1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * outobj.c output routines for the Netwide Assembler to produce
51 #include "output/outform.h"
52 #include "output/outlib.h"
57 * outobj.c is divided into two sections. The first section is low level
58 * routines for creating obj records; It has nearly zero NASM specific
59 * code. The second section is high level routines for processing calls and
60 * data structures from the rest of NASM into obj format.
62 * It should be easy (though not zero work) to lift the first section out for
63 * use as an obj file writer for some other assembler or compiler.
67 * These routines are built around the ObjRecord data struture. An ObjRecord
68 * holds an object file record that may be under construction or complete.
70 * A major function of these routines is to support continuation of an obj
71 * record into the next record when the maximum record size is exceeded. The
72 * high level code does not need to worry about where the record breaks occur.
73 * It does need to do some minor extra steps to make the automatic continuation
74 * work. Those steps may be skipped for records where the high level knows no
75 * continuation could be required.
77 * 1) An ObjRecord is allocated and cleared by obj_new, or an existing ObjRecord
78 * is cleared by obj_clear.
80 * 2) The caller should fill in .type.
82 * 3) If the record is continuable and there is processing that must be done at
83 * the start of each record then the caller should fill in .ori with the
84 * address of the record initializer routine.
86 * 4) If the record is continuable and it should be saved (rather than emitted
87 * immediately) as each record is done, the caller should set .up to be a
88 * pointer to a location in which the caller keeps the master pointer to the
89 * ObjRecord. When the record is continued, the obj_bump routine will then
90 * allocate a new ObjRecord structure and update the master pointer.
92 * 5) If the .ori field was used then the caller should fill in the .parm with
93 * any data required by the initializer.
95 * 6) The caller uses the routines: obj_byte, obj_word, obj_rword, obj_dword,
96 * obj_x, obj_index, obj_value and obj_name to fill in the various kinds of
97 * data required for this record.
99 * 7) If the record is continuable, the caller should call obj_commit at each
100 * point where breaking the record is permitted.
102 * 8) To write out the record, the caller should call obj_emit2. If the
103 * caller has called obj_commit for all data written then he can get slightly
104 * faster code by calling obj_emit instead of obj_emit2.
106 * Most of these routines return an ObjRecord pointer. This will be the input
107 * pointer most of the time and will be the new location if the ObjRecord
108 * moved as a result of the call. The caller may ignore the return value in
109 * three cases: It is a "Never Reallocates" routine; or The caller knows
110 * continuation is not possible; or The caller uses the master pointer for the
114 #define RECORD_MAX (1024-3) /* maximal size of any record except type+reclen */
115 #define OBJ_PARMS 3 /* maximum .parm used by any .ori routine */
117 #define FIX_08_LOW 0x8000 /* location type for various fixup subrecords */
118 #define FIX_16_OFFSET 0x8400
119 #define FIX_16_SELECTOR 0x8800
120 #define FIX_32_POINTER 0x8C00
121 #define FIX_08_HIGH 0x9000
122 #define FIX_32_OFFSET 0xA400
123 #define FIX_48_POINTER 0xAC00
125 enum RecordID
{ /* record ID codes */
127 THEADR
= 0x80, /* module header */
128 COMENT
= 0x88, /* comment record */
130 LINNUM
= 0x94, /* line number record */
131 LNAMES
= 0x96, /* list of names */
133 SEGDEF
= 0x98, /* segment definition */
134 GRPDEF
= 0x9A, /* group definition */
135 EXTDEF
= 0x8C, /* external definition */
136 PUBDEF
= 0x90, /* public definition */
137 COMDEF
= 0xB0, /* common definition */
139 LEDATA
= 0xA0, /* logical enumerated data */
140 FIXUPP
= 0x9C, /* fixups (relocations) */
141 FIXU32
= 0x9D, /* 32-bit fixups (relocations) */
143 MODEND
= 0x8A, /* module end */
144 MODE32
= 0x8B /* module end for 32-bit objects */
147 enum ComentID
{ /* ID codes for comment records */
149 dEXTENDED
= 0xA1, /* tells that we are using translator-specific extensions */
150 dLINKPASS
= 0xA2, /* link pass 2 marker */
151 dTYPEDEF
= 0xE3, /* define a type */
152 dSYM
= 0xE6, /* symbol debug record */
153 dFILNAME
= 0xE8, /* file name record */
154 dCOMPDEF
= 0xEA /* compiler type info */
157 typedef struct ObjRecord ObjRecord
;
158 typedef void ORI(ObjRecord
* orp
);
161 ORI
*ori
; /* Initialization routine */
162 int used
; /* Current data size */
163 int committed
; /* Data size at last boundary */
164 int x_size
; /* (see obj_x) */
165 unsigned int type
; /* Record type */
166 ObjRecord
*child
; /* Associated record below this one */
167 ObjRecord
**up
; /* Master pointer to this ObjRecord */
168 ObjRecord
*back
; /* Previous part of this record */
169 uint32_t parm
[OBJ_PARMS
]; /* Parameters for ori routine */
170 uint8_t buf
[RECORD_MAX
+ 3];
173 static void obj_fwrite(ObjRecord
* orp
);
174 static void ori_ledata(ObjRecord
* orp
);
175 static void ori_pubdef(ObjRecord
* orp
);
176 static void ori_null(ObjRecord
* orp
);
177 static ObjRecord
*obj_commit(ObjRecord
* orp
);
179 static bool obj_uppercase
; /* Flag: all names in uppercase */
180 static bool obj_use32
; /* Flag: at least one segment is 32-bit */
183 * Clear an ObjRecord structure. (Never reallocates).
184 * To simplify reuse of ObjRecord's, .type, .ori and .parm are not cleared.
186 static ObjRecord
*obj_clear(ObjRecord
* orp
)
198 * Emit an ObjRecord structure. (Never reallocates).
199 * The record is written out preceeded (recursively) by its previous part (if
200 * any) and followed (recursively) by its child (if any).
201 * The previous part and the child are freed. The main ObjRecord is cleared,
204 static ObjRecord
*obj_emit(ObjRecord
* orp
)
208 nasm_free(orp
->back
);
215 obj_emit(orp
->child
);
216 nasm_free(orp
->child
);
219 return (obj_clear(orp
));
223 * Commit and Emit a record. (Never reallocates).
225 static ObjRecord
*obj_emit2(ObjRecord
* orp
)
228 return (obj_emit(orp
));
232 * Allocate and clear a new ObjRecord; Also sets .ori to ori_null
234 static ObjRecord
*obj_new(void)
238 orp
= obj_clear(nasm_malloc(sizeof(ObjRecord
)));
244 * Advance to the next record because the existing one is full or its x_size
246 * Any uncommited data is moved into the next record.
248 static ObjRecord
*obj_bump(ObjRecord
* orp
)
251 int used
= orp
->used
;
252 int committed
= orp
->committed
;
255 *orp
->up
= nxt
= obj_new();
257 nxt
->type
= orp
->type
;
260 memcpy(nxt
->parm
, orp
->parm
, sizeof(orp
->parm
));
268 nxt
->committed
= nxt
->used
;
269 memcpy(nxt
->buf
+ nxt
->committed
, orp
->buf
+ committed
, used
);
270 nxt
->used
= nxt
->committed
+ used
;
277 * Advance to the next record if necessary to allow the next field to fit.
279 static ObjRecord
*obj_check(ObjRecord
* orp
, int size
)
281 if (orp
->used
+ size
> RECORD_MAX
)
284 if (!orp
->committed
) {
287 orp
->committed
= orp
->used
;
294 * All data written so far is commited to the current record (won't be moved to
295 * the next record in case of continuation).
297 static ObjRecord
*obj_commit(ObjRecord
* orp
)
299 orp
->committed
= orp
->used
;
306 static ObjRecord
*obj_byte(ObjRecord
* orp
, uint8_t val
)
308 orp
= obj_check(orp
, 1);
309 orp
->buf
[orp
->used
] = val
;
317 static ObjRecord
*obj_word(ObjRecord
* orp
, unsigned int val
)
319 orp
= obj_check(orp
, 2);
320 orp
->buf
[orp
->used
] = val
;
321 orp
->buf
[orp
->used
+ 1] = val
>> 8;
327 * Write a reversed word
329 static ObjRecord
*obj_rword(ObjRecord
* orp
, unsigned int val
)
331 orp
= obj_check(orp
, 2);
332 orp
->buf
[orp
->used
] = val
>> 8;
333 orp
->buf
[orp
->used
+ 1] = val
;
341 static ObjRecord
*obj_dword(ObjRecord
* orp
, uint32_t val
)
343 orp
= obj_check(orp
, 4);
344 orp
->buf
[orp
->used
] = val
;
345 orp
->buf
[orp
->used
+ 1] = val
>> 8;
346 orp
->buf
[orp
->used
+ 2] = val
>> 16;
347 orp
->buf
[orp
->used
+ 3] = val
>> 24;
353 * All fields of "size x" in one obj record must be the same size (either 16
354 * bits or 32 bits). There is a one bit flag in each record which specifies
356 * This routine is used to force the current record to have the desired
357 * x_size. x_size is normally automatic (using obj_x), so that this
358 * routine should be used outside obj_x, only to provide compatibility with
359 * linkers that have bugs in their processing of the size bit.
