immwarn: more immediate warnings test, with notes of where we fail
[nasm/avx512.git] / assemble.c
blobd6abeac30aef9e2fb0e54e25f3d390ecedb44c8d
1 /* assemble.c code generation for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * the actual codes (C syntax, i.e. octal):
9 * \0 - terminates the code. (Unless it's a literal of course.)
10 * \1, \2, \3 - that many literal bytes follow in the code stream
11 * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
12 * (POP is never used for CS) depending on operand 0
13 * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
14 * on operand 0
15 * \10..\13 - a literal byte follows in the code stream, to be added
16 * to the register value of operand 0..3
17 * \14..\17 - a signed byte immediate operand, from operand 0..3
18 * \20..\23 - a byte immediate operand, from operand 0..3
19 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
20 * \30..\33 - a word immediate operand, from operand 0..3
21 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
22 * assembly mode or the operand-size override on the operand
23 * \40..\43 - a long immediate operand, from operand 0..3
24 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
25 * depending on the address size of the instruction.
26 * \50..\53 - a byte relative operand, from operand 0..3
27 * \54..\57 - a qword immediate operand, from operand 0..3
28 * \60..\63 - a word relative operand, from operand 0..3
29 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
30 * assembly mode or the operand-size override on the operand
31 * \70..\73 - a long relative operand, from operand 0..3
32 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
33 * \1ab - a ModRM, calculated on EA in operand a, with the spare
34 * field the register value of operand b.
35 * \140..\143 - an immediate word or signed byte for operand 0..3
36 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
37 * is a signed byte rather than a word. Opcode byte follows.
38 * \150..\153 - an immediate dword or signed byte for operand 0..3
39 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
40 * is a signed byte rather than a dword. Opcode byte follows.
41 * \160..\163 - this instruction uses DREX rather than REX, with the
42 * OC0 field set to 0, and the dest field taken from
43 * operand 0..3.
44 * \164..\167 - this instruction uses DREX rather than REX, with the
45 * OC0 field set to 1, and the dest field taken from
46 * operand 0..3.
47 * \171 - placement of DREX suffix in the absence of an EA
48 * \172\ab - the register number from operand a in bits 7..4, with
49 * the 4-bit immediate from operand b in bits 3..0.
50 * \173\xab - the register number from operand a in bits 7..4, with
51 * the value b in bits 3..0.
52 * \174\a - the register number from operand a in bits 7..4, and
53 * an arbitrary value in bits 3..0 (assembled as zero.)
54 * \2ab - a ModRM, calculated on EA in operand a, with the spare
55 * field equal to digit b.
56 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
57 * is not equal to the truncated and sign-extended 32-bit
58 * operand; used for 32-bit immediates in 64-bit mode.
59 * \260..\263 - this instruction uses VEX rather than REX, with the
60 * V field taken from operand 0..3.
61 * \270 - this instruction uses VEX rather than REX, with the
62 * V field set to 1111b.
64 * VEX prefixes are followed by the sequence:
65 * \mm\wlp where mm is the M field; and wlp is:
66 * 00 0ww lpp
67 * [w0] ww = 0 for W = 0
68 * [w1] ww = 1 for W = 1
69 * [wx] ww = 2 for W don't care (always assembled as 0)
70 * [ww] ww = 3 for W used as REX.W
73 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
74 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
75 * \312 - (disassembler only) marker on LOOP, LOOPxx instructions.
76 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
77 * \314 - (disassembler only) invalid with REX.B
78 * \315 - (disassembler only) invalid with REX.X
79 * \316 - (disassembler only) invalid with REX.R
80 * \317 - (disassembler only) invalid with REX.W
81 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
82 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
83 * \322 - indicates that this instruction is only valid when the
84 * operand size is the default (instruction to disassembler,
85 * generates no code in the assembler)
86 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
87 * \324 - indicates 64-bit operand size requiring REX prefix.
88 * \330 - a literal byte follows in the code stream, to be added
89 * to the condition code value of the instruction.
90 * \331 - instruction not valid with REP prefix. Hint for
91 * disassembler only; for SSE instructions.
92 * \332 - REP prefix (0xF2 byte) used as opcode extension.
93 * \333 - REP prefix (0xF3 byte) used as opcode extension.
94 * \334 - LOCK prefix used instead of REX.R
95 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
96 * \336 - force a REP(E) prefix (0xF2) even if not specified.
97 * \337 - force a REPNE prefix (0xF3) even if not specified.
98 * \336-\337 are still listed as prefixes in the disassembler.
99 * \340 - reserve <operand 0> bytes of uninitialized storage.
100 * Operand 0 had better be a segmentless constant.
101 * \360 - no SSE prefix (== \364\331)
102 * \361 - 66 SSE prefix (== \366\331)
103 * \362 - F2 SSE prefix (== \364\332)
104 * \363 - F3 SSE prefix (== \364\333)
105 * \364 - operand-size prefix (0x66) not permitted
106 * \365 - address-size prefix (0x67) not permitted
107 * \366 - operand-size prefix (0x66) used as opcode extension
108 * \367 - address-size prefix (0x67) used as opcode extension
109 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
110 * 370 is used for Jcc, 371 is used for JMP.
111 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
112 * used for conditional jump over longer jump
115 #include "compiler.h"
117 #include <stdio.h>
118 #include <string.h>
119 #include <inttypes.h>
121 #include "nasm.h"
122 #include "nasmlib.h"
123 #include "assemble.h"
124 #include "insns.h"
125 #include "tables.h"
127 /* Initialized to zero by the C standard */
128 static const uint8_t const_zero_buf[256];
130 typedef struct {
131 int sib_present; /* is a SIB byte necessary? */
132 int bytes; /* # of bytes of offset needed */
133 int size; /* lazy - this is sib+bytes+1 */
134 uint8_t modrm, sib, rex, rip; /* the bytes themselves */
135 } ea;
137 static uint32_t cpu; /* cpu level received from nasm.c */
138 static efunc errfunc;
139 static struct ofmt *outfmt;
140 static ListGen *list;
142 static int64_t calcsize(int32_t, int64_t, int, insn *, const uint8_t *);
143 static void gencode(int32_t segment, int64_t offset, int bits,
144 insn * ins, const struct itemplate *temp,
145 int64_t insn_end);
146 static int matches(const struct itemplate *, insn *, int bits);
147 static int32_t regflag(const operand *);
148 static int32_t regval(const operand *);
149 static int rexflags(int, int32_t, int);
150 static int op_rexflags(const operand *, int);
151 static ea *process_ea(operand *, ea *, int, int, int, int32_t);
152 static void add_asp(insn *, int);
154 static int has_prefix(insn * ins, enum prefix_pos pos, enum prefixes prefix)
156 return ins->prefixes[pos] == prefix;
159 static void assert_no_prefix(insn * ins, enum prefix_pos pos)
161 if (ins->prefixes[pos])
162 errfunc(ERR_NONFATAL, "invalid %s prefix",
163 prefix_name(ins->prefixes[pos]));
166 static const char *size_name(int size)
168 switch (size) {
169 case 1:
170 return "byte";
171 case 2:
172 return "word";
173 case 4:
174 return "dword";
175 case 8:
176 return "qword";
177 case 10:
178 return "tword";
179 case 16:
180 return "oword";
181 case 32:
182 return "yword";
183 default:
184 return "???";
188 static void warn_overflow(int size, const struct operand *o)
190 if (size < 8 && o->wrt == NO_SEG && o->segment == NO_SEG) {
191 int64_t lim = ((int64_t)1 << (size*8))-1;
192 int64_t data = o->offset;
194 if (data < ~lim || data > lim)
195 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
196 "%s data exceeds bounds", size_name(size));
200 * This routine wrappers the real output format's output routine,
201 * in order to pass a copy of the data off to the listing file
202 * generator at the same time.
204 static void out(int64_t offset, int32_t segto, const void *data,
205 enum out_type type, uint64_t size,
206 int32_t segment, int32_t wrt)
208 static int32_t lineno = 0; /* static!!! */
209 static char *lnfname = NULL;
210 uint8_t p[8];
212 if (type == OUT_ADDRESS && segment == NO_SEG && wrt == NO_SEG) {
214 * This is a non-relocated address, and we're going to
215 * convert it into RAWDATA format.
