173 break;
1174 if (g)
1175 method = 5, tidx = g->obj_index;
1176 else {
1177 int32_t i = seg / 2;
1178 struct ExtBack *eb = ebhead;
1179 while (i >= EXT_BLKSIZ) {
1180 if (eb)
1181 eb = eb->next;
1182 else
1183 break;
1184 i -= EXT_BLKSIZ;
1186 if (eb)
1187 method = 6, e = eb->exts[i], tidx = e->index;
1188 else
1189 error(ERR_PANIC,
1190 "unrecognised segment value in obj_write_fixup");
1195 * If no WRT given, assume the natural default, which is method
1196 * F5 unless:
1198 * - we are doing an OFFSET fixup for a grouped segment, in
1199 * which case we require F1 (group).
1201 * - we are doing an OFFSET fixup for an external with a
1202 * default WRT, in which case we must honour the default WRT.
1204 if (wrt == NO_SEG) {
1205 if (!base && s && s->grp)
1206 method |= 0x10, fidx = s->grp->obj_index;
1207 else if (!base && e && e->defwrt_type != DEFWRT_NONE) {
1208 if (e->defwrt_type == DEFWRT_SEGMENT)
1209 method |= 0x00, fidx = e->defwrt_ptr.seg->obj_index;
1210 else if (e->defwrt_type == DEFWRT_GROUP)
1211 method |= 0x10, fidx = e->defwrt_ptr.grp->obj_index;
1212 else {
1213 error(ERR_NONFATAL, "default WRT specification for"
1214 " external `%s' unresolved", e->name);
1215 method |= 0x50, fidx = -1; /* got to do _something_ */
1217 } else
1218 method |= 0x50, fidx = -1;
1219 } else {
1221 * See if we can find the WRT-segment ID in our segment
1222 * list. If so, we have a F0 (LSEG) frame.
1224 for (s = seghead; s; s = s->next)
1225 if (s->index == wrt - 1)
1226 break;
1227 if (s)
1228 method |= 0x00, fidx = s->obj_index;
1229 else {
1230 for (g = grphead; g; g = g->next)
1231 if (g->index == wrt - 1)
1232 break;
1233 if (g)
1234 method |= 0x10, fidx = g->obj_index;
1235 else {
1236 int32_t i = wrt / 2;
1237 struct ExtBack *eb = ebhead;
1238 while (i >= EXT_BLKSIZ) {
1239 if (eb)
1240 eb = eb->next;
1241 else
1242 break;
1243 i -= EXT_BLKSIZ;
1245 if (eb)
1246 method |= 0x20, fidx = eb->exts[i]->index;
1247 else
1248 error(ERR_PANIC,
1249 "unrecognised WRT value in obj_write_fixup");
1254 forp = obj_byte(forp, method);
1255 if (fidx != -1)
1256 forp = obj_index(forp, fidx);
1257 forp = obj_index(forp, tidx);
1258 obj_commit(forp);
1261 static int32_t obj_segment(char *name, int pass, int *bits)
1264 * We call the label manager here to define a name for the new
1265 * segment, and when our _own_ label-definition stub gets
1266 * called in return, it should register the new segment name
1267 * using the pointer it gets passed. That way we save memory,
1268 * by sponging off the label manager.
1270 #if defined(DEBUG) && DEBUG>=3
1271 fprintf(stderr, " obj_segment: < %s >, pass=%d, *bits=%d\n",
1272 name, pass, *bits);
1273 #endif
1274 if (!name) {
1275 *bits = 16;
1276 current_seg = NULL;
1277 return first_seg;
1278 } else {
1279 struct Segment *seg;
1280 struct Group *grp;
1281 struct External **extp;
1282 int obj_idx, i, attrs;
1283 bool rn_error;
1284 char *p;
1287 * Look for segment attributes.
1289 attrs = 0;
1290 while (*name == '.')
1291 name++; /* hack, but a documented one */
1292 p = name;
1293 while (*p && !isspace(*p))
1294 p++;
1295 if (*p) {
1296 *p++ = '\0';
1297 while (*p && isspace(*p))
1298 *p++ = '\0';
1300 while (*p) {
1301 while (*p && !isspace(*p))
1302 p++;
1303 if (*p) {
1304 *p++ = '\0';
1305 while (*p && isspace(*p))
1306 *p++ = '\0';
1309 attrs++;
1312 obj_idx = 1;
1313 for (seg = seghead; seg; seg = seg->next) {
1314 obj_idx++;
1315 if (!strcmp(seg->name, name)) {
1316 if (attrs > 0 && pass == 1)
1317 error(ERR_WARNING, "segment attributes specified on"
1318 " redeclaration of segment: ignoring");
1319 if (seg->use32)
1320 *bits = 32;
1321 else
1322 *bits = 16;
1323 current_seg = seg;
1324 return seg->index;
1328 *segtail = seg = nasm_malloc(sizeof(*seg));
1329 seg->next = NULL;
1330 segtail = &seg->next;
1331 seg->index = (any_segs ? seg_alloc() : first_seg);
1332 seg->obj_index = obj_idx;
1333 seg->grp = NULL;
1334 any_segs = true;
1335 seg->name = NULL;
1336 seg->currentpos = 0;
1337 seg->align = 1; /* default */
1338 seg->use32 = false; /* default */
1339 seg->combine = CMB_PUBLIC; /* default */
1340 seg->segclass = seg->overlay = NULL;
1341 seg->pubhead = NULL;
1342 seg->pubtail = &seg->pubhead;
1343 seg->lochead = NULL;
1344 seg->loctail = &seg->lochead;
1345 seg->orp = obj_new();
1346 seg->orp->up = &(seg->orp);
1347 seg->orp->ori = ori_ledata;
1348 seg->orp->type = LEDATA;
1349 seg->orp->parm[1] = obj_idx;
1352 * Process the segment attributes.
