NASM 2.00rc1
[nasm/avx512.git] / nasmlib.h
blob200cc0edab3c2da5d2604d739938143b774f2e71
1 /* nasmlib.h header file for nasmlib.c
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
7 */
9 #ifndef NASM_NASMLIB_H
10 #define NASM_NASMLIB_H
12 #include "compiler.h"
14 #include <inttypes.h>
15 #include <stdio.h>
16 #include <string.h>
17 #ifdef HAVE_STRINGS_H
18 #include <strings.h>
19 #endif
22 * If this is defined, the wrappers around malloc et al will
23 * transform into logging variants, which will cause NASM to create
24 * a file called `malloc.log' when run, and spew details of all its
25 * memory management into that. That can then be analysed to detect
26 * memory leaks and potentially other problems too.
28 /* #define LOGALLOC */
31 * -------------------------
32 * Error reporting functions
33 * -------------------------
37 * An error reporting function should look like this.
39 typedef void (*efunc) (int severity, const char *fmt, ...);
42 * These are the error severity codes which get passed as the first
43 * argument to an efunc.
46 #define ERR_DEBUG 0x00000008 /* put out debugging message */
47 #define ERR_WARNING 0x00000000 /* warn only: no further action */
48 #define ERR_NONFATAL 0x00000001 /* terminate assembly after phase */
49 #define ERR_FATAL 0x00000002 /* instantly fatal: exit with error */
50 #define ERR_PANIC 0x00000003 /* internal error: panic instantly
51 * and dump core for reference */
52 #define ERR_MASK 0x0000000F /* mask off the above codes */
53 #define ERR_NOFILE 0x00000010 /* don't give source file name/line */
54 #define ERR_USAGE 0x00000020 /* print a usage message */
55 #define ERR_PASS1 0x00000040 /* only print this error on pass one */
58 * These codes define specific types of suppressible warning.
61 #define ERR_WARN_MASK 0x0000FF00 /* the mask for this feature */
62 #define ERR_WARN_SHR 8 /* how far to shift right */
64 #define WARN(x) ((x) << ERR_WARN_SHR)
66 #define ERR_WARN_MNP WARN(1) /* macro-num-parameters warning */
67 #define ERR_WARN_MSR WARN(2) /* macro self-reference */
68 #define ERR_WARN_OL WARN(3) /* orphan label (no colon, and
69 * alone on line) */
70 #define ERR_WARN_NOV WARN(4) /* numeric overflow */
71 #define ERR_WARN_GNUELF WARN(5) /* using GNU ELF extensions */
72 #define ERR_WARN_FL_OVERFLOW WARN(6) /* FP overflow */
73 #define ERR_WARN_FL_DENORM WARN(7) /* FP denormal */
74 #define ERR_WARN_FL_UNDERFLOW WARN(8) /* FP underflow */
75 #define ERR_WARN_FL_TOOLONG WARN(9) /* FP too many digits */
76 #define ERR_WARN_MAX 9 /* the highest numbered one */
79 * Wrappers around malloc, realloc and free. nasm_malloc will
80 * fatal-error and die rather than return NULL; nasm_realloc will
81 * do likewise, and will also guarantee to work right on being
82 * passed a NULL pointer; nasm_free will do nothing if it is passed
83 * a NULL pointer.
85 void nasm_set_malloc_error(efunc);
86 #ifndef LOGALLOC
87 void *nasm_malloc(size_t);
88 void *nasm_zalloc(size_t);
89 void *nasm_realloc(void *, size_t);
90 void nasm_free(void *);
91 char *nasm_strdup(const char *);
92 char *nasm_strndup(char *, size_t);
93 #else
94 void *nasm_malloc_log(char *, int, size_t);
95 void *nasm_zalloc_log(char *, int, size_t);
96 void *nasm_realloc_log(char *, int, void *, size_t);
97 void nasm_free_log(char *, int, void *);
98 char *nasm_strdup_log(char *, int, const char *);
99 char *nasm_strndup_log(char *, int, char *, size_t);
100 #define nasm_malloc(x) nasm_malloc_log(__FILE__,__LINE__,x)
101 #define nasm_zalloc(x) nasm_malloc_log(__FILE__,__LINE__,x)
102 #define nasm_realloc(x,y) nasm_realloc_log(__FILE__,__LINE__,x,y)
103 #define nasm_free(x) nasm_free_log(__FILE__,__LINE__,x)
104 #define nasm_strdup(x) nasm_strdup_log(__FILE__,__LINE__,x)
105 #define nasm_strndup(x,y) nasm_strndup_log(__FILE__,__LINE__,x,y)
106 #endif
109 * ANSI doesn't guarantee the presence of `stricmp' or
110 * `strcasecmp'.