217 uint8_t *q = p;
219 if (size > 8) {
220 errfunc(ERR_PANIC, "OUT_ADDRESS with size > 8");
221 return;
224 WRITEADDR(q, *(int64_t *)data, size);
225 data = p;
226 type = OUT_RAWDATA;
229 list->output(offset, data, type, size);
232 * this call to src_get determines when we call the
233 * debug-format-specific "linenum" function
234 * it updates lineno and lnfname to the current values
235 * returning 0 if "same as last time", -2 if lnfname
236 * changed, and the amount by which lineno changed,
237 * if it did. thus, these variables must be static
240 if (src_get(&lineno, &lnfname)) {
241 outfmt->current_dfmt->linenum(lnfname, lineno, segto);
244 outfmt->output(segto, data, type, size, segment, wrt);
247 static bool jmp_match(int32_t segment, int64_t offset, int bits,
248 insn * ins, const uint8_t *code)
250 int64_t isize;
251 uint8_t c = code[0];
253 if ((c != 0370 && c != 0371) || (ins->oprs[0].type & STRICT))
254 return false;
255 if (!optimizing)
256 return false;
257 if (optimizing < 0 && c == 0371)
258 return false;
260 isize = calcsize(segment, offset, bits, ins, code);
261 if (ins->oprs[0].segment != segment)
262 return false;
264 isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
265 return (isize >= -128 && isize <= 127); /* is it byte size? */
268 int64_t assemble(int32_t segment, int64_t offset, int bits, uint32_t cp,
269 insn * instruction, struct ofmt *output, efunc error,
270 ListGen * listgen)
272 const struct itemplate *temp;
273 int j;
274 int size_prob;
275 int64_t insn_end;
276 int32_t itimes;
277 int64_t start = offset;
278 int64_t wsize = 0; /* size for DB etc. */
280 errfunc = error; /* to pass to other functions */
281 cpu = cp;
282 outfmt = output; /* likewise */
283 list = listgen; /* and again */
285 switch (instruction->opcode) {
286 case -1:
287 return 0;
288 case I_DB:
289 wsize = 1;
290 break;
291 case I_DW:
292 wsize = 2;
293 break;
294 case I_DD:
295 wsize = 4;
296 break;
297 case I_DQ:
298 wsize = 8;
299 break;
300 case I_DT:
301 wsize = 10;
302 break;
303 case I_DO:
304 wsize = 16;
305 break;
306 case I_DY:
307 wsize = 32;
308 break;
309 default:
310 break;
313 if (wsize) {
314 extop *e;
315 int32_t t = instruction->times;
316 if (t < 0)
317 errfunc(ERR_PANIC,
318 "instruction->times < 0 (%ld) in assemble()", t);
320 while (t--) { /* repeat TIMES times */
321 for (e = instruction->eops; e; e = e->next) {
322 if (e->type == EOT_DB_NUMBER) {
323 if (wsize == 1) {
324 if (e->segment != NO_SEG)
325 errfunc(ERR_NONFATAL,
326 "one-byte relocation attempted");
327 else {
328 uint8_t out_byte = e->offset;
329 out(offset, segment, &out_byte,
330 OUT_RAWDATA, 1, NO_SEG, NO_SEG);
332 } else if (wsize > 8) {
333 errfunc(ERR_NONFATAL,
334 "integer supplied to a DT, DO or DY"
335 " instruction");
336 } else
337 out(offset, segment, &e->offset,
338 OUT_ADDRESS, wsize, e->segment, e->wrt);
339 offset += wsize;
340 } else if (e->type == EOT_DB_STRING ||
341 e->type == EOT_DB_STRING_FREE) {
342 int align;
344 out(offset, segment, e->stringval,
345 OUT_RAWDATA, e->stringlen, NO_SEG, NO_SEG);
346 align = e->stringlen % wsize;
348 if (align) {
349 align = wsize - align;
350 out(offset, segment, const_zero_buf,
351 OUT_RAWDATA, align, NO_SEG, NO_SEG);
353 offset += e->stringlen + align;
356 if (t > 0 && t == instruction->times - 1) {
358 * Dummy call to list->output to give the offset to the
359 * listing module.
361 list->output(offset, NULL, OUT_RAWDATA, 0);
362 list->uplevel(LIST_TIMES);
365 if (instruction->times > 1)
366 list->downlevel(LIST_TIMES);
367 return offset - start;
370 if (instruction->opcode == I_INCBIN) {
371 const char *fname = instruction->eops->stringval;
372 FILE *fp;
374 fp = fopen(fname, "rb");
375 if (!fp) {
376 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
377 fname);
378 } else if (fseek(fp, 0L, SEEK_END) < 0) {
379 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
380 fname);
381 } else {
382 static char buf[4096];
383 size_t t = instruction->times;
384 size_t base = 0;
385 size_t len;
387 len = ftell(fp);
388 if (instruction->eops->next) {
389 base = instruction->eops->next->offset;
390 len -= base;
391 if (instruction->eops->next->next &&
392 len > (size_t)instruction->eops->next->next->offset)
393 len = (size_t)instruction->eops->next->next->offset;
396 * Dummy call to list->output to give the offset to the
397 * listing module.
399 list->output(offset, NULL, OUT_RAWDATA, 0);
400 list->uplevel(LIST_INCBIN);
401 while (t--) {
402 size_t l;
404 fseek(fp, base, SEEK_SET);
405 l = len;
406 while (l > 0) {
407 int32_t m =
408 fread(buf, 1, (l > (int32_t) sizeof(buf) ? (int32_t) sizeof(buf) : l),
409 fp);
410 if (!m) {
412 * This shouldn't happen unless the file
413 * actually changes while we are reading
414 * it.
416 error(ERR_NONFATAL,
417 "`incbin': unexpected EOF while"
418 " reading file `%s'", fname);
419 t = 0; /* Try to exit cleanly */
420 break;
422 out(offset, segment, buf, OUT_RAWDATA, m,
423 NO_SEG, NO_SEG);
424 l -= m;
427 list->downlevel(LIST_INCBIN);
428 if (instruction->times > 1) {
430 * Dummy call to list->output to give the offset to the
431 * listing module.
433 list->output(offset, NULL, OUT_RAWDATA, 0);
434 list->uplevel(LIST_TIMES);
435 list->downlevel(LIST_TIMES);
437 fclose(fp);
438 return instruction->times * len;
440 return 0; /* if we're here, there's an error */
443 /* Check to see if we need an address-size prefix */
444 add_asp(instruction, bits);
446 size_prob = false;
448 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++){
449 int m = matches(temp, instruction, bits);
450 if (m == 100 ||
451 (m == 99 && jmp_match(segment, offset, bits,
452 instruction, temp->code))) {
453 /* Matches! */
454 int64_t insn_size = calcsize(segment, offset, bits,
455 instruction, temp->code);
456 itimes = instruction->times;
457 if (insn_size < 0) /* shouldn't be, on pass two */
458 error(ERR_PANIC, "errors made it through from pass one");
459 else
460 while (itimes--) {
461 for (j = 0; j < MAXPREFIX; j++) {
462 uint8_t c = 0;
463 switch (instruction->prefixes[j]) {
464 case P_LOCK:
465 c = 0xF0;
466 break;
467 case P_REPNE:
468 case P_REPNZ:
469 c = 0xF2;
470 break;
471 case P_REPE:
472 case P_REPZ:
473 case P_REP:
474 c = 0xF3;
475 break;
476 case R_CS:
477 if (bits == 64) {
478 error(ERR_WARNING | ERR_PASS2,
479 "cs segment base generated, but will be ignored in 64-bit mode");
481 c = 0x2E;
482 break;
483 case R_DS:
484 if (bits == 64) {
485 error(ERR_WARNING | ERR_PASS2,
486 "ds segment base generated, but will be ignored in 64-bit mode");
488 c = 0x3E;
489 break;
490 case R_ES:
491 if (bits == 64) {
492 error(ERR_WARNING | ERR_PASS2,
493 "es segment base generated, but will be ignored in 64-bit mode");
495 c = 0x26;
496 break;
497 case R_FS:
498 c = 0x64;
499 break;
500 case R_GS:
501 c = 0x65;
502 break;
503 case R_SS:
504 if (bits == 64) {
505 error(ERR_WARNING | ERR_PASS2,
506 "ss segment base generated, but will be ignored in 64-bit mode");
508 c = 0x36;
509 break;
510 case R_SEGR6:
511 case R_SEGR7:
512 error(ERR_NONFATAL,
513 "segr6 and segr7 cannot be used as prefixes");
514 break;
515 case P_A16:
516 if (bits == 64) {
517 error(ERR_NONFATAL,
518 "16-bit addressing is not supported "
519 "in 64-bit mode");
520 } else if (bits != 16)
521 c = 0x67;
522 break;
523 case P_A32:
524 if (bits != 32)
525 c = 0x67;
526 break;
527 case P_A64:
528 if (bits != 64) {
529 error(ERR_NONFATAL,
530 "64-bit addressing is only supported "
531 "in 64-bit mode");
533 break;
534 case P_ASP:
535 c = 0x67;
536 break;
537 case P_O16:
538 if (bits != 16)
539 c = 0x66;
540 break;
541 case P_O32:
542 if (bits == 16)
543 c = 0x66;
544 break;
545 case P_O64:
546 /* REX.W */
547 break;
548 case P_OSP:
549 c = 0x66;
550 break;
551 case P_none:
552 break;
553 default:
554 error(ERR_PANIC, "invalid instruction prefix");
556 if (c != 0) {
557 out(offset, segment, &c, OUT_RAWDATA, 1,
558 NO_SEG, NO_SEG);
559 offset++;
562 insn_end = offset + insn_size;
563 gencode(segment, offset, bits, instruction,
564 temp, insn_end);
565 offset += insn_size;
566 if (itimes > 0 && itimes == instruction->times - 1) {
568 * Dummy call to list->output to give the offset to the
569 * listing module.