362 static ObjRecord
*obj_force(ObjRecord
* orp
, int x
)
364 if (orp
->x_size
== (x
^ 48))
371 * This routine writes a field of size x. The caller does not need to worry at
372 * all about whether 16-bits or 32-bits are required.
374 static ObjRecord
*obj_x(ObjRecord
* orp
, uint32_t val
)
379 orp
= obj_force(orp
, 32);
380 if (orp
->x_size
== 32) {
381 ObjRecord
*nxt
= obj_dword(orp
, val
);
382 nxt
->x_size
= 32; /* x_size is cleared when a record overflows */
386 return (obj_word(orp
, val
));
392 static ObjRecord
*obj_index(ObjRecord
* orp
, unsigned int val
)
395 return (obj_byte(orp
, val
));
396 return (obj_word(orp
, (val
>> 8) | (val
<< 8) | 0x80));
400 * Writes a variable length value
402 static ObjRecord
*obj_value(ObjRecord
* orp
, uint32_t val
)
405 return (obj_byte(orp
, val
));
407 orp
= obj_byte(orp
, 129);
408 return (obj_word(orp
, val
));
411 return (obj_dword(orp
, (val
<< 8) + 132));
412 orp
= obj_byte(orp
, 136);
413 return (obj_dword(orp
, val
));
417 * Writes a counted string
419 static ObjRecord
*obj_name(ObjRecord
* orp
, const char *name
)
421 int len
= strlen(name
);
424 orp
= obj_check(orp
, len
+ 1);
425 ptr
= orp
->buf
+ orp
->used
;
427 orp
->used
+= len
+ 1;
430 *ptr
++ = toupper(*name
);
433 memcpy(ptr
, name
, len
);
438 * Initializer for an LEDATA record.
440 * parm[1] = segment index
441 * During the use of a LEDATA ObjRecord, parm[0] is constantly updated to
442 * represent the offset that would be required if the record were split at the
444 * parm[2] is a copy of parm[0] as it was when the current record was initted.
446 static void ori_ledata(ObjRecord
* orp
)
448 obj_index(orp
, orp
->parm
[1]);
449 orp
->parm
[2] = orp
->parm
[0];
450 obj_x(orp
, orp
->parm
[0]);
454 * Initializer for a PUBDEF record.
455 * parm[0] = group index
456 * parm[1] = segment index
457 * parm[2] = frame (only used when both indexes are zero)
459 static void ori_pubdef(ObjRecord
* orp
)
461 obj_index(orp
, orp
->parm
[0]);
462 obj_index(orp
, orp
->parm
[1]);
463 if (!(orp
->parm
[0] | orp
->parm
[1]))
464 obj_word(orp
, orp
->parm
[2]);
468 * Initializer for a LINNUM record.
469 * parm[0] = group index
470 * parm[1] = segment index
472 static void ori_linnum(ObjRecord
* orp
)
474 obj_index(orp
, orp
->parm
[0]);
475 obj_index(orp
, orp
->parm
[1]);
479 * Initializer for a local vars record.
481 static void ori_local(ObjRecord
* orp
)
488 * Null initializer for records that continue without any header info
490 static void ori_null(ObjRecord
* orp
)
492 (void)orp
; /* Do nothing */
496 * This concludes the low level section of outobj.c
499 static char obj_infile
[FILENAME_MAX
];
501 static int32_t first_seg
;
502 static bool any_segs
;
506 #define GROUP_MAX 256 /* we won't _realistically_ have more
507 * than this many segs in a group */
508 #define EXT_BLKSIZ 256 /* block size for externals list */
510 struct Segment
; /* need to know these structs exist */
514 struct LineNumber
*next
;
515 struct Segment
*segment
;
520 static struct FileName
{
521 struct FileName
*next
;
523 struct LineNumber
*lnhead
, **lntail
;
527 static struct Array
{
531 } *arrhead
, **arrtail
;
533 #define ARRAYBOT 31 /* magic number for first array index */
535 static struct Public
{
539 int32_t segment
; /* only if it's far-absolute */
540 int type
; /* only for local debug syms */
541 } *fpubhead
, **fpubtail
, *last_defined
;
543 static struct External
{
544 struct External
*next
;
547 int32_t commonelem
; /* element size if FAR, else zero */
548 int index
; /* OBJ-file external index */
550 DEFWRT_NONE
, /* no unusual default-WRT */
551 DEFWRT_STRING
, /* a string we don't yet understand */
552 DEFWRT_SEGMENT
, /* a segment */
553 DEFWRT_GROUP
/* a group */
560 struct External
*next_dws
; /* next with DEFWRT_STRING */
561 } *exthead
, **exttail
, *dws
;
563 static int externals
;
565 static struct ExtBack
{
566 struct ExtBack
*next
;
567 struct External
*exts
[EXT_BLKSIZ
];
570 static struct Segment
{
571 struct Segment
*next
;
572 int32_t index
; /* the NASM segment id */
573 int32_t obj_index
; /* the OBJ-file segment index */
574 struct Group
*grp
; /* the group it beint32_ts to */
576 int32_t align
; /* can be SEG_ABS + absolute addr */
583 bool use32
; /* is this segment 32-bit? */
584 struct Public
*pubhead
, **pubtail
, *lochead
, **loctail
;
586 char *segclass
, *overlay
; /* `class' is a C++ keyword :-) */
588 } *seghead
, **segtail
, *obj_seg_needs_update
;
590 static struct Group
{
593 int32_t index
; /* NASM segment id */
594 int32_t obj_index
; /* OBJ-file group index */
595 int32_t nentries
; /* number of elements... */
596 int32_t nindices
; /* ...and number of index elts... */
600 } segs
[GROUP_MAX
]; /* ...in this */
601 } *grphead
, **grptail
, *obj_grp_needs_update
;
603 static struct ImpDef
{
607 unsigned int impindex
;
609 } *imphead
, **imptail
;
611 static struct ExpDef
{
615 unsigned int ordinal
;
617 } *exphead
, **exptail
;
619 #define EXPDEF_FLAG_ORDINAL 0x80
620 #define EXPDEF_FLAG_RESIDENT 0x40
621 #define EXPDEF_FLAG_NODATA 0x20
622 #define EXPDEF_MASK_PARMCNT 0x1F
624 static int32_t obj_entry_seg
, obj_entry_ofs
;
628 /* The current segment */
629 static struct Segment
*current_seg
;
631 static int32_t obj_segment(char *, int, int *);
632 static void obj_write_file(int debuginfo
);
633 static int obj_directive(enum directives
, char *, int);
635 static void obj_init(void)
637 first_seg
= seg_alloc();
640 fpubtail
= &fpubhead
;
651 seghead
= obj_seg_needs_update
= NULL
;
653 grphead
= obj_grp_needs_update
= NULL
;
655 obj_entry_seg
= NO_SEG
;
656 obj_uppercase
= false;
662 static int obj_set_info(enum geninfo type
, char **val
)
669 static void obj_cleanup(int debuginfo
)
671 obj_write_file(debuginfo
);
672 of_obj
.current_dfmt
->cleanup();
674 struct Segment
*segtmp
= seghead
;
675 seghead
= seghead
->next
;
676 while (segtmp
->pubhead
) {
677 struct Public
*pubtmp
= segtmp
->pubhead
;
678 segtmp
->pubhead
= pubtmp
->next
;
679 nasm_free(pubtmp
->name
);
682 nasm_free(segtmp
->segclass
);
683 nasm_free(segtmp
->overlay
);
687 struct Public
*pubtmp
= fpubhead
;
688 fpubhead
= fpubhead
->next
;
689 nasm_free(pubtmp
->name
);
693 struct External
*exttmp
= exthead
;
694 exthead
= exthead
->next
;
698 struct ImpDef
*imptmp
= imphead
;
699 imphead
= imphead
->next
;
700 nasm_free(imptmp
->extname
);
701 nasm_free(imptmp
->libname
);
702 nasm_free(imptmp
->impname
); /* nasm_free won't mind if it's NULL */
706 struct ExpDef
*exptmp
= exphead
;
707 exphead
= exphead
->next
;
708 nasm_free(exptmp
->extname
);
709 nasm_free(exptmp
->intname
);
713 struct ExtBack
*ebtmp
= ebhead
;
714 ebhead
= ebhead
->next
;
718 struct Group
*grptmp
= grphead
;
719 grphead
= grphead
->next
;
724 static void obj_ext_set_defwrt(struct External
*ext
, char *id
)
729 for (seg
= seghead
; seg
; seg
= seg
->next
)
730 if (!strcmp(seg
->name
, id
)) {
731 ext
->defwrt_type
= DEFWRT_SEGMENT
;
732 ext
->defwrt_ptr
.seg
= seg
;
737 for (grp
= grphead
; grp
; grp
= grp
->next
)
738 if (!strcmp(grp
->name
, id
)) {
739 ext
->defwrt_type
= DEFWRT_GROUP
;
740 ext
->defwrt_ptr
.grp
= grp
;
745 ext
->defwrt_type
= DEFWRT_STRING
;
746 ext
->defwrt_ptr
.string
= id
;
751 static void obj_deflabel(char *name
, int32_t segment
,
752 int64_t offset
, int is_global
, char *special
)
755 * We have three cases:
757 * (i) `segment' is a segment-base. If so, set the name field
758 * for the segment or group structure it refers to, and then
761 * (ii) `segment' is one of our segments, or a SEG_ABS segment.