1354 p = name;
1355 while (attrs--) {
1356 p += strlen(p);
1357 while (!*p)
1358 p++;
1361 * `p' contains a segment attribute.
1363 if (!nasm_stricmp(p, "private"))
1364 seg->combine = CMB_PRIVATE;
1365 else if (!nasm_stricmp(p, "public"))
1366 seg->combine = CMB_PUBLIC;
1367 else if (!nasm_stricmp(p, "common"))
1368 seg->combine = CMB_COMMON;
1369 else if (!nasm_stricmp(p, "stack"))
1370 seg->combine = CMB_STACK;
1371 else if (!nasm_stricmp(p, "use16"))
1372 seg->use32 = false;
1373 else if (!nasm_stricmp(p, "use32"))
1374 seg->use32 = true;
1375 else if (!nasm_stricmp(p, "flat")) {
1377 * This segment is an OS/2 FLAT segment. That means
1378 * that its default group is group FLAT, even if
1379 * the group FLAT does not explicitly _contain_ the
1380 * segment.
1382 * When we see this, we must create the group
1383 * `FLAT', containing no segments, if it does not
1384 * already exist; then we must set the default
1385 * group of this segment to be the FLAT group.
1387 struct Group *grp;
1388 for (grp = grphead; grp; grp = grp->next)
1389 if (!strcmp(grp->name, "FLAT"))
1390 break;
1391 if (!grp) {
1392 obj_directive("group", "FLAT", 1);
1393 for (grp = grphead; grp; grp = grp->next)
1394 if (!strcmp(grp->name, "FLAT"))
1395 break;
1396 if (!grp)
1397 error(ERR_PANIC, "failure to define FLAT?!");
1399 seg->grp = grp;
1400 } else if (!nasm_strnicmp(p, "class=", 6))
1401 seg->segclass = nasm_strdup(p + 6);
1402 else if (!nasm_strnicmp(p, "overlay=", 8))
1403 seg->overlay = nasm_strdup(p + 8);
1404 else if (!nasm_strnicmp(p, "align=", 6)) {
1405 seg->align = readnum(p + 6, &rn_error);
1406 if (rn_error) {
1407 seg->align = 1;
1408 error(ERR_NONFATAL, "segment alignment should be"
1409 " numeric");
1411 switch ((int)seg->align) {
1412 case 1: /* BYTE */
1413 case 2: /* WORD */
1414 case 4: /* DWORD */
1415 case 16: /* PARA */
1416 case 256: /* PAGE */
1417 case 4096: /* PharLap extension */
1418 break;
1419 case 8:
1420 error(ERR_WARNING,
1421 "OBJ format does not support alignment"
1422 " of 8: rounding up to 16");
1423 seg->align = 16;
1424 break;
1425 case 32:
1426 case 64:
1427 case 128:
1428 error(ERR_WARNING,
1429 "OBJ format does not support alignment"
1430 " of %d: rounding up to 256", seg->align);
1431 seg->align = 256;
1432 break;
1433 case 512:
1434 case 1024:
1435 case 2048:
1436 error(ERR_WARNING,
1437 "OBJ format does not support alignment"
1438 " of %d: rounding up to 4096", seg->align);
1439 seg->align = 4096;
1440 break;
1441 default:
1442 error(ERR_NONFATAL, "invalid alignment value %d",
1443 seg->align);
1444 seg->align = 1;
1445 break;
1447 } else if (!nasm_strnicmp(p, "absolute=", 9)) {
1448 seg->align = SEG_ABS + readnum(p + 9, &rn_error);
1449 if (rn_error)
1450 error(ERR_NONFATAL, "argument to `absolute' segment"
1451 " attribute should be numeric");
1455 /* We need to know whenever we have at least one 32-bit segment */
1456 obj_use32 |= seg->use32;
1458 obj_seg_needs_update = seg;
1459 if (seg->align >= SEG_ABS)
1460 deflabel(name, NO_SEG, seg->align - SEG_ABS,
1461 NULL, false, false, &of_obj, error);
1462 else
1463 deflabel(name, seg->index + 1, 0L,
1464 NULL, false, false, &of_obj, error);
1465 obj_seg_needs_update = NULL;
1468 * See if this segment is defined in any groups.
1470 for (grp = grphead; grp; grp = grp->next) {
1471 for (i = grp->nindices; i < grp->nentries; i++) {
1472 if (!strcmp(grp->segs[i].name, seg->name)) {
1473 nasm_free(grp->segs[i].name);
1474 grp->segs[i] = grp->segs[grp->nindices];
1475 grp->segs[grp->nindices++].index = seg->obj_index;
1476 if (seg->grp)
1477 error(ERR_WARNING,
1478 "segment `%s' is already part of"
1479 " a group: first one takes precedence",
1480 seg->name);
1481 else
1482 seg->grp = grp;
1488 * Walk through the list of externals with unresolved
1489 * default-WRT clauses, and resolve any that point at this
1490 * segment.
1492 extp = &dws;
1493 while (*extp) {
1494 if ((*extp)->defwrt_type == DEFWRT_STRING &&
1495 !strcmp((*extp)->defwrt_ptr.string, seg->name)) {
1496 nasm_free((*extp)->defwrt_ptr.string);
1497 (*extp)->defwrt_type = DEFWRT_SEGMENT;
1498 (*extp)->defwrt_ptr.seg = seg;
1499 *extp = (*extp)->next_dws;
1500 } else
1501 extp = &(*extp)->next_dws;
1504 if (seg->use32)
1505 *bits = 32;
1506 else
1507 *bits = 16;
1508 current_seg = seg;
1509 return seg->index;
1513 static int obj_directive(char *directive, char *value, int pass)
1515 if (!strcmp(directive, "group")) {
1516 char *p, *q, *v;
1517 if (pass == 1) {
1518 struct Group *grp;
1519 struct Segment *seg;
1520 struct External **extp;
1521 int obj_idx;
1523 q = value;
1524 while (*q == '.')