571 list->output(offset, NULL, OUT_RAWDATA, 0);
572 list->uplevel(LIST_TIMES);
575 if (instruction->times > 1)
576 list->downlevel(LIST_TIMES);
577 return offset - start;
578 } else if (m > 0 && m > size_prob) {
579 size_prob = m;
583 if (temp->opcode == -1) { /* didn't match any instruction */
584 switch (size_prob) {
585 case 1:
586 error(ERR_NONFATAL, "operation size not specified");
587 break;
588 case 2:
589 error(ERR_NONFATAL, "mismatch in operand sizes");
590 break;
591 case 3:
592 error(ERR_NONFATAL, "no instruction for this cpu level");
593 break;
594 case 4:
595 error(ERR_NONFATAL, "instruction not supported in 64-bit mode");
596 break;
597 default:
598 error(ERR_NONFATAL,
599 "invalid combination of opcode and operands");
600 break;
603 return 0;
606 int64_t insn_size(int32_t segment, int64_t offset, int bits, uint32_t cp,
607 insn * instruction, efunc error)
609 const struct itemplate *temp;
611 errfunc = error; /* to pass to other functions */
612 cpu = cp;
614 if (instruction->opcode == -1)
615 return 0;
617 if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
618 instruction->opcode == I_DD || instruction->opcode == I_DQ ||
619 instruction->opcode == I_DT || instruction->opcode == I_DO ||
620 instruction->opcode == I_DY) {
621 extop *e;
622 int32_t isize, osize, wsize = 0; /* placate gcc */
624 isize = 0;
625 switch (instruction->opcode) {
626 case I_DB:
627 wsize = 1;
628 break;
629 case I_DW:
630 wsize = 2;
631 break;
632 case I_DD:
633 wsize = 4;
634 break;
635 case I_DQ:
636 wsize = 8;
637 break;
638 case I_DT:
639 wsize = 10;
640 break;
641 case I_DO:
642 wsize = 16;
643 break;
644 case I_DY:
645 wsize = 32;
646 break;
647 default:
648 break;
651 for (e = instruction->eops; e; e = e->next) {
652 int32_t align;
654 osize = 0;
655 if (e->type == EOT_DB_NUMBER)
656 osize = 1;
657 else if (e->type == EOT_DB_STRING ||
658 e->type == EOT_DB_STRING_FREE)
659 osize = e->stringlen;
661 align = (-osize) % wsize;
662 if (align < 0)
663 align += wsize;
664 isize += osize + align;
666 return isize * instruction->times;
669 if (instruction->opcode == I_INCBIN) {
670 const char *fname = instruction->eops->stringval;
671 FILE *fp;
672 size_t len;
674 fp = fopen(fname, "rb");
675 if (!fp)
676 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
677 fname);
678 else if (fseek(fp, 0L, SEEK_END) < 0)
679 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
680 fname);
681 else {
682 len = ftell(fp);
683 fclose(fp);
684 if (instruction->eops->next) {
685 len -= instruction->eops->next->offset;
686 if (instruction->eops->next->next &&
687 len > (size_t)instruction->eops->next->next->offset) {
688 len = (size_t)instruction->eops->next->next->offset;
691 return instruction->times * len;
693 return 0; /* if we're here, there's an error */
696 /* Check to see if we need an address-size prefix */
697 add_asp(instruction, bits);
699 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++) {
700 int m = matches(temp, instruction, bits);
701 if (m == 100 ||
702 (m == 99 && jmp_match(segment, offset, bits,
703 instruction, temp->code))) {
704 /* we've matched an instruction. */
705 int64_t isize;
706 const uint8_t *codes = temp->code;
707 int j;
709 isize = calcsize(segment, offset, bits, instruction, codes);
710 if (isize < 0)
711 return -1;
712 for (j = 0; j < MAXPREFIX; j++) {
713 switch (instruction->prefixes[j]) {
714 case P_A16:
715 if (bits != 16)
716 isize++;
717 break;
718 case P_A32:
719 if (bits != 32)
720 isize++;
721 break;
722 case P_O16:
723 if (bits != 16)
724 isize++;
725 break;
726 case P_O32:
727 if (bits == 16)
728 isize++;
729 break;
730 case P_A64:
731 case P_O64:
732 case P_none:
733 break;
734 default:
735 isize++;
736 break;
739 return isize * instruction->times;
742 return -1; /* didn't match any instruction */
745 static bool possible_sbyte(operand *o)
747 return !(o->opflags & OPFLAG_FORWARD) &&
748 optimizing >= 0 && !(o->type & STRICT);
751 /* check that opn[op] is a signed byte of size 16 or 32 */
752 static bool is_sbyte16(operand *o)
754 int16_t v;
756 if (!possible_sbyte(o))
757 return false;
759 v = o->offset;
760 return v >= -128 && v <= 127;
763 static bool is_sbyte32(operand *o)
765 int32_t v;
767 if (!possible_sbyte(o))
768 return false;
770 v = o->offset;
771 return v >= -128 && v <= 127;
774 /* check that opn[op] is a signed byte of size 32; warn if this is not
775 the original value when extended to 64 bits */
776 static bool is_sbyte64(operand *o)
778 int64_t v64;
779 int32_t v;
781 if (!(o->wrt == NO_SEG && o->segment == NO_SEG))
782 return false; /* Not a pure immediate */
784 v64 = o->offset;
785 v = (int32_t)v64;
787 if (v64 != v)
788 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
789 "signed dword immediate exceeds bounds");
791 /* dead in the water on forward reference or External */
792 if (!possible_sbyte(o))
793 return false;
795 v = o->offset;
796 return v >= -128 && v <= 127;
798 static int64_t calcsize(int32_t segment, int64_t offset, int bits,
799 insn * ins, const uint8_t *codes)
801 int64_t length = 0;
802 uint8_t c;
803 int rex_mask = ~0;
804 struct operand *opx;
806 ins->rex = 0; /* Ensure REX is reset */
808 if (ins->prefixes[PPS_OSIZE] == P_O64)
809 ins->rex |= REX_W;
811 (void)segment; /* Don't warn that this parameter is unused */
812 (void)offset; /* Don't warn that this parameter is unused */
814 while (*codes) {
815 c = *codes++;
816 opx = &ins->oprs[c & 3];
817 switch (c) {
818 case 01:
819 case 02:
820 case 03:
821 codes += c, length += c;
822 break;
823 case 04:
824 case 05:
825 case 06:
826 case 07:
827 length++;
828 break;
829 case 010:
830 case 011:
831 case 012:
832 case 013:
833 ins->rex |=
834 op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
835 codes++, length++;
836 break;
837 case 014:
838 case 015:
839 case 016:
840 case 017:
841 length++;
842 break;
843 case 020:
844 case 021:
845 case 022:
846 case 023:
847 length++;
848 break;
849 case 024:
850 case 025:
851 case 026:
852 case 027:
853 length++;
854 break;
855 case 030:
856 case 031:
857 case 032:
858 case 033:
859 length += 2;
860 break;
861 case 034:
862 case 035:
863 case 036:
864 case 037:
865 if (opx->type & (BITS16 | BITS32 | BITS64))
866 length += (opx->type & BITS16) ? 2 : 4;
867 else
868 length += (bits == 16) ? 2 : 4;
869 break;
870 case 040:
871 case 041:
872 case 042:
873 case 043:
874 length += 4;
875 break;
876 case 044:
877 case 045:
878 case 046:
879 case 047:
880 length += ins->addr_size >> 3;
881 break;
882 case 050:
883 case 051:
884 case 052:
885 case 053:
886 length++;
887 break;
888 case 054:
889 case 055:
890 case 056:
891 case 057:
892 length += 8; /* MOV reg64/imm */
893 break;
894 case 060:
895 case 061:
896 case 062:
897 case 063:
898 length += 2;
899 break;
900 case 064:
901 case 065:
902 case 066:
903 case 067:
904 if (opx->type & (BITS16 | BITS32 | BITS64))
905 length += (opx->type & BITS16) ? 2 : 4;
906 else
907 length += (bits == 16) ? 2 : 4;
908 break;
909 case 070:
910 case 071:
911 case 072:
912 case 073:
913 length += 4;
914 break;
915 case 074:
916 case 075:
917 case 076:
918 case 077:
919 length += 2;
920 break;
921 case 0140:
922 case 0141:
923 case 0142:
924 case 0143:
925 length += is_sbyte16(opx) ? 1 : 2;
926 break;
927 case 0144:
928 case 0145:
929 case 0146:
930 case 0147:
931 codes++;
932 length++;
933 break;
934 case 0150:
935 case 0151:
936 case 0152:
937 case 0153:
938 length += is_sbyte32(opx) ? 1 : 4;
939 break;
940 case 0154:
941 case 0155:
942 case 0156:
943 case 0157:
944 codes++;
945 length++;
946 break;
947 case 0160:
948 case 0161:
949 case 0162:
950 case 0163:
951 length++;
952 ins->rex |= REX_D;
953 ins->drexdst = regval(opx);
954 break;
955 case 0164:
956 case 0165:
957 case 0166:
958 case 0167:
959 length++;
960 ins->rex |= REX_D|REX_OC;
961 ins->drexdst = regval(opx);
962 break;
963 case 0171:
964 break;
965 case 0172:
966 case 0173:
967 case 0174:
968 codes++;
969 length++;
970 break;
971 case 0250:
972 case 0251:
973 case 0252:
974 case 0253:
975 length += is_sbyte64(opx) ? 1 : 4;
976 break;
977 case 0260:
978 case 0261:
979 case 0262:
980 case 0263:
981 ins->rex |= REX_V;
982 ins->drexdst = regval(opx);
983 ins->vex_m = *codes++;
984 ins->vex_wlp = *codes++;
985 break;
986 case 0270:
987 ins->rex |= REX_V;
988 ins->drexdst = 0;
989 ins->vex_m = *codes++;
990 ins->vex_wlp = *codes++;
991 break;
992 case 0300:
993 case 0301:
994 case 0302:
995 case 0303:
996 break;
997 case 0310:
998 if (bits == 64)
999 return -1;
1000 length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
1001 break;
1002 case 0311:
1003 length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
1004 break;
1005 case 0312:
1006 break;
1007 case 0313:
1008 if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
1009 has_prefix(ins, PPS_ASIZE, P_A32))
1010 return -1;
1011 break;
1012 case 0314:
1013 case 0315:
1014 case 0316:
1015 case 0317:
1016 break;
1017 case 0320:
1018 length += (bits != 16);
1019 break;
1020 case 0321:
1021 length += (bits == 16);
1022 break;
1023 case 0322:
1024 break;
1025 case 0323:
1026 rex_mask &= ~REX_W;
1027 break;
1028 case 0324:
1029 ins->rex |= REX_W;
1030 break;
1031 case 0330:
1032 codes++, length++;
1033 break;
1034 case 0331:
1035 break;
1036 case 0332:
1037 case 0333:
1038 length++;
1039 break;
1040 case 0334:
1041 ins->rex |= REX_L;
1042 break;
1043 case 0335:
1044 break;
1045 case 0336:
1046 if (!ins->prefixes[PPS_LREP])
1047 ins->prefixes[PPS_LREP] = P_REP;
1048 break;
1049 case 0337:
1050 if (!ins->prefixes[PPS_LREP])
1051 ins->prefixes[PPS_LREP] = P_REPNE;
1052 break;
1053 case 0340:
1054 if (ins->oprs[0].segment != NO_SEG)
1055 errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
1056 " quantity of BSS space");
1057 else
1058 length += ins->oprs[0].offset;
1059 break;
1060 case 0360:
1061 break;
1062 case 0361:
1063 case 0362:
1064 case 0363:
1065 length++;
1066 break;
1067 case 0364:
1068 case 0365:
1069 break;
1070 case 0366:
1071 case 0367:
1072 length++;
1073 break;
1074 case 0370:
1075 case 0371:
1076 case 0372:
1077 break;
1078 case 0373:
1079 length++;
1080 break;
1081 default: /* can't do it by 'case' statements */
1082 if (c >= 0100 && c <= 0277) { /* it's an EA */
1083 ea ea_data;
1084 int rfield;
1085 int32_t rflags;
1086 ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
1088 if (c <= 0177) {
1089 /* pick rfield from operand b */
1090 rflags = regflag(&ins->oprs[c & 7]);
1091 rfield = nasm_regvals[ins->oprs[c & 7].basereg];
1092 } else {
1093 rflags = 0;
1094 rfield = c & 7;
1097 if (!process_ea
1098 (&ins->oprs[(c >> 3) & 7], &ea_data, bits,
1099 ins->addr_size, rfield, rflags)) {
1100 errfunc(ERR_NONFATAL, "invalid effective address");
1101 return -1;
1102 } else {
1103 ins->rex |= ea_data.rex;
1104 length += ea_data.size;
1106 } else {
1107 errfunc(ERR_PANIC, "internal instruction table corrupt"
1108 ": instruction code 0x%02X given", c);
1113 ins->rex &= rex_mask;
1115 if (ins->rex & REX_V) {
1116 int bad32 = REX_R|REX_W|REX_X|REX_B;
1118 if (ins->rex & REX_H) {
1119 errfunc(ERR_NONFATAL, "cannot use high register in vex instruction");
1120 return -1;
1122 switch (ins->vex_wlp & 030) {
1123 case 000:
1124 case 020:
1125 ins->rex &= ~REX_W;
1126 break;
1127 case 010:
1128 ins->rex |= REX_W;
1129 bad32 &= ~REX_W;
1130 break;
1131 case 030:
1132 /* Follow REX_W */
1133 break;
1136 if (bits != 64 && ((ins->rex & bad32) || ins->drexdst > 7)) {
1137 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1138 return -1;
1140 if (ins->vex_m != 1 || (ins->rex & (REX_W|REX_R|REX_B)))
1141 length += 3;
1142 else
1143 length += 2;
1144 } else if (ins->rex & REX_D) {
1145 if (ins->rex & REX_H) {
1146 errfunc(ERR_NONFATAL, "cannot use high register in drex instruction");
1147 return -1;
1149 if (bits != 64 && ((ins->rex & (REX_R|REX_W|REX_X|REX_B)) ||
1150 ins->drexdst > 7)) {
1151 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1152 return -1;
1154 length++;
1155 } else if (ins->rex & REX_REAL) {
1156 if (ins->rex & REX_H) {
1157 errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
1158 return -1;
1159 } else if (bits == 64) {
1160 length++;
1161 } else if ((ins->rex & REX_L) &&
1162 !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
1163 cpu >= IF_X86_64) {
1164 /* LOCK-as-REX.R */
1165 assert_no_prefix(ins, PPS_LREP);
1166 length++;
1167 } else {
1168 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1169 return -1;
1173 return length;
1176 #define EMIT_REX() \
1177 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1178 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1179 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1180 ins->rex = 0; \
1181 offset += 1; \
1184 static void gencode(int32_t segment, int64_t offset, int bits,
1185 insn * ins, const struct itemplate *temp,
1186 int64_t insn_end)
1188 static char condval[] = { /* conditional opcodes */
1189 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1190 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1191 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1193 uint8_t c;
1194 uint8_t bytes[4];
1195 int64_t size;
1196 int64_t data;
1197 struct operand *opx;
1198 const uint8_t *codes = temp->code;
1200 while (*codes) {
1201 c = *codes++;
1202 opx = &ins->oprs[c & 3];
1203 switch (c) {
1204 case 01:
1205 case 02:
1206 case 03:
1207 EMIT_REX();
1208 out(offset, segment, codes, OUT_RAWDATA, c, NO_SEG, NO_SEG);
1209 codes += c;
1210 offset += c;
1211 break;
1213 case 04:
1214 case 06:
1215 switch (ins->oprs[0].basereg) {
1216 case R_CS:
1217 bytes[0] = 0x0E + (c == 0x04 ? 1 : 0);
1218 break;
1219 case R_DS:
1220 bytes[0] = 0x1E + (c == 0x04 ? 1 : 0);
1221 break;
1222 case R_ES:
1223 bytes[0] = 0x06 + (c == 0x04 ? 1 : 0);
1224 break;
1225 case R_SS:
1226 bytes[0] = 0x16 + (c == 0x04 ? 1 : 0);
1227 break;
1228 default:
1229 errfunc(ERR_PANIC,
1230 "bizarre 8086 segment register received");
1232 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1233 offset++;
1234 break;
1236 case 05:
1237 case 07:
1238 switch (ins->oprs[0].basereg) {
1239 case R_FS:
1240 bytes[0] = 0xA0 + (c == 0x05 ? 1 : 0);
1241 break;
1242 case R_GS:
1243 bytes[0] = 0xA8 + (c == 0x05 ? 1 : 0);
1244 break;
1245 default:
1246 errfunc(ERR_PANIC,
1247 "bizarre 386 segment register received");
1249 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1250 offset++;
1251 break;
1253 case 010:
1254 case 011:
1255 case 012:
1256 case 013:
1257 EMIT_REX();
1258 bytes[0] = *codes++ + ((regval(opx)) & 7);
1259 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1260 offset += 1;
1261 break;
1263 case 014:
1264 case 015:
1265 case 016:
1266 case 017:
1267 /* The test for BITS8 and SBYTE here is intended to avoid
1268 warning on optimizer actions due to SBYTE, while still
1269 warn on explicit BYTE directives. Also warn, obviously,
1270 if the optimizer isn't enabled. */
1271 if (((opx->type & BITS8) ||
1272 !(opx->type & temp->opd[c & 3] & BYTENESS)) &&
1273 (opx->offset < -128 || opx->offset > 127)) {
1274 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1275 "signed byte value exceeds bounds");
1277 if (opx->segment != NO_SEG) {
1278 data = opx->offset;
1279 out(offset, segment, &data, OUT_ADDRESS, 1,
1280 opx->segment, opx->wrt);
1281 } else {
1282 bytes[0] = opx->offset;
1283 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1284 NO_SEG);
1286 offset += 1;
1287 break;
1289 case 020:
1290 case 021:
1291 case 022:
1292 case 023:
1293 if (opx->offset < -256 || opx->offset > 255) {
1294 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1295 "byte value exceeds bounds");
1297 if (opx->segment != NO_SEG) {
1298 data = opx->offset;
1299 out(offset, segment, &data, OUT_ADDRESS, 1,
1300 opx->segment, opx->wrt);
1301 } else {
1302 bytes[0] = opx->offset;
1303 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1304 NO_SEG);
1306 offset += 1;
1307 break;
1309 case 024:
1310 case 025:
1311 case 026:
1312 case 027:
1313 if (opx->offset < 0 || opx->offset > 255)
1314 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1315 "unsigned byte value exceeds bounds");
1316 if (opx->segment != NO_SEG) {
1317 data = opx->offset;
1318 out(offset, segment, &data, OUT_ADDRESS, 1,
1319 opx->segment, opx->wrt);
1320 } else {
1321 bytes[0] = opx->offset;
1322 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1323 NO_SEG);
1325 offset += 1;
1326 break;
1328 case 030:
1329 case 031:
1330 case 032:
1331 case 033:
1332 warn_overflow(2, opx);
1333 data = opx->offset;
1334 out(offset, segment, &data, OUT_ADDRESS, 2,
1335 opx->segment, opx->wrt);
1336 offset += 2;
1337 break;
1339 case 034:
1340 case 035:
1341 case 036:
1342 case 037:
1343 if (opx->type & (BITS16 | BITS32))
1344 size = (opx->type & BITS16) ? 2 : 4;
1345 else
1346 size = (bits == 16) ? 2 : 4;
1347 warn_overflow(size, opx);
1348 data = opx->offset;
1349 out(offset, segment, &data, OUT_ADDRESS, size,
1350 opx->segment, opx->wrt);
1351 offset += size;
1352 break;
1354 case 040:
1355 case 041:
1356 case 042:
1357 case 043:
1358 warn_overflow(4, opx);
1359 data = opx->offset;
1360 out(offset, segment, &data, OUT_ADDRESS, 4,
1361 opx->segment, opx->wrt);
1362 offset += 4;
1363 break;
1365 case 044:
1366 case 045:
1367 case 046:
1368 case 047:
1369 data = opx->offset;
1370 size = ins->addr_size >> 3;
1371 warn_overflow(size, opx);
1372 out(offset, segment, &data, OUT_ADDRESS, size,
1373 opx->segment, opx->wrt);
1374 offset += size;
1375 break;
1377 case 050:
1378 case 051:
1379 case 052:
1380 case 053:
1381 if (opx->segment != segment)
1382 errfunc(ERR_NONFATAL,
1383 "short relative jump outside segment");
1384 data = opx->offset - insn_end;
1385 if (data > 127 || data < -128)
1386 errfunc(ERR_NONFATAL, "short jump is out of range");
1387 bytes[0] = data;
1388 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1389 offset += 1;
1390 break;
1392 case 054:
1393 case 055:
1394 case 056:
1395 case 057:
1396 data = (int64_t)opx->offset;
1397 out(offset, segment, &data, OUT_ADDRESS, 8,
1398 opx->segment, opx->wrt);
1399 offset += 8;
1400 break;
1402 case 060:
1403 case 061:
1404 case 062:
1405 case 063:
1406 if (opx->segment != segment) {
1407 data = opx->offset;
1408 out(offset, segment, &data,
1409 OUT_REL2ADR, insn_end - offset,
1410 opx->segment, opx->wrt);
1411 } else {
1412 data = opx->offset - insn_end;
1413 out(offset, segment, &data,
1414 OUT_ADDRESS, 2, NO_SEG, NO_SEG);
1416 offset += 2;
1417 break;
1419 case 064:
1420 case 065:
1421 case 066:
1422 case 067:
1423 if (opx->type & (BITS16 | BITS32 | BITS64))
1424 size = (opx->type & BITS16) ? 2 : 4;
1425 else
1426 size = (bits == 16) ? 2 : 4;
1427 if (opx->segment != segment) {
1428 data = opx->offset;
1429 out(offset, segment, &data,
1430 size == 2 ? OUT_REL2ADR : OUT_REL4ADR,
1431 insn_end - offset, opx->segment, opx->wrt);
1432 } else {
1433 data = opx->offset - insn_end;
1434 out(offset, segment, &data,
1435 OUT_ADDRESS, size, NO_SEG, NO_SEG);
1437 offset += size;
1438 break;
1440 case 070:
1441 case 071:
1442 case 072:
1443 case 073:
1444 if (opx->segment != segment) {
1445 data = opx->offset;
1446 out(offset, segment, &data,
1447 OUT_REL4ADR, insn_end - offset,
1448 opx->segment, opx->wrt);
1449 } else {
1450 data = opx->offset - insn_end;
1451 out(offset, segment, &data,
1452 OUT_ADDRESS, 4, NO_SEG, NO_SEG);
1454 offset += 4;
1455 break;
1457 case 074:
1458 case 075:
1459 case 076:
1460 case 077:
1461 if (opx->segment == NO_SEG)
1462 errfunc(ERR_NONFATAL, "value referenced by FAR is not"
1463 " relocatable");
1464 data = 0;
1465 out(offset, segment, &data, OUT_ADDRESS, 2,
1466 outfmt->segbase(1 + opx->segment),
1467 opx->wrt);
1468 offset += 2;
1469 break;
1471 case 0140:
1472 case 0141:
1473 case 0142:
1474 case 0143:
1475 data = opx->offset;
1476 warn_overflow(2, opx);
1477 if (is_sbyte16(opx)) {
1478 bytes[0] = data;
1479 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1480 NO_SEG);
1481 offset++;
1482 } else {
1483 out(offset, segment, &data, OUT_ADDRESS, 2,
1484 opx->segment, opx->wrt);
1485 offset += 2;
1487 break;
1489 case 0144:
1490 case 0145:
1491 case 0146:
1492 case 0147:
1493 EMIT_REX();
1494 bytes[0] = *codes++;
1495 if (is_sbyte16(opx))
1496 bytes[0] |= 2; /* s-bit */
1497 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1498 offset++;
1499 break;
1501 case 0150:
1502 case 0151:
1503 case 0152:
1504 case 0153:
1505 data = opx->offset;
1506 warn_overflow(4, opx);
1507 if (is_sbyte32(opx)) {
1508 bytes[0] = data;
1509 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1510 NO_SEG);
1511 offset++;
1512 } else {
1513 out(offset, segment, &data, OUT_ADDRESS, 4,
1514 opx->segment, opx->wrt);
1515 offset += 4;
1517 break;
1519 case 0154:
1520 case 0155:
1521 case 0156:
1522 case 0157:
1523 EMIT_REX();
1524 bytes[0] = *codes++;
1525 if (is_sbyte32(opx))
1526 bytes[0] |= 2; /* s-bit */
1527 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1528 offset++;
1529 break;
1531 case 0160:
1532 case 0161:
1533 case 0162:
1534 case 0163:
1535 case 0164:
1536 case 0165:
1537 case 0166:
1538 case 0167:
1539 break;
1541 case 0171:
1542 bytes[0] =
1543 (ins->drexdst << 4) |
1544 (ins->rex & REX_OC ? 0x08 : 0) |
1545 (ins->rex & (REX_R|REX_X|REX_B));
1546 ins->rex = 0;
1547 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1548 offset++;
1549 break;
1551 case 0172:
1552 c = *codes++;
1553 opx = &ins->oprs[c >> 3];
1554 bytes[0] = nasm_regvals[opx->basereg] << 4;
1555 opx = &ins->oprs[c & 7];
1556 if (opx->segment != NO_SEG || opx->wrt != NO_SEG) {
1557 errfunc(ERR_NONFATAL,
1558 "non-absolute expression not permitted as argument %d",