762 * Save the label position for later output of a PUBDEF record.
763 * (Or a MODPUB, if we work out how.)
765 * (iii) `segment' is not one of our segments. Save the label
766 * position for later output of an EXTDEF, and also store a
767 * back-reference so that we can map later references to this
768 * segment number to the external index.
770 struct External
*ext
;
774 bool used_special
= false; /* have we used the special text? */
776 #if defined(DEBUG) && DEBUG>2
777 nasm_error(ERR_DEBUG
,
778 " obj_deflabel: %s, seg=%"PRIx32
", off=%"PRIx64
", is_global=%d, %s\n",
779 name
, segment
, offset
, is_global
, special
);
783 * If it's a special-retry from pass two, discard it.
789 * First check for the double-period, signifying something
792 if (name
[0] == '.' && name
[1] == '.' && name
[2] != '@') {
793 if (!strcmp(name
, "..start")) {
794 obj_entry_seg
= segment
;
795 obj_entry_ofs
= offset
;
798 nasm_error(ERR_NONFATAL
, "unrecognised special symbol `%s'", name
);
804 if (obj_seg_needs_update
) {
805 obj_seg_needs_update
->name
= name
;
807 } else if (obj_grp_needs_update
) {
808 obj_grp_needs_update
->name
= name
;
811 if (segment
< SEG_ABS
&& segment
!= NO_SEG
&& segment
% 2)
814 if (segment
>= SEG_ABS
|| segment
== NO_SEG
) {
816 * SEG_ABS subcase of (ii).
821 pub
= *fpubtail
= nasm_malloc(sizeof(*pub
));
822 fpubtail
= &pub
->next
;
824 pub
->name
= nasm_strdup(name
);
825 pub
->offset
= offset
;
826 pub
->segment
= (segment
== NO_SEG
? 0 : segment
& ~SEG_ABS
);
829 nasm_error(ERR_NONFATAL
, "OBJ supports no special symbol features"
830 " for this symbol type");
835 * If `any_segs' is still false, we might need to define a
836 * default segment, if they're trying to declare a label in
839 if (!any_segs
&& segment
== first_seg
) {
840 int tempint
; /* ignored */
841 if (segment
!= obj_segment("__NASMDEFSEG", 2, &tempint
))
842 nasm_error(ERR_PANIC
, "strange segment conditions in OBJ driver");
845 for (seg
= seghead
; seg
&& is_global
; seg
= seg
->next
)
846 if (seg
->index
== segment
) {
847 struct Public
*loc
= nasm_malloc(sizeof(*loc
));
849 * Case (ii). Maybe MODPUB someday?
852 seg
->pubtail
= &loc
->next
;
854 loc
->name
= nasm_strdup(name
);
855 loc
->offset
= offset
;
858 nasm_error(ERR_NONFATAL
,
859 "OBJ supports no special symbol features"
860 " for this symbol type");
868 ext
= *exttail
= nasm_malloc(sizeof(*ext
));
870 exttail
= &ext
->next
;
872 /* Place by default all externs into the current segment */
873 ext
->defwrt_type
= DEFWRT_NONE
;
875 /* 28-Apr-2002 - John Coffman
876 The following code was introduced on 12-Aug-2000, and breaks fixups
877 on code passed thru the MSC 5.1 linker (3.66) and MSC 6.00A linker
878 (5.10). It was introduced after FIXUP32 was added, and may be needed
879 for 32-bit segments. The following will get 16-bit segments working
880 again, and maybe someone can correct the 'if' condition which is
886 if (current_seg
&& current_seg
->use32
) {
887 if (current_seg
->grp
) {
888 ext
->defwrt_type
= DEFWRT_GROUP
;
889 ext
->defwrt_ptr
.grp
= current_seg
->grp
;
891 ext
->defwrt_type
= DEFWRT_SEGMENT
;
892 ext
->defwrt_ptr
.seg
= current_seg
;
897 if (is_global
== 2) {
898 ext
->commonsize
= offset
;
899 ext
->commonelem
= 1; /* default FAR */
906 * Now process the special text, if any, to find default-WRT
907 * specifications and common-variable element-size and near/far
910 while (special
&& *special
) {
914 * We might have a default-WRT specification.
916 if (!nasm_strnicmp(special
, "wrt", 3)) {
920 special
+= strspn(special
, " \t");
921 p
= nasm_strndup(special
, len
= strcspn(special
, ":"));
922 obj_ext_set_defwrt(ext
, p
);
924 if (*special
&& *special
!= ':')
925 nasm_error(ERR_NONFATAL
, "`:' expected in special symbol"
926 " text for `%s'", ext
->name
);
927 else if (*special
== ':')
932 * The NEAR or FAR keywords specify nearness or
933 * farness. FAR gives default element size 1.
935 if (!nasm_strnicmp(special
, "far", 3)) {
939 nasm_error(ERR_NONFATAL
,
940 "`%s': `far' keyword may only be applied"
941 " to common variables\n", ext
->name
);
943 special
+= strspn(special
, " \t");
944 } else if (!nasm_strnicmp(special
, "near", 4)) {
948 nasm_error(ERR_NONFATAL
,
949 "`%s': `far' keyword may only be applied"
950 " to common variables\n", ext
->name
);
952 special
+= strspn(special
, " \t");
956 * If it's a common, and anything else remains on the line
957 * before a further colon, evaluate it as an expression and
958 * use that as the element size. Forward references aren't
964 if (ext
->commonsize
) {
966 struct tokenval tokval
;
969 stdscan_set(special
);
970 tokval
.t_type
= TOKEN_INVALID
;
971 e
= evaluate(stdscan
, NULL
, &tokval
, NULL
, 1, nasm_error
, NULL
);
974 nasm_error(ERR_NONFATAL
, "cannot use relocatable"
975 " expression as common-variable element size");
977 ext
->commonelem
= reloc_value(e
);
979 special
= stdscan_get();
981 nasm_error(ERR_NONFATAL
,
982 "`%s': element-size specifications only"
983 " apply to common variables", ext
->name
);
984 while (*special
&& *special
!= ':')
995 eb
= *ebtail
= nasm_malloc(sizeof(*eb
));
999 while (i
>= EXT_BLKSIZ
) {
1003 eb
= *ebtail
= nasm_malloc(sizeof(*eb
));
1010 ext
->index
= ++externals
;
1012 if (special
&& !used_special
)
1013 nasm_error(ERR_NONFATAL
, "OBJ supports no special symbol features"
1014 " for this symbol type");
1017 /* forward declaration */
1018 static void obj_write_fixup(ObjRecord
* orp
, int bytes
,
1019 int segrel
, int32_t seg
, int32_t wrt
,
1020 struct Segment
*segto
);
1022 static void obj_out(int32_t segto
, const void *data
,
1023 enum out_type type
, uint64_t size
,
1024 int32_t segment
, int32_t wrt
)
1026 const uint8_t *ucdata
;
1028 struct Segment
*seg
;
1032 * handle absolute-assembly (structure definitions)
1034 if (segto
== NO_SEG
) {
1035 if (type
!= OUT_RESERVE
)
1036 nasm_error(ERR_NONFATAL
, "attempt to assemble code in [ABSOLUTE]"
1042 * If `any_segs' is still false, we must define a default
1046 int tempint
; /* ignored */
1047 if (segto
!= obj_segment("__NASMDEFSEG", 2, &tempint
))
1048 nasm_error(ERR_PANIC
, "strange segment conditions in OBJ driver");
1052 * Find the segment we are targetting.