1525 q++; /* hack, but a documented one */
1526 v = q;
1527 while (*q && !isspace(*q))
1528 q++;
1529 if (isspace(*q)) {
1530 *q++ = '\0';
1531 while (*q && isspace(*q))
1532 q++;
1535 * Here we used to sanity-check the group directive to
1536 * ensure nobody tried to declare a group containing no
1537 * segments. However, OS/2 does this as standard
1538 * practice, so the sanity check has been removed.
1540 * if (!*q) {
1541 * error(ERR_NONFATAL,"GROUP directive contains no segments");
1542 * return 1;
1546 obj_idx = 1;
1547 for (grp = grphead; grp; grp = grp->next) {
1548 obj_idx++;
1549 if (!strcmp(grp->name, v)) {
1550 error(ERR_NONFATAL, "group `%s' defined twice", v);
1551 return 1;
1555 *grptail = grp = nasm_malloc(sizeof(*grp));
1556 grp->next = NULL;
1557 grptail = &grp->next;
1558 grp->index = seg_alloc();
1559 grp->obj_index = obj_idx;
1560 grp->nindices = grp->nentries = 0;
1561 grp->name = NULL;
1563 obj_grp_needs_update = grp;
1564 deflabel(v, grp->index + 1, 0L,
1565 NULL, false, false, &of_obj, error);
1566 obj_grp_needs_update = NULL;
1568 while (*q) {
1569 p = q;
1570 while (*q && !isspace(*q))
1571 q++;
1572 if (isspace(*q)) {
1573 *q++ = '\0';
1574 while (*q && isspace(*q))
1575 q++;
1578 * Now p contains a segment name. Find it.
1580 for (seg = seghead; seg; seg = seg->next)
1581 if (!strcmp(seg->name, p))
1582 break;
1583 if (seg) {
1585 * We have a segment index. Shift a name entry
1586 * to the end of the array to make room.
1588 grp->segs[grp->nentries++] = grp->segs[grp->nindices];
1589 grp->segs[grp->nindices++].index = seg->obj_index;
1590 if (seg->grp)
1591 error(ERR_WARNING,
1592 "segment `%s' is already part of"
1593 " a group: first one takes precedence",
1594 seg->name);
1595 else
1596 seg->grp = grp;
1597 } else {
1599 * We have an as-yet undefined segment.
1600 * Remember its name, for later.
1602 grp->segs[grp->nentries++].name = nasm_strdup(p);
1607 * Walk through the list of externals with unresolved
1608 * default-WRT clauses, and resolve any that point at
1609 * this group.
1611 extp = &dws;
1612 while (*extp) {
1613 if ((*extp)->defwrt_type == DEFWRT_STRING &&
1614 !strcmp((*extp)->defwrt_ptr.string, grp->name)) {
1615 nasm_free((*extp)->defwrt_ptr.string);
1616 (*extp)->defwrt_type = DEFWRT_GROUP;
1617 (*extp)->defwrt_ptr.grp = grp;
1618 *extp = (*extp)->next_dws;
1619 } else
1620 extp = &(*extp)->next_dws;
1623 return 1;
1625 if (!strcmp(directive, "uppercase")) {
1626 obj_uppercase = true;
1627 return 1;
1629 if (!strcmp(directive, "import")) {
1630 char *q, *extname, *libname, *impname;
1632 if (pass == 2)
1633 return 1; /* ignore in pass two */
1634 extname = q = value;
1635 while (*q && !isspace(*q))
1636 q++;
1637 if (isspace(*q)) {
1638 *q++ = '\0';
1639 while (*q && isspace(*q))
1640 q++;
1643 libname = q;
1644 while (*q && !isspace(*q))
1645 q++;
1646 if (isspace(*q)) {
1647 *q++ = '\0';
1648 while (*q && isspace(*q))
1649 q++;
1652 impname = q;
1654 if (!*extname || !*libname)
1655 error(ERR_NONFATAL, "`import' directive requires symbol name"
1656 " and library name");
1657 else {
1658 struct ImpDef *imp;
1659 bool err = false;
1661 imp = *imptail = nasm_malloc(sizeof(struct ImpDef));
1662 imptail = &imp->next;
1663 imp->next = NULL;
1664 imp->extname = nasm_strdup(extname);
1665 imp->libname = nasm_strdup(libname);
1666 imp->impindex = readnum(impname, &err);
1667 if (!*impname || err)
1668 imp->impname = nasm_strdup(impname);
1669 else
1670 imp->impname = NULL;
1673 return 1;
1675 if (!strcmp(directive, "export")) {
1676 char *q, *extname, *intname, *v;
1677 struct ExpDef *export;
1678 int flags = 0;
1679 unsigned int ordinal = 0;
1681 if (pass == 2)
1682 return 1; /* ignore in pass two */
1683 intname = q = value;
1684 while (*q && !isspace(*q))
1685 q++;
1686 if (isspace(*q)) {
1687 *q++ = '\0';
1688 while (*q && isspace(*q))
1689 q++;
1692 extname = q;
1693 while (*q && !isspace(*q))
1694 q++;
1695 if (isspace(*q)) {
1696 *q++ = '\0';
1697 while (*q && isspace(*q))
1698 q++;
1701 if (!*intname) {
1702 error(ERR_NONFATAL, "`export' directive requires export name");
1703 return 1;
1705 if (!*extname) {
1706 extname = intname;
1707 intname = "";
1709 while (*q) {
1710 v = q;
1711 while (*q && !isspace(*q))
1712 q++;
1713 if (isspace(*q)) {
1714 *q++ = '\0';
1715 while (*q && isspace(*q))
1716 q++;
1718 if (!nasm_stricmp(v, "resident"))
1719 flags |= EXPDEF_FLAG_RESIDENT;
1720 else if (!nasm_stricmp(v, "nodata"))
1721 flags |= EXPDEF_FLAG_NODATA;
1722 else if (!nasm_strnicmp(v, "parm=", 5)) {
1723 bool err = false;
1724 flags |= EXPDEF_MASK_PARMCNT & readnum(v + 5, &err);
1725 if (err) {
1726 error(ERR_NONFATAL,
1727 "value `%s' for `parm' is non-numeric", v + 5);
1728 return 1;
1730 } else {
1731 bool err = false;
1732 ordinal = readnum(v, &err);
1733 if (err) {
1734 error(ERR_NONFATAL,
1735 "unrecognised export qualifier `%s'", v);
1736 return 1;
1738 flags |= EXPDEF_FLAG_ORDINAL;
1742 export = *exptail = nasm_malloc(sizeof(struct ExpDef));
1743 exptail = &export->next;
1744 export->next = NULL;
1745 export->extname = nasm_strdup(extname);
1746 export->intname = nasm_strdup(intname);
1747 export->ordinal = ordinal;
1748 export->flags = flags;
1750 return 1;
1752 return 0;
1755 static int32_t obj_segbase(int32_t segment)
1757 struct Segment *seg;
1760 * Find the segment in our list.