1559 c & 7);
1560 } else {
1561 if (opx->offset & ~15) {
1562 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1563 "four-bit argument exceeds bounds");
1565 bytes[0] |= opx->offset & 15;
1567 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1568 offset++;
1569 break;
1571 case 0173:
1572 c = *codes++;
1573 opx = &ins->oprs[c >> 4];
1574 bytes[0] = nasm_regvals[opx->basereg] << 4;
1575 bytes[0] |= c & 15;
1576 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1577 offset++;
1578 break;
1580 case 0174:
1581 c = *codes++;
1582 opx = &ins->oprs[c];
1583 bytes[0] = nasm_regvals[opx->basereg] << 4;
1584 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1585 offset++;
1586 break;
1588 case 0250:
1589 case 0251:
1590 case 0252:
1591 case 0253:
1592 data = opx->offset;
1593 warn_overflow(4, opx);
1594 if (is_sbyte64(opx)) {
1595 bytes[0] = data;
1596 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1597 NO_SEG);
1598 offset++;
1599 } else {
1600 out(offset, segment, &data, OUT_ADDRESS, 4,
1601 opx->segment, opx->wrt);
1602 offset += 4;
1604 break;
1606 case 0260:
1607 case 0261:
1608 case 0262:
1609 case 0263:
1610 case 0270:
1611 codes += 2;
1612 if (ins->vex_m != 1 || (ins->rex & (REX_W|REX_X|REX_B))) {
1613 bytes[0] = 0xc4;
1614 bytes[1] = ins->vex_m | ((~ins->rex & 7) << 5);
1615 bytes[2] = ((ins->rex & REX_W) << (7-3)) |
1616 ((~ins->drexdst & 15)<< 3) | (ins->vex_wlp & 07);
1617 out(offset, segment, &bytes, OUT_RAWDATA, 3, NO_SEG, NO_SEG);
1618 offset += 3;
1619 } else {
1620 bytes[0] = 0xc5;
1621 bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
1622 ((~ins->drexdst & 15) << 3) | (ins->vex_wlp & 07);
1623 out(offset, segment, &bytes, OUT_RAWDATA, 2, NO_SEG, NO_SEG);
1624 offset += 2;
1626 break;
1628 case 0300:
1629 case 0301:
1630 case 0302:
1631 case 0303:
1632 break;
1634 case 0310:
1635 if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
1636 *bytes = 0x67;
1637 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1638 offset += 1;
1639 } else
1640 offset += 0;
1641 break;
1643 case 0311:
1644 if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
1645 *bytes = 0x67;
1646 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1647 offset += 1;
1648 } else
1649 offset += 0;
1650 break;
1652 case 0312:
1653 break;
1655 case 0313:
1656 ins->rex = 0;
1657 break;
1659 case 0314:
1660 case 0315:
1661 case 0316:
1662 case 0317:
1663 break;
1665 case 0320:
1666 if (bits != 16) {
1667 *bytes = 0x66;
1668 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1669 offset += 1;
1670 } else
1671 offset += 0;
1672 break;
1674 case 0321:
1675 if (bits == 16) {
1676 *bytes = 0x66;
1677 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1678 offset += 1;
1679 } else
1680 offset += 0;
1681 break;
1683 case 0322:
1684 case 0323:
1685 break;
1687 case 0324:
1688 ins->rex |= REX_W;
1689 break;
1691 case 0330:
1692 *bytes = *codes++ ^ condval[ins->condition];
1693 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1694 offset += 1;
1695 break;
1697 case 0331:
1698 break;
1700 case 0332:
1701 case 0333:
1702 *bytes = c - 0332 + 0xF2;
1703 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1704 offset += 1;
1705 break;
1707 case 0334:
1708 if (ins->rex & REX_R) {
1709 *bytes = 0xF0;
1710 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1711 offset += 1;
1713 ins->rex &= ~(REX_L|REX_R);
1714 break;
1716 case 0335:
1717 break;
1719 case 0336:
1720 case 0337:
1721 break;
1723 case 0340:
1724 if (ins->oprs[0].segment != NO_SEG)
1725 errfunc(ERR_PANIC, "non-constant BSS size in pass two");
1726 else {
1727 int64_t size = ins->oprs[0].offset;
1728 if (size > 0)
1729 out(offset, segment, NULL,
1730 OUT_RESERVE, size, NO_SEG, NO_SEG);
1731 offset += size;
1733 break;
1735 case 0360:
1736 break;
1738 case 0361:
1739 bytes[0] = 0x66;
1740 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1741 offset += 1;
1742 break;
1744 case 0362:
1745 case 0363:
1746 bytes[0] = c - 0362 + 0xf2;
1747 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1748 offset += 1;
1749 break;
1751 case 0364:
1752 case 0365:
1753 break;
1755 case 0366:
1756 case 0367:
1757 *bytes = c - 0366 + 0x66;
1758 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1759 offset += 1;
1760 break;
1762 case 0370:
1763 case 0371:
1764 case 0372:
1765 break;
1767 case 0373:
1768 *bytes = bits == 16 ? 3 : 5;
1769 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1770 offset += 1;
1771 break;
1773 default: /* can't do it by 'case' statements */
1774 if (c >= 0100 && c <= 0277) { /* it's an EA */
1775 ea ea_data;
1776 int rfield;
1777 int32_t rflags;
1778 uint8_t *p;
1779 int32_t s;
1781 if (c <= 0177) {
1782 /* pick rfield from operand b */
1783 rflags = regflag(&ins->oprs[c & 7]);
1784 rfield = nasm_regvals[ins->oprs[c & 7].basereg];
1785 } else {
1786 /* rfield is constant */
1787 rflags = 0;
1788 rfield = c & 7;
1791 if (!process_ea
1792 (&ins->oprs[(c >> 3) & 7], &ea_data, bits,
1793 ins->addr_size, rfield, rflags)) {
1794 errfunc(ERR_NONFATAL, "invalid effective address");
1798 p = bytes;
1799 *p++ = ea_data.modrm;
1800 if (ea_data.sib_present)
1801 *p++ = ea_data.sib;
1803 /* DREX suffixes come between the SIB and the displacement */
1804 if (ins->rex & REX_D) {
1805 *p++ =
1806 (ins->drexdst << 4) |
1807 (ins->rex & REX_OC ? 0x08 : 0) |
1808 (ins->rex & (REX_R|REX_X|REX_B));
1809 ins->rex = 0;
1812 s = p - bytes;
1813 out(offset, segment, bytes, OUT_RAWDATA, s, NO_SEG, NO_SEG);
1816 * Make sure the address gets the right offset in case
1817 * the line breaks in the .lst file (BR 1197827)
1819 offset += s;
1820 s = 0;
1822 switch (ea_data.bytes) {
1823 case 0:
1824 break;
1825 case 1:
1826 if (ins->oprs[(c >> 3) & 7].segment != NO_SEG) {
1827 data = ins->oprs[(c >> 3) & 7].offset;
1828 out(offset, segment, &data, OUT_ADDRESS, 1,
1829 ins->oprs[(c >> 3) & 7].segment,
1830 ins->oprs[(c >> 3) & 7].wrt);
1831 } else {
1832 *bytes = ins->oprs[(c >> 3) & 7].offset;
1833 out(offset, segment, bytes, OUT_RAWDATA, 1,
1834 NO_SEG, NO_SEG);
1836 s++;
1837 break;
1838 case 8:
1839 case 2:
1840 case 4:
1841 data = ins->oprs[(c >> 3) & 7].offset;
1842 warn_overflow(ea_data.bytes, opx);
1843 out(offset, segment, &data,
1844 ea_data.rip ? OUT_REL4ADR : OUT_ADDRESS,
1845 ea_data.bytes,
1846 ins->oprs[(c >> 3) & 7].segment,
1847 ins->oprs[(c >> 3) & 7].wrt);
1848 s += ea_data.bytes;
1849 break;
1851 offset += s;
1852 } else {
1853 errfunc(ERR_PANIC, "internal instruction table corrupt"
1854 ": instruction code 0x%02X given", c);
1860 static int32_t regflag(const operand * o)
1862 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1863 errfunc(ERR_PANIC, "invalid operand passed to regflag()");
1865 return nasm_reg_flags[o->basereg];
1868 static int32_t regval(const operand * o)
1870 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1871 errfunc(ERR_PANIC, "invalid operand passed to regval()");
1873 return nasm_regvals[o->basereg];
1876 static int op_rexflags(const operand * o, int mask)
1878 int32_t flags;
1879 int val;
1881 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1882 errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
1885 flags = nasm_reg_flags[o->basereg];