1054 for (seg
= seghead
; seg
; seg
= seg
->next
)
1055 if (seg
->index
== segto
)
1058 nasm_error(ERR_PANIC
, "code directed to nonexistent segment?");
1061 orp
->parm
[0] = seg
->currentpos
;
1068 orp
= obj_check(seg
->orp
, 1);
1069 len
= RECORD_MAX
- orp
->used
;
1072 memcpy(orp
->buf
+ orp
->used
, ucdata
, len
);
1073 orp
->committed
= orp
->used
+= len
;
1074 orp
->parm
[0] = seg
->currentpos
+= len
;
1088 if (segment
== NO_SEG
&& type
!= OUT_ADDRESS
)
1089 nasm_error(ERR_NONFATAL
, "relative call to absolute address not"
1090 " supported by OBJ format");
1091 if (segment
>= SEG_ABS
)
1092 nasm_error(ERR_NONFATAL
, "far-absolute relocations not supported"
1095 ldata
= *(int64_t *)data
;
1096 if (type
!= OUT_ADDRESS
) {
1098 size
= realsize(type
, size
);
1104 nasm_error(ERR_NONFATAL
, "OBJ format can only handle 16- or "
1105 "32-byte relocations");
1106 segment
= NO_SEG
; /* Don't actually generate a relocation */
1109 orp
= obj_word(orp
, ldata
);
1112 orp
= obj_dword(orp
, ldata
);
1117 if (segment
< SEG_ABS
&& (segment
!= NO_SEG
&& segment
% 2) &&
1120 * This is a 4-byte segment-base relocation such as
1121 * `MOV EAX,SEG foo'. OBJ format can't actually handle
1122 * these, but if the constant term has the 16 low bits
1123 * zero, we can just apply a 2-byte segment-base
1124 * relocation to the low word instead.
1128 nasm_error(ERR_NONFATAL
, "OBJ format cannot handle complex"
1129 " dword-size segment base references");
1131 if (segment
!= NO_SEG
)
1132 obj_write_fixup(orp
, rsize
,
1133 (type
== OUT_ADDRESS
? 0x4000 : 0),
1135 seg
->currentpos
+= size
;
1140 nasm_error(ERR_NONFATAL
,
1141 "Relocation type not supported by output format");
1146 orp
= obj_bump(orp
);
1147 seg
->currentpos
+= size
;
1153 static void obj_write_fixup(ObjRecord
* orp
, int bytes
,
1154 int segrel
, int32_t seg
, int32_t wrt
,
1155 struct Segment
*segto
)
1161 struct Segment
*s
= NULL
;
1162 struct Group
*g
= NULL
;
1163 struct External
*e
= NULL
;
1166 if (bytes
!= 2 && bytes
!= 4) {
1167 nasm_error(ERR_NONFATAL
, "`obj' output driver does not support"
1168 " %d-bit relocations", bytes
<< 3);
1174 orp
->child
= forp
= obj_new();
1175 forp
->up
= &(orp
->child
);
1176 /* We should choose between FIXUPP and FIXU32 record type */
1177 /* If we're targeting a 32-bit segment, use a FIXU32 record */
1179 forp
->type
= FIXU32
;
1181 forp
->type
= FIXUPP
;
1186 locat
= FIX_16_SELECTOR
;
1189 nasm_error(ERR_PANIC
, "OBJ: 4-byte segment base fixup got"
1190 " through sanity check");
1193 locat
= (bytes
== 2) ? FIX_16_OFFSET
: FIX_32_OFFSET
;
1196 * There is a bug in tlink that makes it process self relative
1197 * fixups incorrectly if the x_size doesn't match the location
1200 forp
= obj_force(forp
, bytes
<< 3);
1203 forp
= obj_rword(forp
, locat
| segrel
| (orp
->parm
[0] - orp
->parm
[2]));
1205 tidx
= fidx
= -1, method
= 0; /* placate optimisers */
1208 * See if we can find the segment ID in our segment list. If
1209 * so, we have a T4 (LSEG) target.
1211 for (s
= seghead
; s
; s
= s
->next
)
1212 if (s
->index
== seg
)
1215 method
= 4, tidx
= s
->obj_index
;
1217 for (g
= grphead
; g
; g
= g
->next
)
1218 if (g
->index
== seg
)
1221 method
= 5, tidx
= g
->obj_index
;
1223 int32_t i
= seg
/ 2;
1224 struct ExtBack
*eb
= ebhead
;
1225 while (i
>= EXT_BLKSIZ
) {
1233 method
= 6, e
= eb
->exts
[i
], tidx
= e
->index
;
1235 nasm_error(ERR_PANIC
,
1236 "unrecognised segment value in obj_write_fixup");
1241 * If no WRT given, assume the natural default, which is method
1244 * - we are doing an OFFSET fixup for a grouped segment, in
1245 * which case we require F1 (group).
1247 * - we are doing an OFFSET fixup for an external with a
1248 * default WRT, in which case we must honour the default WRT.
1250 if (wrt
== NO_SEG
) {
1251 if (!base
&& s
&& s
->grp
)
1252 method
|= 0x10, fidx
= s
->grp
->obj_index
;
1253 else if (!base
&& e
&& e
->defwrt_type
!= DEFWRT_NONE
) {
1254 if (e
->defwrt_type
== DEFWRT_SEGMENT
)
1255 method
|= 0x00, fidx
= e
->defwrt_ptr
.seg
->obj_index
;
1256 else if (e
->defwrt_type
== DEFWRT_GROUP
)
1257 method
|= 0x10, fidx
= e
->defwrt_ptr
.grp
->obj_index
;
1259 nasm_error(ERR_NONFATAL
, "default WRT specification for"
1260 " external `%s' unresolved", e
->name
);
1261 method
|= 0x50, fidx
= -1; /* got to do _something_ */
1264 method
|= 0x50, fidx
= -1;
1267 * See if we can find the WRT-segment ID in our segment
1268 * list. If so, we have a F0 (LSEG) frame.
1270 for (s
= seghead
; s
; s
= s
->next
)
1271 if (s
->index
== wrt
- 1)
1274 method
|= 0x00, fidx
= s
->obj_index
;
1276 for (g
= grphead
; g
; g
= g
->next
)
1277 if (g
->index
== wrt
- 1)
1280 method
|= 0x10, fidx
= g
->obj_index
;
1282 int32_t i
= wrt
/ 2;
1283 struct ExtBack
*eb
= ebhead
;
1284 while (i
>= EXT_BLKSIZ
) {
1292 method
|= 0x20, fidx
= eb
->exts
[i
]->index
;
1294 nasm_error(ERR_PANIC
,
1295 "unrecognised WRT value in obj_write_fixup");
1300 forp
= obj_byte(forp
, method
);
1302 forp
= obj_index(forp
, fidx
);
1303 forp
= obj_index(forp
, tidx
);
1307 static int32_t obj_segment(char *name
, int pass
, int *bits
)
1310 * We call the label manager here to define a name for the new
1311 * segment, and when our _own_ label-definition stub gets
1312 * called in return, it should register the new segment name
1313 * using the pointer it gets passed. That way we save memory,
1314 * by sponging off the label manager.
1316 #if defined(DEBUG) && DEBUG>=3
1317 nasm_error(ERR_DEBUG
, " obj_segment: < %s >, pass=%d, *bits=%d\n",
1325 struct Segment
*seg
;
1327 struct External
**extp
;
1328 int obj_idx
, i
, attrs
;
1333 * Look for segment attributes.
1336 while (*name
== '.')