1762 for (seg = seghead; seg; seg = seg->next)
1763 if (seg->index == segment - 1)
1764 break;
1766 if (!seg) {
1768 * Might be an external with a default WRT.
1770 int32_t i = segment / 2;
1771 struct ExtBack *eb = ebhead;
1772 struct External *e;
1774 while (i >= EXT_BLKSIZ) {
1775 if (eb)
1776 eb = eb->next;
1777 else
1778 break;
1779 i -= EXT_BLKSIZ;
1781 if (eb) {
1782 e = eb->exts[i];
1783 if (e->defwrt_type == DEFWRT_NONE)
1784 return segment; /* fine */
1785 else if (e->defwrt_type == DEFWRT_SEGMENT)
1786 return e->defwrt_ptr.seg->index + 1;
1787 else if (e->defwrt_type == DEFWRT_GROUP)
1788 return e->defwrt_ptr.grp->index + 1;
1789 else
1790 return NO_SEG; /* can't tell what it is */
1793 return segment; /* not one of ours - leave it alone */
1796 if (seg->align >= SEG_ABS)
1797 return seg->align; /* absolute segment */
1798 if (seg->grp)
1799 return seg->grp->index + 1; /* grouped segment */
1801 return segment; /* no special treatment */
1804 static void obj_filename(char *inname, char *outname, efunc lerror)
1806 strcpy(obj_infile, inname);
1807 standard_extension(inname, outname, ".obj", lerror);
1810 static void obj_write_file(int debuginfo)
1812 struct Segment *seg, *entry_seg_ptr = 0;
1813 struct FileName *fn;
1814 struct LineNumber *ln;
1815 struct Group *grp;
1816 struct Public *pub, *loc;
1817 struct External *ext;
1818 struct ImpDef *imp;
1819 struct ExpDef *export;
1820 static char boast[] = "The Netwide Assembler " NASM_VER;
1821 int lname_idx;
1822 ObjRecord *orp;
1825 * Write the THEADR module header.
1827 orp = obj_new();
1828 orp->type = THEADR;
1829 obj_name(orp, obj_infile);
1830 obj_emit2(orp);
1833 * Write the NASM boast comment.
1835 orp->type = COMENT;
1836 obj_rword(orp, 0); /* comment type zero */
1837 obj_name(orp, boast);
1838 obj_emit2(orp);
1840 orp->type = COMENT;
1842 * Write the IMPDEF records, if any.
1844 for (imp = imphead; imp; imp = imp->next) {
1845 obj_rword(orp, 0xA0); /* comment class A0 */
1846 obj_byte(orp, 1); /* subfunction 1: IMPDEF */
1847 if (imp->impname)
1848 obj_byte(orp, 0); /* import by name */
1849 else
1850 obj_byte(orp, 1); /* import by ordinal */
1851 obj_name(orp, imp->extname);
1852 obj_name(orp, imp->libname);
1853 if (imp->impname)
1854 obj_name(orp, imp->impname);
1855 else
1856 obj_word(orp, imp->impindex);
1857 obj_emit2(orp);
1861 * Write the EXPDEF records, if any.
1863 for (export = exphead; export; export = export->next) {
1864 obj_rword(orp, 0xA0); /* comment class A0 */
1865 obj_byte(orp, 2); /* subfunction 2: EXPDEF */
1866 obj_byte(orp, export->flags);
1867 obj_name(orp, export->extname);
1868 obj_name(orp, export->intname);
1869 if (export->flags & EXPDEF_FLAG_ORDINAL)
1870 obj_word(orp, export->ordinal);
1871 obj_emit2(orp);
1874 /* we're using extended OMF if we put in debug info */
1875 if (debuginfo) {
1876 orp->type = COMENT;
1877 obj_byte(orp, 0x40);
1878 obj_byte(orp, dEXTENDED);
1879 obj_emit2(orp);
1883 * Write the first LNAMES record, containing LNAME one, which
1884 * is null. Also initialize the LNAME counter.