112 #if defined(HAVE_STRCASECMP)
113 #define nasm_stricmp strcasecmp
114 #elif defined(HAVE_STRICMP)
115 #define nasm_stricmp stricmp
116 #else
117 int nasm_stricmp(const char *, const char *);
118 #endif
120 #if defined(HAVE_STRNCASECMP)
121 #define nasm_strnicmp strncasecmp
122 #elif defined(HAVE_STRNICMP)
123 #define nasm_strnicmp strnicmp
124 #else
125 int nasm_strnicmp(const char *, const char *, int);
126 #endif
128 #if defined(HAVE_STRSEP)
129 #define nasm_strsep strsep
130 #else
131 char *nasm_strsep(char **stringp, const char *delim);
132 #endif
136 * Convert a string into a number, using NASM number rules. Sets
137 * `*error' to true if an error occurs, and false otherwise.
139 int64_t readnum(char *str, bool *error);
142 * Convert a character constant into a number. Sets
143 * `*warn' to true if an overflow occurs, and false otherwise.
144 * str points to and length covers the middle of the string,
145 * without the quotes.
147 int64_t readstrnum(char *str, int length, bool *warn);
150 * seg_init: Initialise the segment-number allocator.
151 * seg_alloc: allocate a hitherto unused segment number.
153 void seg_init(void);
154 int32_t seg_alloc(void);
157 * many output formats will be able to make use of this: a standard
158 * function to add an extension to the name of the input file
160 #ifdef NASM_NASM_H
161 void standard_extension(char *inname, char *outname, char *extension,
162 efunc error);
163 #endif
166 * Utility macros...
168 * This is a useful #define which I keep meaning to use more often:
169 * the number of elements of a statically defined array.
172 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
176 * some handy macros that will probably be of use in more than one
177 * output format: convert integers into little-endian byte packed
178 * format in memory
181 #if X86_MEMORY
183 #define WRITECHAR(p,v) \
184 do { \
185 *(uint8_t *)(p) = (v); \
186 (p) += 1; \
187 } while (0)
189 #define WRITESHORT(p,v) \
190 do { \
191 *(uint16_t *)(p) = (v); \
192 (p) += 2; \
193 } while (0)
195 #define WRITELONG(p,v) \
196 do { \
197 *(uint32_t *)(p) = (v); \
198 (p) += 4; \
199 } while (0)
201 #define WRITEDLONG(p,v) \
202 do { \
203 *(uint64_t *)(p) = (v); \
204 (p) += 8; \
205 } while (0)
207 #define WRITEADDR(p,v,s) \
208 do { \
209 uint64_t _v = (v); \
210 memcpy((p), &_v, (s)); \
211 (p) += (s); \
212 } while (0)
214 #else /* !X86_MEMORY */
216 #define WRITECHAR(p,v) \
217 do { \
218 *(p)++ = (v) & 0xFF; \
219 } while (0)
221 #define WRITESHORT(p,v) \
222 do { \
223 WRITECHAR(p,v); \
224 WRITECHAR(p,(v) >> 8); \
225 } while (0)
227 #define WRITELONG(p,v) \
228 do { \
229 WRITECHAR(p,v); \
230 WRITECHAR(p,(v) >> 8); \
231 WRITECHAR(p,(v) >> 16); \
232 WRITECHAR(p,(v) >> 24); \
233 } while (0)
235 #define WRITEDLONG(p,v) \
236 do { \
237 WRITECHAR(p,v); \
238 WRITECHAR(p,(v) >> 8); \
239 WRITECHAR(p,(v) >> 16); \
240 WRITECHAR(p,(v) >> 24); \
241 WRITECHAR(p,(v) >> 32); \
242 WRITECHAR(p,(v) >> 40); \
243 WRITECHAR(p,(v) >> 48); \
244 WRITECHAR(p,(v) >> 56); \
245 } while (0)
247 #define WRITEADDR(p,v,s) \
248 do { \
249 int _s = (s); \
250 uint64_t _v = (v); \
251 while (_s--) { \
252 WRITECHAR(p,_v); \
253 _v >>= 8; \
255 } while(0)
257 #endif
260 * and routines to do the same thing to a file
262 #define fwriteint8_t(d,f) putc(d,f)
263 void fwriteint16_t(uint16_t data, FILE * fp);
264 void fwriteint32_t(uint32_t data, FILE * fp);
265 void fwriteint64_t(uint64_t data, FILE * fp);
266 void fwriteaddr(uint64_t data, int size, FILE * fp);
269 * Routines to manage a dynamic random access array of int32_ts which
270 * may grow in size to be more than the largest single malloc'able
271 * chunk.