1337 name
++; /* hack, but a documented one */
1339 while (*p
&& !nasm_isspace(*p
))
1343 while (*p
&& nasm_isspace(*p
))
1347 while (*p
&& !nasm_isspace(*p
))
1351 while (*p
&& nasm_isspace(*p
))
1359 for (seg
= seghead
; seg
; seg
= seg
->next
) {
1361 if (!strcmp(seg
->name
, name
)) {
1362 if (attrs
> 0 && pass
== 1)
1363 nasm_error(ERR_WARNING
, "segment attributes specified on"
1364 " redeclaration of segment: ignoring");
1374 *segtail
= seg
= nasm_malloc(sizeof(*seg
));
1376 segtail
= &seg
->next
;
1377 seg
->index
= (any_segs
? seg_alloc() : first_seg
);
1378 seg
->obj_index
= obj_idx
;
1382 seg
->currentpos
= 0;
1383 seg
->align
= 1; /* default */
1384 seg
->use32
= false; /* default */
1385 seg
->combine
= CMB_PUBLIC
; /* default */
1386 seg
->segclass
= seg
->overlay
= NULL
;
1387 seg
->pubhead
= NULL
;
1388 seg
->pubtail
= &seg
->pubhead
;
1389 seg
->lochead
= NULL
;
1390 seg
->loctail
= &seg
->lochead
;
1391 seg
->orp
= obj_new();
1392 seg
->orp
->up
= &(seg
->orp
);
1393 seg
->orp
->ori
= ori_ledata
;
1394 seg
->orp
->type
= LEDATA
;
1395 seg
->orp
->parm
[1] = obj_idx
;
1398 * Process the segment attributes.
1407 * `p' contains a segment attribute.
1409 if (!nasm_stricmp(p
, "private"))
1410 seg
->combine
= CMB_PRIVATE
;
1411 else if (!nasm_stricmp(p
, "public"))
1412 seg
->combine
= CMB_PUBLIC
;
1413 else if (!nasm_stricmp(p
, "common"))
1414 seg
->combine
= CMB_COMMON
;
1415 else if (!nasm_stricmp(p
, "stack"))
1416 seg
->combine
= CMB_STACK
;
1417 else if (!nasm_stricmp(p
, "use16"))
1419 else if (!nasm_stricmp(p
, "use32"))
1421 else if (!nasm_stricmp(p
, "flat")) {
1423 * This segment is an OS/2 FLAT segment. That means
1424 * that its default group is group FLAT, even if
1425 * the group FLAT does not explicitly _contain_ the
1428 * When we see this, we must create the group
1429 * `FLAT', containing no segments, if it does not
1430 * already exist; then we must set the default
1431 * group of this segment to be the FLAT group.
1434 for (grp
= grphead
; grp
; grp
= grp
->next
)
1435 if (!strcmp(grp
->name
, "FLAT"))
1438 obj_directive(D_GROUP
, "FLAT", 1);
1439 for (grp
= grphead
; grp
; grp
= grp
->next
)
1440 if (!strcmp(grp
->name
, "FLAT"))
1443 nasm_error(ERR_PANIC
, "failure to define FLAT?!");
1446 } else if (!nasm_strnicmp(p
, "class=", 6))
1447 seg
->segclass
= nasm_strdup(p
+ 6);
1448 else if (!nasm_strnicmp(p
, "overlay=", 8))
1449 seg
->overlay
= nasm_strdup(p
+ 8);
1450 else if (!nasm_strnicmp(p
, "align=", 6)) {
1451 seg
->align
= readnum(p
+ 6, &rn_error
);
1454 nasm_error(ERR_NONFATAL
, "segment alignment should be"
1457 switch ((int)seg
->align
) {
1462 case 256: /* PAGE */
1463 case 4096: /* PharLap extension */
1466 nasm_error(ERR_WARNING
,
1467 "OBJ format does not support alignment"
1468 " of 8: rounding up to 16");
1474 nasm_error(ERR_WARNING
,
1475 "OBJ format does not support alignment"
1476 " of %d: rounding up to 256", seg
->align
);
1482 nasm_error(ERR_WARNING
,
1483 "OBJ format does not support alignment"
1484 " of %d: rounding up to 4096", seg
->align
);
1488 nasm_error(ERR_NONFATAL
, "invalid alignment value %d",
1493 } else if (!nasm_strnicmp(p
, "absolute=", 9)) {
1494 seg
->align
= SEG_ABS
+ readnum(p
+ 9, &rn_error
);
1496 nasm_error(ERR_NONFATAL
, "argument to `absolute' segment"
1497 " attribute should be numeric");
1501 /* We need to know whenever we have at least one 32-bit segment */
1502 obj_use32
|= seg
->use32
;
1504 obj_seg_needs_update
= seg
;
1505 if (seg
->align
>= SEG_ABS
)
1506 define_label(name
, NO_SEG
, seg
->align
- SEG_ABS
,
1507 NULL
, false, false);
1509 define_label(name
, seg
->index
+ 1, 0L,
1510 NULL
, false, false);
1511 obj_seg_needs_update
= NULL
;
1514 * See if this segment is defined in any groups.
1516 for (grp
= grphead
; grp
; grp
= grp
->next
) {
1517 for (i
= grp
->nindices
; i
< grp
->nentries
; i
++) {
1518 if (!strcmp(grp
->segs
[i
].name
, seg
->name
)) {
1519 nasm_free(grp
->segs
[i
].name
);
1520 grp
->segs
[i
] = grp
->segs
[grp
->nindices
];
1521 grp
->segs
[grp
->nindices
++].index
= seg
->obj_index
;
1523 nasm_error(ERR_WARNING
,
1524 "segment `%s' is already part of"
1525 " a group: first one takes precedence",
1534 * Walk through the list of externals with unresolved
1535 * default-WRT clauses, and resolve any that point at this
1540 if ((*extp
)->defwrt_type
== DEFWRT_STRING
&&
1541 !strcmp((*extp
)->defwrt_ptr
.string
, seg
->name
)) {
1542 nasm_free((*extp
)->defwrt_ptr
.string
);
1543 (*extp
)->defwrt_type
= DEFWRT_SEGMENT
;
1544 (*extp
)->defwrt_ptr
.seg
= seg
;
1545 *extp
= (*extp
)->next_dws
;
1547 extp
= &(*extp
)->next_dws
;
1559 static int obj_directive(enum directives directive
, char *value
, int pass
)
1561 switch (directive
) {
1567 struct Segment
*seg
;
1568 struct External
**extp
;
1573 q
++; /* hack, but a documented one */
1575 while (*q
&& !nasm_isspace(*q
))
1577 if (nasm_isspace(*q
)) {
1579 while (*q
&& nasm_isspace(*q
))
1583 * Here we used to sanity-check the group directive to
1584 * ensure nobody tried to declare a group containing no
1585 * segments. However, OS/2 does this as standard
1586 * practice, so the sanity check has been removed.
1589 * nasm_error(ERR_NONFATAL,"GROUP directive contains no segments");
1595 for (grp
= grphead
; grp
; grp
= grp
->next
) {
1597 if (!strcmp(grp
->name
, v
)) {
1598 nasm_error(ERR_NONFATAL
, "group `%s' defined twice", v
);
1603 *grptail
= grp
= nasm_malloc(sizeof(*grp
));
1605 grptail
= &grp
->next
;
1606 grp
->index
= seg_alloc();
1607 grp
->obj_index
= obj_idx
;
1608 grp
->nindices
= grp
->nentries
= 0;
1611 obj_grp_needs_update
= grp
;
1612 define_label(v
, grp
->index
+ 1, 0L, NULL
, false, false);
1613 obj_grp_needs_update
= NULL
;
1617 while (*q
&& !nasm_isspace(*q
))
1619 if (nasm_isspace(*q
)) {
1621 while (*q
&& nasm_isspace(*q
))
1625 * Now p contains a segment name. Find it.
1627 for (seg
= seghead
; seg
; seg
= seg
->next
)
1628 if (!strcmp(seg
->name
, p
))
1632 * We have a segment index. Shift a name entry
1633 * to the end of the array to make room.
1635 grp
->segs
[grp
->nentries
++] = grp
->segs
[grp
->nindices
];
1636 grp
->segs
[grp
->nindices
++].index
= seg
->obj_index
;
1638 nasm_error(ERR_WARNING
,
1639 "segment `%s' is already part of"
1640 " a group: first one takes precedence",
1646 * We have an as-yet undefined segment.
1647 * Remember its name, for later.