1886 orp->type = LNAMES;
1887 obj_byte(orp, 0);
1888 lname_idx = 1;
1890 * Write some LNAMES for the segment names
1892 for (seg = seghead; seg; seg = seg->next) {
1893 orp = obj_name(orp, seg->name);
1894 if (seg->segclass)
1895 orp = obj_name(orp, seg->segclass);
1896 if (seg->overlay)
1897 orp = obj_name(orp, seg->overlay);
1898 obj_commit(orp);
1901 * Write some LNAMES for the group names
1903 for (grp = grphead; grp; grp = grp->next) {
1904 orp = obj_name(orp, grp->name);
1905 obj_commit(orp);
1907 obj_emit(orp);
1910 * Write the SEGDEF records.
1912 orp->type = SEGDEF;
1913 for (seg = seghead; seg; seg = seg->next) {
1914 int acbp;
1915 uint32_t seglen = seg->currentpos;
1917 acbp = (seg->combine << 2); /* C field */
1919 if (seg->use32)
1920 acbp |= 0x01; /* P bit is Use32 flag */
1921 else if (seglen == 0x10000L) {
1922 seglen = 0; /* This special case may be needed for old linkers */
1923 acbp |= 0x02; /* B bit */
1926 /* A field */
1927 if (seg->align >= SEG_ABS)
1928 /* acbp |= 0x00 */ ;
1929 else if (seg->align >= 4096) {
1930 if (seg->align > 4096)
1931 error(ERR_NONFATAL, "segment `%s' requires more alignment"
1932 " than OBJ format supports", seg->name);
1933 acbp |= 0xC0; /* PharLap extension */
1934 } else if (seg->align >= 256) {
1935 acbp |= 0x80;
1936 } else if (seg->align >= 16) {
1937 acbp |= 0x60;
1938 } else if (seg->align >= 4) {
1939 acbp |= 0xA0;
1940 } else if (seg->align >= 2) {
1941 acbp |= 0x40;
1942 } else
1943 acbp |= 0x20;
1945 obj_byte(orp, acbp);
1946 if (seg->align & SEG_ABS) {
1947 obj_x(orp, seg->align - SEG_ABS); /* Frame */
1948 obj_byte(orp, 0); /* Offset */
1950 obj_x(orp, seglen);
1951 obj_index(orp, ++lname_idx);
1952 obj_index(orp, seg->segclass ? ++lname_idx : 1);
1953 obj_index(orp, seg->overlay ? ++lname_idx : 1);
1954 obj_emit2(orp);
1958 * Write the GRPDEF records.
1960 orp->type = GRPDEF;
1961 for (grp = grphead; grp; grp = grp->next) {
1962 int i;
1964 if (grp->nindices != grp->nentries) {
1965 for (i = grp->nindices; i < grp->nentries; i++) {
1966 error(ERR_NONFATAL, "group `%s' contains undefined segment"
1967 " `%s'", grp->name, grp->segs[i].name);
1968 nasm_free(grp->segs[i].name);
1969 grp->segs[i].name = NULL;
1972 obj_index(orp, ++lname_idx);
1973 for (i = 0; i < grp->nindices; i++) {
1974 obj_byte(orp, 0xFF);
1975 obj_index(orp, grp->segs[i].index);
1977 obj_emit2(orp);
1981 * Write the PUBDEF records: first the ones in the segments,
1982 * then the far-absolutes.
1984 orp->type = PUBDEF;
1985 orp->ori = ori_pubdef;
1986 for (seg = seghead; seg; seg = seg->next) {
1987 orp->parm[0] = seg->grp ? seg->grp->obj_index : 0;
1988 orp->parm[1] = seg->obj_index;
1989 for (pub = seg->pubhead; pub; pub = pub->next) {
1990 orp = obj_name(orp, pub->name);
1991 orp = obj_x(orp, pub->offset);
1992 orp = obj_byte(orp, 0); /* type index */
1993 obj_commit(orp);
1995 obj_emit(orp);
1997 orp->parm[0] = 0;
1998 orp->parm[1] = 0;
1999 for (pub = fpubhead; pub; pub = pub->next) { /* pub-crawl :-) */
2000 if (orp->parm[2] != pub->segment) {
2001 obj_emit(orp);
2002 orp->parm[2] = pub->segment;
2004 orp = obj_name(orp, pub->name);
2005 orp = obj_x(orp, pub->offset);
2006 orp = obj_byte(orp, 0); /* type index */
2007 obj_commit(orp);
2009 obj_emit(orp);
2012 * Write the EXTDEF and COMDEF records, in order.
2014 orp->ori = ori_null;
2015 for (ext = exthead; ext; ext = ext->next) {
2016 if (ext->commonsize == 0) {
2017 if (orp->type != EXTDEF) {
2018 obj_emit(orp);
2019 orp->type = EXTDEF;
2021 orp = obj_name(orp, ext->name);
2022 orp = obj_index(orp, 0);
2023 } else {
2024 if (orp->type != COMDEF) {
2025 obj_emit(orp);
2026 orp->type = COMDEF;
2028 orp = obj_name(orp, ext->name);
2029 orp = obj_index(orp, 0);
2030 if (ext->commonelem) {
2031 orp = obj_byte(orp, 0x61); /* far communal */
2032 orp = obj_value(orp, (ext->commonsize / ext->commonelem));
2033 orp = obj_value(orp, ext->commonelem);
2034 } else {
2035 orp = obj_byte(orp, 0x62); /* near communal */
2036 orp = obj_value(orp, ext->commonsize);
2039 obj_commit(orp);
2041 obj_emit(orp);
2044 * Write a COMENT record stating that the linker's first pass
2045 * may stop processing at this point. Exception is if our
2046 * MODEND record specifies a start point, in which case,
2047 * according to some variants of the documentation, this COMENT
2048 * should be omitted. So we'll omit it just in case.