274 #define RAA_BLKSIZE 32768 /* this many longs allocated at once */
275 #define RAA_LAYERSIZE 32768 /* this many _pointers_ allocated */
277 typedef struct RAA RAA;
278 typedef union RAA_UNION RAA_UNION;
279 typedef struct RAA_LEAF RAA_LEAF;
280 typedef struct RAA_BRANCH RAA_BRANCH;
282 struct RAA {
284 * Number of layers below this one to get to the real data. 0
285 * means this structure is a leaf, holding RAA_BLKSIZE real
286 * data items; 1 and above mean it's a branch, holding
287 * RAA_LAYERSIZE pointers to the next level branch or leaf
288 * structures.
290 int layers;
292 * Number of real data items spanned by one position in the
293 * `data' array at this level. This number is 1, trivially, for
294 * a leaf (level 0): for a level 1 branch it should be
295 * RAA_BLKSIZE, and for a level 2 branch it's
296 * RAA_LAYERSIZE*RAA_BLKSIZE.
298 int32_t stepsize;
299 union RAA_UNION {
300 struct RAA_LEAF {
301 int64_t data[RAA_BLKSIZE];
302 } l;
303 struct RAA_BRANCH {
304 struct RAA *data[RAA_LAYERSIZE];
305 } b;
306 } u;
309 struct RAA *raa_init(void);
310 void raa_free(struct RAA *);
311 int64_t raa_read(struct RAA *, int32_t);
312 struct RAA *raa_write(struct RAA *r, int32_t posn, int64_t value);
315 * Routines to manage a dynamic sequential-access array, under the
316 * same restriction on maximum mallocable block. This array may be
317 * written to in two ways: a contiguous chunk can be reserved of a
318 * given size with a pointer returned OR single-byte data may be
319 * written. The array can also be read back in the same two ways:
320 * as a series of big byte-data blocks or as a list of structures
321 * of a given size.
324 struct SAA {
326 * members `end' and `elem_len' are only valid in first link in
327 * list; `rptr' and `rpos' are used for reading
329 size_t elem_len; /* Size of each element */
330 size_t blk_len; /* Size of each allocation block */
331 size_t nblks; /* Total number of allocated blocks */
332 size_t nblkptrs; /* Total number of allocation block pointers */
333 size_t length; /* Total allocated length of the array */
334 size_t datalen; /* Total data length of the array */
335 char **wblk; /* Write block pointer */
336 size_t wpos; /* Write position inside block */
337 size_t wptr; /* Absolute write position */
338 char **rblk; /* Read block pointer */
339 size_t rpos; /* Read position inside block */
340 size_t rptr; /* Absolute read position */
341 char **blk_ptrs; /* Pointer to pointer blocks */
344 struct SAA *saa_init(size_t elem_len); /* 1 == byte */
345 void saa_free(struct SAA *);
346 void *saa_wstruct(struct SAA *); /* return a structure of elem_len */
347 void saa_wbytes(struct SAA *, const void *, size_t); /* write arbitrary bytes */
348 void saa_rewind(struct SAA *); /* for reading from beginning */
349 void *saa_rstruct(struct SAA *); /* return NULL on EOA */
350 const void *saa_rbytes(struct SAA *, size_t *); /* return 0 on EOA */
351 void saa_rnbytes(struct SAA *, void *, size_t); /* read a given no. of bytes */
352 /* random access */
353 void saa_fread(struct SAA *, size_t, void *, size_t);
354 void saa_fwrite(struct SAA *, size_t, const void *, size_t);
356 /* dump to file */
357 void saa_fpwrite(struct SAA *, FILE *);
360 * Binary search routine. Returns index into `array' of an entry
361 * matching `string', or <0 if no match. `array' is taken to
362 * contain `size' elements.
364 * bsi() is case sensitive, bsii() is case insensitive.
366 int bsi(const char *string, const char **array, int size);
367 int bsii(const char *string, const char **array, int size);
369 char *src_set_fname(char *newname);
370 int32_t src_set_linnum(int32_t newline);
371 int32_t src_get_linnum(void);
373 * src_get may be used if you simply want to know the source file and line.
374 * It is also used if you maintain private status about the source location
375 * It return 0 if the information was the same as the last time you
376 * checked, -1 if the name changed and (new-old) if just the line changed.
378 int src_get(int32_t *xline, char **xname);
380 void nasm_quote(char **str);
381 char *nasm_strcat(char *one, char *two);
383 void null_debug_routine(const char *directive, const char *params);
384 extern struct dfmt null_debug_form;
385 extern struct dfmt *null_debug_arr[2];
387 const char *prefix_name(int);
389 #endif