1649 grp
->segs
[grp
->nentries
++].name
= nasm_strdup(p
);
1654 * Walk through the list of externals with unresolved
1655 * default-WRT clauses, and resolve any that point at
1660 if ((*extp
)->defwrt_type
== DEFWRT_STRING
&&
1661 !strcmp((*extp
)->defwrt_ptr
.string
, grp
->name
)) {
1662 nasm_free((*extp
)->defwrt_ptr
.string
);
1663 (*extp
)->defwrt_type
= DEFWRT_GROUP
;
1664 (*extp
)->defwrt_ptr
.grp
= grp
;
1665 *extp
= (*extp
)->next_dws
;
1667 extp
= &(*extp
)->next_dws
;
1673 obj_uppercase
= true;
1678 char *q
, *extname
, *libname
, *impname
;
1681 return 1; /* ignore in pass two */
1682 extname
= q
= value
;
1683 while (*q
&& !nasm_isspace(*q
))
1685 if (nasm_isspace(*q
)) {
1687 while (*q
&& nasm_isspace(*q
))
1692 while (*q
&& !nasm_isspace(*q
))
1694 if (nasm_isspace(*q
)) {
1696 while (*q
&& nasm_isspace(*q
))
1702 if (!*extname
|| !*libname
)
1703 nasm_error(ERR_NONFATAL
, "`import' directive requires symbol name"
1704 " and library name");
1709 imp
= *imptail
= nasm_malloc(sizeof(struct ImpDef
));
1710 imptail
= &imp
->next
;
1712 imp
->extname
= nasm_strdup(extname
);
1713 imp
->libname
= nasm_strdup(libname
);
1714 imp
->impindex
= readnum(impname
, &err
);
1715 if (!*impname
|| err
)
1716 imp
->impname
= nasm_strdup(impname
);
1718 imp
->impname
= NULL
;
1725 char *q
, *extname
, *intname
, *v
;
1726 struct ExpDef
*export
;
1728 unsigned int ordinal
= 0;
1731 return 1; /* ignore in pass two */
1732 intname
= q
= value
;
1733 while (*q
&& !nasm_isspace(*q
))
1735 if (nasm_isspace(*q
)) {
1737 while (*q
&& nasm_isspace(*q
))
1742 while (*q
&& !nasm_isspace(*q
))
1744 if (nasm_isspace(*q
)) {
1746 while (*q
&& nasm_isspace(*q
))
1751 nasm_error(ERR_NONFATAL
, "`export' directive requires export name");
1760 while (*q
&& !nasm_isspace(*q
))
1762 if (nasm_isspace(*q
)) {
1764 while (*q
&& nasm_isspace(*q
))
1767 if (!nasm_stricmp(v
, "resident"))
1768 flags
|= EXPDEF_FLAG_RESIDENT
;
1769 else if (!nasm_stricmp(v
, "nodata"))
1770 flags
|= EXPDEF_FLAG_NODATA
;
1771 else if (!nasm_strnicmp(v
, "parm=", 5)) {
1773 flags
|= EXPDEF_MASK_PARMCNT
& readnum(v
+ 5, &err
);
1775 nasm_error(ERR_NONFATAL
,
1776 "value `%s' for `parm' is non-numeric", v
+ 5);
1781 ordinal
= readnum(v
, &err
);
1783 nasm_error(ERR_NONFATAL
,
1784 "unrecognised export qualifier `%s'", v
);
1787 flags
|= EXPDEF_FLAG_ORDINAL
;
1791 export
= *exptail
= nasm_malloc(sizeof(struct ExpDef
));
1792 exptail
= &export
->next
;
1793 export
->next
= NULL
;
1794 export
->extname
= nasm_strdup(extname
);
1795 export
->intname
= nasm_strdup(intname
);
1796 export
->ordinal
= ordinal
;
1797 export
->flags
= flags
;
1806 static void obj_sectalign(int32_t seg
, unsigned int value
)
1810 list_for_each(s
, seghead
) {
1811 if (s
->index
== seg
)
1816 * it should not be too big value
1817 * and applied on non-absolute sections
1819 if (!s
|| !is_power2(value
) ||
1820 value
> 4096 || s
->align
>= SEG_ABS
)
1824 * FIXME: No code duplication please
1825 * consider making helper for this
1826 * mapping since section handler has
1845 if (s
->align
< (int)value
)
1849 static int32_t obj_segbase(int32_t segment
)
1851 struct Segment
*seg
;
1854 * Find the segment in our list.
1856 for (seg
= seghead
; seg
; seg
= seg
->next
)
1857 if (seg
->index
== segment
- 1)
1862 * Might be an external with a default WRT.
1864 int32_t i
= segment
/ 2;
1865 struct ExtBack
*eb
= ebhead
;
1868 while (i
>= EXT_BLKSIZ
) {
1878 nasm_assert(pass0
== 0);
1879 /* Not available - can happen during optimization */
1883 switch (e
->defwrt_type
) {
1885 return segment
; /* fine */
1886 case DEFWRT_SEGMENT
:
1887 return e
->defwrt_ptr
.seg
->index
+ 1;
1889 return e
->defwrt_ptr
.grp
->index
+ 1;
1891 return NO_SEG
; /* can't tell what it is */
1895 return segment
; /* not one of ours - leave it alone */
1898 if (seg
->align
>= SEG_ABS
)
1899 return seg
->align
; /* absolute segment */
1901 return seg
->grp
->index
+ 1; /* grouped segment */
1903 return segment
; /* no special treatment */
1906 static void obj_filename(char *inname
, char *outname
)
1908 strcpy(obj_infile
, inname
);
1909 standard_extension(inname
, outname
, ".obj");
1912 static void obj_write_file(int debuginfo
)
1914 struct Segment
*seg
, *entry_seg_ptr
= 0;
1915 struct FileName
*fn
;
1916 struct LineNumber
*ln
;
1918 struct Public
*pub
, *loc
;
1919 struct External
*ext
;
1921 struct ExpDef
*export
;
1926 * Write the THEADR module header.
1930 obj_name(orp
, obj_infile
);
1934 * Write the NASM boast comment.
1937 obj_rword(orp
, 0); /* comment type zero */
1938 obj_name(orp
, nasm_comment
);
1943 * Write the IMPDEF records, if any.
1945 for (imp
= imphead
; imp
; imp
= imp
->next
) {
1946 obj_rword(orp
, 0xA0); /* comment class A0 */
1947 obj_byte(orp
, 1); /* subfunction 1: IMPDEF */
1949 obj_byte(orp
, 0); /* import by name */
1951 obj_byte(orp
, 1); /* import by ordinal */
1952 obj_name(orp
, imp
->extname
);
1953 obj_name(orp
, imp
->libname
);
1955 obj_name(orp
, imp
->impname
);
1957 obj_word(orp
, imp
->impindex
);
1962 * Write the EXPDEF records, if any.
1964 for (export
= exphead
; export
; export
= export
->next
) {
1965 obj_rword(orp
, 0xA0); /* comment class A0 */
1966 obj_byte(orp
, 2); /* subfunction 2: EXPDEF */
1967 obj_byte(orp
, export
->flags
);
1968 obj_name(orp
, export
->extname
);
1969 obj_name(orp
, export
->intname
);
1970 if (export
->flags
& EXPDEF_FLAG_ORDINAL
)
1971 obj_word(orp
, export
->ordinal
);
1975 /* we're using extended OMF if we put in debug info */
1978 obj_byte(orp
, 0x40);
1979 obj_byte(orp
, dEXTENDED
);
1984 * Write the first LNAMES record, containing LNAME one, which
1985 * is null. Also initialize the LNAME counter.
1991 * Write some LNAMES for the segment names
1993 for (seg
= seghead
; seg
; seg
= seg
->next
) {
1994 orp
= obj_name(orp
, seg
->name
);
1996 orp
= obj_name(orp
, seg
->segclass
);
1998 orp
= obj_name(orp
, seg
->overlay
);
2002 * Write some LNAMES for the group names
2004 for (grp
= grphead
; grp
; grp
= grp
->next
) {
2005 orp
= obj_name(orp
, grp
->name
);
2011 * Write the SEGDEF records.
2014 for (seg
= seghead
; seg
; seg
= seg
->next
) {
2016 uint32_t seglen
= seg
->currentpos
;
2018 acbp
= (seg
->combine
<< 2); /* C field */
2021 acbp
|= 0x01; /* P bit is Use32 flag */
2022 else if (seglen
== 0x10000L
) {
2023 seglen
= 0; /* This special case may be needed for old linkers */
2024 acbp
|= 0x02; /* B bit */
2028 if (seg
->align
>= SEG_ABS
)
2029 /* acbp |= 0x00 */ ;
2030 else if (seg
->align
>= 4096) {
2031 if (seg
->align
> 4096)
2032 nasm_error(ERR_NONFATAL
, "segment `%s' requires more alignment"
2033 " than OBJ format supports", seg
->name
);
2034 acbp
|= 0xC0; /* PharLap extension */
2035 } else if (seg
->align
>= 256) {
2037 } else if (seg
->align
>= 16) {
2039 } else if (seg
->align
>= 4) {
2041 } else if (seg
->align
>= 2) {
2046 obj_byte(orp
, acbp
);
2047 if (seg
->align
& SEG_ABS
) {
2048 obj_x(orp
, seg
->align
- SEG_ABS
); /* Frame */
2049 obj_byte(orp
, 0); /* Offset */
2052 obj_index(orp
, ++lname_idx
);
2053 obj_index(orp
, seg
->segclass
? ++lname_idx
: 1);
2054 obj_index(orp
, seg
->overlay
? ++lname_idx
: 1);
2059 * Write the GRPDEF records.