2049 * But, TASM puts it in all the time so if we are using
2050 * TASM debug stuff we are putting it in
2052 if (debuginfo || obj_entry_seg == NO_SEG) {
2053 orp->type = COMENT;
2054 obj_byte(orp, 0x40);
2055 obj_byte(orp, dLINKPASS);
2056 obj_byte(orp, 1);
2057 obj_emit2(orp);
2061 * 1) put out the compiler type
2062 * 2) Put out the type info. The only type we are using is near label #19
2064 if (debuginfo) {
2065 int i;
2066 struct Array *arrtmp = arrhead;
2067 orp->type = COMENT;
2068 obj_byte(orp, 0x40);
2069 obj_byte(orp, dCOMPDEF);
2070 obj_byte(orp, 4);
2071 obj_byte(orp, 0);
2072 obj_emit2(orp);
2074 obj_byte(orp, 0x40);
2075 obj_byte(orp, dTYPEDEF);
2076 obj_word(orp, 0x18); /* type # for linking */
2077 obj_word(orp, 6); /* size of type */
2078 obj_byte(orp, 0x2a); /* absolute type for debugging */
2079 obj_emit2(orp);
2080 obj_byte(orp, 0x40);
2081 obj_byte(orp, dTYPEDEF);
2082 obj_word(orp, 0x19); /* type # for linking */
2083 obj_word(orp, 0); /* size of type */
2084 obj_byte(orp, 0x24); /* absolute type for debugging */
2085 obj_byte(orp, 0); /* near/far specifier */
2086 obj_emit2(orp);
2087 obj_byte(orp, 0x40);
2088 obj_byte(orp, dTYPEDEF);
2089 obj_word(orp, 0x1A); /* type # for linking */
2090 obj_word(orp, 0); /* size of type */
2091 obj_byte(orp, 0x24); /* absolute type for debugging */
2092 obj_byte(orp, 1); /* near/far specifier */
2093 obj_emit2(orp);
2094 obj_byte(orp, 0x40);
2095 obj_byte(orp, dTYPEDEF);
2096 obj_word(orp, 0x1b); /* type # for linking */
2097 obj_word(orp, 0); /* size of type */
2098 obj_byte(orp, 0x23); /* absolute type for debugging */
2099 obj_byte(orp, 0);
2100 obj_byte(orp, 0);
2101 obj_byte(orp, 0);
2102 obj_emit2(orp);
2103 obj_byte(orp, 0x40);
2104 obj_byte(orp, dTYPEDEF);
2105 obj_word(orp, 0x1c); /* type # for linking */
2106 obj_word(orp, 0); /* size of type */
2107 obj_byte(orp, 0x23); /* absolute type for debugging */
2108 obj_byte(orp, 0);
2109 obj_byte(orp, 4);
2110 obj_byte(orp, 0);
2111 obj_emit2(orp);
2112 obj_byte(orp, 0x40);
2113 obj_byte(orp, dTYPEDEF);
2114 obj_word(orp, 0x1d); /* type # for linking */
2115 obj_word(orp, 0); /* size of type */
2116 obj_byte(orp, 0x23); /* absolute type for debugging */
2117 obj_byte(orp, 0);
2118 obj_byte(orp, 1);
2119 obj_byte(orp, 0);
2120 obj_emit2(orp);
2121 obj_byte(orp, 0x40);
2122 obj_byte(orp, dTYPEDEF);
2123 obj_word(orp, 0x1e); /* type # for linking */
2124 obj_word(orp, 0); /* size of type */
2125 obj_byte(orp, 0x23); /* absolute type for debugging */
2126 obj_byte(orp, 0);
2127 obj_byte(orp, 5);
2128 obj_byte(orp, 0);
2129 obj_emit2(orp);
2131 /* put out the array types */
2132 for (i = ARRAYBOT; i < arrindex; i++) {
2133 obj_byte(orp, 0x40);
2134 obj_byte(orp, dTYPEDEF);
2135 obj_word(orp, i); /* type # for linking */
2136 obj_word(orp, arrtmp->size); /* size of type */
2137 obj_byte(orp, 0x1A); /* absolute type for debugging (array) */
2138 obj_byte(orp, arrtmp->basetype); /* base type */
2139 obj_emit2(orp);
2140 arrtmp = arrtmp->next;
2144 * write out line number info with a LINNUM record
2145 * switch records when we switch segments, and output the
2146 * file in a pseudo-TASM fashion. The record switch is naive; that
2147 * is that one file may have many records for the same segment
2148 * if there are lots of segment switches
2150 if (fnhead && debuginfo) {
2151 seg = fnhead->lnhead->segment;
2153 for (fn = fnhead; fn; fn = fn->next) {
2154 /* write out current file name */
2155 orp->type = COMENT;
2156 orp->ori = ori_null;
2157 obj_byte(orp, 0x40);
2158 obj_byte(orp, dFILNAME);
2159 obj_byte(orp, 0);
2160 obj_name(orp, fn->name);
2161 obj_dword(orp, 0);
2162 obj_emit2(orp);
2164 /* write out line numbers this file */
2166 orp->type = LINNUM;
2167 orp->ori = ori_linnum;
2168 for (ln = fn->lnhead; ln; ln = ln->next) {
2169 if (seg != ln->segment) {
2170 /* if we get here have to flush the buffer and start
2171 * a new record for a new segment
2173 seg = ln->segment;
2174 obj_emit(orp);
2176 orp->parm[0] = seg->grp ? seg->grp->obj_index : 0;
2177 orp->parm[1] = seg->obj_index;
2178 orp = obj_word(orp, ln->lineno);
2179 orp = obj_x(orp, ln->offset);
2180 obj_commit(orp);
2182 obj_emit(orp);
2186 * we are going to locate the entry point segment now
2187 * rather than wait until the MODEND record, because,
2188 * then we can output a special symbol to tell where the
2189 * entry point is.