1886 val = nasm_regvals[o->basereg];
1888 return rexflags(val, flags, mask);
1891 static int rexflags(int val, int32_t flags, int mask)
1893 int rex = 0;
1895 if (val >= 8)
1896 rex |= REX_B|REX_X|REX_R;
1897 if (flags & BITS64)
1898 rex |= REX_W;
1899 if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
1900 rex |= REX_H;
1901 else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
1902 rex |= REX_P;
1904 return rex & mask;
1907 static int matches(const struct itemplate *itemp, insn * instruction, int bits)
1909 int i, size[MAX_OPERANDS], asize, oprs, ret;
1911 ret = 100;
1914 * Check the opcode
1916 if (itemp->opcode != instruction->opcode)
1917 return 0;
1920 * Count the operands
1922 if (itemp->operands != instruction->operands)
1923 return 0;
1926 * Check that no spurious colons or TOs are present
1928 for (i = 0; i < itemp->operands; i++)
1929 if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
1930 return 0;
1933 * Process size flags
1935 if (itemp->flags & IF_ARMASK) {
1936 memset(size, 0, sizeof size);
1938 i = ((itemp->flags & IF_ARMASK) >> IF_ARSHFT) - 1;
1940 switch (itemp->flags & IF_SMASK) {
1941 case IF_SB:
1942 size[i] = BITS8;
1943 break;
1944 case IF_SW:
1945 size[i] = BITS16;
1946 break;
1947 case IF_SD:
1948 size[i] = BITS32;
1949 break;
1950 case IF_SQ:
1951 size[i] = BITS64;
1952 break;
1953 case IF_SO:
1954 size[i] = BITS128;
1955 break;
1956 case IF_SY:
1957 size[i] = BITS256;
1958 break;
1959 case IF_SZ:
1960 switch (bits) {
1961 case 16:
1962 size[i] = BITS16;
1963 break;
1964 case 32:
1965 size[i] = BITS32;
1966 break;
1967 case 64:
1968 size[i] = BITS64;
1969 break;
1971 break;
1972 default:
1973 break;
1975 } else {
1976 asize = 0;
1977 switch (itemp->flags & IF_SMASK) {
1978 case IF_SB:
1979 asize = BITS8;
1980 break;
1981 case IF_SW:
1982 asize = BITS16;
1983 break;
1984 case IF_SD:
1985 asize = BITS32;
1986 break;
1987 case IF_SQ:
1988 asize = BITS64;
1989 break;
1990 case IF_SO:
1991 asize = BITS128;
1992 break;
1993 case IF_SY:
1994 asize = BITS256;
1995 break;
1996 case IF_SZ:
1997 switch (bits) {
1998 case 16:
1999 asize = BITS16;
2000 break;
2001 case 32:
2002 asize = BITS32;
2003 break;
2004 case 64:
2005 asize = BITS64;
2006 break;
2008 break;
2009 default:
2010 break;
2012 for (i = 0; i < MAX_OPERANDS; i++)
2013 size[i] = asize;
2017 * Check that the operand flags all match up
2019 for (i = 0; i < itemp->operands; i++) {
2020 int32_t type = instruction->oprs[i].type;
2021 if (!(type & SIZE_MASK))
2022 type |= size[i];
2024 if (itemp->opd[i] & SAME_AS) {
2025 int j = itemp->opd[i] & ~SAME_AS;
2026 if (type != instruction->oprs[j].type ||
2027 instruction->oprs[i].basereg != instruction->oprs[j].basereg)
2028 return 0;
2029 } else if (itemp->opd[i] & ~type ||
2030 ((itemp->opd[i] & SIZE_MASK) &&
2031 ((itemp->opd[i] ^ type) & SIZE_MASK))) {
2032 if ((itemp->opd[i] & ~type & ~SIZE_MASK) ||
2033 (type & SIZE_MASK))
2034 return 0;
2035 else
2036 return 1;
2041 * Check operand sizes
2043 if (itemp->flags & (IF_SM | IF_SM2)) {
2044 oprs = (itemp->flags & IF_SM2 ? 2 : itemp->operands);
2045 asize = 0;
2046 for (i = 0; i < oprs; i++) {
2047 if ((asize = itemp->opd[i] & SIZE_MASK) != 0) {
2048 int j;
2049 for (j = 0; j < oprs; j++)
2050 size[j] = asize;
2051 break;
2054 } else {
2055 oprs = itemp->operands;
2058 for (i = 0; i < itemp->operands; i++) {
2059 if (!(itemp->opd[i] & SIZE_MASK) &&
2060 (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
2061 return 2;
2065 * Check template is okay at the set cpu level
2067 if (((itemp->flags & IF_PLEVEL) > cpu))
2068 return 3;
2071 * Check if instruction is available in long mode
2073 if ((itemp->flags & IF_NOLONG) && (bits == 64))
2074 return 4;
2077 * Check if special handling needed for Jumps
2079 if ((uint8_t)(itemp->code[0]) >= 0370)
2080 return 99;
2082 return ret;
2085 static ea *process_ea(operand * input, ea * output, int bits,
2086 int addrbits, int rfield, int32_t rflags)
2088 bool forw_ref = !!(input->opflags & OPFLAG_FORWARD);
2090 output->rip = false;
2092 /* REX flags for the rfield operand */
2093 output->rex |= rexflags(rfield, rflags, REX_R|REX_P|REX_W|REX_H);
2095 if (!(REGISTER & ~input->type)) { /* register direct */
2096 int i;
2097 int32_t f;
2099 if (input->basereg < EXPR_REG_START /* Verify as Register */
2100 || input->basereg >= REG_ENUM_LIMIT)
2101 return NULL;
2102 f = regflag(input);
2103 i = nasm_regvals[input->basereg];
2105 if (REG_EA & ~f)
2106 return NULL; /* Invalid EA register */
2108 output->rex |= op_rexflags(input, REX_B|REX_P|REX_W|REX_H);
2110 output->sib_present = false; /* no SIB necessary */
2111 output->bytes = 0; /* no offset necessary either */
2112 output->modrm = 0xC0 | ((rfield & 7) << 3) | (i & 7);
2113 } else { /* it's a memory reference */
2114 if (input->basereg == -1
2115 && (input->indexreg == -1 || input->scale == 0)) {
2116 /* it's a pure offset */
2117 if (bits == 64 && (~input->type & IP_REL)) {
2118 int scale, index, base;
2119 output->sib_present = true;
2120 scale = 0;
2121 index = 4;
2122 base = 5;
2123 output->sib = (scale << 6) | (index << 3) | base;
2124 output->bytes = 4;
2125 output->modrm = 4 | ((rfield & 7) << 3);
2126 output->rip = false;
2127 } else {
2128 output->sib_present = false;
2129 output->bytes = (addrbits != 16 ? 4 : 2);
2130 output->modrm = (addrbits != 16 ? 5 : 6) | ((rfield & 7) << 3);
2131 output->rip = bits == 64;
2133 } else { /* it's an indirection */
2134 int i = input->indexreg, b = input->basereg, s = input->scale;
2135 int32_t o = input->offset, seg = input->segment;
2136 int hb = input->hintbase, ht = input->hinttype;
2137 int t;
2138 int it, bt;
2139 int32_t ix, bx; /* register flags */
2141 if (s == 0)
2142 i = -1; /* make this easy, at least */
2144 if (i >= EXPR_REG_START && i < REG_ENUM_LIMIT) {
2145 it = nasm_regvals[i];
2146 ix = nasm_reg_flags[i];
2147 } else {
2148 it = -1;
2149 ix = 0;
2152 if (b >= EXPR_REG_START && b < REG_ENUM_LIMIT) {
2153 bt = nasm_regvals[b];
2154 bx = nasm_reg_flags[b];
2155 } else {
2156 bt = -1;
2157 bx = 0;
2160 /* check for a 32/64-bit memory reference... */
2161 if ((ix|bx) & (BITS32|BITS64)) {
2162 /* it must be a 32/64-bit memory reference. Firstly we have
2163 * to check that all registers involved are type E/Rxx. */
2164 int32_t sok = BITS32|BITS64;
2166 if (it != -1) {
2167 if (!(REG64 & ~ix) || !(REG32 & ~ix))
2168 sok &= ix;
2169 else
2170 return NULL;
2173 if (bt != -1) {
2174 if (REG_GPR & ~bx)
2175 return NULL; /* Invalid register */
2176 if (~sok & bx & SIZE_MASK)
2177 return NULL; /* Invalid size */
2178 sok &= bx;
2181 /* While we're here, ensure the user didn't specify
2182 WORD or QWORD. */
2183 if (input->disp_size == 16 || input->disp_size == 64)
2184 return NULL;
2186 if (addrbits == 16 ||
2187 (addrbits == 32 && !(sok & BITS32)) ||
2188 (addrbits == 64 && !(sok & BITS64)))
2189 return NULL;
2191 /* now reorganize base/index */
2192 if (s == 1 && bt != it && bt != -1 && it != -1 &&
2193 ((hb == b && ht == EAH_NOTBASE)
2194 || (hb == i && ht == EAH_MAKEBASE))) {
2195 /* swap if hints say so */
2196 t = bt, bt = it, it = t;
2197 t = bx, bx = ix, ix = t;
2199 if (bt == it) /* convert EAX+2*EAX to 3*EAX */