2062 for (grp
= grphead
; grp
; grp
= grp
->next
) {
2065 if (grp
->nindices
!= grp
->nentries
) {
2066 for (i
= grp
->nindices
; i
< grp
->nentries
; i
++) {
2067 nasm_error(ERR_NONFATAL
, "group `%s' contains undefined segment"
2068 " `%s'", grp
->name
, grp
->segs
[i
].name
);
2069 nasm_free(grp
->segs
[i
].name
);
2070 grp
->segs
[i
].name
= NULL
;
2073 obj_index(orp
, ++lname_idx
);
2074 for (i
= 0; i
< grp
->nindices
; i
++) {
2075 obj_byte(orp
, 0xFF);
2076 obj_index(orp
, grp
->segs
[i
].index
);
2082 * Write the PUBDEF records: first the ones in the segments,
2083 * then the far-absolutes.
2086 orp
->ori
= ori_pubdef
;
2087 for (seg
= seghead
; seg
; seg
= seg
->next
) {
2088 orp
->parm
[0] = seg
->grp
? seg
->grp
->obj_index
: 0;
2089 orp
->parm
[1] = seg
->obj_index
;
2090 for (pub
= seg
->pubhead
; pub
; pub
= pub
->next
) {
2091 orp
= obj_name(orp
, pub
->name
);
2092 orp
= obj_x(orp
, pub
->offset
);
2093 orp
= obj_byte(orp
, 0); /* type index */
2100 for (pub
= fpubhead
; pub
; pub
= pub
->next
) { /* pub-crawl :-) */
2101 if (orp
->parm
[2] != (uint32_t)pub
->segment
) {
2103 orp
->parm
[2] = pub
->segment
;
2105 orp
= obj_name(orp
, pub
->name
);
2106 orp
= obj_x(orp
, pub
->offset
);
2107 orp
= obj_byte(orp
, 0); /* type index */
2113 * Write the EXTDEF and COMDEF records, in order.
2115 orp
->ori
= ori_null
;
2116 for (ext
= exthead
; ext
; ext
= ext
->next
) {
2117 if (ext
->commonsize
== 0) {
2118 if (orp
->type
!= EXTDEF
) {
2122 orp
= obj_name(orp
, ext
->name
);
2123 orp
= obj_index(orp
, 0);
2125 if (orp
->type
!= COMDEF
) {
2129 orp
= obj_name(orp
, ext
->name
);
2130 orp
= obj_index(orp
, 0);
2131 if (ext
->commonelem
) {
2132 orp
= obj_byte(orp
, 0x61); /* far communal */
2133 orp
= obj_value(orp
, (ext
->commonsize
/ ext
->commonelem
));
2134 orp
= obj_value(orp
, ext
->commonelem
);
2136 orp
= obj_byte(orp
, 0x62); /* near communal */
2137 orp
= obj_value(orp
, ext
->commonsize
);
2145 * Write a COMENT record stating that the linker's first pass
2146 * may stop processing at this point. Exception is if our
2147 * MODEND record specifies a start point, in which case,
2148 * according to some variants of the documentation, this COMENT
2149 * should be omitted. So we'll omit it just in case.
2150 * But, TASM puts it in all the time so if we are using
2151 * TASM debug stuff we are putting it in
2153 if (debuginfo
|| obj_entry_seg
== NO_SEG
) {
2155 obj_byte(orp
, 0x40);
2156 obj_byte(orp
, dLINKPASS
);
2162 * 1) put out the compiler type
2163 * 2) Put out the type info. The only type we are using is near label #19
2167 struct Array
*arrtmp
= arrhead
;
2169 obj_byte(orp
, 0x40);
2170 obj_byte(orp
, dCOMPDEF
);
2175 obj_byte(orp
, 0x40);
2176 obj_byte(orp
, dTYPEDEF
);
2177 obj_word(orp
, 0x18); /* type # for linking */
2178 obj_word(orp
, 6); /* size of type */
2179 obj_byte(orp
, 0x2a); /* absolute type for debugging */
2181 obj_byte(orp
, 0x40);
2182 obj_byte(orp
, dTYPEDEF
);
2183 obj_word(orp
, 0x19); /* type # for linking */
2184 obj_word(orp
, 0); /* size of type */
2185 obj_byte(orp
, 0x24); /* absolute type for debugging */
2186 obj_byte(orp
, 0); /* near/far specifier */
2188 obj_byte(orp
, 0x40);
2189 obj_byte(orp
, dTYPEDEF
);
2190 obj_word(orp
, 0x1A); /* type # for linking */
2191 obj_word(orp
, 0); /* size of type */
2192 obj_byte(orp
, 0x24); /* absolute type for debugging */
2193 obj_byte(orp
, 1); /* near/far specifier */
2195 obj_byte(orp
, 0x40);
2196 obj_byte(orp
, dTYPEDEF
);
2197 obj_word(orp
, 0x1b); /* type # for linking */
2198 obj_word(orp
, 0); /* size of type */
2199 obj_byte(orp
, 0x23); /* absolute type for debugging */
2204 obj_byte(orp
, 0x40);
2205 obj_byte(orp
, dTYPEDEF
);
2206 obj_word(orp
, 0x1c); /* type # for linking */
2207 obj_word(orp
, 0); /* size of type */
2208 obj_byte(orp
, 0x23); /* absolute type for debugging */
2213 obj_byte(orp
, 0x40);
2214 obj_byte(orp
, dTYPEDEF
);
2215 obj_word(orp
, 0x1d); /* type # for linking */
2216 obj_word(orp
, 0); /* size of type */
2217 obj_byte(orp
, 0x23); /* absolute type for debugging */
2222 obj_byte(orp
, 0x40);
2223 obj_byte(orp
, dTYPEDEF
);
2224 obj_word(orp
, 0x1e); /* type # for linking */
2225 obj_word(orp
, 0); /* size of type */
2226 obj_byte(orp
, 0x23); /* absolute type for debugging */
2232 /* put out the array types */
2233 for (i
= ARRAYBOT
; i
< arrindex
; i
++) {
2234 obj_byte(orp
, 0x40);
2235 obj_byte(orp
, dTYPEDEF
);
2236 obj_word(orp
, i
); /* type # for linking */
2237 obj_word(orp
, arrtmp
->size
); /* size of type */
2238 obj_byte(orp
, 0x1A); /* absolute type for debugging (array) */
2239 obj_byte(orp
, arrtmp
->basetype
); /* base type */
2241 arrtmp
= arrtmp
->next
;
2245 * write out line number info with a LINNUM record
2246 * switch records when we switch segments, and output the
2247 * file in a pseudo-TASM fashion. The record switch is naive; that
2248 * is that one file may have many records for the same segment
2249 * if there are lots of segment switches
2251 if (fnhead
&& debuginfo
) {
2252 seg
= fnhead
->lnhead
->segment
;
2254 for (fn
= fnhead
; fn
; fn
= fn
->next
) {
2255 /* write out current file name */
2257 orp
->ori
= ori_null
;
2258 obj_byte(orp
, 0x40);
2259 obj_byte(orp
, dFILNAME
);
2261 obj_name(orp
, fn
->name
);
2265 /* write out line numbers this file */
2268 orp
->ori
= ori_linnum
;
2269 for (ln
= fn
->lnhead
; ln
; ln
= ln
->next
) {
2270 if (seg
!= ln
->segment
) {
2271 /* if we get here have to flush the buffer and start
2272 * a new record for a new segment
2277 orp
->parm
[0] = seg
->grp
? seg
->grp
->obj_index
: 0;
2278 orp
->parm
[1] = seg
->obj_index
;
2279 orp
= obj_word(orp
, ln
->lineno
);
2280 orp
= obj_x(orp
, ln
->offset
);
2287 * we are going to locate the entry point segment now
2288 * rather than wait until the MODEND record, because,
2289 * then we can output a special symbol to tell where the
2293 if (obj_entry_seg
!= NO_SEG
) {
2294 for (seg
= seghead
; seg
; seg
= seg
->next
) {
2295 if (seg
->index
== obj_entry_seg
) {
2296 entry_seg_ptr
= seg
;
2301 nasm_error(ERR_NONFATAL
, "entry point is not in this module");
2305 * get ready to put out symbol records
2308 orp
->ori
= ori_local
;
2311 * put out a symbol for the entry point
2312 * no dots in this symbol, because, borland does
2313 * not (officially) support dots in label names
2314 * and I don't know what various versions of TLINK will do
2316 if (debuginfo
&& obj_entry_seg
!= NO_SEG
) {
2317 orp
= obj_name(orp
, "start_of_program");
2318 orp
= obj_word(orp
, 0x19); /* type: near label */
2319 orp
= obj_index(orp
, seg
->grp
? seg
->grp
->obj_index
: 0);
2320 orp
= obj_index(orp
, seg
->obj_index
);
2321 orp
= obj_x(orp
, obj_entry_ofs
);
2326 * put out the local labels
2328 for (seg
= seghead
; seg
&& debuginfo
; seg
= seg
->next
) {
2329 /* labels this seg */
2330 for (loc
= seg
->lochead
; loc
; loc
= loc
->next
) {
2331 orp
= obj_name(orp
, loc
->name
);
2332 orp
= obj_word(orp
, loc
->type
);
2333 orp
= obj_index(orp
, seg
->grp
? seg
->grp
->obj_index
: 0);
2334 orp
= obj_index(orp
, seg
->obj_index
);
2335 orp
= obj_x(orp
, loc
->offset
);
2343 * Write the LEDATA/FIXUPP pairs.