2192 if (obj_entry_seg != NO_SEG) {
2193 for (seg = seghead; seg; seg = seg->next) {
2194 if (seg->index == obj_entry_seg) {
2195 entry_seg_ptr = seg;
2196 break;
2199 if (!seg)
2200 error(ERR_NONFATAL, "entry point is not in this module");
2204 * get ready to put out symbol records
2206 orp->type = COMENT;
2207 orp->ori = ori_local;
2210 * put out a symbol for the entry point
2211 * no dots in this symbol, because, borland does
2212 * not (officially) support dots in label names
2213 * and I don't know what various versions of TLINK will do
2215 if (debuginfo && obj_entry_seg != NO_SEG) {
2216 orp = obj_name(orp, "start_of_program");
2217 orp = obj_word(orp, 0x19); /* type: near label */
2218 orp = obj_index(orp, seg->grp ? seg->grp->obj_index : 0);
2219 orp = obj_index(orp, seg->obj_index);
2220 orp = obj_x(orp, obj_entry_ofs);
2221 obj_commit(orp);
2225 * put out the local labels
2227 for (seg = seghead; seg && debuginfo; seg = seg->next) {
2228 /* labels this seg */
2229 for (loc = seg->lochead; loc; loc = loc->next) {
2230 orp = obj_name(orp, loc->name);
2231 orp = obj_word(orp, loc->type);
2232 orp = obj_index(orp, seg->grp ? seg->grp->obj_index : 0);
2233 orp = obj_index(orp, seg->obj_index);
2234 orp = obj_x(orp, loc->offset);
2235 obj_commit(orp);
2238 if (orp->used)
2239 obj_emit(orp);
2242 * Write the LEDATA/FIXUPP pairs.
2244 for (seg = seghead; seg; seg = seg->next) {
2245 obj_emit(seg->orp);
2246 nasm_free(seg->orp);
2250 * Write the MODEND module end marker.
2252 orp->type = obj_use32 ? MODE32 : MODEND;
2253 orp->ori = ori_null;
2254 if (entry_seg_ptr) {
2255 orp->type = entry_seg_ptr->use32 ? MODE32 : MODEND;
2256 obj_byte(orp, 0xC1);
2257 seg = entry_seg_ptr;
2258 if (seg->grp) {
2259 obj_byte(orp, 0x10);
2260 obj_index(orp, seg->grp->obj_index);
2261 } else {
2263 * the below changed to prevent TLINK crashing.
2264 * Previous more efficient version read:
2266 * obj_byte (orp, 0x50);
2268 obj_byte(orp, 0x00);
2269 obj_index(orp, seg->obj_index);
2271 obj_index(orp, seg->obj_index);
2272 obj_x(orp, obj_entry_ofs);
2273 } else
2274 obj_byte(orp, 0);
2275 obj_emit2(orp);
2276 nasm_free(orp);
2279 static void obj_fwrite(ObjRecord * orp)
2281 unsigned int cksum, len;
2282 uint8_t *ptr;
2284 cksum = orp->type;
2285 if (orp->x_size == 32)
2286 cksum |= 1;
2287 fputc(cksum, ofp);
2288 len = orp->committed + 1;
2289 cksum += (len & 0xFF) + ((len >> 8) & 0xFF);
2290 fwriteint16_t(len, ofp);
2291 fwrite(orp->buf, 1, len - 1, ofp);
2292 for (ptr = orp->buf; --len; ptr++)
2293 cksum += *ptr;
2294 fputc((-cksum) & 0xFF, ofp);
2297 static const char *obj_stdmac[] = {
2298 "%define __SECT__ [section .text]",
2299 "%imacro group 1+.nolist",
2300 "[group %1]",
2301 "%endmacro",
2302 "%imacro uppercase 0+.nolist",
2303 "[uppercase %1]",
2304 "%endmacro",
2305 "%imacro export 1+.nolist",
2306 "[export %1]",
2307 "%endmacro",
2308 "%imacro import 1+.nolist",
2309 "[import %1]",
2310 "%endmacro",
2311 "%macro __NASM_CDecl__ 1",
2312 "%endmacro",
2313 NULL
2316 void dbgbi_init(struct ofmt *of, void *id, FILE * fp, efunc error)
2318 (void)of;
2319 (void)id;
2320 (void)fp;
2321 (void)error;
2323 fnhead = NULL;
2324 fntail = &fnhead;
2325 arrindex = ARRAYBOT;
2326 arrhead = NULL;
2327 arrtail = &arrhead;
2329 static void dbgbi_cleanup(void)
2331 struct Segment *segtmp;
2332 while (fnhead) {
2333 struct FileName *fntemp = fnhead;
2334 while (fnhead->lnhead) {
2335 struct LineNumber *lntemp = fnhead->lnhead;
2336 fnhead->lnhead = lntemp->next;
2337 nasm_free(lntemp);
2339 fnhead = fnhead->next;
2340 nasm_free(fntemp->name);
2341 nasm_free(fntemp);
2343 for (segtmp = seghead; segtmp; segtmp = segtmp->next) {
2344 while (segtmp->lochead) {
2345 struct Public *loctmp = segtmp->lochead;
2346 segtmp->lochead = loctmp->next;
2347 nasm_free(loctmp->name);
2348 nasm_free(loctmp);
2351 while (arrhead) {
2352 struct Array *arrtmp = arrhead;
2353 arrhead = arrhead->next;
2354 nasm_free(arrtmp);
2358 static void dbgbi_linnum(const char *lnfname, int32_t lineno, int32_t segto)
2360 struct FileName *fn;
2361 struct LineNumber *ln;
2362 struct Segment *seg;
2364 if (segto == NO_SEG)
2365 return;
2368 * If `any_segs' is still false, we must define a default
2369 * segment.