2200 bt = -1, bx = 0, s++;
2201 if (bt == -1 && s == 1 && !(hb == it && ht == EAH_NOTBASE)) {
2202 /* make single reg base, unless hint */
2203 bt = it, bx = ix, it = -1, ix = 0;
2205 if (((s == 2 && it != REG_NUM_ESP
2206 && !(input->eaflags & EAF_TIMESTWO)) || s == 3
2207 || s == 5 || s == 9) && bt == -1)
2208 bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
2209 if (it == -1 && (bt & 7) != REG_NUM_ESP
2210 && (input->eaflags & EAF_TIMESTWO))
2211 it = bt, ix = bx, bt = -1, bx = 0, s = 1;
2212 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2213 if (s == 1 && it == REG_NUM_ESP) {
2214 /* swap ESP into base if scale is 1 */
2215 t = it, it = bt, bt = t;
2216 t = ix, ix = bx, bx = t;
2218 if (it == REG_NUM_ESP
2219 || (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
2220 return NULL; /* wrong, for various reasons */
2222 output->rex |= rexflags(it, ix, REX_X);
2223 output->rex |= rexflags(bt, bx, REX_B);
2225 if (it == -1 && (bt & 7) != REG_NUM_ESP) {
2226 /* no SIB needed */
2227 int mod, rm;
2229 if (bt == -1) {
2230 rm = 5;
2231 mod = 0;
2232 } else {
2233 rm = (bt & 7);
2234 if (rm != REG_NUM_EBP && o == 0 &&
2235 seg == NO_SEG && !forw_ref &&
2236 !(input->eaflags &
2237 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2238 mod = 0;
2239 else if (input->eaflags & EAF_BYTEOFFS ||
2240 (o >= -128 && o <= 127 && seg == NO_SEG
2241 && !forw_ref
2242 && !(input->eaflags & EAF_WORDOFFS)))
2243 mod = 1;
2244 else
2245 mod = 2;
2248 output->sib_present = false;
2249 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2250 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2251 } else {
2252 /* we need a SIB */
2253 int mod, scale, index, base;
2255 if (it == -1)
2256 index = 4, s = 1;
2257 else
2258 index = (it & 7);
2260 switch (s) {
2261 case 1:
2262 scale = 0;
2263 break;
2264 case 2:
2265 scale = 1;
2266 break;
2267 case 4:
2268 scale = 2;
2269 break;
2270 case 8:
2271 scale = 3;
2272 break;
2273 default: /* then what the smeg is it? */
2274 return NULL; /* panic */
2277 if (bt == -1) {
2278 base = 5;
2279 mod = 0;
2280 } else {
2281 base = (bt & 7);
2282 if (base != REG_NUM_EBP && o == 0 &&
2283 seg == NO_SEG && !forw_ref &&
2284 !(input->eaflags &
2285 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2286 mod = 0;
2287 else if (input->eaflags & EAF_BYTEOFFS ||
2288 (o >= -128 && o <= 127 && seg == NO_SEG
2289 && !forw_ref
2290 && !(input->eaflags & EAF_WORDOFFS)))
2291 mod = 1;
2292 else
2293 mod = 2;
2296 output->sib_present = true;
2297 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2298 output->modrm = (mod << 6) | ((rfield & 7) << 3) | 4;
2299 output->sib = (scale << 6) | (index << 3) | base;
2301 } else { /* it's 16-bit */
2302 int mod, rm;
2304 /* check for 64-bit long mode */
2305 if (addrbits == 64)
2306 return NULL;
2308 /* check all registers are BX, BP, SI or DI */
2309 if ((b != -1 && b != R_BP && b != R_BX && b != R_SI
2310 && b != R_DI) || (i != -1 && i != R_BP && i != R_BX
2311 && i != R_SI && i != R_DI))
2312 return NULL;
2314 /* ensure the user didn't specify DWORD/QWORD */
2315 if (input->disp_size == 32 || input->disp_size == 64)
2316 return NULL;
2318 if (s != 1 && i != -1)
2319 return NULL; /* no can do, in 16-bit EA */
2320 if (b == -1 && i != -1) {
2321 int tmp = b;
2322 b = i;
2323 i = tmp;
2324 } /* swap */
2325 if ((b == R_SI || b == R_DI) && i != -1) {
2326 int tmp = b;
2327 b = i;
2328 i = tmp;
2330 /* have BX/BP as base, SI/DI index */
2331 if (b == i)
2332 return NULL; /* shouldn't ever happen, in theory */
2333 if (i != -1 && b != -1 &&
2334 (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
2335 return NULL; /* invalid combinations */
2336 if (b == -1) /* pure offset: handled above */
2337 return NULL; /* so if it gets to here, panic! */
2339 rm = -1;
2340 if (i != -1)
2341 switch (i * 256 + b) {
2342 case R_SI * 256 + R_BX:
2343 rm = 0;
2344 break;
2345 case R_DI * 256 + R_BX:
2346 rm = 1;
2347 break;
2348 case R_SI * 256 + R_BP:
2349 rm = 2;
2350 break;
2351 case R_DI * 256 + R_BP:
2352 rm = 3;
2353 break;
2354 } else
2355 switch (b) {
2356 case R_SI:
2357 rm = 4;
2358 break;
2359 case R_DI:
2360 rm = 5;
2361 break;
2362 case R_BP:
2363 rm = 6;
2364 break;
2365 case R_BX:
2366 rm = 7;
2367 break;
2369 if (rm == -1) /* can't happen, in theory */
2370 return NULL; /* so panic if it does */
2372 if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
2373 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2374 mod = 0;
2375 else if (input->eaflags & EAF_BYTEOFFS ||
2376 (o >= -128 && o <= 127 && seg == NO_SEG
2377 && !forw_ref
2378 && !(input->eaflags & EAF_WORDOFFS)))
2379 mod = 1;
2380 else
2381 mod = 2;
2383 output->sib_present = false; /* no SIB - it's 16-bit */
2384 output->bytes = mod; /* bytes of offset needed */
2385 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2390 output->size = 1 + output->sib_present + output->bytes;
2391 return output;
2394 static void add_asp(insn *ins, int addrbits)
2396 int j, valid;
2397 int defdisp;
2399 valid = (addrbits == 64) ? 64|32 : 32|16;
2401 switch (ins->prefixes[PPS_ASIZE]) {
2402 case P_A16:
2403 valid &= 16;
2404 break;
2405 case P_A32:
2406 valid &= 32;
2407 break;
2408 case P_A64:
2409 valid &= 64;
2410 break;
2411 case P_ASP:
2412 valid &= (addrbits == 32) ? 16 : 32;
2413 break;
2414 default:
2415 break;
2418 for (j = 0; j < ins->operands; j++) {
2419 if (!(MEMORY & ~ins->oprs[j].type)) {
2420 int32_t i, b;
2422 /* Verify as Register */
2423 if (ins->oprs[j].indexreg < EXPR_REG_START
2424 || ins->oprs[j].indexreg >= REG_ENUM_LIMIT)
2425 i = 0;
2426 else
2427 i = nasm_reg_flags[ins->oprs[j].indexreg];
2429 /* Verify as Register */
2430 if (ins->oprs[j].basereg < EXPR_REG_START
2431 || ins->oprs[j].basereg >= REG_ENUM_LIMIT)
2432 b = 0;
2433 else
2434 b = nasm_reg_flags[ins->oprs[j].basereg];
2436 if (ins->oprs[j].scale == 0)
2437 i = 0;
2439 if (!i && !b) {
2440 int ds = ins->oprs[j].disp_size;
2441 if ((addrbits != 64 && ds > 8) ||
2442 (addrbits == 64 && ds == 16))
2443 valid &= ds;
2444 } else {
2445 if (!(REG16 & ~b))
2446 valid &= 16;
2447 if (!(REG32 & ~b))
2448 valid &= 32;
2449 if (!(REG64 & ~b))
2450 valid &= 64;
2452 if (!(REG16 & ~i))
2453 valid &= 16;
2454 if (!(REG32 & ~i))
2455 valid &= 32;
2456 if (!(REG64 & ~i))
2457 valid &= 64;
2462 if (valid & addrbits) {
2463 ins->addr_size = addrbits;
2464 } else if (valid & ((addrbits == 32) ? 16 : 32)) {
2465 /* Add an address size prefix */
2466 enum prefixes pref = (addrbits == 32) ? P_A16 : P_A32;
2467 ins->prefixes[PPS_ASIZE] = pref;
2468 ins->addr_size = (addrbits == 32) ? 16 : 32;
2469 } else {
2470 /* Impossible... */
2471 errfunc(ERR_NONFATAL, "impossible combination of address sizes");
2472 ins->addr_size = addrbits; /* Error recovery */
2475 defdisp = ins->addr_size == 16 ? 16 : 32;
2477 for (j = 0; j < ins->operands; j++) {
2478 if (!(MEM_OFFS & ~ins->oprs[j].type) &&
2479 (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp)
2480 != ins->addr_size) {
2481 /* mem_offs sizes must match the address size; if not,
2482 strip the MEM_OFFS bit and match only EA instructions */
2483 ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);