2345 for (seg
= seghead
; seg
; seg
= seg
->next
) {
2347 nasm_free(seg
->orp
);
2351 * Write the MODEND module end marker.
2353 orp
->type
= obj_use32
? MODE32
: MODEND
;
2354 orp
->ori
= ori_null
;
2355 if (entry_seg_ptr
) {
2356 orp
->type
= entry_seg_ptr
->use32
? MODE32
: MODEND
;
2357 obj_byte(orp
, 0xC1);
2358 seg
= entry_seg_ptr
;
2360 obj_byte(orp
, 0x10);
2361 obj_index(orp
, seg
->grp
->obj_index
);
2364 * the below changed to prevent TLINK crashing.
2365 * Previous more efficient version read:
2367 * obj_byte (orp, 0x50);
2369 obj_byte(orp
, 0x00);
2370 obj_index(orp
, seg
->obj_index
);
2372 obj_index(orp
, seg
->obj_index
);
2373 obj_x(orp
, obj_entry_ofs
);
2380 static void obj_fwrite(ObjRecord
* orp
)
2382 unsigned int cksum
, len
;
2386 if (orp
->x_size
== 32)
2388 fputc(cksum
, ofile
);
2389 len
= orp
->committed
+ 1;
2390 cksum
+= (len
& 0xFF) + ((len
>> 8) & 0xFF);
2391 fwriteint16_t(len
, ofile
);
2392 fwrite(orp
->buf
, 1, len
- 1, ofile
);
2393 for (ptr
= orp
->buf
; --len
; ptr
++)
2395 fputc((-cksum
) & 0xFF, ofile
);
2398 extern macros_t obj_stdmac
[];
2400 void dbgbi_init(void)
2404 arrindex
= ARRAYBOT
;
2408 static void dbgbi_cleanup(void)
2410 struct Segment
*segtmp
;
2412 struct FileName
*fntemp
= fnhead
;
2413 while (fnhead
->lnhead
) {
2414 struct LineNumber
*lntemp
= fnhead
->lnhead
;
2415 fnhead
->lnhead
= lntemp
->next
;
2418 fnhead
= fnhead
->next
;
2419 nasm_free(fntemp
->name
);
2422 for (segtmp
= seghead
; segtmp
; segtmp
= segtmp
->next
) {
2423 while (segtmp
->lochead
) {
2424 struct Public
*loctmp
= segtmp
->lochead
;
2425 segtmp
->lochead
= loctmp
->next
;
2426 nasm_free(loctmp
->name
);
2431 struct Array
*arrtmp
= arrhead
;
2432 arrhead
= arrhead
->next
;
2437 static void dbgbi_linnum(const char *lnfname
, int32_t lineno
, int32_t segto
)
2439 struct FileName
*fn
;
2440 struct LineNumber
*ln
;
2441 struct Segment
*seg
;
2443 if (segto
== NO_SEG
)
2447 * If `any_segs' is still false, we must define a default
2451 int tempint
; /* ignored */
2452 if (segto
!= obj_segment("__NASMDEFSEG", 2, &tempint
))
2453 nasm_error(ERR_PANIC
, "strange segment conditions in OBJ driver");
2457 * Find the segment we are targetting.
2459 for (seg
= seghead
; seg
; seg
= seg
->next
)
2460 if (seg
->index
== segto
)
2463 nasm_error(ERR_PANIC
, "lineno directed to nonexistent segment?");
2465 /* for (fn = fnhead; fn; fn = fnhead->next) */
2466 for (fn
= fnhead
; fn
; fn
= fn
->next
) /* fbk - Austin Lunnen - John Fine */
2467 if (!nasm_stricmp(lnfname
, fn
->name
))
2470 fn
= nasm_malloc(sizeof(*fn
));
2471 fn
->name
= nasm_malloc(strlen(lnfname
) + 1);
2472 strcpy(fn
->name
, lnfname
);
2474 fn
->lntail
= &fn
->lnhead
;
2479 ln
= nasm_malloc(sizeof(*ln
));
2481 ln
->offset
= seg
->currentpos
;
2482 ln
->lineno
= lineno
;
2485 fn
->lntail
= &ln
->next
;
2488 static void dbgbi_deflabel(char *name
, int32_t segment
,
2489 int64_t offset
, int is_global
, char *special
)
2491 struct Segment
*seg
;
2496 * If it's a special-retry from pass two, discard it.
2502 * First check for the double-period, signifying something
2505 if (name
[0] == '.' && name
[1] == '.' && name
[2] != '@') {
2512 if (obj_seg_needs_update
) {
2514 } else if (obj_grp_needs_update
) {
2517 if (segment
< SEG_ABS
&& segment
!= NO_SEG
&& segment
% 2)
2520 if (segment
>= SEG_ABS
|| segment
== NO_SEG
) {
2525 * If `any_segs' is still false, we might need to define a
2526 * default segment, if they're trying to declare a label in
2527 * `first_seg'. But the label should exist due to a prior
2528 * call to obj_deflabel so we can skip that.
2531 for (seg
= seghead
; seg
; seg
= seg
->next
)
2532 if (seg
->index
== segment
) {
2533 struct Public
*loc
= nasm_malloc(sizeof(*loc
));
2535 * Case (ii). Maybe MODPUB someday?
2537 last_defined
= *seg
->loctail
= loc
;
2538 seg
->loctail
= &loc
->next
;
2540 loc
->name
= nasm_strdup(name
);
2541 loc
->offset
= offset
;
2544 static void dbgbi_typevalue(int32_t type
)
2547 int elem
= TYM_ELEMENTS(type
);
2548 type
= TYM_TYPE(type
);
2555 last_defined
->type
= 8; /* uint8_t */
2559 last_defined
->type
= 10; /* unsigned word */
2563 last_defined
->type
= 12; /* unsigned dword */
2567 last_defined
->type
= 14; /* float */
2571 last_defined
->type
= 15; /* qword */
2575 last_defined
->type
= 16; /* TBYTE */
2579 last_defined
->type
= 0x19; /*label */
2585 struct Array
*arrtmp
= nasm_malloc(sizeof(*arrtmp
));
2586 int vtype
= last_defined
->type
;
2587 arrtmp
->size
= vsize
* elem
;
2588 arrtmp
->basetype
= vtype
;
2589 arrtmp
->next
= NULL
;
2590 last_defined
->type
= arrindex
++;
2592 arrtail
= &(arrtmp
->next
);
2594 last_defined
= NULL
;
2596 static void dbgbi_output(int output_type
, void *param
)
2601 static struct dfmt borland_debug_form
= {
2602 "Borland Debug Records",
2607 null_debug_directive
,
2613 static struct dfmt
*borland_debug_arr
[3] = {
2614 &borland_debug_form
,
2619 struct ofmt of_obj
= {
2620 "MS-DOS 16-bit/32-bit OMF object files",
2624 &borland_debug_form
,