2371 if (!any_segs) {
2372 int tempint; /* ignored */
2373 if (segto != obj_segment("__NASMDEFSEG", 2, &tempint))
2374 error(ERR_PANIC, "strange segment conditions in OBJ driver");
2378 * Find the segment we are targetting.
2380 for (seg = seghead; seg; seg = seg->next)
2381 if (seg->index == segto)
2382 break;
2383 if (!seg)
2384 error(ERR_PANIC, "lineno directed to nonexistent segment?");
2386 /* for (fn = fnhead; fn; fn = fnhead->next) */
2387 for (fn = fnhead; fn; fn = fn->next) /* fbk - Austin Lunnen - John Fine */
2388 if (!nasm_stricmp(lnfname, fn->name))
2389 break;
2390 if (!fn) {
2391 fn = nasm_malloc(sizeof(*fn));
2392 fn->name = nasm_malloc(strlen(lnfname) + 1);
2393 strcpy(fn->name, lnfname);
2394 fn->lnhead = NULL;
2395 fn->lntail = &fn->lnhead;
2396 fn->next = NULL;
2397 *fntail = fn;
2398 fntail = &fn->next;
2400 ln = nasm_malloc(sizeof(*ln));
2401 ln->segment = seg;
2402 ln->offset = seg->currentpos;
2403 ln->lineno = lineno;
2404 ln->next = NULL;
2405 *fn->lntail = ln;
2406 fn->lntail = &ln->next;
2409 static void dbgbi_deflabel(char *name, int32_t segment,
2410 int32_t offset, int is_global, char *special)
2412 struct Segment *seg;
2414 (void)special;
2417 * If it's a special-retry from pass two, discard it.
2419 if (is_global == 3)
2420 return;
2423 * First check for the double-period, signifying something
2424 * unusual.
2426 if (name[0] == '.' && name[1] == '.' && name[2] != '@') {
2427 return;
2431 * Case (i):
2433 if (obj_seg_needs_update) {
2434 return;
2435 } else if (obj_grp_needs_update) {
2436 return;
2438 if (segment < SEG_ABS && segment != NO_SEG && segment % 2)
2439 return;
2441 if (segment >= SEG_ABS || segment == NO_SEG) {
2442 return;
2446 * If `any_segs' is still false, we might need to define a
2447 * default segment, if they're trying to declare a label in
2448 * `first_seg'. But the label should exist due to a prior
2449 * call to obj_deflabel so we can skip that.
2452 for (seg = seghead; seg; seg = seg->next)
2453 if (seg->index == segment) {
2454 struct Public *loc = nasm_malloc(sizeof(*loc));
2456 * Case (ii). Maybe MODPUB someday?
2458 last_defined = *seg->loctail = loc;
2459 seg->loctail = &loc->next;
2460 loc->next = NULL;
2461 loc->name = nasm_strdup(name);
2462 loc->offset = offset;
2465 static void dbgbi_typevalue(int32_t type)
2467 int vsize;
2468 int elem = TYM_ELEMENTS(type);
2469 type = TYM_TYPE(type);
2471 if (!last_defined)
2472 return;
2474 switch (type) {
2475 case TY_BYTE:
2476 last_defined->type = 8; /* uint8_t */
2477 vsize = 1;
2478 break;
2479 case TY_WORD:
2480 last_defined->type = 10; /* unsigned word */
2481 vsize = 2;
2482 break;
2483 case TY_DWORD:
2484 last_defined->type = 12; /* unsigned dword */
2485 vsize = 4;
2486 break;
2487 case TY_FLOAT:
2488 last_defined->type = 14; /* float */
2489 vsize = 4;
2490 break;
2491 case TY_QWORD:
2492 last_defined->type = 15; /* qword */
2493 vsize = 8;
2494 break;
2495 case TY_TBYTE:
2496 last_defined->type = 16; /* TBYTE */
2497 vsize = 10;
2498 break;
2499 default:
2500 last_defined->type = 0x19; /*label */
2501 vsize = 0;
2502 break;
2505 if (elem > 1) {
2506 struct Array *arrtmp = nasm_malloc(sizeof(*arrtmp));
2507 int vtype = last_defined->type;
2508 arrtmp->size = vsize * elem;
2509 arrtmp->basetype = vtype;
2510 arrtmp->next = NULL;
2511 last_defined->type = arrindex++;
2512 *arrtail = arrtmp;
2513 arrtail = &(arrtmp->next);
2515 last_defined = NULL;
2517 static void dbgbi_output(int output_type, void *param)
2519 (void)output_type;
2520 (void)param;
2522 static struct dfmt borland_debug_form = {
2523 "Borland Debug Records",
2524 "borland",
2525 dbgbi_init,
2526 dbgbi_linnum,
2527 dbgbi_deflabel,
2528 null_debug_routine,
2529 dbgbi_typevalue,
2530 dbgbi_output,
2531 dbgbi_cleanup,
2534 static struct dfmt *borland_debug_arr[3] = {
2535 &borland_debug_form,
2536 &null_debug_form,
2537 NULL
2540 struct ofmt of_obj = {
2541 "MS-DOS 16-bit/32-bit OMF object files",
2542 "obj",
2543 NULL,
2544 borland_debug_arr,
2545 &null_debug_form,
2546 obj_stdmac,
2547 obj_init,
2548 obj_set_info,
2549 obj_out,
2550 obj_deflabel,
2551 obj_segment,
2552 obj_segbase,
2553 obj_directive,
2554 obj_filename,
2555 obj_cleanup
2557 #endif /* OF_OBJ */